KR102129934B1 - 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인 - Google Patents

골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인 Download PDF

Info

Publication number
KR102129934B1
KR102129934B1 KR1020177036076A KR20177036076A KR102129934B1 KR 102129934 B1 KR102129934 B1 KR 102129934B1 KR 1020177036076 A KR1020177036076 A KR 1020177036076A KR 20177036076 A KR20177036076 A KR 20177036076A KR 102129934 B1 KR102129934 B1 KR 102129934B1
Authority
KR
South Korea
Prior art keywords
calcium
bone
probiotic
salt
dsm
Prior art date
Application number
KR1020177036076A
Other languages
English (en)
Other versions
KR20170141820A (ko
Inventor
안나 베르그렌
니클라스 라르손
구닐라 온닝
이리니 라조우 아렌
클라라 쇼그렌
클래스 올손
Original Assignee
프로비 아베
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 프로비 아베 filed Critical 프로비 아베
Publication of KR20170141820A publication Critical patent/KR20170141820A/ko
Application granted granted Critical
Publication of KR102129934B1 publication Critical patent/KR102129934B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • A61K35/741Probiotics
    • A61K35/744Lactic acid bacteria, e.g. enterococci, pediococci, lactococci, streptococci or leuconostocs
    • A61K35/747Lactobacilli, e.g. L. acidophilus or L. brevis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • A61P19/10Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease for osteoporosis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2200/00Function of food ingredients
    • A23V2200/30Foods, ingredients or supplements having a functional effect on health
    • A23V2200/306Foods, ingredients or supplements having a functional effect on health having an effect on bone mass, e.g. osteoporosis prevention
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12R1/225
    • C12R1/25
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/225Lactobacillus
    • C12R2001/25Lactobacillus plantarum

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 포유류, 바람직하게는 인간에서 골다공증의 치료 또는 예방에 사용되거나 또는 Ca2+ 이온의 흡수를 증가시키는데 사용되는, 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인, 또는 락토바실러스 플랜타럼(Latobacillus plantarum)으로부터 선택된 적어도 하나의 프로바이오틱 스트레인과 함께 사용되는 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인에 관한 것이다.

Description

골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인{PROBIOTIC STRAINS FOR USE IN TREATMENT OR PREVENTION OF OSTEOPOROSIS}
본 발명은 포유류, 바람직하게는 인간에서 골다공증의 치료 또는 예방에 사용되거나 또는 Ca2+ 이온의 흡수를 증가시키는데 사용되는, 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인, 또는 락토바실러스 플랜타럼(Latobacillus plantarum)으로부터 선택된 적어도 하나의 프로바이오틱 스트레인과 함께 사용되는 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인에 관한 것이다.
골다공증은 뼈가 부러지기 쉽고 골절될 가능성이 많아지는 질병이다. 보통 뼈는 밀도가 손실되며, 이는 뼈 내의 칼슘 및 미네랄의 양이다. 골다공증은 뼈 질병의 가장 흔한 종류이다. 50세 이상의 모든 여성의 약 절반이 그들의 일생 동안 둔부, 손목 또는 척추(척추의 뼈)의 골절을 갖는다. 뼈는 살아있는 조직이다. 기존의 뼈는 지속적으로 새로운 뼈로 대체되고 있다. 골다공증은, 신체가 충분히 새로운 뼈를 형성하지 못하는 경우, 너무 많은 기존의 뼈가 신체에 의해 재흡수되는 경우, 또는 이 두 가지 모든 경우에서 발생한다. 칼슘은 뼈를 형성하는데 필요한 중요한 미네랄 중 하나이다. 충분한 칼슘 및 비타민 D를 얻지 못하거나, 또는 신체가 음식물로부터 충분한 칼슘을 흡수하지 못한다면, 뼈는 부서지기 쉬워지고 골절될 가능성이 많아진다. 폐경기 시기에 있는 여성에서 에스트로겐의 저하 및 남성에서 테스토스테론의 저하는 뼈 손실의 원인이 된다.
골다공증에 의해 야기되는 골절은 주된 건강 문제를 구성하며 건강 관리 시스템 상에 막대한 경제적 부담을 준다. 골다공증으로 인한 어느 골절의 생애 위험은 서양에서 높으며(여성에서 약 50% 및 남성에서 약 20%), 골절은 현저한 치사율 및 이환율과 연관된다. 피질골(cortical bone)은 신체에서 뼈의 약 80%를 구성하며, 여러 연구들은 피질골이 뼈 강도의 주요 결정인자이며, 이에 따라 골절 민감성의 주요 결정인자임을 보여주었다. 65세 이후에 뼈 손실은 해면질골이 아니라 주로 피질골에서의 손실에 기인한다(Lancet, 2010, May 15; 375(9727): 1729-36).
골격은 뼈 형성 골아세포(OBs) 및 뼈흡수 파골 세포(OCLs)에 의해 리모델링된다. 대식세포 콜로니 자극인자(M-CSF)는 OCLs 전구세포의 증식 및 생존을 증가시킬뿐만 아니라 OCL에서 핵인자-κB(RANK)의 리셉터 활성제의 발현을 상향조절한다. 이는 RANK 리간드(RANKL)가 바인딩하고 OCL 형성을 이끄는 시그널링 캐스케이드를 개시하도록 한다. RANKL의 영향은 RANKL에 대한 유인 리셉터인 오스테오프로테게린(OPG)에 의해 저해될 수 있다.
염증과 뼈 손실 간의 연관성은 잘 확립되어 있으며, 자가면역 질병에서 파골성 뼈흡수는 활성화된 T 세포에 의해 생성된 염증 사이토카인에 의해 유도된다. 또한, 여러 연구는 고 민감성 C-반응 단백질(hsCRP)의 다소 상승된 혈청 수준으로 나타나는 덜 심각한 전신성 염증이 낮은 BMD, 상승된 뼈흡수 및 증가된 골절 위험과 연관되는 것으로 입증되었다. 폐경기 후에 일어나는 에스트로겐 결핍은 파골세포의 증가된 형성 및 연장된 생존을 이끈다. 이는 파골세포 생성을 촉진하는 사이토카인의 증가된 생산을 이끄는 에스트로겐의 면역억제 효과의 손실 및 OCLs에 대한 에스트로겐의 직접적인 영향을 포함하는 다수의 인자에 기인하는 것으로 제시된다. 이러한 데이터에 의거하면, 염증 사이토카인 TNFα 및 IL-1의 차단은 초기 폐경기후 여성에서 뼈흡수 마커들의 감소를 이끈다.
최근에, 건강 및 질병 모두를 위해 장내 미생물(gut microbiota)(GM)의 중요성이 집중적으로 연구되어 왔다. GM은 총괄적으로 인간 게놈 보다 150배 더 많은 유전자를 함유하는 엄청난 양의 박테리아로 구성된다. 이는 출생시 얻어지며, 구별되는 실재(distinct entity)임에도 불구하고, 분명히 인간 게놈과 함께 공진화하고, 다양한 방식으로 이의 숙주와 소통하고 영향을 미치는 다세포 생물로 간주될 수 있다. GM의 구성은 음식 및 항생체 치료와 같은 다수의 환경적 요인에 의해 조절된다. 장내 미생물에 의해 생산된 분자들은 유익할 수도 있고 해로울 수도 있으며, 장 내의 내분비 세포, 장 신경계, 장 투과성 및 면역 시스템에 영향을 미치는 것으로 알려져 있다. 동요된 미생물 구성은 크론병, 궤양성 대장염, 류마티스성 관절염, 다발성 경화증, 당뇨, 음식 알레르기, 습진 및 천식뿐만 아니라 비만 및 대사 증후군을 포함하여 장 내외에서 다양한 염증 조건에 연루되는 것으로 상정되어 왔다.
프로바이오틱 박테리아는 적절한 양으로 투여될 경우에 숙주에 건강상의 이점을 제공하는 살아있는 미생물로서 정의되며, 장 내 미생물의 구성을 변화시키는 것으로 여겨진다. 제시된 기저 메커니즘은 증가된 용해성 및 미네랄 흡수, 증가된 배리어 기능 및 면역 시스템의 조절을 포함하여 여러 가지가 있다.
Gilman 등(The effect of Probiotic Bacteria on Transepithelial 10 Calcium Transport and Calcium uptake in Human Intestinal-like Caco-2 cells, Curr. Issues Intestinal Microbial. 7: 1-6)은 락토바실러스 살리바리우스(Lactobacillus salivarius)(UCC 118)의 스트레인 및 비피도박테리아 인판티스(Bifidobacterium infantis)(UCC 35624)의 스트레인을 인간 장-유사 Caco-2 세포에서 배양시 칼슘 흡수 및 경상피 칼슘 수송에 대해 시험하였다. 상기 스트레인들은 완전히 분화된 16-d 령의 Caco-2 세포에서 경상피 칼슘 수송에 영향을 미치지 못하였다. 24시간 후 Caco-2 세포 단층 내로의 칼슘 흡수는 락토바실러스 살리바리우스(Lactobacillus salivarius)에 노출된 세포에서 현저히 더 높았다.
WO99/02170에는 음식물로부터 칼슘, 아연, 철 및 마그네슘과 같은 미네랄의 흡수를 촉진하거나 증가시키기 위해 발효되지 않은 장 조성물의 제조에 락토바실리를 사용하는 것이 기재되어 있다. 여기서 수행되고 상기 주장된 흡수를 뒷받침하는 실험은 Caco-2 장 세포주(발암성 세포주)를 이용한 칼슘 수송의 시험관 내 모델이다.
KR101279852에는 칼슘 및 마그네슘에 부가적으로 기탁번호 KCTC11870BP를 갖는 스트렙토코커스 써모필러스(Streptococcus thermophilus), 기탁번호 KCTC 11868BP를 갖는 락토바실러스 람노서스(Lactobacillus rhamnosus), 및 기탁번호 KCTC11866BP를 갖는 락토바실러스 파라카세이(Lactobacillus paracasei)와 같은 특정 젖산 박테리아 스트레인을 함유하는 골다공증 예방 또는 치료용 조성물이 기재되어 있다.
당해 기술분야에는 아직도 여전히 인간에서 골다공증에 대한 효과적인 예방 및 치료법을 개발할 필요성이 있다.
본 발명은 일 견지로 포유류, 바람직하게는 인간에서 골다공증의 치료 또는 예방에 사용되거나 또는 Ca2+ 이온의 흡수를 증가시키는데 사용되는, 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인, 또는 락토바실러스 플랜타럼(Latobacillus plantarum)으로부터 선택된 적어도 하나의 프로바이오틱 스트레인과 함께 사용되는 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인에 관한 것이다.
도 1은 실험 1 및 2에 기재된 바와 같이 다양한 박테리아 스트레인으로 처리한 Ca2+ 수송을 나타낸다.
도 2는 실험 1 및 2에 기재된 바와 같이 2시간 후 세포 내에 잔존하는 세포 내 Ca2+를 나타낸다.
도 3은 실험 3의 실험 디자인 및 체중을 나타낸다. 실험 디자인 (A)의 개요. ovx 또는 sham 수술 2주 전에 시작하여 8주령 마우스를 6주 동안 비이클(veh), 단일 락토바실러스(L) 스트레인(L. para) 또는 3 스트레인의 혼합물(L. mix)로 처리하였다. L. 스트레인들은 109 콜로니-형성 유닛(cfu)/ml의 농도로 음용수에 주어졌으며, 한편 컨트롤 마우스에는 비이클이 함유된 수돗물이 주어졌다. 마우스들은 시험 마지막에 14주령이었으며, 차후 분석을 위해 조직들이 수집되었다. Ovx는 sham 마우스에 비해 예측된 바와 같이 증가된 체중을 이끌었으며, 이는 프로바이오틱 치료(B) 후와 다르지 않았다. 결과는 평균±SEM(n=9-10)으로 주어졌다. ** p≤0.01. 스튜던트 T 검정 ovx 대 sham.
도 4는 프로바이오틱스가 ovx 유도된 피질골-손실로부터 마우스를 보호하는 것을 나타낸다. ovx 유도된 뼈-손실에 대한 프로바이오틱 치료의 예방 효과를 시험하기 위해, ovx 또는 sham 수술 2주 전에 시작하여 8주령 마우스를 6주 동안 비이클(veh), 단일 락토바실러스(L) 스트레인(L. para) 또는 3 스트레인의 혼합물(L. mix)로 처리하였다. 실험의 마지막에, 절개된 대퇴골을 고해상도 μCT 및 주변 정량 컴퓨터 단층촬영(pQCT)로 분석하였다. 비이클 및 L. mix 처리된 sham 및 ovx 그룹으로부터 얻어진 한 피질 섹션의 대표적인 μCT 이미지(A). 피질골 미네랄 함량(BMC)(B) 및 피질 영역(C)을 대퇴골의 중간 뼈 몸통 부위에서 pQCT에 의해 측정하였다. 값은 평균±SEM, (n=9-10)으로 주어졌다. ** p≤0.01, * p≤0.05. 스튜던트 T 검정 ovx 대 sham. #p≤0.05, 그룹들, ovx L. Para 및 L. mix 대 ovx 비이클 내에서 Dunnett's post hoc 시험이 수반된 ANOVA.
도 5는 프로바이오틱스가 피질골에서 염증 사이토카인의 발현 및 RANKL/OPG 비율을 감소시키는 것을 나타낸다. 뼈흡수를 촉진하는 것으로 알려진 유전자의 발현의 QRT-PCR 분석; ovx 유도된 뼈-손실에 대한 프로바이오틱 치료의 예방 효과를 시험하기 위해, ovx 또는 sham 수술 2주 전에 시작하여 비이클(veh) 또는 3가지 프로바이오틱 락토바실러스 스트레인들(L. mix)로 6주 동안 처리된 14주령 난소 적출된(ovx) 마우스의 피질골에서, (A) 종양 괴사 인자 알파(TNFα), (B) 인터루킨-1β(1L-1β), (C) 인터루킨-6(IL-6), (D) 핵 인자 카파-B 리간드의 리셉터 활성인자(RANKL) 및 오스테오프로테그린(OPG)의 비율, 및 (E) OPG에 대한 개별 그래프, (F) 뼈 형성을 촉진하는 것으로 알려진 RANKL 및 유전자들; (G) 오스테릭스, (H) 콜라겐, 타입 I, α1(Col1α1) 및 (I) 오스테오칼신. 값은 평균±SEM(n=9-10)으로 주어졌다. n=9-10. * p≤0.01. 스튜던트 T 검정 ovx 대 sham.
도 6은 Ca의 분획 배출이 비이클 처리된 마우스에서 ovx에 의해 증가하였으나, L. para 또는 L. mix 처리된 마우스에서는 ovx에 의해 증가하지 않았음을 나타낸다. ovx 또는 sham 수술 2주 전에 시작하여 비이클(veh), 단일 락토바실러스(L) 스트레인(L. para) 또는 3가지 스트레인들의 혼합물(L. mix)로 6주 동안 처리된 14주령 마우스로부터 혈청 및 소변에서 Ca 및 크레아티닌을 측정하였다. 소변의 분획 Ca 배출은 식 FECa = (소변 Ca × 혈청 크레아티닌)/(혈청 Ca × 소변 크레아티닌)으로 산출되었다. 값은 평균±SEM으로 주어졌으며, 각 그룹에서 n=5-10이다. * p≤0.05. 스튜던트 T 검정 ovx 대 sham. #p≤0.05, 그룹들, ovx L. Para 및 L. mix 대 ovx 비이클 내에서 Dunnett's post hoc 시험이 수반된 ANOVA.
본 발명은, 일 구현으로, 포유류, 바람직하게는 인간에서 골다공증의 치료 또는 예방에 사용되거나 또는 Ca2+ 이온의 흡수를 증가시키는데 사용되는, 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인, 또는 락토바실러스 플랜타럼(Latobacillus plantarum)으로부터 선택된 적어도 하나의 프로바이오틱 스트레인과 함께 사용되는 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인에 관한 것이다.
본 발명은, 발명의 일 구현으로, 피질골 손실을 억제함으로써, 뼈 미네랄 함량 손실을 억제함으로써, 그리고 뼈흡수를 억제함으로써 골다공증의 치료 또는 예방에 사용되는 적어도 하나의 프로바이오틱 스트레인에 관한 것이다.
피질골은 체 내에서 뼈의 약 80%를 구성하며, 여러 연구들은 피질골이 뼈 강도의 주요 결정인자이며, 이에 따라 골절 민감성의 주요 결정인자임을 보여주었다. 본 발명의 실험에서 락토바실러스 파라카제이(Lactobacillus paracasei) 종들의 프로바이오틱 스트레인 단독 또는 락토바실러스 플랜타럼(Latobacillus plantarum) 종들의 스트레인들과의 조합은 피질골 손실을 억제하는 것으로 나타났다. 또한 본 발명의 실험에서 프로바이오틱 처리는 뼈에서 면역 상태를 변화하게 하여 약화된 뼈흡수를 이끄는 것으로 나타났다. 더욱이, 본 발명의 실험에서 뼈 미네랄 함량은 비이클 그룹에 비해 프로바이오틱 그룹에서 감소되지 않은 것으로 나타났다(도 4a-c). 피질골 내 뼈 미네랄 함량은 비이클 그룹에 비해 두 프로바이오틱 그룹에서 더 높았다(p<0.05, 도 4b).
본 발명은 포유류, 바람직하게는 인간에서 골다공증의 치료 또는 예방에 사용하기 위해, 뼈 미네랄 함량 손실을 억제하기 위해, 뼈-손실을 억제하기 위해 사용되는, 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인, 또는 락토바실러스 플랜타럼(Latobacillus plantarum)으로부터 선택된 적어도 하나의 프로바이오틱 스트레인과 함께 사용되는 적어도 하나의 락토바실러스 파라카제이(Lactobacillus paracasei)에 관한 것이다.
본 발명은 포유류, 바람직하게는 인간에서 뼈 미네랄 함량 손실을 억제하는데 사용하기 위해, 뼈-손실을 억제하기 위해 사용되는, 락토바실러스 파라카제이(Lactobacillus paracasei)로부터 선택된 적어도 하나의 프로바이오틱 스트레인, 또는 락토바실러스 플랜타럼(Latobacillus plantarum)으로부터 선택된 적어도 하나의 프로바이오틱 스트레인과 함께 사용되는 적어도 하나의 락토바실러스 파라카제이(Lactobacillus paracasei)에 관한 것이다.
본 발명의 일 구현으로, 적어도 둘 이상의 락토바실러스 플랜타럼(Latobacillus plantarum) 스트레인이 적어도 하나의 락토바실러스 파라카제이(Lactobacillus paracasei) 스트레인과 함께 사용된다. 다른 구현으로, 예를 들어 3 이상과 같이 적어도 둘 이상의 락토바실러스 파라카제이(Lactobacillus paracasei) 스트레인이 적어도 하나의 락토바실러스 플랜타럼(Latobacillus plantarum) 스트레인과 함께 사용된다.
본 발명의 일 구현으로, 프로바이오틱 스트레인은 살아있으며 불활성화된 것이나 또는 사멸된 것이다. 본 발명의 일 구현으로, 상기 스트레인은 적어도 하나의 캐리어를 부가적으로 포함하는 조성물에 존재한다. 캐리어는 예를 들어 식이 보조제에 통상적으로 사용되는 어느 캐리어일 수 있다. 캐리어는 기능성 식품 또는 다른 종류의 식품에 사용될 수 있는 오트밀 캐리어 또는 보리 캐리어와 같은 시리얼 베이즈드 캐리어일 수 있다. 캐리어는 섭취 전에 프로바이오틱 스트레인이 그 안에서 혼합되는 물 또는 어느 다른 수성 용매일 수 있다.
본 발명의 일 구현으로, 상기 조성물은 예를 들어, 칼슘 카보네이트, 칼슘 클로라이드, 시트르산의 칼슘염, 칼슘 글루코네이트, 칼슘 글리세로포스페이트, 칼슘 락테이트, 칼슘 옥사이드, 칼슘 설페이트와 같은 염의 형태로 부가적인 Ca2+로 보충된다. Ca2+의 권장 일일 섭취량(RDI)은 800mg이다. 상기 조성물 내에서 Ca2+의 양은 RDI의 10-40% 범위 내, 바람직하게 RDI의 15-30%의 범위 내일 수 있다. 따라서, 상기 조성물 내에서 예를 들어 염 형태의 Ca2+의 양은 80-320mg 범위 내, 바람직하게 120-240mg 범위 내일 수 있다. 상기 조성물에 첨가되는 Ca2+의 양은 상기 조성물이 여전히 안정하고 이의 유익한 효과를 제공하도록 상기 범위 내에서 어느 양으로 조절될 수 있다.
상기 조성물은 건조된, 비-발효 조성물이거나 발효 조성물일 수 있다. 건조된, 비-발효 조성물의 경우에, 발표는 개체에 의해 조성물의 섭취 후에, 즉 소화관 내에서 일어난다. 또한, 스트레인들은 조성물 내에 동결-건조된 스트레인들로서 존재할 수 있다.
락토바실러스 파라카제이(Lactobacillus paracasei)의 프로바이오틱 스트레인은 락토바실러스 파라카제이 8700:2, DSM 13434, 및 락토바실러스 파라카제이 02:A, DSM 13432로부터 선택될 수 있으며, 락토바실러스 플랜타럼(Latobacillus plantarum)의 프로바이오틱 스트레인은 락토바실러스 플랜타럼 299, DSM 6595, 락토바실러스 플랜타럼 299v, DSM 9843, 락토바실러스 플랜타럼 HEAL 9, DSM 15312, 락토바실러스 플랜타럼 HEAL 19, DSM 15313, 및 락토바실러스 플랜타럼 HEAL 99, DSM 15316으로부터 선택될 수 있다.
락토바실러스 파라카제이 8700:2, DSM 13434, 및 락토바실러스 파라카제이 02:A, DSM 13432는 Deutsche Sammlung von Mikroorganimsen und Zellkulturen GmbH에 2000년 4월 10일자로 기탁되었다.
락토바실러스 플랜타럼 HEAL 9, DSM 15312, 락토바실러스 플랜타럼 HEAL 19, DSM 15313, 및 락토바실러스 플랜타럼 HEAL 99, DSM 15316은 Deutsche Sammlung von Mikroorganimsen und Zellkulturen GmbH에 2002년 12월 28일자로 기탁되었다.
락토바실러스 플랜타럼 299v, DSM 9843은 1995년 3월 21일자로, 그리고 락토바실러스 플랜타럼 299, DSM 6595는 1991년 7월 5일자로 Deutsche Sammlung von Mikroorganimsen und Zellkulturen GmbH에 기탁되었다.
본 발명의 일 구현으로, 상기 적어도 하나의 스트레인을 포함하는 조성물은 식품, 식이 보조제, 의료식품(medical food), 기능성 식품 및 영양식품(nutritional food)으로 구성되는 그룹으로부터 선택될 수 있다.
상기 조성물이 식품인 경우에, 이는 채소, 요구르트, 주스, 아이스크림, 빵, 비스킷, 시리얼, 헬스바(health bars) 및 스프레드(spreads)를 포함하는 그룹으로부터 선택될 수 있다.
상기 언급된 어느 스트레인이 식이 보조제와 같은 조성물에 사용될 경우에, 첨가될 캐리어(들)은 당해 기술분야의 통상의 기술자에 알려져 있다. 식이 보조제에 보통 사용되는 어느 다른 성분들은 당해 기술분야의 통상의 기술자에게 알려져 있으며, 또한 상기 스트레인들과 함께 통상적으로 첨가될 수 있다.
본 발명의 일 구현으로, 상기 언급된 프로바이오틱 스트레인(들)은 조성물에 약 1×106 - 1×1014 CFU, 바람직하게 1×108 - 1×1012, 그리고 보다 바람직하게 1×109-1×1011의 양으로 존재한다. 또한 상기 스트레인들은, 섭취 전에 상기 스트레인들이 그 안에서 첨가되거나 혼합되는 물이나 또는 어느 다른 수성 비이클에 상기 양으로 단독으로 사용될 수 있다.
본 발명은 포유류에 의해, 바람직하게 노인, 폐경기후 여성 및 폐경기전 여성과 같이, 뼈 손실, 뼈 미네랄 함량 손실 및 증가된 뼈-손실 또는 뼈흡수가 문제이거나 또는 문제가 될 수 있는 어느 인간에 의해 사용되는 것이 적합하다.
건강을 유지하고 골다공증을 앓는 것을 예방하기 위해 건강한 인간이 또한 자연적으로 본 발명으로부터 이로움을 받을 수 있다.
실시예
실험 1
재료 및 방법
"수송 용액(transport solutions)"; 총 양 6ml
수송 용액은 Ca 및 Mg, Hepes(2%), 글루타민(4mM), D-Glc(3, 5g/l) 및 CaCl2·2H2O(1.47g/l)가 함유된 행크 발란스트 염 용액(Hank's Balanced Salt solution)(HBSS)을 함유하였다. 상기 용액의 분석은 10.65mM의 [Ca2+]를 제공하였다.
"기저 용액(basal solution)"
수송 용액과 마찬가지이나, 다만 외부 칼슘의 첨가가 없었다. 이 용액의 분석은 [Ca2+] 1.22mM을 제공하였다.
실험 1:
1. 수용 용액 단독의 컨트롤
2. 수송 용액 내의 4.02×108 박테리아/6ml에 상응하는, 동결건조된 락토바실러스 플랜타럼(Latobacillus plantarum) 299 v. 0.788mg
3. 수송 용액 내의 락토바실러스 플랜타럼 299 v. 4.02×108 박테리아/6ml
4. 수송 용액 내의 락토바실러스 플랜타럼 299. 4.95×108 박테리아/6ml
5. 수송 용액 내의 락토바실러스 플랜타럼 HEAL 19, 4.95×108 박테리아/6ml
6. 수송 용액 내의 AMJ 1277. 4.95×108 박테리아/6mL. AMJ 1277은 락토바실러스 플랜타럼 299 v.의 돌연변이 형태이다.
실험 2:
1. 수송 용액 내의 CNCM 1-2332, 락토바실러스 아시도필러스(Lactobacillus acidophilus)(La10); +4.95×108 박테리아/6ml
2. 수송 용액 내의 락토바실러스 플랜타럼 299 v. 4.02×108 박테리아/6ml
3. 컨트롤 - 수송 용액 단독
스트레인 La10을 제외한 모든 스트레인들은 30ml의 MRS에서 호기 배양되었다(30℃, 210rpm). La10은 37℃에서 배양되고, 밀봉 전에 멸균 여과된 질소로 덮혀졌다. 배양된 세포의 수는 3×108/플라스크이었다. 박테리아는 밤새 사전배양되고, 접종시 지수기이었다. 세포들은 OD600=0.1-0.5에서 수거되고, 각 스트레인에 대해 4.02×108 세포에 상응하는 양이 수집되었다. 이러한 시료들을 5000rpm에서 3분간 원심분리하고, 상층액을 붓고, 세포들을 NaCl(0.9%)에 재현탁하였다. 세포들을 다시 원심분리하고, 상층액을 비웠다. 그 다음 세척된 펠렛을 상기 수송 용액에 현탁하였다.
Caco-2 세포들을 시험 전에 PBS로 (2회) 세정하였다. 45CaCl2(74kBq/ml)을 수송 용액에 첨가하였다. 그 다음, 그 혼합물을 0.5ml의 용량으로 장착물 상에서 자라고 있는 Caco-2 세포들에 첨부에서(apically) 첨가하였다. 이에 따라 각 웰에 6.7×107박테리아/ml을 확보하였다. HBSS(1.22mM) 내에 내생성 [Ca2+]만을 함유하는 기저 용액(1.5ml)만 기저 챔버에 첨가하였다. 현탁액들 및 컨트롤들이 2시간 동안 상기 Caco-2 세포들 상에서 작용하도록 두었다. 그 다음, 이것들을 흡입하고, 세포들을 WO99/02170에 기재된 방법에 따라 아이스-콜드 세정 버퍼로 3회 세정하였다. 이후 상기 Caco-2 세포들을 0.5ml의 NaOH에서 용해하였다. 신틸레이터(Tri-carb 2800TR, Perkin Elmer)의 도움으로 수송을 측정하기 위해 기저 챔버 내의 용액들을 수집하였다. 용해물을 45Ca에 대해뿐만 아니라, 단백질 함량에 대해 분석하였다. Ca2+ 수송/흡수에 대해 측정된 모든 값들을 각 세포들 내의 단백질 함량에 대해 정규화하였다. 모든 웰들을 시험 용액을 이용한 배양 전후에 경상피 내성(transepitelial resistance)(TEER)에 대해 체크하였다. 시험 전후에, TEER의 차이가 없는 것을 알 수 있었다. 상피가 새지 않는 것을 확실히 하기 위해 TEER을 측정하였다. 시험 후 내성의 차이는 세포간 결합이 사용된 용액에 의해 손상될 수 있다는 의심을 일으킬 수 있다.
결과
실험 1 및 2로부터 결과들의 비교를 가능케 하기 위해, 시험된 스트레인들로부터 얻어진 수송 및 흡수 데이터를 박테리아를 함유하지 않은 컨트롤 용액에 대해 정규화하였다. 따라서 모든 결과들은 (WO99/02170에서 수행된 바와 마찬가지로) 컨트롤의 퍼센트로 표현된다. 또한, 실험 1 및 2는 각각 세포배양 16일 및 21일에 수행되었음에 주목되어야 한다. 일반적으로, 획득된 결과의 표준편차는 상대적으로 큰 것으로 관찰된다. 이는 Ca2+의 이용가능성의 편차를 이끄는 박테리아 및 Ca2+ 집합의 일부 형태에 기인할 수 있다. 이는 나머지 시료들에 비해 표준편차가 상대적으로 작은 동결 건조된 박테리아에 대해서는 관찰되지 않는다.
실험 1의 결과는 AMJ1277 스트레인이 존재한 경우에 Ca2+ 수송의 유의한 향상을 보여주었다(134.7±18.9%, p=0.002)(도 1 참조). 다른 어떤 스트레인들(Lp299v 동결 건조되고 살아있는 Lp299, Lp HEAL 19)도 Ca2+의 수송에 있어서 유의한 차이를 주지 못하였다(표 1 참조). La10 및 Lp299v가 시험된 실험 2에서, Lp299v를 함유한 시료 대 박테리아를 함유하지 않은 컨트롤을 비교한 경우에(p=0.2), Ca2+의 수송에 있어서 유의한 차이가 검출되지 않았다. La10에 있어서 동일한 박테리아의 존재하에서 Ca2+ 수송의 경미한 감소가 관찰되었으며(79.5±19.3%), 이 변화는 유의하였다(p=0.049).
Ca 2+ 의 흡수
여기에 나타낸 흡수 데이터는 2시간 후 상기 세포들에 존재하는 Ca2+의 양을 보여준다. 실제 흡수 데이터의 평가를 위해, Ca2+의 세포 내 양은 측면 구획에서 검출된 Ca2+의 양에 더해져야 한다. 이러한 데이터의 합은 정단막(apical membrane)을 통해 수송된 Ca2+의 총 양을 나타낸다. 이러한 실험들의 결과는 일반적으로 박테리아가 없는 컨트롤 용액에 비해 박테리아의 존재하에서 세포 내 [Ca2+]의 감소를 보여준다(도 2 참조). 그러나, 동결건조되고 살아있는 Lp299v의 차이만이 유의하였다(p=0.04 및 p=0.02). 중간의 세포 내 Ca2+ 수준은 수송된 Ca2+의 양에 비해 단지 소량의 퍼센트에 불과하다는 것에 주목해야 한다. 이러한 이유로, Ca2+의 입증된 효과는 수송에 대해 미친 효과와 동일한 영향을 주지 못한다. 이는 보다 높은 세포 내 [Ca2+]를 갖지만 수송의 향상을 나타내지 못한, 동결건조되고 살아있는 Lp299v에 대해 관찰될 수 있다.
결론
AMJ1277 스트레인, 돌연변이 락토바실러스 플랜타럼(Latobacillus plantarum) 299v의 존재하에서, 컨트롤 및 나머지 스트레인들에 비해 증가된 수송뿐만 아니라 총 칼슘 흡수가 관찰된다. 따라서, 조사된 스트레인들간에 편차가 존재한다.
실험 3
난소 적출된 마우스-모델 및 프로바이오틱 처리
난소 적출(ovx)은 변화된 면역 상태와 관련된 뼈 손실을 일으킨다. 본 실험의 목적은 프로바이오틱 처리가 ovx 유도된 뼈 손실로부터 마우스를 보호하는지 조사하는 것이었다. 마우스들은 ovx 2주 전에 시작하여 6주 동안 음용수에 주어진 락토바실러스(L) 스트레인, L. 파라카제이(L. paracasei) DSM13434(L. para) 단독 또는 3가지 스트레인들, L. 파라카제이(L. paracasei) DSM 13434, L. 플랜타럼(L. plantarum)DSM 15312 및 DSM 15313(L. mix)의 혼합물로 처리되었다.
6주령 C57BL/6N 암컷 마우스를 Charles River(Germany)로부터 구입하였다. 마우스들을 조절된 온도(22℃) 및 광주기(12-h 빛, 12-h 어둠) 하의 표준 동물 시설에 수용하고, 신선한 물 및 콩-무함유 먹이 펠렛 R70(Lactamin AB, Stockholm, Sweden)에 자유로이 접근하도록 하였다. 골다공증에 대한 난소 적출된(ovx) 모델은 폐경기후 골다공증의 치료에 사용되는 제제에 대한 전임상 및 임상 평가를 위한 FDA 가이드라인에 포함된다. ovx 유도된 뼈-손실에 대한 프로바이오틱 처리의 예방 효과를 조사하기 위해 프로바이오틱 처리는 ovx 2주 전에 시작하였다. 마우스들은 6주 동안 락토바실러스(L) 스트레인, L. 파라카제이(L. paracasei) DSM13434(L. para) 단독 또는 L. mix로 지칭된 3가지 스트레인들, L. 파라카제이(L. paracasei) DSM 13434, L. 플랜타럼(L. plantarum)DSM 15312 및 DSM 15313의 혼합물로 처리되었다. 프로바이오틱 스트레인들은 이들의 항염증 특성에 기초하여 선택되었다. L. 스트레인들은 109 콜로니-형성 유닛(cfu)/ml의 농도로 음용수에 주어졌으며, 한편 컨트롤 마우스에는 비이클이 함유된 수돗물이 주어졌다. 물병들은 매일 오후에 갈아주었다. 물병들 내에서 L. 스트레인들의 생존율을 정기적으로 체크하고, 24시간 후 농도는 약 108 cfu/ml로 1로그 유닛 저하되었다. 각 마우스들은 평균 4.5ml 물/day 섭취하였다. 프로바이오틱 처리 2주 후, 마우스들은 모조 수술되거나(sham-operated) 또는 아이소플루란(Forene; Abbot Scandinavia, Solna, Sweden)을 이용한 흡입 마취 하에 난소 적출되었다. 수술 4주 후, Ketalar/Domitor vet을 이용한 마취하에 액와정맥으로부터 혈액을 수집하고, 마우스들을 후속적으로 경추탈골에 의해 희생시켰다. RNA 준비를 위한 조직을 즉시 제거하고, 차후 분석을 위해 액체 질소에 스냅-동결(snap-frozen)하였다. 뼈들을 절제하고 4% 파라포름알데히드에 고정하였다. 모든 동물 실험은 고텐버그(Gothenburg) 대학의 동물 연구를 위한 지방 윤리 위원회에 의해 승인되었다.
주변 정량 컴퓨터 단층촬영(pQCT).
컴퓨터 단층촬영 스캔을 70㎛의 해상도에서 작동하는 pOCT XCT RESEARCH M (version 4.5B, Norland, Fort Atkinson, WI, USA)를 이용하여 수행하였으며, 피질골 파라미터를 대퇴골의 중간 뼈 몸통 부위에서 생체 외 분석하였다.
고해상도 μCT
고해상도 μCT 분석은 1172 모델 μCT(Bruker micro-CT, Aartselaar, Belgium)을 이용하여 원위 대퇴골(distal femur) 상에서 수행하였다. 대퇴골은 50kV의 X-선 튜브 전압 및 201μA의 전류 및 0.5-mm 알루미늄 필터로 이미지화되었다. 스캐닝 각 회전은 180°이었으며, 각 증가는 0.70°이었다. 복셀(voxel) 크기는 등방성으로 4.48μm이었다. NRecon(version 1.6.9)은 스캔 후 재구성을 수행하는데 이용되었다. 대퇴부에서, 말단 성장 플래이트에 대한 해면골(trabecular bone) 근부(proximal)가 성장 플래이트로부터 538.5μm의 거리에서 시작하여 근부 방향으로 134.5μm의 추가 세로방향 거리를 확장하는 관심있는 적합 용량 내에서 분석을 위해 선택되었다. 피질 측정은 성장 플래이트로부터 3.59mm의 거리에서 시작하여 근부 방향으로 134.5μm의 추가 세로방향 거리를 확장하는 대퇴부의 뼈 몸통 부위에서 수행하였다. BMD 분석을 위해, 장비는 세라믹 표준 시료로 보정되었다.
RNA 분리 및 실시간 PCR
총 RNA는 TriZol Reagent(Invitrogen, Lidingb, Sweden)을 이용하여 피질골 및 골수(말단이 제거된 대퇴골 및 동결 전에 PBS로 세정된 골수)로부터 준비하였다. RNA를 High-Capacity cDNA Reverse Transcription Kit(#4368814, Applied Biosystems, Stockholm, Sweden)을 이용하여 cDNA로 역전사하였다. RT-PCR 분석은 ABI Prism 7000 Sequence Detection System(PE Applied Biosystems)을 이용하여 수행하였다. IL-6(Mm00446190_m1), IL-1β(Mm00434228_m1), TNFα(Mm00443258_m1), RANKL (Mm00441908_m1), OPG(Mm00435452_m1), Runx2(Mm00501580_m1), Col1α1(Mm00801666_g1), osteocalcin(Mm01741771_g1) 및 TGFβ1(Mm03024053_m1)mRNA 수준의 분석을 위해 Applied Biosystems(Sweden)으로부터 사전 디자인된 RT-PCR 어세이를 이용하였다. 각 유전자의 mRNA 풍부도는 "표준 곡선 방법(standard curve method)"(User Bulletin 2; PE Applied Biosystems)을 이용하여 산출되고, 18S(4308329) 리보솜 RNA의 발현에 대해 조절되었다.
혈액 분석
분석은 혈청 및 뇨 칼슘(QuantiChromTM Calcium Assay Kit(DICA-500), Bioassays systems, Hayward, CA, USA), 혈청 및 뇨 크레아티닌(Mouse Creatinine Kit, Crystal Chem, Downers Grove, IL, USA)에 대하여 제조자의 지시에 따라 수행되었다. 뼈흡수의 마커로서, 타입 I 콜라겐 프래그먼트의 혈청 수준을 RatLaps ELISA kit(Nordic Bioscience Diagnostics, Herlev, Denmark)를 사용하여 평가하였다. 오스테오칼신, 뼈 형성의 마커의 혈청 수준은 마우스 오스테오칼신 면역방사계측 어세이 키트(Immutopics, San Clemente, CA)로 측정하였다.
플로우 사이토메트리
골수 세포들은 주사기를 이용하여 하나의 대퇴골의 골 공동(bone cavity)을 통해 5ml PBS를 플러싱함으로써 수거되었다. 515g에서 5분간 원심분리 후, 펠렛화된 세포들을 5분 동안 Tris-완충 0.83% NH4Cl 용액(pH 7.29)에서 재현탁하여 적혈구를 용해한 다음, PBS로 세정하였다. 골수 세포들을 사용 전에 RPMI 배지(PAA Laboratories, Pasching, Austria)에 재현탁하였다. 골수에서 백혈구의 총 수는 자동 세포 카운터(Sysmex, Hamburg, Germany)를 사용하여 산출하였다. 플로우 사이토메트리 분석을 위해, 세포들은 T 헬퍼 세포의 검출을 위한 CD4에 대한 알로피코시아닌(APC)-컨주게이티드 항체(Beckton-Dickinson) 및 과립성 백혈구 제거를 위한 Gr-1/Ly-6G에 대한 페리디닌-클로로필 단백질(PerCP)-컨주게이티드 항체(BioLegend) 및 OCL 전구세포의 검출을 위한 CD11b에 대한 FITC-컨주게이티드 항체(Beckton-dickinson)로 염색되었다. 그 다음, 세포들은 FACSCalibur(8D Pharmingen, Franklin Lakes, NJ USA) 상에서 형광 활성화 세포 분리기 분석을 받았으며, FlowJo 소프트웨어를 이용하여 분석되었다. 결과는 세포 빈도로 나타내었다(%).
통계 분석
모든 통계학적 결과를 평균±SEM으로 나타내었다. 그룹 간 차이는 언페어드 T 검정(unpaired t test)을 사용하여 산출하였다. 다중 그룹들 간의 비교는 일원 분산분석(ANOVA)을 수행한 다음, 다중 비교에 대한 보정을 위해 두네트 검정(Dunnett's test)을 사용하여 산출하였다. 양측 검정 p≤0.05가 유의한 것으로 간주되었다.
결과 - 프로바이오틱 처리는 ovx-유도된 피질골 손실 및 증가된 뼈흡수로부터 마우스를 보호한다.
ovx-유도된 뼈-손실에 대한 프로바이오틱 처리의 예방 효과를 검출하기 위해, ovx 또는 sham 수술 2주 전에 시작하여 8주령 마우스를 6주 동안 비이클(veh), 단일 락토바실러스(L) 스트레인(L. para) 또는 3 스트레인의 혼합물(L. mix)로 처리하였다. 자궁 중량은 에스트로겐 상태의 지표로서 사용될 수 있으며, ovx는 모든 처리에 있어서 유사한 자궁 중량의 예기치 않은 감소를 일으켰다(표 2). 또한, ovs는 모든 처리군에서 체중, 지방량 및 흉선 중량을 증가시켰다(도 3b, 표 2).
비이클 처리된 마우스에서, ovx는 대퇴골의 중간-골간 부위에서 피질골 미네랄 함량 및 피질 단면 뼈 영역을 감소시켰다(p<0.01, 도 4a-c). 중요하게도, ovx는 L. para 또는 L. mix 처리된 마우스에서 피질골 미네랄 함량 또는 피질 단면 뼈 영역을 감소시키지 않았다(도 4a-c). 피질골 미네랄 함량은 veh 처리된 ovx 마우스에 비해 L. para 및 L. mix 두 가지 모두 처리된 ovx 마우스에서 더 높았다(p<0.05, 도 4b). 피질골에 대한 프로바이오틱의 예방 효과가, 영향을 받은 뼈흡수에 의한 것인지 검출하기 위해, C-말단 텔로펩티드(RatLaps)의 혈청 수준을 분석하였다. ovx는 veh-처리된 마우스에서 RatLaps의 수준을 증가시켰으나(sham에 비해 +45±11%, p<0.05), L. para 처리된 마우스(20±9%, 유의하지 않음) 또는 L. mix 처리된 마우스(23±9%, 유의하지 않음)에서는 그렇지 않았다. 혈청 오스테오칼신에 의해 나타난 바와 같이 뼈 형성은 프로바이오틱 처리에 의해 유의하게 영향을 받지 않았다(데이터로 나타내지 않았음). 대퇴골의 원위 골간단 부위(distal metaphyseal region of femur)에서 해면질골 파라미터(BV/TV 및 해면질 BMD)는 모든 처리그룹에서 ovx에 의해 유의하게 감소되었다(p<0.05, 표 1). 이러한 발견은 프로바이오틱 처리가 ovx-유도된 피질골 손실 및 증가된 뼈흡수로부터 마우스를 보호한다는 것을 입증한다.
프로바이오틱은 피질골에서 염증 사이토카인 및 RANKL/OPG 비를 감소시킨다.
ovx-유도된 피질골 손실에 대한 프로바이오틱 처리의 효과에 관한 메커니즘을 조사하기 위해, 피질골에서 뼈 관련 mRNA 전사물을 측정하였다(도 5). 파골세포형성을 촉진하는 골수세포에 의해 생성된 염증 사이토카인, TNFα 및 뼈에 대한 TNFα의 효과의 하향조절자인 IL-1β의 mRNA 수준은 ovx 마우스에서 비이클 처리에 비해 프로바이오틱 처리에 의해 유의하게 감소하였다(TNFα -46%, p<0.05; IL-1β -61%, 도 5a 및 5b). IL-6의 발현은 처리 그룹들 간에 차이가 나지 않았으나, 프로바이오틱 처리 그룹에서 감소된 발현의 경향이 있었다(-20%, p=0.12, 도 5c).
RANKL/오스테오프로테게린(OPG) 비는 파골세포형성의 주요 결정인자이며, 이에 따라 뼈흡수의 주요 결정인자이다. 중요하게도, 프로바이오틱 처리는 RANKL/OPG 비를 감소시켰으며(veh에 비해 -45%, p<0.05), 이는 증가된 OPG 발현에 의해 일어났다(OPG; +28%, p<0.05 및 RANKL; +1%, 유의하지 않음, 도 5e, f). 이와 대조적으로, 3가지 골아세포-연관 유전자들, Osterix, Col1α1 및 오스테오칼신의 mRNA 수준은 프로바이오틱 처리에 의해 영향을 받지 않았다(도 5g-h).
골수에서 면역 상태
프로바이오틱 박테리아에 의해 가해진 항염증 효과의 일부는 조절 T(Treg) 세포의 유도를 통해 중재되는 것으로 여겨진다. 골수의 FACS 분석은 Treg(CD4+ CD25+ Foxp3+) 세포들의 빈도가 프로바이오틱-처리된 마우스에서가 아니라 veh 처리된 마우스에서 ovx에 의해 감소된 것으로 나타났다(표 2). Treg 세포들은 이들의 유도 및 유지에 대해 TGFβ에 의존하며, TGFβ1의 발현은 ovx 비이클 처리된 마우스에 비해 ovx 프로바이오틱-처리된 마우스로부터 골수에서 증가되었다(+77±19%, p<0.01).
또한 프로바이오틱 처리가 골수에서 파골세포 전구세포(preOCLs)의 빈도를 조절하였는지 조사하였다. 골수에서 preOCLs(CD11b+ Gr1-)의 빈도는 어느 처리 그룹에서도 ovx에 의해 영향을 받지 않았다(표 2).
미네랄 대사
칼슘의 뇨 분획 배출(FECa=(뇨 Ca × 혈장 크레아티닌)/(혈장 Ca × 뇨 크레아티닌))은 veh 처리된 마우스에서 ovx에 의해 증가되었다(+86%, p<0.05, 도 6). ovx 유도된 FECa의 증가는 프로바이오틱 처리에 의해 완전히 억제되었으며, 이는 Ca의 증진된 부착을 제시한다(도 6). 프로바이오틱 처리된 마우스가 아니라 veh에서 ovx 후에 Ca의 증가된 혈청 수준이 일어나는 경향이 있었다(+13%, p=0.05, 표 3). 뇨 Ca/크레아티닌 비는 어느 처리 그룹에서도 ovx에 의해 영향을 받지 않았다(표 3).
Figure 112017124630727-pat00001
Figure 112017124630727-pat00002
표 1. 8주령 마우스에서 에스트로겐 반응성 기관 중량, 해면질골 및 골수 내 면역 세포. 해면질골 파라미터는 대퇴골의 원위 골간단 부위에서 고해상도 μCT; 조직 용량의 퍼센트로서 해면질골 용량(BT/TV); 해면질공 미네랄 밀도(BMD)에 의해 분석하였다. 대퇴골 골수 세포는 CD4, Foxp3, CD25, CD11b 및 Gr1을 인지하는 항체들로 염색하였다. 값들은 총 골수 집단에서 Treg(CD4+ Fox3+ CD25+) 또는 preOCLs(CD11b+ Gr1-)의 퍼센트를 나타낸다. 결과는 평균±SEM으로 주어지며, 각 그룹에서 n=6-10이다. **p<0.01, *p<0.05, 스튜던트 t 검정 ovx 대 sham, #p<0.05, 그룹들 내의 ANOVA-Dunnets.
Figure 112017124630727-pat00003
표 2. 미네랄 대사 칼슘 및 크레아티닌은 14주령 마우스의 혈청 및 뇨에서 측정하였다. 결과는 평균±SEM으로 주어지며, 각 그룹에서 n=5-10이다. **p<0.01, *p<0.05, (*)p=0.05. 스튜던트 t 검정 ovx 대 sham, #p<0.05, 그룹들 내의 ANOVA-Dunnets.
결론적으로, 본 발명의 데이터는 음용수 내 프로바이오틱이 ovx 유도된 피질골-손실을 감소시키는 것을 나타내며, 이는 폐경기후 골다공증의 치료에 있어서 프로바이오틱의 치료학적 잠재력을 제시한다. 게다가, 그 결과는 골 질량의 조절에 대한 장내 미생물의 역할을 뒷받침한다.
L. para 및 L. mix 처리 모두는 ovx-유도된 피질골 손실 및 증가된 뼈흡수로부터 마우스를 보호하였다. 피질골 미네랄 함량은 비이클(veh) 처리된 ovs 마우스에 비해 L. para 및 L. mix 처리된 ovx 마우스에서 더 높았다. 칼슘의 뇨 분획 배출 및 흡수 마커 RatLaps는 L. para 및 L. mix 처리된 ovx 마우스가 아니라 veh 처리된 마우스에서 ovx에 의해 증가되었다. 따라서, 프로바이오틱스는 ovx 유도된 뇨 내의 칼슘 배출을 저해한다. 프로바이오틱 처리는 ovx 마우스의 피질골에서 두 염증 사이토카인, TNFα 및 IL-1β의 발현을 감소시키고, OPG의 발현을 증가시켰다. 또한, ovx는 프로바이오틱 처리된 마우스가 아니라 veh 처리된 마우스의 골수에서 조절 T-세포(CD4+ CD25+ Foxp3+)의 빈도를 감소시켰다. 따라서, 프로바이오틱스는 골수에서 조절 T-세포의 빈도에 있어서 ovx 유도된 감소를 저해한다. 또한, 프로바이오틱스는 골수에서 TGFb1의 발현을 증가시켰으며, 따라서 프로바이오틱스는 흡수 마커 Rat Lap의 ovx 유도된 증가를 저해한다. 결론적으로, L. para 또는 L. mix를 이용한 처리는 ovx 유도된 피질골 손실을 억제한다. 본 발명의 발견은 염증 사이토카인의 감소된 발현 및 OPG의 증가된 발현에 의해 입증된 바와 같이 이러한 프로바이오틱 처리가 뼈에서 면역 상태를 변화시키며, 이는 ovx 마우스에서 약화된 뼈흡수를 일으키는 것을 나타낸다.
실시예 4
본 실시예에서, 상기 언급된 동일한 프로바이오틱스가 이미 난소 적출되어 이에 따라 이미 뼈-질량이 손실된 암컷 마우스에서 상기와 같은 파라미터들(즉, 피질골 손실, 뼈 미네랄 함량, 뼈흡수)에 영향을 미치는지 조사된다. 난소 적출된 암컷 마우스는 여성에서 폐경기후 뼈 손실의 잘 확립된 모델이다. 실험의 시각표를 하기에 나타내었다.
마우스 난소 적출 => 4주 => 6주간 프로바이오틱 처리 => 종결
프로바이오틱스는 음용수에 주어지며, 난소 적출 4주 후에 처음으로 시작된다. 투여량은 109 cfu/ml/day가 될 것이며, 난소 적출은 9-10주령에 수행될 것이다. 실험 종결 후 분석은 밀도 및 두께를 측정하기 위한 뼈의 (CT)가 될 것이며, 뿐만 아니라 혈청 분석 및 뼈 마커 분석이 될 것이다.

Claims (29)

  1. 포유류에서 골다공증의 예방을 돕거나 또는 뼈 손실의 예방을 돕기 위한 식이 보조제로서,
    i) 락토바실러스 파라카제이(Lactobacillus paracasei) 8700:2, 수탁번호: DSM 13434의 프로바이오틱 스트레인; 또는 락토바실러스 파라카제이(Lactobacillus paracasei) 8700:2, 수탁번호: DSM 13434의 프로바이오틱 스트레인, 락토바실러스 플랜타럼(Latobacillus plantarum) HEAL 9, 수탁번호: DSM 15312의 프로바이오틱 스트레인 및 락토바실러스 플랜타럼(Latobacillus plantarum) HEAL 19, 수탁번호: DSM 15313의 프로바이오틱 스트레인의 혼합물; 및
    ii) 적어도 하나의 캐리어
    를 포함하는, 식이 보조제.
  2. 제1항에 있어서,
    상기 포유류는 인간인 식이 보조제.
  3. 제1항에 있어서,
    상기 식이 보조제는 염의 형태로 부가적인 Ca2+로 보충되는 식이 보조제.
  4. 제2항에 있어서,
    상기 식이 보조제는 염의 형태로 부가적인 Ca2+로 보충되는 식이 보조제.
  5. 제3항에 있어서,
    상기 염은 칼슘 카보네이트, 칼슘 클로라이드, 시트르산의 칼슘염, 칼슘 글루코네이트, 칼슘 글리세로포스페이트, 칼슘 락테이트, 칼슘 옥사이드, 및 칼슘 설페이트로 구성되는 그룹으로부터 선택되는 식이 보조제.
  6. 제4항에 있어서,
    상기 염은 칼슘 카보네이트, 칼슘 클로라이드, 시트르산의 칼슘염, 칼슘 글루코네이트, 칼슘 글리세로포스페이트, 칼슘 락테이트, 칼슘 옥사이드, 및 칼슘 설페이트로 구성되는 그룹으로부터 선택되는 식이 보조제.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 프로바이오틱 스트레인(들)은 1×106 - 1×1014 CFU의 양으로 존재하는 식이 보조제.
  8. 제7항에 있어서,
    상기 프로바이오틱 스트레인(들)은 1×108 - 1×1012 CFU의 양으로 존재하는 식이 보조제.
  9. 제8항에 있어서,
    상기 프로바이오틱 스트레인(들)은 1×109 - 1×1011 CFU의 양으로 존재하는 식이 보조제.
  10. 제1항 또는 제2항에 있어서,
    폐경기와 관련되어 포유류에서 골다공증의 예방을 돕거나 또는 뼈 손실의 예방을 돕기 위한 것인 식이 보조제.
  11. 포유류에서 골다공증의 예방을 돕거나 또는 뼈 손실의 예방을 돕기 위한 기능성 식품 조성물로서,
    i) 락토바실러스 파라카제이(Lactobacillus paracasei) 8700:2, 수탁번호: DSM 13434의 프로바이오틱 스트레인; 또는 락토바실러스 파라카제이(Lactobacillus paracasei) 8700:2, 수탁번호: DSM 13434의 프로바이오틱 스트레인, 락토바실러스 플랜타럼(Latobacillus plantarum) HEAL 9, 수탁번호: DSM 15312의 프로바이오틱 스트레인 및 락토바실러스 플랜타럼(Latobacillus plantarum) HEAL 19, 수탁번호: DSM 15313의 프로바이오틱 스트레인의 혼합물; 및
    ii) 적어도 하나의 캐리어
    를 포함하는, 기능성 식품 조성물.
  12. 제11항에 있어서,
    상기 포유류는 인간인 기능성 식품 조성물.
  13. 제11항에 있어서,
    상기 조성물은 염의 형태로 부가적인 Ca2+로 보충되는 기능성 식품 조성물.
  14. 제12항에 있어서,
    상기 조성물은 염의 형태로 부가적인 Ca2+로 보충되는 기능성 식품 조성물.
  15. 제13항에 있어서,
    상기 염은 칼슘 카보네이트, 칼슘 클로라이드, 시트르산의 칼슘염, 칼슘 글루코네이트, 칼슘 글리세로포스페이트, 칼슘 락테이트, 칼슘 옥사이드, 및 칼슘 설페이트로 구성되는 그룹으로부터 선택되는 기능성 식품 조성물.
  16. 제14항에 있어서,
    상기 염은 칼슘 카보네이트, 칼슘 클로라이드, 시트르산의 칼슘염, 칼슘 글루코네이트, 칼슘 글리세로포스페이트, 칼슘 락테이트, 칼슘 옥사이드, 및 칼슘 설페이트로 구성되는 그룹으로부터 선택되는 기능성 식품 조성물.
  17. 제11항 내지 제16항 중 어느 한 항에 있어서,
    상기 프로바이오틱 스트레인(들)은 1×106 - 1×1014 CFU의 양으로 존재하는 기능성 식품 조성물.
  18. 제17항에 있어서,
    상기 프로바이오틱 스트레인(들)은 1×108 - 1×1012 CFU의 양으로 존재하는 기능성 식품 조성물.
  19. 제18항에 있어서,
    상기 프로바이오틱 스트레인(들)은 1×109 - 1×1011 CFU의 양으로 존재하는 기능성 식품 조성물.
  20. 제11항 또는 제12항에 있어서,
    폐경기와 관련되어 포유류에서 골다공증의 예방을 돕거나 또는 뼈 손실의 예방을 돕기 위한 것인 기능성 식품 조성물.
  21. 삭제
  22. 삭제
  23. 삭제
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
KR1020177036076A 2013-04-03 2014-04-03 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인 KR102129934B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
SE1350414 2013-04-03
SE1350414-7 2013-04-03
SE1351571-3 2013-12-20
SE1351571 2013-12-20
PCT/SE2014/050399 WO2014163568A1 (en) 2013-04-03 2014-04-03 Probiotic strains for use in treatment or prevention of osteoporosis

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020157030629A Division KR102000514B1 (ko) 2013-04-03 2014-04-03 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인

Publications (2)

Publication Number Publication Date
KR20170141820A KR20170141820A (ko) 2017-12-26
KR102129934B1 true KR102129934B1 (ko) 2020-07-03

Family

ID=51659047

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020177036076A KR102129934B1 (ko) 2013-04-03 2014-04-03 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인
KR1020157030629A KR102000514B1 (ko) 2013-04-03 2014-04-03 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020157030629A KR102000514B1 (ko) 2013-04-03 2014-04-03 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인

Country Status (20)

Country Link
US (1) US10245290B2 (ko)
EP (1) EP2981274B1 (ko)
JP (1) JP6103675B2 (ko)
KR (2) KR102129934B1 (ko)
CN (3) CN117064923A (ko)
AU (1) AU2014250113B2 (ko)
BR (1) BR112015025256B1 (ko)
CA (1) CA2908051C (ko)
DK (1) DK2981274T3 (ko)
ES (1) ES2804615T3 (ko)
HK (1) HK1220129A1 (ko)
HR (1) HRP20201139T1 (ko)
MX (1) MX371418B (ko)
NZ (1) NZ712959A (ko)
PL (1) PL2981274T3 (ko)
PT (1) PT2981274T (ko)
RS (1) RS60527B1 (ko)
RU (1) RU2636027C2 (ko)
WO (1) WO2014163568A1 (ko)
ZA (1) ZA201507275B (ko)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101867768B1 (ko) 2016-08-12 2018-06-15 한국식품연구원 락토바실러스 아시도필루스를 포함하는 갱년기 예방 또는 치료용 조성물
WO2018030837A1 (ko) * 2016-08-12 2018-02-15 한국식품연구원 락토바실러스 아시도필루스를 포함하는 갱년기 예방 또는 치료용 조성물
CN106858605A (zh) * 2016-12-26 2017-06-20 吉林舒润生物科技有限公司 一种用于预防及治疗骨吸收相关疾病的益生菌钙功能食品
EP3568144B1 (en) * 2017-01-12 2024-05-08 Probi Ab Probiotic compositions and uses thereof
TWI604052B (zh) * 2017-02-20 2017-11-01 景岳生物科技股份有限公司 促進骨質再生的植物乳桿菌菌株gmnl-662及其組合物
CN113143973A (zh) 2017-03-07 2021-07-23 景岳生物科技股份有限公司 抗骨质流失的副干酪乳杆菌菌株gmnl-653的组合物
TWI607759B (zh) * 2017-07-07 2017-12-11 景岳生物科技股份有限公司 副乾酪乳桿菌菌株gmnl-653用於製備抗骨質流失的組合物的用途
TWI607758B (zh) * 2017-03-07 2017-12-11 景岳生物科技股份有限公司 改善乾癬症狀的副乾酪乳桿菌菌株gmnl-653及其組合物
CN108624520B (zh) * 2017-03-16 2022-01-25 景岳生物科技股份有限公司 促进骨质再生的植物乳杆菌菌株gmnl-662及其组合物
WO2019088379A1 (ko) * 2017-11-02 2019-05-09 경희대학교 산학협력단 신규 유산균 및 이의 용도
CN108030096A (zh) * 2017-12-18 2018-05-15 浙江民生健康科技有限公司 一种钙铁锌与益生菌组合物及其应用
US11602552B2 (en) * 2018-02-02 2023-03-14 Kobiolabs, Inc. Lactobacillus plantarum KBL396 strain and use thereof
TWI664910B (zh) * 2018-04-24 2019-07-11 葡萄王生技股份有限公司 乳酸桿菌屬、其醫藥組合物及可食用組合物於治療、預防或改善骨質疾病的用途
CN112584848A (zh) * 2018-06-18 2021-03-30 普罗比公司 益生菌组合物及其用途
KR102107443B1 (ko) * 2018-08-31 2020-05-07 (주)바이오리듬 여성 갱년기 증상 예방 또는 치료용 유산균 프로바이오틱스 제제
CA3111795A1 (en) 2018-09-05 2020-03-12 Solarea Bio, Inc. Methods and compositions for treating musculoskeletal diseases
US11980647B2 (en) 2018-09-05 2024-05-14 Solarea Bio, Inc. Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause
KR102120479B1 (ko) * 2018-10-30 2020-06-09 주식회사 종근당바이오 프로바이오틱스를 유효 성분으로 포함하는 이차성 골다공증의 예방 또는 치료용 조성물
GB201905386D0 (en) 2019-04-16 2019-05-29 Probi Ab Probiotic compositions and uses thereof
CN111109607A (zh) * 2020-01-10 2020-05-08 青岛康益生物科技有限公司 一种用于预防和治疗骨质疏松症的健康食品
CN111718903A (zh) * 2020-06-24 2020-09-29 江南大学 一种筛选可预防和/或治疗骨质疏松的药物的方法
CN111621449B (zh) * 2020-07-02 2022-07-12 安徽善和生物科技有限公司 一种益生菌及其在继发性骨质疏松中的应用
TWI770811B (zh) * 2021-02-05 2022-07-11 國立臺灣大學 一種益生菌、其組合物及用途
TWI802194B (zh) * 2021-07-13 2023-05-11 大江生醫股份有限公司 諾麗果發酵物於製備改善體態及肌膚狀況之組合物之用途
WO2023092150A1 (en) 2021-11-22 2023-05-25 Solarea Bio, Inc. Methods and compositions for treating musculoskeletal diseases, treating inflammation, and managing symptoms of menopause
US20230190834A1 (en) 2021-12-21 2023-06-22 Solarea Bio, Inc. Immunomodulatory compositions comprising microbial entities
CN114634901B (zh) * 2022-05-18 2022-08-30 微康益生菌(苏州)股份有限公司 一种促进骨骼健康的干酪乳杆菌lc16及其培养方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526551A (ja) * 2009-05-14 2012-11-01 プロビ アクチエボラグ プロバイオティックジュース飲料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CZ300387B6 (cs) 1997-07-05 2009-05-06 Societe Des Produits Nestle S. A. Použití bakterií Lactobacillus
GB9920578D0 (en) * 1999-08-31 1999-11-03 Nestle Sa Composition for maintenance of bone or dental health or treatment of bone or dental disorders
SE0003100D0 (sv) 2000-09-01 2000-09-01 Probi Ab New strains
SE529199C2 (sv) * 2005-07-05 2007-05-29 Probi Ab Förstärkt absorption
CN1927010A (zh) * 2005-09-06 2007-03-14 天津科技大学 具有增加骨密度、抑制血管紧张素转化酶功能的无乳糖发酵大豆乳及其制备方法
US8420376B2 (en) * 2005-10-06 2013-04-16 Probi Ab Use of Lactobacillus for treatment of virus infections
JP2009114111A (ja) * 2007-11-06 2009-05-28 Tsujido Kagaku Kk カルシウム吸収促進剤
JP2009114112A (ja) * 2007-11-06 2009-05-28 Tsujido Kagaku Kk 抗骨粗鬆症剤
JP2009144111A (ja) * 2007-12-18 2009-07-02 Kansai Paint Co Ltd 塗料組成物及び塗膜形成方法
KR101279852B1 (ko) * 2011-06-29 2013-07-09 주식회사 쎌바이오텍 골다공증 예방 또는 치료용 조성물

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012526551A (ja) * 2009-05-14 2012-11-01 プロビ アクチエボラグ プロバイオティックジュース飲料

Also Published As

Publication number Publication date
KR20150133284A (ko) 2015-11-27
CA2908051C (en) 2021-03-02
CN116889579A (zh) 2023-10-17
RU2636027C2 (ru) 2017-11-17
EP2981274A1 (en) 2016-02-10
HK1220129A1 (zh) 2017-04-28
KR102000514B1 (ko) 2019-10-01
ZA201507275B (en) 2022-03-30
EP2981274A4 (en) 2017-03-01
CN105188723A (zh) 2015-12-23
BR112015025256B1 (pt) 2021-10-13
JP2016521123A (ja) 2016-07-21
JP6103675B2 (ja) 2017-03-29
CN117064923A (zh) 2023-11-17
AU2014250113A1 (en) 2015-10-29
WO2014163568A1 (en) 2014-10-09
BR112015025256A8 (pt) 2021-09-14
KR20170141820A (ko) 2017-12-26
HRP20201139T1 (hr) 2020-10-30
RS60527B1 (sr) 2020-08-31
PL2981274T3 (pl) 2020-12-28
MX2015014016A (es) 2016-06-24
RU2015147106A (ru) 2017-05-05
PT2981274T (pt) 2020-07-13
DK2981274T3 (da) 2020-07-06
CA2908051A1 (en) 2014-10-09
MX371418B (es) 2020-01-29
AU2014250113B2 (en) 2017-03-30
US10245290B2 (en) 2019-04-02
BR112015025256A2 (pt) 2017-07-18
EP2981274B1 (en) 2020-05-06
US20160067289A1 (en) 2016-03-10
ES2804615T3 (es) 2021-02-08
NZ712959A (en) 2017-01-27

Similar Documents

Publication Publication Date Title
KR102129934B1 (ko) 골다공증의 치료 또는 예방에 사용되는 프로바이오틱 스트레인
Kadooka et al. Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial
Arora et al. Effect of Lactobacillus acidophilus NCDC 13 supplementation on the progression of obesity in diet-induced obese mice
Jeong et al. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1
JP5923492B2 (ja) 腸管神経系の改善に用いるためのプロバイオティクス株
KR101349452B1 (ko) 새로운 락트산간균 균주 및 헬리코박터 필로리에 대한 그사용
KR102146429B1 (ko) 비피도박테리움 아니말리스 아종 아니말리스 균주
Lawenius et al. Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss
Rios-Arce et al. Post-antibiotic gut dysbiosis-induced trabecular bone loss is dependent on lymphocytes
Lee et al. Lactobacillus‐fermented milk products attenuate bone loss in an experimental rat model of ovariectomy‐induced post‐menopausal primary osteoporosis
ES2675309T3 (es) Uso de una cepa de Lactobacillus rhamnosus para reducir la ganancia de peso y/o la resistencia a la insulina
Arribas et al. Evaluation of the preventative effects exerted by Lactobacillus fermentum in an experimental model of septic shock induced in mice
JP2015502410A (ja) ポリポーシスおよび結腸直腸癌を低減する方法
US20150283186A1 (en) Lactobacillus Rhamnosus Strain for Reducing Body Fat Accumulation
Pacifici et al. Bone and the Microbiome
TWI721262B (zh) 副乾酪乳酸桿菌株用於製備改善腸道菌相之組合物的用途
Lawenius et al. Role of Gut Microbiota, Gut-Brain and Gut Liver Axes in Physiological Regulation of Inflammation, Energy Balance, and Metabolism: Pasteurized Akkermansia muciniphila protects from fat mass gain but not from bone loss

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant