KR102143682B1 - 대면적 oled 마이크로 디스플레이 및 그 제조 방법 - Google Patents

대면적 oled 마이크로 디스플레이 및 그 제조 방법 Download PDF

Info

Publication number
KR102143682B1
KR102143682B1 KR1020177034617A KR20177034617A KR102143682B1 KR 102143682 B1 KR102143682 B1 KR 102143682B1 KR 1020177034617 A KR1020177034617 A KR 1020177034617A KR 20177034617 A KR20177034617 A KR 20177034617A KR 102143682 B1 KR102143682 B1 KR 102143682B1
Authority
KR
South Korea
Prior art keywords
light emitting
organic light
layer
oled
display device
Prior art date
Application number
KR1020177034617A
Other languages
English (en)
Other versions
KR20180015144A (ko
Inventor
애멀커마르 피 고쉬
앤드류 지 쥬니어 스쿨리
이홀 왁시크
해리슨 권
존 호
앤드류 로젠
Original Assignee
이매진 코퍼레이션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이매진 코퍼레이션 filed Critical 이매진 코퍼레이션
Publication of KR20180015144A publication Critical patent/KR20180015144A/ko
Application granted granted Critical
Publication of KR102143682B1 publication Critical patent/KR102143682B1/ko

Links

Images

Classifications

    • H01L51/5012
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • H01L27/3211
    • H01L27/322
    • H01L51/5072
    • H01L51/56
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/18Tiled displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Abstract

복수의 발광 엘리먼트를 제1 배열로 포함하는 컬러 방출 층, 및 전자장치 층을 갖는 유기 발광 다이오드(OLED) 디스플레이 디바이스가 제공된다. 전자장치 층은 전극 콘택을 각각 포함하는 복수의 픽셀 구동 회로를 포함한다. 전자장치 층은 단일의 레티클 노광을 사용하여 생성되는 동일한 패턴의 전극 콘택을 각각 포함하는 복수의 독립적으로 주소 지정 가능한 서브 영역을 포함한다. 각각의 서브 영역은, 발광 엘리먼트의 제1 배열이 패턴화된 전자장치 층에 전기적으로 연결되도록, 평면 내에서 상이하게 배향된다.

Description

대면적 OLED 마이크로 디스플레이 및 그 제조 방법{LARGE AREA OLED MICRODISPLAY AND METHOD OF MANUFACTURING SAME}
본 출원은 2015년 5월 1일자로 미국 특허청에 출원된 특허 가출원 제62/155,821호의 이익을 주장하는데, 이 가출원은 참조에 의해 그 전체가 본원에 통합된다.
본 발명은 일반적으로 유기 발광 다이오드(organic light-emitting diode; OLED) 디스플레이 디바이스에 관한 것으로, 보다 상세하게는, 능동형 유기 발광 다이오드(active matrix organic light-emitting diode; AMOLED) 픽셀 셀 설계를 갖는 하나보다 많은 마이크로디스플레이 패널을 포함하는 대면적 디스플레이 및 그 제조 방법에 관한 것이다.
OLED 디스플레이 기술은, OLED 디스플레이를 대면적 디스플레이에 대한 최상의 선택으로 만드는 광범위한 동작 온도 범위, 저전력 소비, 넓은 시야각, 높은 콘트라스트 및 빠른 응답 시간의 장점을 가지고 있다. 이들 디스플레이에 대한 수요는 계속 증가하고 있지만, 그 기술은 여전히 생산 비용이 많이 들고 전체적인 해상도와 성능 품질이 부족하다.
전통적인 OLED 디스플레이는 기판 상에 형성되는 얇은 층의 스택을 포함한다. 인접한 반도체 층뿐만 아니라, 발광성 유기 고체(luminescent organic solid)의 발광 층(light-emitting layer)은 캐소드와 애노드 사이에 끼인다. 발광 층은 다수의 형광(fluorescent) 및 인광(phosphorescent) 유기 고체 중 임의의 것으로부터 선택될 수도 있다. 본원에서 방출성 층(emissive layer) 또는 유기 방출성 층(organic emissive layer)으로도 칭해지는 임의의 층, 특히 발광 층은 다수의 서브층(sublayer)으로 구성될 수도 있다. 능동형 유기 발광 다이오드에서, 캐소드는 낮은 일 함수를 갖는 금속 전극을 포함할 수도 있고, 애노드는, 예를 들면, 인듐 주석 산화물(indium tin oxide; ITO)로 만들어지는 투명 전극을 포함할 수도 있다.
통상적인 OLED에서, 캐소드 또는 애노드 중 어느 하나는 투명하다. 증발, 스핀 캐스팅, 기타 적절한 폴리머 성막(film-forming) 기술, 또는 화학 제품(chemical)은 필름을 자기 조립식(self-assembly)으로 형성할 수도 있다. 두께는 통상적으로 수개의 단일 층으로부터 약 1 내지 2,000 Å까지의 범위에 이른다. 산소 및 수분에 대한 OLED의 보호는 디바이스의 캡슐화에 의해 달성될 수 있다. 캡슐화는, OLED를 에워싸는 기판 상에 위치한 단일의 박막 층에 의해 획득될 수 있다.
OLED 디바이스에서 전류가 디바이스 양단에 인가될 때, 음으로 대전된 전자가 캐소드로부터 유기 재료(들)로 이동한다. 통상적으로 정공(hole)으로 칭해지는 양전하는 애노드로부터 유기 재료(들)로 이동한다. 양전하 및 음전하는 중심 층(즉, 반도체성 유기 재료)에서 만나서, 결합하고, 광자를 생성한다. 광자의 파장, 및 결과적으로 컬러는, 광자가 생성되는 유기 재료의 전기적 특성에 의존한다. 픽셀 드라이버는, AMOLED 디스플레이에서 OLED에 의해 생성되는 빛의 양을 제어하기 위한 전류 소스 또는 전압 소스 중 어느 하나로서 구성될 수 있다.
유기 발광 디바이스로부터 방출되는 광의 컬러는, 유기 재료의 선택에 의해 제어될 수 있다. 청색, 적색 및 녹색 광을 동시에 생성하는 것은 백색 광을 생성할 수도 있다. 조합하여 백색 스펙트럼을 생성하기 위해, 적색, 녹색 및 청색과는 상이한 다른 개별 컬러가 또한 사용될 수 있다. 구체적으로, 특정한 구조체에 의해 방출되는 빛의 정확한 컬러는, 유기 재료의 선택뿐만 아니라, 유기 방출성 층에서의 도펀트의 선택 둘 다에 의해 제어될 수 있다. 대안적으로, 적색, 녹색 또는 청색, 또는 다른 컬러의 필터가 백색 발광 픽셀의 상부에 추가될 수도 있다. 다른 예에서, 백색 발광 OLED 픽셀은 단색 디스플레이에서 사용될 수도 있다.
고해상도 능동형 디스플레이(active matrix display)는, 구동 전자장치에 의해 개별적으로 주소 지정되는(addressed) 수백 만 개의 픽셀 및 서브 픽셀을 포함할 수도 있다. 각각의 서브 픽셀은 여러가지 반도체 트랜지스터 및 다른 IC 컴포넌트를 구비할 수 있다. 각각의 OLED는 픽셀 또는 서브 픽셀에 대응할 수도 있다. 그러나, 일반적으로, OLED 디스플레이는 많은 OLED 픽셀로 구성되며, 각각의 OLED 픽셀은 자신과 관련되는 세 개의 서브 픽셀을 구비할 수도 있는데, 여기서 각각의 서브 픽셀은 적색, 녹색 및 청색 OLED를 포함할 수도 있거나 또는 백색 광을 방출할 수도 있으며, 백색 광은 적색, 녹색, 또는 청색으로 필터링된다.
OELD 디바이스를 사용하여 풀 컬러 화상을 형성하기 위한 몇몇 구조체가 일반적으로 알려져 있다. 예를 들면, 도 1a에서 도시되는 바와 같이, 독립적인 적색, 녹색, 청색(red, green, blue; RGB) 층 구조체는, 적색, 녹색 및 청색 광을 각각 방출하기 위해 기판(10) 상에 독립적으로 코팅되는 세 개의 유기 발광성 층(organic luminescent layer)(20, 22 및 24)을 사용한다. 도 1b에서 도시되는 바와 같이, 컬러 변환 구조체는, 기판(10)과 청색 발광성 층(36) 사이에 개재되는 컬러 변환 층(30,32,34)을 사용한다. 도 1c에서 도시되는 바와 같이, 컬러 필터 구조체는 적색, 녹색 및 청색 광을 각각 방출하기 위해 컬러 필터(40, 42 및 44)를 사용한다. 컬러 필터(40, 42 및 44)는 기판(10)과 백색 유기 발광성 층(46) 사이에 개재된다.
도 1a에서 도시되는 독립적인 RGB 층 구조체를 사용하는 경우, RGB 재료는 섀도우 마스크를 사용하여 퇴적되고 패턴화된다. 결과적으로, 비록 높은 광 효율성이 존재하지만, 적색, 녹색 및 청색 광을 미세하게 서로 분리할 수는 없다. 도 1b에서 도시되는 컬러 변환 구조체는, 유기 형광 재료가 노광 프로세스에 의해 기판 상에 퇴적되고, 그에 의해 풀 컬러 이미지를 형성하기 위한 프로세스 단계를 추가하는 것을 요구한다. 또한, 컬러 변환 구조체를 사용하는 경우, 컬러 변환 층을 균일한 두께로 코팅하는 것이 어렵다. 도 1c에서 도시되는 컬러 필터 구조체를 사용하는 경우, 컬러 필터는 종래의 포토리소그래피 프로세스를 통해 형성된다. 결과적으로, 상대적으로 더 높은 해상도의 디스플레이 패널이 컬러 필터 구조체를 사용하여 제조되고, 컬러 필터 구조체는 다른 구조보다 더욱 더 광범위하게 사용된다.
본 발명의 OLED 디스플레이는, 비아를 통한 전극 연결부의 고유한 픽셀 설계 및 패턴을 갖는 새로운 OLED 아키텍쳐를 활용한다. "비아"는, 물리적인 전자 회로의 상이한 도체 층 사이의 수직의 전기적 연결부이다. 본 발명에서, OLED 디스플레이로의 그리고 OLED 디스플레이로부터의 전기적 연결은 적어도 하나의 비아에 의해 각각의 애노드 라인 및 캐소드 라인에 제공된다. 각각의 비아는 도전성 재료의 칼럼으로 형성되거나 또는 그 가장 간단한 형태에서는 아래의 전극에 자유롭게 접근할 수 있는 개구로서 제공된다.
대면적 디스플레이를 제조하기 위해 사용되는 하나의 방법은 타일링(tiling)으로 칭해진다. 타일링에서, 복수의 더 작은 디스플레이가 매트릭스로 배열되어 크고 고해상도의 다중 패널 디스플레이를 생성한다. 통상적으로, 대면적 디스플레이를 획득하기 위한 타일링은 다수의 타일을 함께 스티칭하는(stitching) 것에 의존하는데, 여기서 각각의 타일은 픽셀 또는 픽셀의 어레이를 갖는다. 그러나, 이들 조립된 타일식 디스플레이(tiled display)의 에지 라인은, 인접한 타일 상의 인접한 픽셀 사이의 간격으로부터 유래하는 시각적으로 방해하는 이음새(seam)를 생성한다. 디스플레이에 신호를 공급하기 위해 필요한 배선(interconnection)이 또한 눈에 띌 수도 있고, 뷰어를 혼란시킬 수도 있으며, 그리고 다르게는 이미지의 전체적인 시각적 외관을 손상시킬 수도 있다. 따라서, 의도된 뷰잉 조건 하에서 눈에 띄는 또는 인지 가능한 이음새를 갖지 않는, 타일식의 고해상도 마이크로 패널 디스플레이를 제조하는 것이 바람직하다.
평면 패널 디스플레이(flat-panel display; FPD)는 "이음새가 없는" 타일식 스크린을 구성하기 위한 최상의 선택을 제공하지만, 그러나, FPD는, 아주 큰 디스플레이에 대해 실용적이지 않은 픽셀 패턴을 갖는 컴포넌트의 미세 제조에 의존한다. 따라서, 본 발명자들은 OLED 픽셀의 어레이를 갖는 타일이 미세 제조될 수 있고 그 다음 함께 조립되어 더 큰 면적의 전자 디스플레이를 형성할 수 있다는 것을 밝혀내었다. 본 발명은 풀 컬러의 고해상도 대면적 디스플레이를 위한 이렇게 크고, 이음새가 없는 타일식 패널을 달성하기 위한 고유의 설계 및 방법을 제공한다. 특히, 이들 대면적 디스플레이의 치수는 변당(per side) 약 1 내 3 인치이며, 다른 것들 중에서도, 가상 현실 디바이스(예를 들면, 헤드셋)에 대한 수요가 있는 고해상도 디스플레이에 대해 이상적이다.
초기 이미지 센서 기술은, 전체 웨이퍼가 단일 샷으로 노광되도록 미크론 리소그래피(micron lithography)를 사용하여 제조되었다. 그 시간 동안, 필요로 되는 피쳐를 재현할만큼 정확하게 큰 웨이퍼 상으로 웨이퍼 자체만큼 큰 포토마스크가 투영할 수 있도록, 피쳐 사이즈는 컸고 웨이퍼는 충분히 작았다. 실리콘 프로세스가 서브미크론 피쳐 사이즈에 대해 사용되었고 그리고 웨이퍼 사이즈가 증가되었다면, 이미지 센서는 하나의 샷에서 더 이상 웨이퍼 자체만큼 크게 만들어질 수 없다. 리소그래피는 더 작은 마스크로 이동되었고 웨이퍼 노광은 "스텝 앤 리피트(step and repeat)" 방법으로 이동되었으며, 그 결과 단일의 노광은 25mm×25mm 정도의 디바이스만을 초래할 수 있었다. 이것은 스티칭에 대한 필요성을 생성하였는데, 스티칭은, 단일 마스크의 사이즈보다 훨씬 큰 디바이스로 나타나게 되는 디바이스를 일련의 노광으로부터 제작하기 위해 개발된 것이다. 통상적인 픽셀 어레이는 수천 픽셀의 블록으로 형성된다. 마스크는 이 블록의 단일의 인스턴스를 포함하고, 블록 사이즈와 동일한 마스크를 스테핑하는 것에 의해, 픽셀 블록은 웨이퍼의 표면 상에서 나란히 반복될 수 있다. 웨이퍼 상에 다수의 다이가 형성될 수 있으며, 몇몇 경우에, 레티클 세트의 비용을 감소시키기 위해, 다수의 다이 패턴이 단일의 레티클에 포함될 수 있다. 그 다음, 픽셀을 둘러싸는 회로부(circuitry)가 추가되어 디바이스를 완성한다. 이 방법을 사용하면, 대면적 디바이스를 제조하기 위해 단일의 마스크가 사용될 수 있다.
본 발명의 주요 목적은, 단일의 레티클을 사용하여 제조되는 하나보다 많은 AMOLED 마이크로디스플레이 패널로 구성되는 대면적 디스플레이를 제공하여 상이한 구성을 갖는 다양하고 상이한 디스플레이 디바이스를 생성하는 것이다.
본 발명의 다른 목적은, 바람직하게는, 독립적으로 주소 지정 가능하고(addressable) 층을 함께 스티칭할 필요성을 제거하는 함께 배열되는 네 개의 AMOLED 마이크로디스플레이 패널로 구성되는, 그러나 이들로 제한되지는 않는 대면적 디스플레이를 제공하는 것이다.
본 발명의 다른 목적은, 가상 현실, 고속 및/또는 헤드 마운트형 디바이스 및 애플리케이션에서 사용하기 위한 하나보다 많은 AMOLED 마이크로디스플레이로 구성되는 고해상도 디스플레이를 제공하는 것이다.
본 발명은, 대면적 전자 디스플레이의 더욱 간단하고 더 저렴한 제조를 허용하기 위해 단일의 레티클을 사용하여 제조되는 하나보다 많은 AMOLED 마이크로디스플레이 패널을 갖는 대면적 디스플레이를 제공하는 것에 의해 종래 기술의 결점 중 일부를 해결한다.
본 발명의 예시적인 실시형태에 따르면, 복수의 발광 엘리먼트를 갖는 방출 층(emission layer), 및 전자장치 층(electronics layer)을 갖는 유기 발광 다이오드(OLED) 디스플레이가 제공된다. 전자장치 층은 복수의 독립적으로 주소 지정 가능한 디스플레이 패널을 포함하는데, 여기서, 각각의 패널은 동일하게 패턴화되고 상이한 방향으로 배열되며 방출 층에 동작 가능하게 연결된다. 방출 층은, 전체 컬러 방출 층을 가로질러 수직으로 반복적인 시퀀스로 배열되는 발광 엘리먼트의 어레이를 포함한다. 전자장치 층은 단일의 레티클 노광(single reticle exposure)을 사용하여 패턴화될 수도 있다.
본 발명의 예시적인 실시형태에 따르면, 복수의 발광 엘리먼트를 제1 배열로 포함하는 컬러 방출 층, 및 전자장치 층을 갖는 유기 발광 다이오드(OLED) 디스플레이 디바이스가 제공된다. 전자장치 층은, 전극 콘택을 각각 포함하는 복수의 픽셀 구동 회로를 포함하는데, 여기서, 전자장치 층은, 동일한 패턴의 전극 콘택을 각각 포함하는 복수의 독립적으로 주소 지정 가능한 서브 영역을 포함한다. 각각의 서브 영역은 평면 내에서 상이하게 배향되고, 그 결과, 발광 엘리먼트의 제1 배열은 패턴화된 전자장치 층에 전기적으로 연결된다. 유기 발광 엘리먼트의 제1 배열은 전체 컬러 방출 층을 가로질러 수직으로 반복적인 시퀀스로 배열된다. 픽셀 회로는 단결정 실리콘 회로일 수도 있다. 전자장치 층의 각각의 서브 영역은 OLED 마이크로디스플레이 패널일 수도 있다. 각각의 마이크로디스플레이 패널은 복수의 논리 블록 및 복수의 고정된 리소스 블록을 포함할 수도 있다. 전자장치 층의 인접한 서브 영역은, 대칭축을 중심으로 플립(flip)하는 것에 의해 평면에서 상이하게 배향될 수도 있다. 전자장치 층의 인접한 서브 영역은, 그로부터 90도 회전하는 것에 의해 평면에서 상이하게 배향될 수도 있다. 전자장치 층의 각각의 서브 영역은, 방출 층 내의 개개의 OLED 엘리먼트에 도전성(conduction)을 제공하도록 전기적으로 연결되는 전극 콘택의 패턴을 포함한다. 전극 콘택의 패턴은 각각의 OLED 엘리먼트를 가로질러 대각선을 따라 배열될 수도 있다. OLED 엘리먼트는, 컬러 색역(color gamut)을 정의하는 컬러를 생성하는 유기 층을 갖는 발광 픽셀의 어레이를 포함할 수도 있다. 컬러 색역 정의 픽셀(color gamut defining pixel)에 의해 생성되는 컬러는 적색, 녹색 및 청색일 수도 있다. OLED 디바이스는, 컬러 색역 정의 픽셀의 각각과 관련되는 상이한 컬러 필터를 더 포함할 수도 있다. 전자장치 층의 서브 영역의 각각의 패턴은 단일의 레티클 노광을 사용하여 생성될 수도 있다. OLED 디스플레이 디바이스는 능동형 디바이스 또는 수동형 디바이스(passive matrix device)일 수도 있다. OLED 디스플레이 디바이스는 상부 방출형(top emitting) 또는 하부 방출형(bottom emitting)일 수도 있다.
본 발명의 예시적인 실시형태에 따르면, 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법이 제공된다. 그 방법은, 복수의 독립적으로 주소 지정 가능한 디스플레이 패널을 어레이에 조립하는 것을 포함하는데, 패널의 각각은, 각각이 콘택을 구비하며 제1 배열로 패턴화되는 복수의 유기 발광 엘리먼트를 포함한다. 그 방법은, 컬러 방출 층의 복수의 대응하는 유기 발광 엘리먼트 중 하나를 활성화하기 위한 복수의 전기 신호를 제공하도록 적응되는 복수의 단결정 실리콘 픽셀 구동 회로를 형성하는 것에 의해, 픽셀 구동 회로부에 의해 제공되는 복수의 전기 신호를 수신하도록 커플링되는 복수의 전극 콘택을 형성하는 것에 의해, 그리고 복수의 전극 콘택을 복수의 유기 발광 엘리먼트 콘택에 커플링하기 위한 복수의 비아를 형성하는 것에 의해, 단일의 레티클 노광을 사용하여 생성되는 복수의 상이하게 배향된 서브 영역을 구비하는 전자장치 층을 조립하는 것을 더 포함한다. 그 방법은, 발광 엘리먼트의 패턴화된 제1 배열을 패턴화된 전자장치 층에 복수의 비아에 의해 커플링하는 것을 더 포함한다.
그 방법은, 투명 기판 상에 도전 층을 형성하는 것, 및 투명 기판 상에 복수의 전극을 형성하기 위해 도전 층을 에칭하여 포토리소그래피에 의해 전극 패턴을 생성하는 것을 더 포함하는 복수의 전극 콘택을 형성하는 것을 포함할 수도 있다. 그 방법은, 전극의 패턴을, 컬러 방출 층의 발광 엘리먼트의 패턴화된 제1 배열과 정렬하는 것을 포함할 수도 있다. 전자장치 층은 마스크를 포함하는 작은 면적의 노광 툴을 사용하여 생성될 수도 있다. 전자장치 층은 연속하는 다이 패턴화를 사용하여 형성될 수도 있다.
본 발명의 이들 장점은 후속하는 본 개시 및 첨부된 청구 범위로부터 명백해질 것이다.
이하 나타날 수도 있는 이들 목적 및 이러한 다른 목적에 대해, 본 발명은 첨부된 도면과 연계하여 취해지는 하기의 명세서에서 상세히 설명되는 그리고 첨부된 청구범위에서 기재되는 것과 동일한 대면적 OLED 마이크로디스플레이 및 그 제조 방법에 관한 것인데, 첨부의 도면에서 동일한 도면 번호는 동일한 부분을 가리키며, 첨부의 도면에서:
도 1a 내지 도 1c는 OLED 디바이스에서 컬러 이미지를 형성하기 위한 종래의 구조체를 도시하는 개략도이다;
도 2a 내지 도 2c는, 본 발명의 예시적인 실시형태에 따른 레티클 설계를 갖는 종래의 웨이퍼 구조체를 도시하는 개략적인 평면도이다;
도 2d는 본 발명의 예시적인 실시형태에 따른 서브 필드 및 스크라이브 라인을 포함하는 단일의 다이 레티클 필드 영역을 도시하는 확대된 평면도이다;
도 2e는 본 발명의 예시적인 실시형태에 따라 복수의 집적 회로 다이가 상부에 형성된 반도체 웨이퍼를 도시하는 개략적인 평면도이다;
도 3은 본 발명의 예시적인 실시형태에 따라 단일의 레티클로 만들어지는 대형 포맷 디스플레이를 도시하는 개략도이다;
도 4는 본 발명의 다른 예시적인 실시형태에 따라 단일의 레티클로 만들어지는 대형 포맷 디스플레이를 도시하는 개략도이다;
도 5는 도 4의 대형 포맷 디스플레이에 따른 단일의 레티클의 확대도이다;
도 6은 종래의 OLED 디스플레이 디바이스에 따라 컬러 이미지를 형성하기 위한 애노드 패턴을 갖는 픽셀 배열을 도시하는 개략도이다;
도 7은 도 3의 대형 포맷 디스플레이에 따라 컬러 이미지를 형성하기 위한 애노드 패턴을 갖는 픽셀 배열을 도시하는 개략도이다;
도 8은 이상화된(idealized) 하부 방출형 OLED 마이크로디스플레이 디바이스의 단면도이다;
도 9는 애노드와 서브 픽셀 사이의 전기적 콘택의 위치를 포함하는 이상화된 상부 방출형 AMOLED 마이크로디스플레이 디바이스의 단면도이다;
도 10은, 본 발명의 다른 실시형태에 따른, 독립적인 적색, 녹색, 및 청색 층 구조체를 사용하여 풀 컬러 이미지를 형성하는 하부 방출형 OLED 디스플레이 디바이스의 단면도이다;
도 11은, 본 발명의 다른 실시형태에 따른, 독립적인 적색, 녹색, 및 청색 층 구조체를 사용하여 풀 컬러 이미지를 형성하는 상부 방출형 OLED 디스플레이 디바이스의 단면도이다.
도 12는, 본 발명의 다른 실시형태에 따른, 컬러 필터 구조체를 사용하여 풀 컬러 이미지를 형성하는 하부 방출형 OLED 디스플레이 디바이스의 단면도이다; 그리고
도 13은, 본 발명의 다른 실시형태에 따른, 컬러 필터 구조체를 사용하여 풀 컬러 이미지를 형성하는 상부 방출형 OLED 디스플레이 디바이스의 단면도이다.
도 3 및 도 4는 대면적을 달성하기 위해 다수의 OLED 마이크로디스플레이 패널을 함께 타일링하는 것으로부터 형성되는 다중 패널 디스플레이 디바이스를 예시한다. 디스플레이 디바이스는, 그 최광의의 맥락에서, 평면 내에 복수의 동일하게 패턴화된 서브 영역을 상이하게 배향시킨 전자장치 층, 및 각각의 전자장치 층에 동작 가능하게 연결되는 하나 이상의 방출 층을 각각 갖는 다수의 패널을 포함한다. 본 발명의 다양한 실시형태에서 설명되는 디스플레이 디바이스는 예시적인 목적을 위한 것이며, 본 발명은 본원에서 설명되는 특정 디바이스로 제한되지 않는다는 것을 유의해야 한다.
도 2a 내지 도 2d는, 집적 회로가 반도체 웨이퍼(200), 바람직하게는 실리콘 웨이퍼 상에 제조되는 반도체 프로세싱을 예시한다. 프로세스에서, 웨이퍼 상에 이미지를 인쇄하기 위해 스테퍼 머신(stepper machine)이 사용된다. 웨이퍼 상의 이미지가 표장되고(mounted) 다이(die)로 칭해지는 직사각형 조각으로 절단된다. 다이는, 레티클(210)로 칭해지는 포토마스크 상에 패턴을 노광하는 것에 의해 반도체 웨이퍼 상에 나란히 형성된다. 레티클은 투영 시스템의 가까운 초점면에 놓이는 투명 기판, 예컨대 석영이다. 자외선과 같은 방사선은 레티클을 통과하여, 투사되고 있는 이미지를 정의한다. 이미지는 하나 이상의 다이 및 다이 사이 및 주변의 다양한 테스트 및 측정 구조체로 구성된다. 각각의 다이는 집적 회로 설계에 따라 패턴화되는 주 다이 영역(primary die area)을 포함한다. 각각의 다이는 또한 테스트 구조체를 포함한다. 테스트 구조체는, 인접한 주 다이 사이에 위치되는 얇은 수직 및 수평 스크라이브 라인(본원에서는 스크라이브 레인으로도 또한 칭해짐) 내의 웨이퍼 상에 통상적으로 형성된다. 테스트 구조체는 집적 회로를 형성하기 위해 사용되는 프로세싱 층 중 일부 또는 전부를 포함한다.
도 2a는, 레티클 상에 존재하는 기하학적 데이터로 각각 구성되는 다수의 동일한 패턴으로 편제된 종래의 단결정 웨이퍼(200)를 예시한다. 비록 용어 "레티클"이 웨이퍼를 패턴화하기 위해 사용되는 툴링(tooling)에 글자 그대로 적용되지만, 본원에서는, 이 패턴으로부터 고유하게 제조되는 웨이퍼 부분을 나타내기 위해 이 용어를 또한 사용할 수 있다.
비용 효율적인 실리콘 기판 사용 및 웨이퍼 레벨 프로세싱은, 단일 웨이퍼가 가능한 많은 집적 회로 또는 다이를 생산해야 한다는 것을 요구한다. 이를 가능하게 하기 위해, 스크라이브 시트를 톱질할 때, 다이에 대한 손상을 최소화하는 것이 중요하다. 정밀한 절단을 제공하기 위해 여러가지 파라미터가 제어된다. 웨이퍼 표면 상의 다이 및 대응하는 스크라이브 시트의 배열이 도 2a에 도시되어 있다. 단결정 웨이퍼(200)는 일반적으로 원형이며 스크라이브 레인(220)에 의해 형성되는 그리드에 의해 서로 분리되는 집적 회로(210)가 상부에 구성된다. 도 2a에서 예시되는 바와 같이, 사용 가능한 웨이퍼 영역은, 주변의 원형 형상 및 스크라이브 레인의 수 및 폭에 의해 제한되는데, 이것은 부분적으로 비기능성 디바이스(non-functional device; 215)를 초래한다.
도 2b 및 2c는 라벨링된 단일의 레티클 "L", "A" 및 "R"을 구비한다. 각각의 레티클은 통상적으로 다수의 반도체 칩(예를 들면, 동일하게 설계됨)을 포함한다. 웨이퍼의 설계를 레티클 내의 서브 블록 또는 서브 필드의 어레이로 전체적으로 분해하는 것은, 반도체 칩의 제조 동안 웨이퍼에 적용되는 "스텝 앤드 리피트" 프로세스(예를 들면, 포토리소그래피)를 허용한다. 도 2b는 설계를 다수의 서브 블록(205)으로 분할하는 것을 예시하고, 한편 도 2c는 서브 필드로서의 레티클(210) 내의 서브 블록(205)의 배치를 예시한다. 복수의 서브 필드(205)는 단일의 레티클(210) 상에 적합될 수도 있다. 몇몇 서브 필드(205)는 레티클(210) 내에서 다수 회 반복될 수도 있고 모든 서브 필드(205)는 전기적으로 커플링된다.
도 2d는 스크라이브 라인 구조체를 포함하는 복수의 서브 필드(220)를 갖는 단일의 레티클(210)을 예시한다. 오정렬 공차로 인해 상이한 설계 규칙이 경계에 적용되는데, 이것은 레이아웃 아키텍처에 상당한 복잡성을 추가한다. 도 2e는 복수의 서브 필드(250)로 구성되는 스티칭된 디스플레이 디바이스의 예를 예시한다.
도 3을 참조하면, 디스플레이 디바이스(300)는 단일의 레티클 노광(예를 들면, 도 2d)을 사용하여 구성되는 네 개의 사분면, 즉, I, II, III, IV로 분할되는 방출성 영역(emissive area; 301)을 포함한다. 각각의 사분면은 개별적이며 독립적으로 제어되는 마이크로디스플레이 패널(302A, 302B, 302C, 302D)을 나타낸다. 각각의 마이크로디스플레이 패널(302)은, 기판 위에 구획되는 어레이에 각각 배열되는 복수의 발광 엘리먼트를 포함한다. 각각의 마이크로디스플레이 패널(302)에 의해 디스플레이되는 개개의 이미지는, 풀 컬러 다중 패널 디스플레이 디바이스(300)에 의해 집합적으로 디스플레이되는 더 큰 전체 복합 이미지의 서브 영역을 구성할 수도 있다.
본 발명에 따르면, 다수의 다이 사이즈에 대해 단일 마스크 세트를 사용하는 것에 의해 반도체 프로세싱에서의 마스크의 고비용이 크게 감소되고, 그에 의해, 실리콘 비용을 감소시키고 결과적으로 나타나는 웨이퍼 당 다이를 향상시킨다. 다수의 패널, 또는 타일이 단일의 레티클에서 노광되며, 각각은 서로 인접하게 배치되어 더 큰 디바이스 또는 어레이를 형성한다. 본 발명의 패널은 독립적으로 주소 지정 가능하고, 인접한 패널 사이의 스크라이브 영역을 통해 배선될 수도 있지만 반드시 그런 것은 아니다.
마이크로디스플레이 패널(302)은 디스플레이 디바이스(300)를 정의하도록 그리고 내부 이음새(308)를 갖는 주변 에지(306)를 형성하도록 타일링된다(tiled). 이음새(308)는 인접한 패널(302) 사이에서 내부 경계를 따라 형성된다. 스크라이브 레인(310)은 디스플레이 디바이스의 주변 에지(306)를 둘러싼다. 패널(302)의 각각은, 고정된 리소스 블록 및 다수의 논리 블록(303)을 포함할 수도 있는 다수의 서브 필드(320)를 포함한다. 고정된 리소스 블록은, 복수의 드라이버 회로, 보조 회로, 트랜스시버 블록, I/O 뱅크, 및 메모리 블록을 포함할 수 있다. 논리 블록(303)은 의도된 논리 기능성(functionality)을 구현하도록 구성되는 논리 셀 또는 게이트를 포함할 수 있다. 패널(302)은, 하나의 패널 내의 고정된 리소스 블록 및 논리 블록이 인접한 패널 내의 고정된 리소스 및 논리 블록과 통신하는 것을 가능하게 하는 배선 라인(interconnect line)을 통해 하나 이상의 인접한 패널에 연결될 수도 있다. 패드(312)는 디스플레이 디바이스의 각각의 패널(302)의 하나의 주변 에지 상에 배치되고, 한편 전기적 연결부는 다른 주변 에지 중 하나 또는 둘 모두 상에 배치된다. 이 경우, 타일링 프로세스 이후의 디바이스 내의 개개의 패널(302) 사이의 전기적 연결은 요구되지 않는다. 백플레인 층 및/또는 유기층의 어느 것도 종래와 같이 스티칭될 수 없거나, 또는 그 중 일부, 또는 그 전부가 종래와 같이 스티칭될 수 있다는 것이 이해되어야 한다.
도 3은 단일의 레티클 노광을 사용하는 2×2 패널 배열의 예시적인 타일 조합을 예시한다. 각각의 레티클 노광의 치수는 25.5mm×25.5mm이다. 각각의 레티클 노광은 복수의 서브 필드를 갖는다(예를 들면, 도 2d). 기술 분야에서 숙련된 자는, 단일의 레티클 노광에서의 서브 필드의 수는 사용되는 패널 및 레티클의 사이즈에 기초한다는 것을 인식해야 한다. 따라서, 생성될 수 있는 다이의 최대 사이즈는 최대 레티클 노광 사이즈에 의존한다.
도 3에서 도시되는 OLED 디스플레이 디바이스는, 각각의 노광 사이에서 90도 회전되는 단일의 레티클을 사용하여 형성된다. 전통적으로, 각각의 서브 픽셀의 애노드의 콘택이 각각의 픽셀 유닛(도 6에서 도시됨)의 중심 축을 가로질러 발생하는 곳에서, 적색, 녹색 및 청색(RGB) 컬러 픽셀 배열이 사용된다. 도 7에서 더 상세히 설명되는 이 실시형태에 따르면, 종래의 RGB 컬러 픽셀 배열은 전체 디스플레이에 걸쳐 일관되게 패턴화된다. 네 개의 사분면 I, II, III 및 IV의 각각은, 이미징을 위해 디스플레이에 적용되기 이전에 렌더링된 데이터가 90도 회전될 것을 요구한다. 특히, 레티클은 사분면 I에 노광되고, 90도 회전되어 사분면 II에 노광되고, 90도 회전되어 사분면 III에 노광되고, 그리고 다시 90도 회전되어 사분면 IV에 노광된다.
도 4는 본 발명의 다른 실시형태에 따른 다중 패널 디스플레이 디바이스(400)를 도시하는 개략도이다. 본 실시형태에 따른 디스플레이 디바이스는, 고정된 리소스 블록, 다수의 논리 블록, 및 전기적 연결부가 상이한 방식으로 배열되도록 단일의 레티클이 노광 내에서 상이하게 배향되는 점을 제외하면, 도 3을 참조하여 설명되는 실시형태에 따른 디스플레이 디바이스와 동일하다. 도 4에서, 동일한 참조 번호는 도 3에서와 동일한 엘리먼트를 가리키며, 동일한 엘리먼트의 상세한 설명은 생략된다.
도 4는 단일의 레티클 노광을 사용하는 2×2 패널 배열의 다른 타일 조합을 예시한다. 각각의 레티클 노광의 치수는 24mm×32mm이다. 접하는 영역의 공차는 2㎛ 미만이다. 이 실시형태에 따르면, 종래의 RGB 컬러 픽셀 배열은 전체 디스플레이에 걸쳐 일관되게 패턴화될 수도 있다. 배열은, 레티클이 사분면 I에 노광되고, 플립되어 사분면 II에 노광되고, 180도 회전되어 사분면 III에 노광되고, 그리고 플립되어 사분면 IV에 노광되는 그러한 것이다.
도 5는 도 4의 다중 패널 디스플레이 디바이스(400)에 따른 디스플레이 층(502) 상의 픽셀 어레이(500)의 명시적인 레이아웃을 예시한다. 픽셀 어레이(500)는 도 4에서 예시되는 디바이스의 사분면 I의 방출성 영역(301)의 하나의 가능한 구현예이다.
도 6은 OLED 디스플레이 디바이스 내의 종래의 픽셀 배열(600)을 예시한다. 배열(600)은 빛을 방출하도록 구성되는 적어도 하나의 발광 엘리먼트를 각각 포함하는 다수의 픽셀 유닛(602)으로 구성된다. 디스플레이 디바이스 내의 각각의 픽셀 유닛(602)은 적어도 세 개의 유기 발광 다이오드(OLED) 서브 픽셀을 구비한다. 세 개의 OLED 서브 픽셀은, 적색, 녹색 및 청색 광을 각각의 방출하는, 그리고 디스플레이 디바이스의 색역을 정의하는, 적색(R) OLED 서브 픽셀(604), 녹색(G) OLED 서브 픽셀(606) 및 청색(B) OLED 서브 픽셀(608)이다. 일반적으로 사용되는 적색, 녹색, 및 청색(RGB) OLED 서브 픽셀은 세 개의 OLED 서브 픽셀의 예로서 설명된다. 다른 실시형태에서, 다른 세 개 색의 OLED 서브 픽셀이 사용될 수도 있거나, 또는 대안적으로 백색(W) OLED 서브 픽셀 또는 황색(Y) OLED 서브 픽셀이 OLED 서브 픽셀 중 하나 이상으로서 선택될 수도 있다.
본 발명에 의해 제공되는 디스플레이 디바이스에 따르면, 하나의 픽셀 유닛(602)은 상이한 컬러의 세 개의 OLED 서브 픽셀을 포함하는데, 여기서 복수의 픽셀은, 하나의 패널을 각각 정의하는 어레이 내에 배열된다. 이 실시형태에 따르면, 애노드에 대한 콘택(612)은 각각의 서브 픽셀(604, 606 및 608) 내에서 중심에 배치되고, 그에 의해, 픽셀 유닛(602) 내의 모든 콘택(612)을 직선으로, 그리고 사분면 내의 모든 콘택(612)을 균일한 행 또는 열로 정렬하게 된다. 세 개의 OLED 서브 픽셀은 (도 6에서 도시되는 바와 같이) 직선으로 배열될 수도 있거나 또는 다른 실시형태에서는 실제 요건에 따라 정사각형, 다이아몬드, 또는 임의의 다른 형태(도시되지 않음)로 배열될 수도 있다.
도 6을 참조하면, 두 개의 회전된 사분면의 경계 사이에 형성되는 이음새(610), 특히 사분면 I와 사분면 II 사이의 이음새, 사분면 II와 사분면 III 사이의 이음새, 사분면 III과 IV 사이의 이음새는, 컬러 필터 배열의 방향에서의 변화로부터 유래하는 강한 시각적 아티팩트를 생성한다. 사분면 I 및 III에서, 컬러 필터 스트라이프는 수직 방향으로 이어지고, 한편 사분면 II 및 IV에서는 컬러 필터 스트립이 수평 방향으로 이어지며, 이 시각적 불연속성은 본 발명의 방법에 의해 제거되어 도 7에서 예시되는 구성으로 나타나게 된다.
도 7은 도 3에서 참조되는 OLED 디스플레이 디바이스에 따른 향상된 픽셀 배열(700)을 예시한다. 이 실시형태에 따르면, 픽셀 유닛(702) 내의 각각의 서브 픽셀(704, 706, 708)의 애노드에 대한 콘택(712)은, 각각의 사분면 내에서 전체적인 대각선 패턴을 정의하도록 수직으로 시프팅된다. 그에 의해, 네 개의 사분면 각각은, 단일의 애노드 패턴이 동일한 수직 패턴으로 노광되는 것을 허용한다. RGB 컬러 스트립 패턴은 전체 디스플레이에 걸쳐 수직으로 연장하여, 더 이상 시각적 이음새(710)를 생성하지 않고, 그 결과 사분면 사이에서 시각적 아티팩트가 발생하지 않게 된다.
도 8 및 도 9는 본 발명의 다양한 실시형태에 따른 OLED 디스플레이 디바이스의 구조도(structural view)를 예시한다. 그러나, 본 개시의 다양한 실시형태는 다른 타입의 투과형 또는 방출형(emissive) 디스플레이 상에서 구현될 수도 있다는 것이 이해되어야 한다.
도 8을 참조하면, 투명 기판(802), 제1 전극(804) 및 이들 사이에 형성되는 하나 이상의 유기 전계발광 층(organic electroluminescent layer)(812)을 구비하는 제2 전극(814)를 구비하는 OLED 디스플레이 디바이스(800)에 따른 단일의 디스플레이 픽셀이 예시된다. 적어도 하나의 전계발광 층은 발광성이며 전극 중 적어도 하나는 투명한데, 제1 및 제2 전극은 하나 이상의 광 방출성 영역을 정의한다. 전극은 수동형 제어 스킴(도시되지 않음)에서 행 및 열 전극으로서 간주될 수도 있거나 또는 전기적 커넥터와 전극 사이에 박막 회로부가 제공되는 (도시되는 바와 같은) 능동형 제어 스킴에서 애노드 및 캐소드로서 간주될 수도 있다. 기술 분야에서 통상의 지식을 가진 자에게 공지되어 있는 다른 세대 타입의 OLED 디스플레이 디바이스가 활용될 수도 있다는 것, 및 본 발명은 본원에서 설명되는 특정한 구조체에 제한되지 않는다는 것이 이해되어야 한다.
유기 전계발광 층(812)은, 제1 및 제2 전극(804 및 814) 양단에 전압(822)을 인가하여 발광시키는 것에 의해 활성화된다. 유기 전계발광 층(812)은, 유기 정공 주입 층(806), 유기 전자 수송층(810), 및 유기 정공 주입 층(806)과 유기 전자 수송층(810) 사이에 배치되는 유기 발광 층(808)(컬러 방출 층)을 포함할 수도 있다. 유기 발광 층(808)은, 적색, 녹색 및 청색 광을 각각의 방출하는 적색(R) 발광성 층(816), 녹색(G) 발광성 층(818) 및 청색(B) 발광성 층(820)으로 구성되는 것이 바람직하다.
도 9를 참조하면, OLED 디스플레이 디바이스는, 제어 및 프로세싱 회로부 상에 제조되는 상부 방출형의 능동형 유기 발광 다이오드(AMOLED) 마이크로디스플레이(900)의 이상적인 구조체이다. OLED 디스플레이 디바이스는, 도 9의 OLED 디스플레이 디바이스가, 이미지를 디스플레이하기 위한 광이 OLED 디스플레이 디바이스의 상부 부분에서 생성되고 상방으로 제공되는 상부 방출 타입의 OLED 디스플레이 디바이스이다는 점을 제외하면, 도 8에서 예시되는 OLED 디스플레이 디바이스와 유사하다. 도 9의 OLED 디스플레이 디바이스가 상부 방출형이기 때문에, 제1 및 제2 전극(908 및 912)은 각각 애노드 및 캐소드로서 기능한다. 디바이스(900)는, 통합된 능동형 드라이브(integrated active matrix drive; 904)를 갖는 단결정 실리콘 기판 층(902), 기판 층(902) 위에서 비아를 갖는 편광된 섬 형상의 층(polarized insular layer; 906), 및 섬 형상의 층(906) 위에 배치되는 각각의 컬러 서브 픽셀에 대한 개개의 애노드 전극(908)을 포함한다. 백색 발광 OLED 층(910)이 애노드 층(908) 상으로 퇴적되고, 이어서 OLED 층(910) 상에 캐소드 층(912)이 퇴적된다. 하나 이상의 투명한 밀봉 층(seal layer)(914)이 캐소드 층(912)을 덮는다. 적색 컬러 필터 스트립(918), 녹색 컬러 필터 스트립(920), 및 청색 컬러 필터(922)를 포함하는 컬러 필터 층(916)이 밀봉 층(914) 상으로 퇴적되고 투명 보호 층 또는 반사 방지 층(도시되지 않음)에 의해 피복된다. 애노드에 대한 콘택(924)은 각각의 서브 픽셀 내에 배치된다.
도 10 내지 도 13은, 상기에서 설명되는 바와 같은 단결정 실리콘 회로를 활용하여 OLED 백플레인 대신 박막 트랜지스터(TFT) 백플레인 기술을 갖는 OLED 디스플레이 디바이스의 구조도를 예시한다. 그러나, 이들 다른 실시형태는 다른 세대 타입의 OLED 디스플레이 디바이스 상에서 구현될 수도 있다는 것, 및 본 발명은 본원에서 설명되는 특정한 구조체에 제한되지 않는다는 것이 이해되어야 한다. TFT 백플레인을 갖는 OLED 디스플레이 디바이스는 RGB 레이어 구조체를 사용하여 풀 컬러 이미지를 형성한다.
도 10을 참조하면, OLED 디스플레이 디바이스(1000)는, 도 10의 OLED 디스플레이 디바이스(1000)가, 이미지를 디스플레이하기 위한 광이 OLED 디바이스의 하부 부분에서 생성되고 하방으로 제공되는 하부 생성 타입의 OLED 디바이스이다는 점을 제외하면, 도 8에서 예시되는 OLED 디바이스(800)와 동일하다. 도 10에서, 동일한 참조 번호는 도 8에서와 동일한 엘리먼트를 가리키며, 동일한 엘리먼트의 상세한 설명은 생략된다. OLED 디스플레이 디바이스(1000)는 제1 방향으로 연장하는 복수의 제1 전극(804), 및 제1 방향과 직교하는 제2 방향으로 연장하여 제1 전극 내에 복수의 서브 픽셀을 형성하는 복수의 제2 전극(814)을 포함한다. 제1 전극과 제2 전극 사이에 개재되는 유기 발광 층(812)은 RGB OLED 서브 픽셀(816, 818, 및 820)을 각각 포함한다.
지지체(1020)는, 제2 전극(814)을 지지하도록 제2 전극(814) 아래에 배치될 수도 있다. 지지체(1020)는, 제2 전극으로의 전기 신호를 선택적으로 제어하기 위한 복수의 스위칭 엘리먼트(도시되지 않음)를 포함할 수도 있다. (예시되는 바와 같은) 능동형 제어 스킴에서, 박막 트랜지스터(thin film transistor; TFT)(1030)가 스위칭 엘리먼트로서 사용되고 제2 전극은 애노드이고, 제1 전극은 캐소드이다. 다른 제어 스킴에서는, 수동형(passive-matrix)을 비롯한 다른 구성이 활용되고, 따라서 본 발명은 AMOLED 디바이스로 제한되는 것은 아니다는 것이 이해되어야 한다.
지지체(1020)는, 기판(802), 복수의 절연 층(1002, 1004, 1006, 및 1008), 및 제2 전극(814)의 각각으로 전기 신호를 전달하기 위한 복수의 TFT(1030)를 포함한다. 바람직한 실시형태에 따르면, 기판(802)은, 디바이스에 의해 생성되는 광이 기판을 통과하는 것을 허용하도록 투명하며, 예를 들면, 유리, 플라스틱, 석영, 또는 등등과 같은 재료를 포함할 수도 있다. 기판(802)을 전기적으로 절연하기 위해 기판 절연 층(1002)이 기판(802)의 표면 상으로 코팅된다.
기판 절연 층(1002)의 상부 표면에는 TFT의 복수의 활성 층(1032)이 배치된다. 활성 층의 각각은 복수의 제2 전극(814) 중 하나에 각각 대응한다. 활성 층은 소스 부분(1032A), 채널 부분(1032B), 및 드레인 부분(1032C)을 포함한다. 게이트 절연 층(1004)이 기판 및 활성 층 상으로 코팅되고, 일부가 제거되고, 그에 의해 상승된 게이트 절연 층(1004)을 남기게 된다. 게이트 절연 층(1004)은 기판(802)의 상부 표면 및 활성 층(1032)의 단차 부분을 평탄화한다. 게이트 전극(1034)이 활성 층(1032)의 채널 부분(1032B)과 수직으로 정렬하여 게이트 절연 층(1004) 상에 배치된다. 게이트 절연 층(1004)의 상부 표면 및 게이트 전극(1034)의 단차 부분을 평탄화하도록, 게이트 전극(1034) 및 게이트 절연 층(1004)에 제1 절연 층(1006)이 도포된다. 활성 층(1032)의 소스 및 드레인 부분(1032A, 1032C)에 대응하는 평탄화된 게이트 절연 층(1004) 상에 소스 전극(1036) 및 드레인 전극(1038)이 각각 배치된다. 소스 전극(1032A)에 데이터 신호가 인가되면, 드레인 전극(1032C)은 게이트 전극(1034)에 인가되는 신호의 전압에 따라 소스 전극(1032A)과 전기적으로 접촉한다. 소스 및 드레인 부분을 덮는 게이트 절연 층(1004)의 부분이 개방되고, 소스 및 드레인 전극(1036, 1038)은 소스 및 드레인 부분(1032A, 1032C)과 각각 전기적으로 접촉한다. 단일 층 게이트 전극이 설명의 목적을 위해 설명된다는 것 및 기술 분야에서 숙련된 자에게 공지되어 있는 게이트 전극의 이중, 삼중, 다층 또는 다른 구성이 활용될 수도 있다는 것이 이해되어야 한다. 단차가 있는 소스 및 드레인 전극(1036, 1038) 및 제1 절연 층(1006)의 상부 표면을 평탄화하기 위해, 제1 절연 층(1006) 및 소스 및 드레인 전극(1036, 1038)에 제2 절연 층(1008)이 도포된다. 제2 전극(814)은 제2 절연 층(1008) 상에 배치된다. 드레인 전극(1038)을 덮는 제2 절연 층의 일부분이 개방되어 비아 홀 또는 콘택 홀(1040)을 형성한다.
콘택 홀(1040) 안으로 도전성 산화물 재료가 채워져 픽셀 전극(1040)을 형성한다. 픽셀 전극(1040)은, 제2 절연 층(1008) 내에 형성되는 비아 홀(1042)을 통해 드레인 전극(1038)에 일반적으로 연결된다. 제2 전극(814)은 픽셀 전극(1040)을 통해 드레인 전극(1038)과 전기적으로 접촉한다. 제2 전극(814)은 픽셀 전극(1040)과 동시에 형성될 수 있다. 게이트 전극에 인가되는 게이트 전압은 제2 전극으로 흐르는 전류를 제어한다.
본 실시형태에서 캐소드로서 기능하는 제1 전극(804)은 유기 발광 층 상에 형성되고 유기 발광 층을 외란 및 습기로부터 보호한다. 제1 전극(804)은 낮은 이온화 전위 및 낮은 일 함수를 갖는 금속을 포함할 수 있다. 제1 전극을 보호하기 위해 제1 전극 상에 보호 층이 또한 코팅될 수 있다.
도 11을 참조하면, OLED 디스플레이 디바이스(1100)는, 도 10의 OLED 디스플레이 디바이스가, 이미지를 디스플레이하기 위한 광이 OLED 디스플레이 디바이스의 상부 부분에서 생성되고 상방으로 제공되는 상부 생성 타입의 OLED 디스플레이 디바이스이다는 점을 제외하면, 도 10에서 예시되는 OLED 디바이스(1000)와 동일하다. 도 11에서, 동일한 참조 번호는 도 10에서와 동일한 엘리먼트를 가리키며, 동일한 엘리먼트의 상세한 설명은 생략된다. 도 11의 OLED 디바이스가 상부 타입이므로, 제1 및 제2 전극은 애노드 및 캐소드로서 각각 기능한다.
본 실시형태에 따르면, 제1 전극(804)은, 발광 층에서 생성되는 광이 전극을 상방으로 통과하는 것을 허용하기 위한 투명 전극, 예를 들면, 인듐 주석 산화물(ITO)이다. 외란 및 습기로부터 전극을 보호하기 위해 제1 전극 상에 투명 밀봉 층이 형성될 수 있다. 캐소드로서 기능하는 제2 전극(814)은 낮은 이온화 전위 및 낮은 일 함수를 갖는 금속을 포함할 수 있다. 도 10에서 예시되는 하부 생성 타입 OLED 디스플레이와는 달리, 정공 주입 층 및 정공 수송층은 제1 전극(804)과 유기 발광 층(812) 사이에 형성될 수 있고, 전자 수송층은 제2 전극(814) 및 유기 발광 층(812) 사이에 형성될 수 있다. 유기 발광 층(812)은, 섀도우 마스크를 사용하여 퇴적 및 패턴화되는 RGB OLED 층을 사용하여 독립적으로 코팅된다.
이하, 도 12의 OLED 디스플레이 디바이스(1200)가, 이미지를 디스플레이하기 위한 광이 OLED 디바이스의 하부 부분에서 생성되고 하방으로 제공되는 하부 생성 타입 OLED 디바이스이다는 점을 제외하면, 도 9와 동일한 OLED 디스플레이 디바이스가 설명되는데, 여기서, 컬러 필터는 종래의 포토리소그래피 프로세스를 통해 형성된다. 도 12에서, 동일한 참조 번호는 도 9에서와 동일한 엘리먼트를 가리키며, 동일한 엘리먼트의 상세한 설명은 생략된다. OLED 디스플레이 디바이스(1200)는 제1 방향으로 연장하는 복수의 제1 전극(912), 및 제1 방향과 직교하는 제2 방향으로 연장하여 제1 전극(912) 내에 복수의 서브 픽셀을 형성하는 복수의 제2 전극(908)을 포함한다. 제1 전극(912)과 제2 전극(908) 사이에 개재되는 유기 발광 층(910)은, OLED 디스플레이 디바이스의 하부로부터의 광을 필터링하는 것에 의해 적색, 녹색 및 청색 광을 개별적으로 방출하기 위한 RGB OLED 컬러 필터 층(916)을 포함한다.
지지체(1220)는, 제2 전극(908)을 지지하도록 제2 전극(908) 아래에 배치될 수도 있다. 지지체(1220)는, 제2 전극으로의 전기 신호를 선택적으로 제어하기 위한 복수의 스위칭 엘리먼트(도시되지 않음)를 포함할 수도 있다. (예시되는 바와 같은) 능동형 제어 스킴에서, 박막 트랜지스터(TFT)가 스위칭 엘리먼트로서 사용되고 제2 전극은 애노드이고, 제1 전극은 캐소드이다. 다른 제어 스킴에서는, 수동형을 비롯한 다른 구성이 활용되고, 따라서 본 발명은 AMOLED 디바이스로 제한되는 것은 아니다는 것이 이해되어야 한다.
지지체(1220)는, 기판(902), 복수의 절연 층(1202, 1204, 1206, 1208), 및 제2 전극(908)의 각각으로 전기 신호를 전달하기 위한 복수의 TFT(1230)를 포함한다. 바람직한 실시형태에 따르면, 기판(902)은, 디바이스에 의해 생성되는 광이 기판을 통과하는 것을 허용하도록 투명하며, 예를 들면, 유리, 플라스틱, 석영, 또는 등등과 같은 재료를 포함할 수도 있다. 기판을 전기적으로 절연하기 위해 기판 절연 층(1202)이 기판의 표면 상으로 코팅된다.
기판 절연 층(1202)의 상부 표면에는 TFT의 복수의 활성 층(1232)이 배치된다. 활성 층(1232)의 각각은 복수의 제2 전극(908) 중 하나에 각각 대응한다. 활성 층(1232)은 소스 부분(1232A), 채널 부분(1232B), 및 드레인 부분(1232C)을 포함한다. 게이트 절연 층(1204)이 기판(902) 및 활성 층(1232) 상으로 코팅되고, 일부가 제거되고, 그에 의해 상승된 게이트 절연 층을 남기게 된다. 게이트 절연 층(1204)은 기판(902)의 상부 표면 및 활성 층(1232)의 단차 부분을 평탄화한다. 게이트 전극(1234)이 활성 층(1232)의 채널 부분(1232B)과 수직으로 정렬하여 게이트 절연 층(1204) 상에 배치된다. 게이트 절연 층(1204)의 상부 표면 및 게이트 전극의 단차 부분을 평탄화하도록, 게이트 전극(1234) 및 게이트 절연 층(1204)에 제1 절연 층(1206)이 도포된다. 활성 층의 소스 및 드레인 부분(1232A, 1232C)에 대응하는 평탄화된 게이트 절연 층(1204) 상에 소스 전극(1236) 및 드레인 전극(1238)이 각각 배치된다. 소스 전극(1236)에 데이터 신호가 인가되면, 드레인 전극(1238)은 게이트 전극에 인가되는 신호의 전압에 따라 소스 전극(1236)과 전기적으로 접촉한다. 소스 및 드레인 부분(1232A, 1232C)을 덮는 게이트 절연 층(1204)의 부분이 개방되고, 소스 및 드레인 전극(1236, 1238)은 소스 및 드레인 부분(1232A, 1232C)과 각각 전기적으로 접촉한다. 단일 층 게이트 전극이 설명의 목적을 위해 설명된다는 것 및 기술 분야에서 숙련된 자에게 공지되어 있는 게이트 전극의 이중, 삼중, 다층 또는 다른 구성이 활용될 수도 있다는 것이 이해되어야 한다.
컬러 필터 층(916)은 제1 절연 층(1206) 상에 코팅된다. 컬러 필터 층(916)은, 서브 픽셀의 각각이 적색, 녹색 및 청색 중 하나의 광 컬러를 방출하도록 포토리소그래피 프로세스를 통해 패턴화된다. 컬러 필터 층(916)은, 적색 광을 방출하기 위한 적색 필터(918), 녹색 광을 방출하기 위한 녹색 필터(920), 및 청색 광을 방출하기 위한 청색 필터(922)를 포함한다. 적색 필터에 대응하는 서브 픽셀은 적색 서브 픽셀이고, 녹색 필터에 대응하는 서브 픽셀은 녹색 서브 픽셀이고, 청색 필터에 대응하는 서브 픽셀은 청색 서브 픽셀이다. 컬러 필터 층(916)의 상부 표면을 평탄화하기 위해, 제2 절연 층(1208)이 칼라 필터 층(916)에 도포된다. 제2 전극(908)은 평탄화된 제2 절연 층(1208)의 표면 상에 배치된다. 하나의 예에서, 제2 절연 층(1208)은 유기 수지 층(organic resin layer)일 수도 있다. 드레인 전극(1238)을 덮는 제2 절연 층(1208) 및 컬러 필터 층(916)의 일부분이 개방되어 비아 홀 또는 콘택 홀(1240)을 형성한다. 콘택 홀 안으로 도전성 산화물 재료가 채워져 픽셀 전극(1240)을 형성한다. 픽셀 전극(1240)은, 제2 절연 층 내에 형성되는 비아 홀을 통해 드레인 전극(1238)에 일반적으로 연결된다. 제2 전극(1238)은 픽셀 전극(1040)을 통해 드레인 전극과 전기적으로 접촉한다. 게이트 전극에 인가되는 게이트 전압은 제2 전극으로 흐르는 전류를 제어한다.
제1 전극 및 제2 전극에 구동 전압이 인가되고, 그 결과, 복수의 전자 및 정공이 각각 캐소드 및 애노드로부터 유기 발광 층 안으로 방출되게 된다. 일단 유기 발광 층(916)에 들어가면, 전자와 정공이 재결합하여 빛을 방출한다. 제2 전극(908)과 유기 발광 층(916) 사이에는 정공 주입 층 및 정공 수송층이 형성될 수 있고, 제1 전극(912)과 유기 발광 층(910) 사이에는 전자 수송층이 형성될 수 있다.
본 실시형태에서 캐소드로서 기능하는 제1 전극(912)은 유기 발광 층(916) 위에 형성되고 유기 발광 층을 외란 및 습기로부터 보호한다. 제1 전극(912)은 낮은 이온화 전위 및 낮은 일 함수를 갖는 금속을 포함할 수 있다. 제1 전극을 보호하기 위해 제1 전극 상에 보호 층이 또한 코팅될 수 있다.
도 13을 참조하면, OLED 디스플레이 디바이스는, 도 12의 OLED 디스플레이 디바이스(1200)가, 이미지를 디스플레이하기 위한 광이 OLED 디스플레이 디바이스의 상부 부분에서 생성되고 상방으로 제공되는 상부 생성 타입의 OLED 디스플레이 디바이스이다는 점을 제외하면, 도 12에서 예시되는 OLED 디스플레이 디바이스와 동일하다. 도 13에서, 동일한 참조 번호는 도 12에서와 동일한 엘리먼트를 가리키며, 동일한 엘리먼트의 상세한 설명은 생략된다. 도 13의 OLED 디스플레이 디바이스가 상부 생성 타입이므로, 제1 및 제2 전극(912, 908)은 애노드 및 캐소드로서 각각 기능한다.
본 실시형태에 따르면, 제1 전극(912)은, 발광 층에서 생성되는 광이 전극을 상방으로 통과하는 것을 허용하기 위한 투명 전극, 예를 들면, 인듐 주석 산화물(ITO)이다. 외란 및 습기로부터 전극을 보호하기 위해 제1 전극(912) 상에 투명 밀봉 층(1302)이 형성될 수 있다. 캐소드로서 기능하는 제2 전극(908)은 낮은 이온화 전위 및 낮은 일 함수를 갖는 금속을 포함할 수 있다. 도 12에서 예시되는 하부 생성 타입 OLED 디스플레이와는 달리, 정공 주입 층 및 정공 수송층은 제1 전극(912)과 유기 발광 층(916) 사이에 형성될 수 있고, 전자 수송층은 제2 전극(908)과 유기 발광 층(916) 사이에 형성될 수 있다.
본 실시형태에 따르면, 컬러 필터 층(916)은 투명 밀봉 층(1302) 상에 코팅된다. 컬러 필터 층(916)은, 서브 픽셀의 각각이 적색, 녹색 및 청색 중 하나의 광 컬러를 방출하도록 포토리소그래피 프로세스를 통해 패턴화된다. 컬러 필터 층은, 적색 광을 방출하기 위한 적색 필터(918), 녹색 광을 방출하기 위한 녹색 필터(920), 및 청색 광을 방출하기 위한 청색 필터(922)를 포함한다. 적색 필터에 대응하는 서브 픽셀은 적색 서브 픽셀이고, 녹색 필터에 대응하는 서브 픽셀은 녹색 서브 픽셀이고, 청색 필터에 대응하는 서브 픽셀은 청색 서브 픽셀이다. 도 12 및 도 13과 관련하여 설명되는 컬러 필터 타입 OLED 디스플레이 디바이스는, 섀도우 마스크를 사용하지 않고도 제조될 수 있다.
본 개시가 몇몇 실시형태를 설명한다는 것 및 본 개시의 판독 이후 본 발명의 많은 변형예가 기술 분야의 숙련된 자에 의해 쉽게 고안될 수 있다는 것 및 본 발명의 범위는 하기의 청구범위에 의해 결정되어야 한다는 것이 이해되어야 한다.

Claims (25)

  1. 네 개의 사분면(I, II, III, IV)으로 분할되는 방출성 영역(301, emissive area)을 포함하는 유기 발광 다이오드(OLED) 디스플레이 디바이스(300)로서, 상기 유기 발광 다이오드(OLED) 디스플레이 디바이스는,
    컬러 방출 층(color emission layer, 808)이 복수의 유기 발광 엘리먼트의 배열을 제1배열로 포함하고, 각각의 유기 발광 엘리먼트는 애노드, 캐소드, 상기 애노드와 상기 캐소드 사이에 위치하는 발광 층을 포함하고,
    전자장치 층(electronics layer, 904)이 복수의 독립적으로 주소 지정 가능한(addressable) 디스플레이 패널(302A, 302B, 302C, 302D)을 구비하며, 상기 디스플레이 패널은 픽셀 구동 회로와 전극 콘택(712)의 패턴을 포함하도록 동일하게 패턴화되고,
    각각의 전극 콘택은 그 배열의 다른 유기 발광 엘리먼트의 상기 애노드 또는 캐소드와 전기적으로 커플링되고,
    상기 유기 발광 다이오드(OLED) 디스플레이 디바이스는, 스크라이브 레인(310)에 의해 둘러싸이는 주변 에지(306)를 갖는 다이 영역에 배치되며,
    상기 컬러 방출 층은, 상기 유기 발광 엘리먼트의 배열이 상기 유기 발광 다이오드(OLED) 디스플레이 디바이스 전체에 걸쳐 일관되게 패턴화되도록, 상기 다이에 배치되고,
    상기 전자장치 층은, 상기 디스플레이 패널이 그들 사이의 내부 경계를 정의하는 내부 이음새(308)에 의해 분리되고 각 디스플레이 패널이 평면 내에서 상이하게 배향될 수 있도록, 상기 다이 상에 배치되는 것을 특징으로 하는 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  2. 제1항에 있어서,
    상기 유기 발광 엘리먼트의 배열은 복수의 픽셀 유닛(702)을 포함하고,
    각 픽셀 유닛은 복수의 서브 픽셀(704, 706, 708)을 포함하며,
    각 픽셀 유닛의 상기 서브 픽셀과 동작 가능하게 연결되는 전극 콘택은 대각선 패턴을 정의하도록 제1방향을 따라 시프팅되는 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  3. 제1항에 있어서,
    상기 전자장치 층의 인접한 상기 디스플레이 패널들의 패턴은, 인접한 상기 디스플레이 패널 사이의 각 내부 경계를 중심으로 플립되는(flipped) 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  4. 제1항에 있어서,
    각각의 디스플레이 패널은 복수의 논리 블록 및 복수의 고정된 리소스 블록을 포함하는, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  5. 제1항에 있어서,
    상기 전자장치 층의 인접한 상기 디스플레이 패널들의 패턴은 서로에 대해 90도로 배향되는 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  6. 제1항에 있어서,
    상기 유기 발광 엘리먼트의 배열은 복수의 픽셀 유닛(702)을 포함하고,
    각 픽셀 유닛의 각 서브 픽셀은, (1) 백색 광을 방출하는 유기 층(910)과 (2) 상이한 컬러의 컬러 필터(918, 920, 922)를 포함하여 각 픽셀 유닛이 컬러 색역(color gamut)을 정의하는 컬러를 생성하는 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  7. 제1항에 있어서,
    상기 유기 발광 엘리먼트의 배열은 복수의 픽셀 유닛(702)을 포함하고,
    각 픽셀 유닛의 각 서브 픽셀은, 상이한 컬러의 빛을 방출하는 유기 층(816, 818, 820)을 포함하여 각 픽셀 유닛이 컬러 색역(color gamut)을 정의하는 컬러를 생성하는 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  8. 제7항에 있어서,
    상기 컬러 색역 정의 픽셀(color gamut defining pixel)에 의해 생성되는 상기 컬러는 적색, 녹색 및 청색인, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  9. 제7항에 있어서,
    상기 컬러 색역을 정의하는 픽셀의 각각과 관련되는 상이한 컬러 필터를 더 포함하는, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  10. 제1항에 있어서,
    상기 디바이스는 능동형 디바이스(active matrix device)인, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  11. 제1항에 있어서,
    상기 디바이스는 수동형 디바이스(passive matrix device)인, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  12. 제1항에 있어서,
    상기 디바이스는 상부 방출형(top emitting)인, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  13. 제1항에 있어서,
    상기 디바이스는 하부 방출형(bottom emitting)인, 유기 발광 다이오드(OLED) 디스플레이 디바이스.
  14. 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법으로서,
    복수의 독립적으로 주소 지정 가능한 디스플레이 패널 - 상기 패널의 각각은, 각각이 콘택을 구비하며 제1 배열로 패턴화되는 복수의 유기 발광 엘리먼트를 포함하는 컬러 방출 층을 구비함 - 을 어레이에 조립하는 단계;
    단일의 레티클 노광을 사용하여 생성되는 복수의 상이하게 배향된 서브 영역을 구비하는 전자장치 층을 조립하는 단계 - 상기 전자장치 층을 조립하는 단계는:
    상기 컬러 방출 층의 복수의 대응하는 유기 발광 엘리먼트 중 하나를 활성화하기 위한 복수의 전기 신호를 제공하도록 적응되는 복수의 단결정 실리콘 픽셀 구동 회로를 형성하는 단계;
    상기 픽셀 구동 회로부에 의해 제공되는 상기 복수의 전기 신호를 수신하도록 커플링되는 복수의 전극 콘택을 형성하는 단계; 및
    상기 복수의 전극 콘택을 상기 복수의 유기 발광 엘리먼트 콘택에 커플링하기 위한 복수의 비아를 형성하는 단계
    를 포함함 - ; 및
    발광 엘리먼트의 패턴화된 상기 제1 배열을 패턴화된 전자장치 층에 상기 복수의 비아에 의해 커플링하는 단계를 포함하는, 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법.
  15. 제14항에 있어서,
    상기 복수의 전극 콘택을 형성하는 단계는: 투명 기판 상에 도전 층을 형성하는 단계; 및 상기 투명 기판 상에 복수의 전극을 형성하기 위해 상기 도전 층을 에칭하여 포토리소그래피에 의해 전극 패턴을 생성하는 단계를 더 포함하는, 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법.
  16. 제14항에 있어서,
    상기 전극 패턴은 상기 컬러 방출 층의 발광 엘리먼트의 패턴화된 상기 제1 배열과 정렬되는, 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법.
  17. 제14항에 있어서,
    상기 전자장치 층은 마스크를 포함하는 작은 면적의 노광 툴을 사용하여 생성되는, 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법.
  18. 제14항에 있어서,
    상기 전자장치 층은 연속적인 다이 패턴화를 사용하여 형성되는, 유기 발광 다이오드 디스플레이 디바이스를 제조하는 방법.
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
KR1020177034617A 2015-05-01 2016-05-02 대면적 oled 마이크로 디스플레이 및 그 제조 방법 KR102143682B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562155821P 2015-05-01 2015-05-01
US62/155,821 2015-05-01
PCT/US2016/030414 WO2016179092A1 (en) 2015-05-01 2016-05-02 Large area oled microdisplay and method of manufacturing same

Publications (2)

Publication Number Publication Date
KR20180015144A KR20180015144A (ko) 2018-02-12
KR102143682B1 true KR102143682B1 (ko) 2020-08-11

Family

ID=57205864

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020177034617A KR102143682B1 (ko) 2015-05-01 2016-05-02 대면적 oled 마이크로 디스플레이 및 그 제조 방법

Country Status (6)

Country Link
US (1) US9899456B2 (ko)
EP (1) EP3289614B1 (ko)
JP (1) JP6584642B2 (ko)
KR (1) KR102143682B1 (ko)
CN (1) CN107836041B (ko)
WO (1) WO2016179092A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105118849B (zh) * 2015-09-22 2018-07-31 上海和辉光电有限公司 一种触控式有机发光显示面板
US20180053811A1 (en) 2016-08-22 2018-02-22 Emagin Corporation Arrangement of color sub-pixels for full color oled and method of manufacturing same
US11437451B2 (en) 2016-09-22 2022-09-06 Emagin Corporation Large area display and method for making same
US11121321B2 (en) * 2017-11-01 2021-09-14 Emagin Corporation High resolution shadow mask with tapered pixel openings
CN108615820B (zh) * 2018-04-27 2020-04-28 武汉华星光电技术有限公司 Oled显示装置
US10993347B2 (en) * 2018-11-20 2021-04-27 Innolux Corporation Electronic device and tiled electronic system comprising the same
US11616100B2 (en) 2019-05-24 2023-03-28 Boe Technology Group Co., Ltd. Display panel, fabricating method thereof, and display apparatus
DE102019006294B3 (de) * 2019-09-05 2020-11-19 PatForce GmbH Multi-Die-Chip
CN112634777B (zh) * 2019-10-09 2022-11-22 群创光电股份有限公司 显示装置
KR102306773B1 (ko) * 2019-12-31 2021-09-30 주식회사 에이맵플러스 광원 모듈, 디스플레이 패널 및 그 제조방법
US20220415966A1 (en) * 2021-06-28 2022-12-29 Emagin Corporation Monolithically Integrated Top-Gate Thin-Film Transistor and Light-Emitting Diode and Method of Making

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107758A (ja) * 2000-09-21 2002-04-10 Internatl Business Mach Corp <Ibm> 液晶表示装置の製造方法、表示装置の製造方法、及び液晶表示装置
JP2005331569A (ja) * 2004-05-18 2005-12-02 Seiko Epson Corp 表示装置および電子機器
KR100634543B1 (ko) * 2005-04-16 2006-10-13 삼성전자주식회사 단결정 실리콘 tft 유기발광 디스플레이 및 그 제조방법

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0170182B1 (ko) 1994-11-29 1999-03-20 양승택 측면접합을 이용한 대면적 평판 디스플레이 제조방법
US5748268A (en) 1995-03-30 1998-05-05 Kaiser Aerospace & Electronics Co. Quasi-tiled active matrix display
US6567138B1 (en) 1999-02-15 2003-05-20 Rainbow Displays, Inc. Method for assembling a tiled, flat-panel microdisplay array having imperceptible seams
US6133969A (en) 1999-05-28 2000-10-17 Rainbow Displays, Inc. Maintaining three-dimensional tolerances while manufacturing AMLCD displays
JP3676142B2 (ja) * 1999-09-29 2005-07-27 三洋電機株式会社 エレクトロルミネッセンス表示装置の製造方法
US6624570B1 (en) * 1999-09-29 2003-09-23 Sanyo Electric Co., Ltd. Electroluminescent display device and method for its fabrication
JP2001100668A (ja) * 1999-09-29 2001-04-13 Sanyo Electric Co Ltd エレクトロルミネッセンス表示装置
EP1122793A2 (en) 2000-02-01 2001-08-08 Canon Kabushiki Kaisha Production of organic luminescence device
US7274383B1 (en) 2000-07-28 2007-09-25 Clairvoyante, Inc Arrangement of color pixels for full color imaging devices with simplified addressing
US6498692B1 (en) 2000-09-01 2002-12-24 International Business Machines Corporation System and method for processing MR/GMR head signal using phase measurement
US20020163301A1 (en) 2001-05-02 2002-11-07 Morley Roland M. Large format emissive display
KR100490322B1 (ko) 2003-04-07 2005-05-17 삼성전자주식회사 유기전계발광 표시장치
US7041578B2 (en) 2003-07-02 2006-05-09 Texas Instruments Incorporated Method for reducing stress concentrations on a semiconductor wafer by surface laser treatment including the backside
US6967111B1 (en) 2003-08-28 2005-11-22 Altera Corporation Techniques for reticle layout to modify wafer test structure area
JP4082400B2 (ja) * 2004-02-19 2008-04-30 セイコーエプソン株式会社 電気光学装置の製造方法、電気光学装置および電子機器
US7129634B2 (en) 2004-04-07 2006-10-31 Eastman Kodak Company Color OLED with added color gamut pixels
JP2006004907A (ja) * 2004-05-18 2006-01-05 Seiko Epson Corp エレクトロルミネッセンス装置及び電子機器
US7394194B2 (en) 2004-11-23 2008-07-01 Eastman Kodak Company Tiled display
US7380190B2 (en) 2004-12-15 2008-05-27 Impinj, Inc. RFID tag with bist circuits
KR100683403B1 (ko) * 2005-05-31 2007-02-15 엘지.필립스 엘시디 주식회사 유기전계발광소자 및 그 제조 방법
JP2007034275A (ja) * 2005-06-21 2007-02-08 Canon Inc 電子部品およびその製造方法
KR100721944B1 (ko) * 2005-08-12 2007-05-25 삼성에스디아이 주식회사 유기 전계발광 표시장치
US7812523B2 (en) 2005-11-15 2010-10-12 Samsung Electronics Co., Ltd. Display device having an auxiliary electrode for improved common voltage and fabricating method thereof
US7710022B2 (en) 2006-01-27 2010-05-04 Global Oled Technology Llc EL device having improved power distribution
KR101634970B1 (ko) * 2007-05-18 2016-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치 제조 방법
TWI356938B (en) 2007-07-31 2012-01-21 Au Optronics Corp Liquid crystal display panel, ink-jetting apparatu
US20090115970A1 (en) 2007-11-02 2009-05-07 Jabil Circuit, Inc. High efficiency compact oled microdisplay projection engine
WO2009089105A1 (en) * 2008-01-04 2009-07-16 Nanolumens Flexible display
WO2010022105A2 (en) * 2008-08-19 2010-02-25 Plextronics, Inc. Organic light emitting diode products
US8796740B1 (en) 2009-01-13 2014-08-05 Altera Corporation Using a single mask for various design configurations
KR101298285B1 (ko) * 2009-12-14 2013-08-20 엘지디스플레이 주식회사 옥외용 대면적 표시장치 및 그 제조 방법
TW201220488A (en) 2010-11-11 2012-05-16 Yih Chang Organic light emitting diode display and assembly thereof
CN202183373U (zh) 2011-06-13 2012-04-04 广东中显科技有限公司 一种有机电致发光显示器
JP6176117B2 (ja) * 2012-01-10 2017-08-09 株式会社Joled 表示装置および表示方法
WO2014043850A1 (zh) 2012-09-18 2014-03-27 深圳市柔宇科技有限公司 一种大尺寸显示屏及其制造方法
US9006719B2 (en) 2013-01-16 2015-04-14 Shenzhen China Star Optoelectronics Technology Co., Ltd OLED pixel structure and OLED panel each having three colored light emitting zones arranged in parallel
KR20140126568A (ko) 2013-04-23 2014-10-31 삼성디스플레이 주식회사 유기 발광 표시 장치
KR102124043B1 (ko) * 2013-07-25 2020-06-18 삼성디스플레이 주식회사 화소 배열 구조 및 이를 채용하는 표시 장치
US9123266B2 (en) 2013-11-19 2015-09-01 Google Inc. Seamless tileable display with peripheral magnification
CN104752469B (zh) 2013-12-31 2018-08-03 昆山国显光电有限公司 一种像素结构及采用该像素结构的有机发光显示器
TWI545749B (zh) 2014-04-23 2016-08-11 群創光電股份有限公司 顯示基板及應用其之顯示裝置
KR102356841B1 (ko) * 2014-11-21 2022-02-03 삼성디스플레이 주식회사 유기 발광 표시 장치 및 그 제조 방법
CN104916661B (zh) 2015-04-21 2018-09-11 京东方科技集团股份有限公司 像素结构、掩膜板、有机电致发光显示面板及显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107758A (ja) * 2000-09-21 2002-04-10 Internatl Business Mach Corp <Ibm> 液晶表示装置の製造方法、表示装置の製造方法、及び液晶表示装置
JP2005331569A (ja) * 2004-05-18 2005-12-02 Seiko Epson Corp 表示装置および電子機器
KR100634543B1 (ko) * 2005-04-16 2006-10-13 삼성전자주식회사 단결정 실리콘 tft 유기발광 디스플레이 및 그 제조방법

Also Published As

Publication number Publication date
EP3289614A1 (en) 2018-03-07
CN107836041B (zh) 2021-11-12
EP3289614B1 (en) 2021-06-23
JP6584642B2 (ja) 2019-10-02
WO2016179092A1 (en) 2016-11-10
EP3289614A4 (en) 2019-01-16
US9899456B2 (en) 2018-02-20
JP2018515901A (ja) 2018-06-14
KR20180015144A (ko) 2018-02-12
US20160322434A1 (en) 2016-11-03
CN107836041A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
KR102143682B1 (ko) 대면적 oled 마이크로 디스플레이 및 그 제조 방법
US10686018B2 (en) Display device and manufacturing method thereof
US9536933B2 (en) Display device having a light emitting layer on the auxiliary layer
US8305294B2 (en) Tiled display with overlapping flexible substrates
KR102124043B1 (ko) 화소 배열 구조 및 이를 채용하는 표시 장치
KR100473591B1 (ko) 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
US10998395B2 (en) Organic light-emitting display device
JP7011149B2 (ja) 表示装置及びその製造方法
CN109216413A (zh) Oled显示设备及其制造方法
KR102568777B1 (ko) 디스플레이장치
JP2006114910A (ja) 有機電界発光素子およびその製造方法
US20220406862A1 (en) Large area display and method for making same
KR100474001B1 (ko) 듀얼패널타입 유기전계발광 소자 및 그의 제조방법
US11367377B2 (en) Display device
JP2023528694A (ja) 表示基板及びその製造方法、表示装置
KR101001423B1 (ko) 유기전계발광 소자 및 그 제조방법
KR20090005449A (ko) 유기전계발광표시장치 및 그 제조방법
KR101663743B1 (ko) 유기전계발광 표시장치
WO2022110015A1 (zh) 显示基板、显示面板、显示装置
KR20180052056A (ko) 평판 표시 패널 및 이의 제조 방법
KR20180076820A (ko) 전계 발광 표시 장치
KR20040015934A (ko) 유기전계발광 소자 및 그의 제조방법
WO2021161528A1 (ja) 表示装置
CN117295841A (zh) 掩膜板、显示面板及显示装置
KR20050104100A (ko) 유기전계발광 소자 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant