KR102121179B1 - 전극용 재료 및 축전 장치 - Google Patents

전극용 재료 및 축전 장치 Download PDF

Info

Publication number
KR102121179B1
KR102121179B1 KR1020190010627A KR20190010627A KR102121179B1 KR 102121179 B1 KR102121179 B1 KR 102121179B1 KR 1020190010627 A KR1020190010627 A KR 1020190010627A KR 20190010627 A KR20190010627 A KR 20190010627A KR 102121179 B1 KR102121179 B1 KR 102121179B1
Authority
KR
South Korea
Prior art keywords
concentration
lithium
ppm
less
storage device
Prior art date
Application number
KR1020190010627A
Other languages
English (en)
Other versions
KR20190014031A (ko
Inventor
다카히로 가와카미
순페이 야마자키
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20190014031A publication Critical patent/KR20190014031A/ko
Priority to KR1020200058255A priority Critical patent/KR102270377B1/ko
Application granted granted Critical
Publication of KR102121179B1 publication Critical patent/KR102121179B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/37Phosphates of heavy metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

본 발명은, 용량이 큰 전극용 재료를 사용한 축전 장치를 제공한다.
리튬을 포함하는 화합물과, 망간, 철, 코발트, 및 니켈 중에서 선택되는 금속 원소를 포함하는 화합물과, 인을 포함하는 화합물을 혼합한 화합물에 제 1 열 처리를 행하고, 제 1 열 처리를 행한 혼합물에 세정 공정을 행하고, 세정 공정을 행한 혼합물에 제 2 열 처리를 행함으로써 인산리튬 화합물을 형성하고, 인산리튬 화합물을 사용하여 전극을 형성한다.

Description

전극용 재료 및 축전 장치{ELECTRODE MATERIAL AND POWER STORAGE DEVICE}
전극용 재료 및 그것을 사용한 축전 장치, 및 그들의 제작 방법에 관한 것이다.
퍼스널 컴퓨터나 휴대 전화 등, 휴대할 수 있는 전자 기기의 분야가 현저히 진보되고 있다. 휴대할 수 있는 전자 기기에 있어서, 소형·경량이고, 또 신뢰성을 갖고, 고(高)에너지 밀도를 갖고 또 충전할 수 있는 축전 장치가 필요해지고 있다. 이와 같은 축전 장치로서, 예를 들어 리튬 이온 2차 전지가 알려져 있다. 또한, 환경 문제나 에너지 문제의 인식이 높아지기 때문에, 리튬 이온 2차 전지를 탑재한 전기 추진(推進) 차량의 개발도 급속하게 진행되고 있다.
리튬 이온 2차 전지에 있어서, 정극 활물질(positive electrode active material)로서 인산철리튬(LiFePO4), 인산망간리튬(LiMnPO4) 등의 리튬(Li)과 철(Fe) 또는 망간(Mn)을 포함하는, 올리빈 구조를 갖는 인산리튬 화합물 등이 알려져 있다(특허 문헌 1 참조).
: 일본국 특개평11-25983호 공보
인산리튬 화합물은 리튬 이온의 삽입 및 탈리가 가능하고, 리튬 이온의 삽입 및 탈리에 수반하는 결정 구조의 변화가 일어나기 어렵기 때문에, 축전 장치의 정극 활물질로서 유망시(有望視)되고 있다.
그러나, 인산리튬 화합물을 정극 활물질로서 사용하는 축전 장치는 인산리튬 화합물의 결정 구조로부터 계산으로 얻어지는 이론 용량보다 작은 용량밖에 얻어지지 않는다.
상기 문제를 감안하여 개시되는 발명의 일 형태에서는, 용량이 큰 전극용 재료를 제공하는 것을 과제의 하나로 한다. 또한, 용량이 큰 전극용 재료를 사용한 축전 장치를 제공하는 것을 과제의 하나로 한다.
리튬 이온 2차 전지는, 충전할 때에 정극 활물질에 포함되는 리튬이 리튬 이온이 되고, 전해액을 거쳐 부극(negative electrode)으로 이동한다. 정극 활물질층(positive electrode active material layer)이 같은 체적인 경우, 삽입 및 탈리가 가능한 캐리어 이온(여기서는 리튬 이온)의 양이 많을수록 전지로서의 용량을 증대시킬 수 있다.
정극 활물질로서 사용되는 인산철리튬 또는 인산망간리튬 등의 인산리튬 화합물은, 올리빈 구조를 갖고, 리튬 원자가 1차원적으로 나열되어 있기 때문에, 캐리어 이온인 리튬 이온의 확산 경로도 1차원, 즉 일 방향만이 된다. 여기서, 인산리튬 화합물의 결정 구조에 결정 왜곡이 존재하면, 확산 경로에 폐해(弊害)가 일어나기 쉽고, 삽입 및 탈리되는 리튬 이온의 양이 저감된다. 따라서, 인산철리튬의 결정성을 향상시킴으로써, 삽입 및 탈리되는 리튬 이온의 양이 증대하고, 결과적으로 축전 장치의 용량을 증대시킬 수 있다고 생각할 수 있다.
본 발명의 일 형태에서는, 축전 장치의 제조 공정에 있어서 세정 공정을 사용함으로써 전극용 재료 및 그것을 사용한 축전 장치의 용량을 증대시킬 수 있다.
본 발명의 일 형태는, 리튬을 포함하는 화합물과, 망간, 철, 코발트, 또는 니켈 중에서 선택되는 금속 원소를 포함하는 화합물과, 인을 포함하는 화합물을 혼합한 혼합물에 제 1 열 처리를 행하고, 제 1 열 처리를 행한 혼합물에 세정 공정을 행하고, 세정 공정을 행한 혼합물에 제 2 열 처리를 행함으로써, 인산리튬 화합물을 형성하고, 인산리튬 화합물을 사용하여 전극을 형성하는 축전 장치의 제작 방법이다.
본 발명의 일 형태는, 리튬을 포함하는 화합물과, 망간, 철, 코발트, 또는 니켈 중에서 선택되는 금속 원소를 포함하는 화합물과, 인을 포함하는 화합물을 혼합한 혼합물에 제 1 열 처리를 행하고, 제 1 열 처리를 행한 혼합물에 세정 공정을 행하고, 세정 공정을 행한 혼합물에 유기 화합물을 첨가하고, 유기 화합물을 첨가한 혼합물에 제 2 열 처리를 행함으로써 인산리튬 화합물을 형성하고, 인산리튬 화합물을 사용하여 전극을 형성하는 축전 장치의 제작 방법이다.
상기 구성에 있어서, 세정 공정에서 사용하는 세정액으로서는, 중성(中性) 또는 알칼리성의 세정액을 사용할 수 있다.
또한, 본 발명자들은 인산철리튬에 포함되는 황, 망간, 니켈, 코발트, 붕소, 크롬, 몰리브덴, 및 아연의 함유량의 합계가 인산철리튬의 중량에 대하여 10ppm 이하인 인산철리튬을 정극 활물질로서 사용한 경우에, 용량이 큰 축전 장치를 얻을 수 있는 것을 알 수 있었다.
즉, 본 발명의 일 형태는 인산철리튬에 포함되는, 황, 망간, 니켈, 코발트, 붕소, 크롬, 몰리브덴, 및 아연의 함유량의 합계가 인산철리튬의 중량에 대하여 10ppm 이하인 전극용 재료이다.
또한, 본 발명의 일 형태는 인산철리튬에 포함되는 황의 농도가 5.1ppm 이하, 망간의 농도가 0.55ppm 이하, 니켈의 농도가 0.1ppm 이하, 코발트의 농도가 0.1ppm 이하, 붕소의 농도가 1.7ppm 이하, 크롬의 농도가 0.38ppm 이하, 몰리브덴의 농도가 0.1ppm 이하, 및 아연의 농도가 0.59ppm 이하인 인산철리튬을 갖는 전극용 재료이다.
상기 인산철리튬은 탄소가 코팅(coating)된 전극용 재료이다.
또한, 본 발명의 다른 일 형태는, 상기 전극용 재료를 정극 활물질로서 사용한 축전 장치이다.
개시되는 발명의 일 형태에 의하여 용량이 큰 전극용 재료를 얻을 수 있다. 또는, 개시되는 발명의 일 형태에 의하여 용량이 큰 축전 장치를 얻을 수 있다.
도 1은 축전 장치의 일 형태를 도시하는 도면.
도 2a 및 도 2b는 축전 장치의 응용예를 도시하는 도면.
도 3a 및 도 3b는 축전 장치의 응용예를 도시하는 도면.
도 4는 실시예에서 제작한 축전 장치의 특성을 도시하는 도면.
도 5는 실시예에서 제작한 축전 장치의 특성을 도시하는 도면.
도 6은 실시예에서 제작한 축전 장치의 특성을 도시하는 도면.
본 발명의 실시형태에 대하여 도면을 참조하여 이하에 설명한다. 다만, 본 발명은 이하의 설명에 한정되는 것이 아니다. 본 발명의 취지 및 그 범위로부터 벗어남이 없이 그 형태 및 상세한 사항을 다양하게 변경할 수 있다는 것은 당업자라면 용이하게 이해할 수 있기 때문이다. 따라서, 본 발명은 이하에 나타내는 실시형태 및 실시예에 기재된 내용에만 한정하고 해석되는 것이 아니다. 또한, 도면을 사용하여 본 발명의 구성을 설명할 때, 같은 것을 가리키는 부호는 다른 도면간에서도 공통적으로 사용한다.
또한, 각 실시형태의 도면 등에 있어서 나타내는 각 구성의 크기, 층의 두께, 또는 영역은 명확화를 위하여 과장(誇張)하여 표기되는 경우가 있다. 따라서, 반드시 그 스케일에 한정되지 않는다.
또한, 본 명세서에서 사용하는“제 1”,“제 2”,“제 3”등 서수사를 사용한 용어는 구성 요소를 식별하기 위하여 편의상 부기한 것이며, 그 개수나 공정 순서 등을 한정하는 것은 아니다.
(실시형태 1)
본 실시형태에서는 전극용 재료의 제작 방법의 일례에 대하여 설명한다. 본 실시형태에서는, 화학식 LiMePO4로 나타내어진 인산리튬 화합물을 전극용 재료로서 사용한다. 보다 구체적으로는, 예를 들어 Me로서 망간(Mn) 또는 철(Fe)을 사용하는 인산철리튬 또는 인산망간리튬을 포함하는 전극용 재료의 제작 방법의 일례에 대하여 설명한다. 또한, 이하에서는 고상법에 의한 전극용 재료의 제작 방법을 나타내지만, 본 실시형태는 이것에 한정되지 않고, 액상법을 사용하여 전극용 재료를 제작하여도 좋다.
우선, 화학식 LiMePO4(다만, Me는 망간(Mn) 또는 철(Fe)을 나타낸다) 중의 Li의 공급원이 되는 리튬을 포함하는 화합물과, P의 공급원이 되는 인을 포함하는 화합물과, Me의 공급원이 되는 철을 포함하는 화합물 또는 망간을 포함하는 화합물이 소정의 조성 비율이 되도록 혼합하여 혼합 재료를 형성한다.
리튬을 함유한 화합물로서는, 예를 들어 탄산리튬(Li2CO3), 산화리튬(Li2O), 황화리튬(Li2S), 과산화리튬(Li2O2), 황산리튬(Li2SO4), 아황산리튬(Li2SO3), 티오황산리튬(Li2S2O3), 크롬산리튬(Li2CrO4), 및 중크롬산리튬(Li2Cr2O7) 등의 리튬염을 사용할 수 있다.
망간을 포함하는 화합물로서는, 예를 들어 산화망간, 옥살산망간(II) 이수화물, 또는 탄산망간(II) 등을 사용할 수 있다. 또한, 이들의 망간을 포함하는 화합물을 혼합 재료에 적용한 경우, 인산망간리튬을 포함하는 전극용 재료를 제작할 수 있다. 또한, 철을 포함하는 화합물로서는, 예를 들어 산화철, 옥살산철(II) 이수화물, 또는 탄산철(II) 등을 사용할 수 있다. 또한, 이들의 철을 포함하는 화합물을 혼합 재료에 적용한 경우, 인산철리튬을 포함하는 전극용 재료를 제작할 수 있다.
또한, 화학식 LiMePO4로 나타내어지는 인산리튬 화합물에 있어서, Me로서 코발트(Co), 니켈(Ni)을 사용하여도 좋다. 코발트 또는 니켈을 포함하는 화합물로서는, 코발트 또는 니켈의 산화물(산화코발트, 산화니켈), 옥살산염(옥살산코발트, 옥살산니켈), 또는 탄산염(탄산코발트, 탄산니켈) 등을 사용할 수 있다.
또한, 인을 포함하는 화합물로서는, 예를 들어 인산이수소암모늄(NH4H2PO4), 오산화이인(P2O5) 등의 인산염을 사용할 수 있다.
상술한 각 화합물을 혼합하는 방법으로서는, 예를 들어 볼밀(ball mill) 처리가 있다. 구체적인 방법으로서는, 예를 들어 칭량(秤量)한 각 화합물에 휘발성이 높은 아세톤 등의 용매를 첨가하고 금속제 볼 또는 세라믹제 볼(볼 직경Φ 1mm 이상 10mm 이하)을 사용하여 회전수 50rpm 이상 500rpm 이하, 회전 시간 30분간 이상 5시간 이하의 처리를 행하는 방법이다. 볼밀 처리를 행함으로써, 화합물을 혼합하는 것과 동시에 화합물을 미립자화할 수 있고, 제작 후의 전극용 재료의 미립자화를 도모할 수 있다. 또한, 볼밀 처리를 행함으로써, 원료가 되는 화합물을 균일하게 혼합할 수 있어 제작 후의 전극용 재료의 결정성을 높일 수 있다. 또한, 용매로서는 아세톤 이외에도 에탄올, 메탄올 등, 원료가 용해하지 않는 용매를 사용할 수 있다.
다음에, 혼합 재료를 가열하여 용매를 증발시킨 후, 펠릿 프레스(pellet press)로 압력을 가하여 펠릿을 성형하고, 성형한 펠릿에 대하여 제 1 열 처리(임시 소성)를 행한다. 제 1 열 처리는 300℃ 이상 400℃ 이하의 온도로 1시간 이상 20시간 이하, 바람직하게는 10시간 이하 행하면 좋다. 제 1 열 처리(임시 소성)의 온도가 지나치게 높으면, 정극 활물질의 입자 직경이 지나치게 크게 되어 전지 특성이 저하하는 경우가 있지만, 300℃ 이상 400℃ 이하의 저온에서 제 1 열 처리(임시 소성)를 행함으로써 결정 성장을 억제하면서 결정핵을 형성할 수 있다. 따라서, 전극용 재료의 미립자화를 도모할 수 있다.
또한, 제 1 열 처리는 수소 분위기하, 또는 희 가스(헬륨, 네온, 아르곤, 크세논 등) 또는 질소 등의 불활성 가스 분위기하에서 행하는 것이 바람직하다.
제 1 열 처리를 행한 후에, 소성물에 대하여 세정 공정을 행한다. 세정액으로서는, 중성 또는 알칼리성의 세정액을 사용할 수 있고, 예를 들어 순수, 또는 약(弱)알칼리 수용액(예를 들어, pH 9.0 정도의 수산화 나트륨 수용액 등)을 사용할 수 있다. 예를 들어, 실온에서 1시간 세정한 후, 용액을 여과하여 소성물을 회수(回收)하면 좋다.
소성물을 세정하면, 소성물에 포함되는 불순물이 저감되고, 제작되는 인산리튬 화합물을 고순도화할 수 있다. 불순물 농도가 저감되어 고순도화되는 인산리튬 화합물은 결정성도 향상되기 때문에, 충전 및 방전할 때에 삽입 및 탈리되는 캐리어 이온의 양을 증대시킬 수 있다.
또한, 제 1 열 처리를 행한 후, 또는 제 1 열 처리 및 상기 제 1 열 처리 이후에 행하는 세정 공정을 행한 후에, 글루코오스 등의 유기 화합물을 첨가하여도 좋다. 글루코오스를 첨가하고 이후의 공정을 행하면, 글루코오스로부터 공급된 탄소가 인산리튬 화합물의 결정 입자의 표면에 코팅된다. 또한, 본 명세서 중에서는 인산리튬 화합물의 결정 입자의 표면에 탄소 재료가 코팅되는 것을“인산리튬 화합물의 결정 입자가 카본 코팅된다”라고도 한다.
인산리튬 화합물의 결정 입자의 표면에 탄소를 코팅시킴으로써, 인산리튬 화합물의 결정 입자 표면의 도전율을 상승시킬 수 있다. 또한, 인산리튬 화합물의 결정 입자끼리가 표면에 코팅된 탄소를 개재하여 접하면, 인산리튬 화합물의 결정 입자끼리가 도통하여 활물질층의 도전율을 높일 수 있다. 코팅되는 탄소(탄소층)의 두께는, 0nm보다 크고 100nm 이하, 바람직하게는, 5nm 이상 10nm 이하가 바람직하다.
또한, 글루코오스는 인산기와 용이하게 반응하기 때문에, 탄소의 공급원으로서 적합하다. 또한, 글루코오스 대신에 인산기와 반응성이 좋은 고리 형상 단당류, 직쇄 단당류, 또는 다당류를 사용하여도 좋다.
다음에, 세정한 재료를 막자사발 등을 사용하여 분쇄하고 상술한 볼밀 처리와 같은 볼밀 처리에 의하여 혼합한다. 그리고 나서, 혼합한 재료를 가열하여 용매를 증발시킨 후, 펠릿 프레스로 압력을 가하여 펠릿을 성형하고, 성형한 펠릿에 대하여 제 2 열 처리(본 소성)를 행한다.
제 2 열 처리는 500℃ 이상 800℃ 이하(바람직하게는 600℃ 정도)의 온도로 1시간 이상 20시간 이하(바람직하게는 10시간 이하) 행하면 좋다. 또한, 제 2 열 처리의 온도는 제 1 열 처리의 온도보다 높게 하는 것이 바람직하다.
상술한 공정에 의하여 전극용 재료로서 적용할 수 있는 인산리튬 화합물을 제작할 수 있다.
상술한 바와 같은 세정 공정을 사용하여 제작된 본 실시형태의 전극용 재료는, 그것을 사용한 축전 장치의 용량을 향상시킬 수 있다.
상술한 바와 같이, 본 실시형태에서 나타내는 구성이나 방법 등은 다른 실시형태에서 나타내는 구성이나 방법 등과 적절히 조합하여 사용할 수 있다.
(실시형태 2)
본 실시형태에서는, 전극용 재료의 제작 방법의 다른 일례에 대하여 설명한다. 보다 구체적으로는, 본 실시형태에서는 LiFePO4로 나타내어지는 인산철리튬을 포함하는 전극용 재료의 제작 방법의 일례에 대하여 설명한다. 또한, 이하에는 고상법에 의한 전극용 재료의 제작 방법을 설명하지만, 본 실시형태는 이것에 한정되지 않고, 액상법을 사용하여 전극용 재료를 제작하여도 좋다.
본 발명의 일 형태에 따른 전극용 재료는, 결정성이 향상됨으로써 캐리어 이온의 확산이 용이하게 된 인산철리튬을 포함한다. 결정 왜곡의 원인으로서는, 구성 원소의 결손이나 불순물 등에 의한 이종(異種) 원소 치환이 추정된다. 본 실시형태에 있어서는, 인산철리튬의 원료가 되는 화합물로서 불순물이 저감된 화합물을 사용함으로써, 제작되는 인산철리튬을 고순도화하여 결정성의 향상을 도모한다. 또한, 결정성의 지표(指標) 중의 하나로서 격자 정수를 들 수 있고, 무기 화합물의 결정 구조의 격자 정수는 무기 결정 구조 데이터 베이스(ICSD: Inorganic Crystal Structure Database)에 개시된다.
이하, 구체적인 원료를 들어 설명한다.
우선, LiFePO4 중의 Li의 공급원이 되는 리튬을 포함하는 화합물과, P의 공급원이 되는 인을 포함하는 화합물과, Fe의 공급원이 되는 철을 포함하는 화합물이 소정의 조성 비율이 되도록 혼합하여 혼합 재료를 형성한다.
리튬을 포함하는 화합물로서는, 예를 들어 탄산리튬(Li2CO3), 산화리튬(Li2O), 과산화리튬(Li2O2) 등의 리튬염을 사용할 수 있다.
리튬을 포함하는 화합물의 불순물 원소 농도는 이하의 값인 것이 바람직하다. 예를 들어, 탄산리튬(Li2CO3)의 경우, 황의 농도는 1ppm 이하, 망간의 농도는 0.02ppm 이하, 니켈의 농도는 0.05ppm 이하, 코발트의 농도는 0.005ppm 이하, 붕소의 농도는 0.01ppm 이하, 크롬의 농도는 0.51ppm 이하, 몰리브덴의 농도는 0.05ppm 이하, 아연의 농도는 0.17ppm 이하인 것이 바람직하다.
다만, 이들의 원소 농도는 글로우 방전 질량 분석법(GDMS: Glow Discharge Mass Spectrometry) 등에 의하여 측정할 수 있다.
철을 포함하는 화합물로서는, 예를 들어 산화철, 옥살산철(II) 이수화물, 또는 탄산철(II) 등을 사용할 수 있다.
철을 포함하는 화합물의 불순물 원소 농도는 이하의 값인 것이 바람직하다. 예를 들어, 옥살산철(II) 이수화물(FeC2O4 · 2H2O)의 경우, 황의 농도는 1.6ppm 이하, 망간의 농도는 0.1ppm 이하, 니켈의 농도는 0.1ppm 이하, 코발트의 농도는 0.1ppm 이하, 붕소의 농도는 0.25ppm 이하, 크롬의 농도는 0.1ppm 이하, 몰리브덴의 농도는 0.8ppm 이하, 아연의 농도는 0.1ppm 이하인 것이 바람직하다. 또한, 이들의 불순물 원소 농도는 낮을수록 바람직하다.
또한, 인을 포함하는 화합물로서는, 예를 들어 인산이수소암모늄(NH4H2PO4), 오산화이인(P2O5) 등의 인산염을 사용할 수 있다.
인을 포함하는 화합물의 불순물 원소 농도는 이하의 값인 것이 바람직하다. 예를 들어, 인산이수소암모늄(NH4H2PO4)의 경우, 황의 농도는 5ppm 이하, 망간의 농도는 0.1ppm 이하, 니켈의 농도는 0.1ppm 이하, 코발트의 농도는 0.05ppm 이하, 붕소의 농도는 1.3ppm 이하, 크롬의 농도는 0.5ppm 이하, 몰리브덴의 농도는 0.1ppm 이하, 아연의 농도는 0.5ppm 이하인 것이 바람직하다. 또한, 이들의 불순물 원소 농도는 낮을수록 바람직하다.
상술한 각 화합물을 혼합하는 방법으로서는, 예를 들어 볼밀 처리가 있다. 구체적인 방법으로서는, 예를 들어 칭량한 각 화합물에 휘발성이 높은 아세톤 등의 용매를 첨가하고 금속제 볼 또는 세라믹제 볼(볼 직경Φ 1mm 이상 10mm 이하)을 사용하여 회전수 50rpm 이상 500rpm 이하, 회전 시간 30분간 이상 5시간 이하의 처리를 행하는 방법이다. 볼밀 처리를 행함으로써, 화합물을 혼합하는 것과 동시에 화합물을 미립자화할 수 있고, 제작 후의 전극용 재료의 미립자화를 도모할 수 있다. 또한, 볼밀 처리를 행함으로써, 원료가 되는 화합물을 균일하게 혼합할 수 있어 제작 후의 전극용 재료의 결정성을 높일 수 있다. 또한, 용매로서는 아세톤 이외에도 에탄올, 메탄올 등, 원료가 용해하지 않는 용매를 사용할 수 있다.
다음에, 혼합 재료를 가열하여 용매를 증발시킨 후, 펠릿 프레스로 압력을 가하여 펠릿을 성형하고, 성형한 펠릿에 대하여 제 1 열 처리(임시 소성)를 행한다. 제 1 열 처리는 300℃ 이상 400℃ 이하의 온도로 1시간 이상 20시간 이하, 바람직하게는 10시간 이하 행하면 좋다. 임시 소성의 온도가 지나치게 높으면, 정극 활물질의 입자 직경이 지나치게 크게 되어 전지 특성이 저하하는 경우가 있지만, 300℃ 이상 400℃ 이하의 저온에서 제 1 열 처리(임시 소성)를 행함으로써 결정 성장을 억제하면서 결정핵을 형성할 수 있다. 따라서, 전극용 재료의 미립자화를 도모할 수 있다.
또한, 제 1 열 처리는 수소 분위기하, 또는 희 가스(헬륨, 네온, 아르곤, 크세논 등) 또는 질소 등의 불활성 가스 분위기하에서 행하는 것이 바람직하다.
그 후, 제 1 열 처리를 행한 혼합 재료를 막자사발 등을 사용하여 분쇄한다. 분쇄한 후에 순수 또는 약알칼리 수용액(예를 들어, pH 9.0 정도의 수산화 나트륨 수용액 등) 중에서 소성물을 세정하여도 좋다. 소성물을 세정함으로써 소성물에 포함되는 불순물을 더 저감시킬 수 있기 때문에 제작되는 인산철리튬의 결정성을 보다 향상시킬 수 있다. 예를 들어, 실온에서 1시간 세정한 후, 용액을 여과하여 소성물을 회수하면 좋다.
또한, 제 1 열 처리 및 분쇄 처리를 행한 후, 또는 제 1 열 처리 및 분쇄 처리를 행한 후에 세정 공정을 행한 후, 글루코오스 등의 유기 화합물을 첨가하여도 좋다. 글루코오스를 첨가하고 이후의 공정을 행하면, 글루코오스로부터 공급된 탄소가 인산철리튬의 결정 입자의 표면에 코팅된다. 또한, 본 명세서 중에서는 인산철리튬의 결정 입자의 표면에 탄소 재료가 코팅되는 것을 “인산철리튬의 결정 입자가 카본 코팅된다”라고도 한다.
인산철리튬의 결정 입자의 표면에 탄소를 코팅시킴으로써, 인산철리튬의 결정 입자 표면의 도전율을 상승시킬 수 있다. 또한, 인산철리튬의 결정 입자끼리가 표면에 코팅된 탄소를 개재하여 접하면, 인산철리튬의 결정 입자끼리가 도통하여 정극 활물질의 도전율을 높일 수 있다. 코팅되는 탄소(탄소층)의 두께는, 0nm보다 크고 100nm 이하, 바람직하게는, 5nm 이상 10nm 이하가 바람직하다.
또한, 글루코오스는 인산기와 용이하게 반응하기 때문에, 탄소의 공급원으로서 적합하다. 또한, 글루코오스 대신에 인산기와 반응성이 좋은 고리 형상 단당류, 직쇄 단당류, 또는 다당류를 사용하여도 좋다.
다음에, 상기와 같은 볼밀 처리에 의하여 혼합한다. 그리고 나서, 혼합한 재료를 가열하여 용매를 증발시킨 후, 펠릿 프레스로 압력을 가하여 펠릿을 성형하고, 성형한 펠릿에 대하여 제 2 열 처리(본 소성)를 행한다.
제 2 열 처리는 500℃ 이상 800℃ 이하(바람직하게는 600℃ 정도)의 온도로 1시간 이상 20시간 이하(바람직하게는 10시간 이하) 행하면 좋다. 또한, 제 2 열 처리의 온도는 제 1 열 처리의 온도보다 높게 하는 것이 바람직하다.
상술한 공정에 의하여 전극용 재료로서 적용할 수 있는 인산철리튬을 제작할 수 있다.
전극용 재료로서 적용되는 인산철리튬의 불순물 원소 농도는, 122ppm 이하, 바람직하게는 70ppm 이하, 보다 바람직하게는 10ppm 이하로 한다. 인산철리튬의 불순물 원소로서, 예를 들어 황, 망간, 니켈, 코발트, 붕소, 크롬, 몰리브덴, 및 아연으로 하면, 이들의 함유량의 합이 상기 인산철리튬의 중량에 대하여 70ppm 이하, 바람직하게는 10ppm 이하인 것이 바람직하다. 구체적으로는, 황의 농도는 5.1ppm 이하, 망간의 농도는 0.55ppm 이하, 니켈의 농도는 0.1ppm 이하, 코발트의 농도는 0.1ppm 이하, 붕소의 농도는 1.7ppm 이하, 크롬의 농도는 0.38ppm 이하, 몰리브덴의 농도는 0.1ppm 이하, 아연의 농도는 0.59ppm 이하인 것이 바람직하다. 또한, 이들의 불순물 원소 농도는 낮을수록 바람직하다.
또한, 인산철리튬에 함유되는 불순물 원소를 저감시킴으로써, 인산철리튬의 결정성을 향상시킬 수 있다. 결정성이 향상된 인산철리튬은 a축의 격자 정수가 10.3254×10-10(m) 이상 10.3258×10-10(m) 이하이고, b축의 격자 정수가 6.0035×10-10(m) 이상 6.0052×10-10(m) 이하이고, c축의 격자 정수가 4.6879×10-10(m) 이상 4.6902×10-10(m) 이하인 것이 바람직하다.
상술한 방법에 의하여 제작된 본 실시형태의 전극용 재료는, 고순도화됨으로써 결정성이 향상되기 때문에, 충전 및 방전을 행할 때에 삽입 및 탈리되는 캐리어 이온의 양을 증대시킬 수 있다. 따라서, 이 전극용 재료를 축전 장치에 사용함으로써 상기 축전 장치의 용량을 향상시킬 수 있다.
상술한 바와 같이, 본 실시형태에서 나타내는 구성이나 방법 등은 다른 실시형태에서 나타내는 구성이나 방법 등과 적절히 조합하여 사용할 수 있다.
(실시형태 3)
본 실시형태에서는, 상기 실시형태 1 또는 실시형태 2에 나타내는 제작 공정으로 얻어진 전극용 재료를 정극 활물질로서 사용한 리튬 이온 2차 전지에 대하여 설명한다. 리튬 이온 2차 전지의 개요를 도 1에 도시한다.
도 1에 도시한 리튬 이온 2차 전지는 정극(positive electrode; 102), 부극(negative electrode; 107), 및 세퍼레이터(separator, 110)를 외부와 격리된 케이스(120) 내에 설치하고, 케이스(120) 내에 전해액(111)이 충전된다. 정극 집전체(positive electrode collector; 100) 위에 정극 활물질층(101)이 형성된다. 정극 활물질층(101)에는 실시형태 1에서 제작한 전극용 재료가 포함된다. 한편, 부극 집전체(negative electrode collector; 105) 위에는 부극 활물질층(negative electrode active material layer; 106)이 형성된다. 본 명세서에서는 정극 활물질층(101)과 그것이 형성된 정극 집전체(100)를 통틀어 정극(102)이라고 부른다. 또한, 부극 활물질층(106)과 그것이 형성된 부극 집전체(105)를 통틀어 부극(107)이라고 부른다.
또한, 정극(102)과 부극(107) 사이에 세퍼레이터(110)를 구비한다. 정극 집전체(100)에는 제 1 전극(121)이 접속되고, 부극 집전체(105)에는 제 2 전극(122)이 접속되며, 제 1 전극(121) 및 제 2 전극(122)으로부터 충전이나 방전이 행해진다. 또한, 정극 활물질층(101)과 세퍼레이터(110) 사이 및 부극 활물질층(106)과 세퍼레이터(110) 사이는 각각 일정 간격을 두고 도시되었지만, 이것에 한정되지 않고, 정극 활물질층(101)과 세퍼레이터(110) 및 부극 활물질층(106)과 세퍼레이터(110)는 각각 접하여도 좋다. 또한, 정극(102) 및 부극(107)은 세퍼레이터(110)를 사이에 배치한 상태로 통 형상으로 말아도 좋다.
또한, 활물질이란 캐리어인 이온의 삽입 및 탈리에 관하는 물질을 가리키고, 인산리튬 화합물, 또는 탄소가 코팅된 인산리튬 화합물을 가리킨다. 또한, 본 명세서에 있어서 정극 활물질층이란, 활물질, 바인더 및 도전조제를 포함하는 박막을 가리킨다.
정극 집전체(100)로서는 알루미늄, 스테인리스 등의 도전성이 높은 재료를 사용할 수 있다. 정극 집전체(100)는 박(箔) 형상, 판(板) 형상, 그물 형상 등의 형상을 적절히 적용할 수 있다.
정극 활물질로서는 실시형태 1에서 나타낸 인산리튬 화합물을 사용한다.
제 2 열 처리(본 소성)를 행한 후, 얻어진 인산리튬 화합물을 볼밀 분쇄기로 다시 분쇄하여 미세 분말체를 얻는다. 얻어진 미세 분말체에 도전조제나 바인더, 용매를 첨가하여 페이스트 상태로 혼합한다.
도전조제는 그 재료 자체가 전자 도전체이며, 전지 장치 내에서 다른 물질과 화학 변화를 일으키지 않는 것이라면 좋다. 예를 들어, 흑연(黑鉛), 탄소 섬유, 카본 블랙, 아세틸렌 블랙, VGCF(상표 등록) 등의 탄소계 재료, 구리, 니켈, 알루미늄 또는 은 등 금속 재료 또는 이들의 혼합물의 분말이나 섬유 등이 그것에 상당한다. 도전조제란 활물질간의 도전성을 높이는 물질이고, 떨어진 활물질간에 충전되어 활물질끼리가 도통되게 하는 재료이다.
바인더로서는 전분(澱粉), 카르복시메틸셀룰로오스, 하이드록시프로필셀룰로오스, 재생 셀룰로오스, 디아세틸셀룰로오스 등의 다당류나, 폴리비닐클로라이드, 폴리에틸렌, 폴리프로필렌, 폴리비닐알코올, 폴리비닐피롤리돈, 폴리테트라플루오로에틸렌, 폴리플루오르화비닐리덴, EPDM(Ethylene Propylene Diene Monomer)고무, 술폰화 EPDM고무, 스티렌부타디엔고무, 부타디엔고무, 불소고무 등의 비닐폴리머, 폴리에틸렌옥시드 등의 폴리에테르 등이 있다.
전극용 재료로서 사용되는 인산리튬 화합물, 도전조제, 및 바인더는 각각 80wt% 내지 96wt%, 2wt% 내지 10wt%, 2wt% 내지 10wt%의 비율로, 또 합계 100wt%가 되도록 혼합한다. 또한, 전극용 재료, 도전조제, 및 바인더의 혼합물과 같은 정도의 체적을 갖는 유기 용매를 혼합하여, 슬러리 상태로 가공한다. 또한, 전극용 재료, 도전조제, 바인더, 및 유기 용매를 슬러리 상태로 가공하여 얻어진 것을 슬러리라고 한다. 용매로서는 N메틸-2피롤리돈, 젖산 에스테르 등이 있다. 성막 시에 활물질과 도전조제의 밀착성이 약할 때는 바인더를 많게 하고, 활물질의 저항이 높을 때는 도전조제를 많게 하는 등, 활물질, 도전조제, 바인더의 비율을 적절히 조정하면 좋다.
여기서는, 정극 집전체(100)로서 알루미늄박을 사용하고 그 위에 슬러리를 적하하여 캐스팅법에 의하여 얇게 넓힌 후, 롤 프레스기로 더 밀어서 두께를 균일하게 한 후, 진공 건조(10Pa 이하)나 가열 건조(150℃ 내지 280℃)함으로써, 정극 집전체(100) 위에 정극 활물질층(101)을 형성한다. 정극 활물질층(101)의 두께는 20μm로부터 150μm 사이에서 원하는 두께를 선택한다. 크랙(crack)이나 박리가 생기지 않도록 정극 활물질층(101)의 두께를 적절히 조정하는 것이 바람직하다. 더구나, 전지의 형태에 따라 다르지만, 평판 형상뿐만 아니라 통 형상으로 말 때 정극 활물질층(101)에 크랙이나 박리가 생기지 않도록 하는 것이 바람직하다.
부극 집전체(105)로서는 구리, 스테인리스, 철, 니켈 등의 도전성이 높은 재료를 사용할 수 있다.
부극 활물질층(106)으로서는 리튬, 알루미늄, 흑연, 실리콘, 게르마늄 등이 사용된다. 부극 집전체(105) 위에 도포법, 스퍼터링법, 증착법 등에 의하여 부극 활물질층(106)을 형성하여도 좋고, 각각의 재료를 단독으로 사용하여 부극 활물질층(106)으로서 사용하여도 좋다. 흑연과 비교하면, 게르마늄, 실리콘, 리튬, 알루미늄의 이론 리튬 흡장(吸藏) 용량이 크다. 흡장 용량이 크면, 작은 면적이라도 충분하게 충전 및 방전할 수 있고, 비용의 절감 및 2차 전지의 소형화로 이어진다. 다만, 실리콘 등은 리튬을 흡장하여 체적이 4배 정도까지 증가하기 때문에, 재료 자체가 취약(脆弱)화하거나 폭발할 위험성 등이 있어서 충분히 조심해야 된다.
전해질은 액체의 전해질인 전해액이나 고체의 전해질인 고체 전해질을 사용하면 좋다. 전해액은 캐리어 이온인 알칼리 금속 이온, 또는 알칼리 토금속 이온을 포함하고, 이 캐리어 이온이 전기를 전도하는 역할을 한다. 알칼리 금속 이온으로서는, 예를 들어 리튬 이온, 나트륨 이온, 또는 칼륨 이온이 있다. 알칼리 토금속 이온으로서는, 예를 들어 칼슘 이온, 스트론튬 이온, 또는 바륨 이온이 있다. 또한, 캐리어 이온으로서, 베릴륨 이온, 마그네슘 이온이 있다.
전해액(111)은, 예를 들어 용매와 그 용매에 용해하는 리튬 염 또는 나트륨 염으로 구성된다. 리튬 염으로서는, 예를 들어 염화 리튬(LiCl), 불화 리튬(LiF), 과염소산 리튬(LiClO4), 붕불화 리튬(LiBF4), LiAsF6, LiPF6, Li(C2F5SO2)2N 등이 있다. 나트륨 염으로서는, 예를 들어 염화나트륨(NaCl), 불화나트륨(NaF), 과염소산나트륨(NaClO4), 붕불화나트륨(NaBF4) 등이 있다.
전해액(111)의 용매로서, 고리형 카보네이트류(예를 들어, 에틸렌카보네이트(이하, EC라고 약기한다), 프로필렌카보네이트(PC), 부틸렌카보네이트(BC), 및 비닐렌카보네이트(VC) 등), 비고리형 카보네이트류(디메틸카보네이트(DMC), 디에틸카보네이트(DEC), 에틸메틸카보네이트(EMC), 메틸프로필카보네이트(MPC), 이소부틸메틸카보네이트, 및 디프로필카보네이트(DPC) 등), 지방족 카르복실산 에스테르류(포름산 메틸, 초산 메틸, 프로피온산 메틸, 및 프로피온산 에틸 등), 비고리형 에테르류(γ-부틸로락톤 등의 γ-락톤류, 1,2-디메톡시에탄(DME), 1,2-디에톡시에탄(DEE), 및 에톡시메톡시에탄(EME) 등), 고리형 에테르류(테트라하이드로푸란, 2-메틸테트라하이드로푸란 등), 고리형 술폰(술포레인 등), 알킬인산에스테르(디메틸술폭시드, 1,3-디옥솔란 등이나 인산트리메틸, 인산트리에틸, 및 인산트리옥틸 등)나 그 불화물이 있고, 이들 중의 1종 또는 2종 이상을 혼합하여 사용한다.
세퍼레이터(110)로서 종이, 부직포, 유리 섬유, 또는 나이론(폴리아미드), 비닐론(비날론이라고도 한다)(폴리비닐알코올계 섬유), 폴리에스테르, 아크릴, 폴리올레핀, 폴리우레탄 등의 합성 섬유 등을 사용하면 좋다. 다만, 상술하는 전해액(111)에 용해하지 않는 재료를 선택할 필요가 있다.
세퍼레이터(110)의 더 구체적인 재료로서는, 예를 들어 불소계 폴리머, 폴리에틸렌옥시드, 폴리프로필렌옥시드 등의 폴리에테르, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀, 폴리아크릴로니트릴, 폴리염화비닐리덴, 폴리메틸메타크릴레이트, 폴리메틸아크릴레이트, 폴리비닐알코올, 폴리메타크릴로니트릴, 폴리비닐아세테이트, 폴리비닐피롤리돈, 폴리에틸렌이민, 폴리부타디엔, 폴리스티렌, 폴리이소프렌, 폴리우레탄계 고분자 및 이들 유도체, 셀룰로오스, 종이, 부직포 중에서 선택된 1종류를 단독으로 사용하거나 또는 2종류 이상을 조합하여 사용할 수 있다.
상술한 리튬 이온 2차 전지를 충전할 때는 제 1 전극(121)에 정극 단자, 제 2 전극(122)에 부극 단자를 접속한다. 정극(102)으로부터 제 1 전극(121)을 개재하여 전자가 추출되고, 제 2 전극(122)을 통하여 부극(107)으로 이동한다. 또한, 정극으로부터는 리튬 이온이 정극 활물질층(101) 내의 활물질로부터 용출되어 세퍼레이터(110)를 통과하여 부극(107)에 도달하여 부극 활물질층(106) 내의 활물질에 들어간다. 상기 영역에서 리튬 이온 및 전자가 합체하여 부극 활물질층(106)에 흡장된다. 동시에 정극 활물질층(101)에서는 활물질로부터 전자가 방출되어 활물질에 포함되는 철의 산화 반응이 일어난다.
방전할 때는 부극(107)에서는 부극 활물질층(106)이 리튬을 이온으로서 방출하여, 제 2 전극(122)에 전자가 수송된다. 리튬 이온은 세퍼레이터(110)를 통과하여 정극 활물질층(101)에 도달하여 정극 활물질층(101) 내의 활물질에 들어간다. 이 때, 부극(107)으로부터 방출된 전자도 정극(102)에 도달하여 철의 환원 반응이 일어난다.
상술한 공정에 의하여 제작한 리튬 이온 2차 전지는, 세정 공정을 사용하여 제작된 올리빈 구조를 갖는 인산리튬 화합물을 정극 활물질로서 갖는다. 따라서, 본 실시형태에서 얻어지는 리튬 이온 2차 전지를 방전 용량이 크고, 충전 및 방전의 속도가 빠른 리튬 이온 2차 전지로 할 수 있다.
또한, 인산리튬 화합물은 고순도화되어 결정성이 향상되기 때문에, 충전 및 방전을 행할 때에 삽입 및 탈리되는 캐리어 이온의 양을 증대시킬 수 있다. 따라서, 본 실시형태에서 얻어지는 리튬 이온 2차 전지를 방전 용량이 크고, 충전 및 방전의 속도가 빠른 리튬 이온 2차 전지로 할 수 있다.
상술한 바와 같이, 본 실시형태에 나타내는 구성이나 방법 등은 다른 실시형태에 나타내는 구성이나 방법 등과 적절히 조합하여 사용할 수 있다.
(실시형태 4)
본 실시형태에서는 본 발명의 일 형태에 따른 축전 장치의 응용 형태에 대하여 설명한다.
축전 장치는 다양한 전자 기기에 탑재할 수 있다. 예를 들어 디지털 카메라나 비디오 카메라 등의 카메라류, 휴대 전화기, 휴대 정보 단말, 전자 서적용 단말, 휴대형 게임기, 디지털 포토 프레임, 음향 재생 장치 등에 탑재할 수 있다. 또한, 축전 장치는 전기 자동차, 하이브리드 자동차, 철도용 전기 차량, 작업차, 카트, 휠체어, 또는 자전거 등의 전기 추진 차량에 탑재할 수 있다.
본 발명의 일 양태에 따른 축전 장치는, 고용량화, 충전 및 방전 속도 향상 등의 특성 향상이 도모되고 있다. 축전 장치의 특성을 향상시킴으로써, 축전 장치의 소형 경량화에도 기여할 수 있다. 이와 같은 축전 장치를 탑재함으로써, 전자 기기나 전기 추진 차량 등의 충전 시간의 단축, 사용 시간의 연장, 소형 경량화 등이 가능하게 되어 편리성이나 디자인성의 향상도 실현할 수 있다.
도 2a는 휴대 전화기의 일례를 도시한다. 휴대 전화기(3010)는 케이스(3011)에 표시부(3012)가 내장된다. 케이스(3011)는 조작 버튼(3013), 조작 버튼(3017), 외부 접속 포트(3014), 스피커(3015), 및 마이크(3016) 등을 더 구비한다. 이와 같은 휴대 전화기에 본 발명의 일 형태에 따른 축전 장치를 탑재함으로써 편리성이나 디자인성을 향상시킬 수 있다.
도 2b는 전자 서적용 단말의 일례를 도시한다. 전자 서적용 단말(3030)은 제 1 케이스(3031) 및 제 2 케이스(3033)의 2개의 케이스로 구성되며, 축부(3032)에 의하여 2개의 케이스가 일체가 된다. 제 1 케이스(3031) 및 제 2 케이스(3033)는 축부(3032)를 축으로 하여 개폐 동작을 할 수 있다. 제 1 케이스(3031)에는 제 1 표시부(3035)가 내장되고, 제 2 케이스(3033)에는 제 2 표시부(3037)가 내장된다. 그 외, 제 2 케이스(3033)에 조작 버튼(3039), 전원(3043), 및 스피커(3041) 등을 구비한다. 이와 같은 전자 서적용 단말에 본 발명의 일 형태에 따른 축전 장치를 탑재함으로써, 편리성이나 디자인성을 향상시킬 수 있다.
도 3a는 전기 자동차의 일례를 도시한다. 전기 자동차(3050)에는 축전 장치(3051)가 탑재된다. 축전 장치(3051)의 전력은 제어 회로(3053)에 의하여 출력이 조정되어 구동 장치(3057)에 공급된다. 제어 회로(3053)는 컴퓨터(3055)로 제어된다.
구동 장치(3057)는, 직류 전동기 또는 교류 전동기를 단독으로, 또는 전동기와 내연 기관을 조합하여 구성된다. 컴퓨터(3055)는 전기 자동차(3050)의 운전자의 조작 정보(가속, 감속, 정지 등)나 주행시의 정보(오르막길인지 내리막길인지 등의 정보, 구동륜(driving wheel)에 걸리는 부하의 정보 등)의 입력 정보에 따라 제어 회로(3053)에 제어 신호를 출력한다. 제어 회로(3053)는 컴퓨터(3055)의 제어 신호에 따라 축전 장치(3051)로부터 공급되는 전기 에너지를 조정하여 구동 장치(3057)의 출력을 제어한다. 교류 전동기를 탑재하는 경우는, 직류를 교류로 변환하는 인버터도 내장된다.
축전 장치(3051)는 플러그인(plug-in) 기술을 이용한 외부로부터의 전력 공급에 의하여 충전할 수 있다. 축전 장치(3051)로서, 본 발명의 일 형태에 따른 축전 장치를 탑재함으로써, 충전 시간의 단축화 등에 기여할 수 있고, 편리성을 향상시킬 수 있다. 또한, 충전 및 방전 속도가 향상됨으로써, 전기 자동차의 가속력 향상에 기여할 수 있어, 전기 자동차의 성능을 향상시킬 수 있다. 또한, 축전 장치(3051)의 특성이 향상됨으로써, 축전 장치(3051) 자체를 소형 경량화할 수 있으면, 차량의 경량화나 연료 효율 향상에도 기여할 수 있다.
도 3b는 전동식 휠체어의 일례를 도시한다. 휠체어(3070)는 축전 장치, 전력 제어부, 제어 수단 등을 갖는 제어부(3073)를 구비한다. 제어부(3073)에 의하여 출력이 조정된 축전 장치의 전력은 구동부(3075)에 공급된다. 또한, 제어부(3073)는 컨트롤러(3077)와 접속된다. 컨트롤러(3077)의 조작에 의하여, 제어부(3073)를 개재하여 구동부(3075)를 구동시킬 수 있고, 휠체어(3070)의 전진, 후진, 선회 등의 동작이나 속도를 제어할 수 있다.
휠체어(3070)의 축전 장치도 플러그인 기술을 이용한 외부로부터의 전력 공급에 의하여 충전할 수 있다. 축전 장치(3051)로서, 본 발명의 일 형태에 따른 축전 장치를 탑재함으로써, 충전 시간의 단축화 등에 기여할 수 있고, 편리성을 향상시킬 수 있다. 또한, 축전 장치의 특성이 향상됨으로써, 축전 장치 자체를 소형 경량화할 수 있으면, 휠체어(3070)를 사용하는 사람이나 돌봐주는 사람이 더 쉽게 사용할 수 있게 된다.
또한, 전기 추진 차량으로서 철도용 전기 차량에 축전 장치를 탑재하는 경우, 가선(架線)이나 도전 레일로부터 전력을 공급함으로써 충전할 수도 있다.
상술한 바와 같이, 본 실시형태에 기재하는 구성이나 방법 등은 다른 실시형태에 기재한 구성이나 방법 등과 적절히 조합하여 사용할 수 있다.
(실시예 1)
본 실시예에서는, 인산망간리튬에 탄소 재료를 코팅한 경우, 세정 공정이 축전 장치의 전지 특성에 어떤 영향을 주는지를 조사한 결과에 대하여 설명한다.
본 실시예에서 사용한 축전 장치의 제작 방법에 대하여 설명한다. 본 실시예에서는, 시료로서 중성의 세정액을 사용하여 세정 공정을 행하여 제작된 시료 1, 알칼리성의 세정액을 사용하여 세정 공정을 행하여 제작된 시료 2, 세정 공정을 행하지 않고 제작된 시료 3을 사용하였다.
인산망간리튬의 재료로서, 탄산리튬(Li2CO3), 탄산망간(II)(MnCO3), 및 인산이수소암모늄(NH4H2PO4)을 Li:Mn:P=1:1:1(mol 비율)이 되도록 칭량하고, 제 1 볼밀 처리에 의하여 혼합하였다. 또한, 탄산리튬은 리튬 도입용 원료이고, 탄산망간은 망간 도입용의 원료이고, 인산이수소암모늄은 인산 도입용의 원료이다. 또한, 시료 1 내지 시료 3에 있어서는, 인산망간리튬의 원료로서, 탄산리튬, 탄산망간 및 인산이수소암모늄을 사용하였다.
제 1 볼밀 처리는, 용매로서 아세톤을 첨가하고, 회전수 400rpm, 회전 시간 2시간, 볼 직경Φ 3mm의 조건으로 행하였다. 또한, 볼밀 포트(pot; 원통 용기) 및 지르코니아제의 볼을 사용하였다.
제 1 볼밀 처리를 행한 후, 원료의 혼합물을 1.47×102N(150kgf)의 힘으로 펠릿을 성형하였다.
다음에, 펠릿에 제 1 열 처리(임시 소성)를 행하였다. 제 1 열 처리는 혼합물을 질소 분위기 중에서 350℃, 10시간으로 행하였다.
제 1 열 처리를 행한 후, 소성물을 막자사발을 사용하여 분쇄하였다. 분쇄된 소성물을 3각 플라스크에 놓아서 세정을 행하였다. 시료 1(세정액이 중성인 경우)의 세정은, 순수 500ml를 3각 플라스크에 놓고, 실온에서 1시간 교반함으로써 행하였다. 시료 2(세정액이 알칼리성인 경우)의 세정은 순수 500ml에 NaOH를 놓고 pH 9.0이 되도록 조정한 후, 3각 플라스크에 놓고 실온에서 1시간 교반함으로써 행하였다. 교반한 후, 흡인 여과함으로써 목적물(혼합물)을 회수하였다.
다음에, 세정물에 글루코오스를 첨가하였다. 글루코오스의 양은 10wt%로 하였다.
글루코오스를 첨가한 혼합물에 제 2 볼밀 처리를 행하였다. 제 2 볼밀 처리는, 용매로서 아세톤을 첨가하고, 회전수 400rpm, 회전 시간 2시간, 볼 직경Φ 3mm의 조건으로 행하였다.
제 2 볼밀 처리를 행한 후, 혼합물을 1.47×102N(150kgf)의 힘으로 펠릿을 성형하였다.
다음에, 펠릿에 제 2 열 처리(본 소성)를 행하였다. 제 2 열 처리는 혼합물을 질소 분위기 중에서 600℃, 10시간으로 행하였다. 상술한 공정에 의하여 소성물로서 탄소 재료가 표면에 코팅된 인산망간리튬을 얻었다.
제 2 열 처리를 행한 후, 소성물을 막자사발을 사용하여 분쇄하였다.
분쇄된 소성물인 인산망간리튬(LiMnPO4), 도전조제인 아세틸렌 블랙(AB), 바인더인 폴리테트라플루오로에틸렌(PTFE)을, 80:15:5(wt%)가 되도록 칭량하였다.
다음에, 인산망간리튬과 아세틸렌 블랙을 막자사발을 사용하여 혼합하고, 그 혼합물에 폴리테트라플루오로에틸렌을 첨가하여 혼련(混練)함으로써 분산시켰다.
이들의 혼합물을 롤 프레스(roll press)를 행함으로써 압연(壓延)을 4번 행하여 막 두께 114μm의 시트 형상의 전극층을 얻었다. 이것에 알루미늄 메시(mesh) 집전체를 압착하여 Φ 12mm의 원형이 되도록 떠냄으로써 축전 장치의 정극을 얻었다.
또한, 부극으로서 리튬 박, 세퍼레이터로서 폴리프로필렌(PP)을 사용하였다. 그리고, 전해액으로서는 용질에 육불화인산리튬(LiPF6), 용매로서 에틸렌카보네이트(EC) 및 디메틸카보네이트(DMC)를 사용하였다. 또한, 세퍼레이터 및 정극은 전해액에 함침시켰다.
상술한 바와 같이 하여, 정극, 부극, 세퍼레이터, 및 전해액을 갖는 코인형 축전 장치(시료 1)를 얻었다. 정극, 부극, 세퍼레이터, 및 전해액 등은 아르곤 분위기의 글로브박스 내에서 구성되었다.
다음에, 비교예로서 사용한 축전 장치(시료 3)의 제작 방법에 대하여 설명한다.
시료 3에 있어서는, 세정 공정을 행하지 않는 것 이외는 시료 1 및 시료 2와 같은 제작 방법에 의하여 축전 장치를 제작하였다.
시료 1 내지 시료 3을 사용하여 충방전 시험(TOYO SYSTEM Co., LTD제 충방전 시험 장치 TOSCAT-3100을 사용하였다)을 행한 결과에 대하여 설명한다. 측정 전압은 2.0V 내지 4.8V의 범위로 설정하고, 충전시에는 정전류 정전압(CCCV) 측정, 방전시에는 정전류(CC) 측정을 행하였다. 정전류의 레이트(rate)는 0.2C, 정전압의 컷 오프 전류는 0.016C 상당의 전류값을 사용하였다. 또한, 충전과 방전의 중지 시간은 2시간으로 하였다.
도 4에 시료 1 내지 시료 3의 축전 장치의 방전 특성의 결과를 도시한다. 도 4에 있어서, 가로 축을 방전 용량(mAh/g)으로 하고, 세로 축을 전압(V)으로 한다. 또한, 굵은 실선은 시료 1의 방전 특성, 가는 실선은 시료 2의 방전 특성, 점선은 시료 3의 방전 특성이다. 도 4에 도시하는 바와 같이, 세정 공정을 행한 시료 1 및 시료 2에 있어서는, 세정 공정을 행하지 않는 시료 3과 비교하여 방전 밀도가 높은 결과가 되었다.
상술한 결과에 따르면, 축전 장치의 제작 공정에 있어서 세정 공정을 행함으로써 축전 장치의 방전 용량을 향상시킬 수 있는 것이 확인되었다. 따라서, 본 발명을 적용함으로써 방전 용량이 큰 축전 장치를 얻을 수 있다.
(실시예 2)
본 실시예에서는, 불순물 농도를 저감시켜 결정성을 향상시킨 인산철리튬을 정극 활물질로서 사용한 축전 장치의 전지 특성을 나타낸다.
본 실시예에서 사용한 축전 장치(시료 4)의 제작 방법에 대하여 설명한다.
우선, 인산철리튬의 원료로서, 탄산리튬(Li2CO3), 옥살산철(II) 이수화물(FeC2O4 · 2H2O), 및 인산이수소암모늄(NH4H2PO4)을 사용하여 Li:Fe:P=1:1:1(mol 비율)이 되도록 칭량하고, 제 1 볼밀 처리에 의하여 혼합하였다. 또한, 탄산리튬은 리튬 도입용 원료이고, 옥살산철(II) 이수화물은 철 도입용의 원료이고, 인산이수소암모늄은 인산 도입용의 원료이다. 시료 4에 있어서는, 인산철리튬의 원료로서, 각각 불순물 원소 농도가 저감된 탄산리튬, 옥살산철(II) 이수화물, 및 인산이수소암모늄을 사용하였다.
제 1 볼밀 처리는, 용매로서 아세톤을 첨가하고, 회전수 400rpm, 회전 시간 2시간, 볼 직경Φ 3mm의 조건으로 행하였다. 또한, 볼밀 포트(원통 용기) 및 지르코니아제의 볼을 사용하였다.
제 1 볼밀 처리를 행한 후, 원료의 혼합물을 1.47×102N(150kgf)의 힘으로 펠릿을 성형하였다.
다음에, 펠릿에 제 1 열 처리(임시 소성)를 행하였다. 제 1 열 처리는 혼합물을 질소 분위기 중에서 350℃, 10시간으로 행하였다.
제 1 열 처리를 행한 후, 소성물을 막자사발을 사용하여 분쇄하였다. 그 후, 분쇄한 소성물을 제 2 볼밀 처리에 의하여 더 분쇄하였다.
제 2 볼밀 처리는, 용매로서 아세톤을 첨가하고, 회전수 400rpm, 회전 시간 2시간, 볼 직경Φ 3mm의 조건으로 행하였다.
제 2 볼밀 처리를 행한 후, 분쇄한 것을 1.47×102N(150kgf)의 힘으로 펠릿을 성형하였다.
다음에, 펠릿에 제 2 열 처리(본 소성)를 행하였다. 제 2 열 처리는 분쇄한 것을 질소 분위기 중에서 600℃, 1시간으로 행하였다. 상술한 공정에 의하여 소성물로서 인산철리튬을 얻었다.
제 2 열 처리를 행한 후, 소성물을 막자사발을 사용하여 분쇄하였다.
여기서, 제 2 열 처리를 행한 소성물에 X선 회절(XRD: X-ray diffraction)의 측정을 행하였다. X선 회절에 의하여 소성물이 공간군(空間群) Pnma(62)의 LiFePO4의 단상(單相)인 것이 확인되었다.
다음에, 얻어진 소성물(인산철리튬(LiFePO4)), 도전조제(아세틸렌 블랙(AB)), 바인더(폴리테트라플루오로에틸렌(PTFE))를, 80:15:5(wt%)가 되도록 칭량하였다.
다음에, 인산철리튬과 아세틸렌 블랙을 막자사발을 사용하여 혼합하고, 그 혼합물에 폴리테트라플루오로에틸렌을 첨가하여 혼련함으로써 분산시켰다.
이들의 혼합물을 롤 프레스를 행함으로써 압연을 4번 행하고, 막 두께 114μm의 시트 형상의 전극층을 얻었다. 이것에 알루미늄 메시 집전체를 압착하여 Φ 12mm의 원형이 되도록 떠냄으로써 축전 장치의 정극을 얻었다.
또한, 부극으로서 리튬 박, 세퍼레이터로서 폴리프로필렌(PP)을 사용하였다. 그리고, 전해액으로서는 용질에 육불화인산리튬(LiPF6), 용매로서 에틸렌카보네이트(EC) 및 디메틸카보네이트(DMC)를 사용하였다. 또한, 세퍼레이터 및 정극은 전해액에 함침시켰다.
상술한 바와 같이 하여, 정극, 부극, 세퍼레이터, 및 전해액을 갖는 코인형 축전 장치(시료 4)를 얻었다. 정극, 부극, 세퍼레이터, 및 전해액 등은 아르곤 분위기의 글로브박스 내에서 구성되었다.
다음에, 비교예로서 사용한 축전 장치(시료 5)의 제작 방법에 대하여 설명한다.
시료 5에 있어서는, 인산철리튬의 원료로서, 시료 4에 사용한 원료와 비교하여 각각 불순물 농도가 높은 탄산리튬, 옥살산철(II) 이수화물, 인산이수소암모늄을 사용하였다. 인산철리튬의 원료 이외는 시료 4와 같은 제작 방법에 의하여 축전 장치를 제작하였다.
시료 4 및 시료 5에 있어서, 인산철리튬의 원료로서 사용한 탄산리튬(LiCO3), 옥살산철(II) 이수화물(FeC2O4 · 2H2O), 및 인산이수소암모늄(NH4H2PO4)과, 이들의 원료로 제작된 인산철리튬(LiFePO4)이 각각 함유하는 불순물 원소의 농도를 표 1에 나타낸다. 또한, 표 1에 나타낸 불순물 농도는 글로우 방전 질량 분석법에 의하여 측정한 값이다. 또한, 측정 장치에는 VG Elemental사 제조의 VG-9000을 사용하였다. 또한, 표 1 중“이하”라고 표기되는 수치는, 검출 하한값 이하이고, 검출되지 않았던 것을 나타낸다.
Figure 112019009931714-pat00001
표 1에 나타내는 바와 같이, 시료 4의 원료에 사용한 탄산리튬(Li2CO3)의 황(S)의 농도는 1ppm, 망간(Mn)의 농도는 0.02ppm, 니켈(Ni)의 농도는 0.05ppm, 코발트(Co)의 농도는 0.005ppm 이하(검출 하한 이하), 붕소(B)의 농도는 0.01ppm 이하(검출 하한 이하), 크롬(Cr)의 농도는 0.51ppm, 몰리브덴(Mo)의 농도는 0.05ppm 이하(검출 하한 이하), 아연(Zn)의 농도는 0.17ppm이다.
한편, 비교예로서 제작한 시료 5의 원료에 사용한 탄산리튬(Li2CO3)의 황(S)의 농도는 6.6ppm, 망간(Mn)의 농도는 0.08ppm, 니켈(Ni)의 농도는 0.02ppm, 코발트(Co)의 농도는 0.02ppm, 붕소(B)의 농도는 0.01ppm 이하(검출 하한 이하), 크롬(Cr)의 농도는 0.46ppm, 몰리브덴(Mo)의 농도는 0.05ppm 이하(검출 하한 이하), 아연(Zn)의 농도는 0.56ppm이다.
또한, 시료 4의 원료에 사용한 옥살산철(II) 이수화물(FeC2O4 · 2H2O)의 황(S)의 농도는 1.6ppm, 망간(Mn)의 농도는 0.1ppm 이하(검출 하한 이하), 니켈(Ni)의 농도는 0.1ppm 이하(검출 하한 이하), 코발트(Co)의 농도는 0.1ppm 이하(검출 하한 이하), 붕소(B)의 농도는 0.25ppm, 크롬(Cr)의 농도는 0.1ppm 이하(검출 하한 이하), 몰리브덴(Mo)의 농도는 0.8ppm, 아연(Zn)의 농도는 0.1ppm 이하(검출 하한 이하)이다.
한편, 시료 5의 원료에 사용한 옥살산철(II) 이수화물(FeC2O4 · 2H2O)의 황(S)의 농도는 1100ppm, 망간(Mn)의 농도는 300ppm, 니켈(Ni)의 농도는 110ppm, 코발트(Co)의 농도는 53ppm, 붕소(B)의 농도는 4.2ppm, 크롬(Cr)의 농도는 17ppm, 몰리브덴(Mo)의 농도는 6.1ppm, 아연(Zn)의 농도는 4.6ppm이다.
또한, 시료 4의 원료에 사용한 인산이수소암모늄(NH4H2PO4)의 황(S)의 농도는 5ppm 이하(검출 하한 이하), 망간(Mn)의 농도는 0.1ppm 이하(검출 하한 이하), 니켈(Ni)의 농도는 0.1ppm 이하(검출 하한 이하), 코발트(Co)의 농도는 0.05ppm 이하(검출 하한 이하), 붕소(B)의 농도는 1.3ppm, 크롬(Cr)의 농도는 0.5ppm 이하(검출 하한 이하), 몰리브덴(Mo)의 농도는 0.1ppm 이하(검출 하한 이하), 아연(Zn)의 농도는 0.5ppm 이하(검출 하한 이하)이다.
또한, 시료 5의 원료에 사용한 인산이수소암모늄(NH4H2PO4)의 황(S)의 농도는 5ppm 이하(검출 하한 이하), 망간(Mn)의 농도는 1.2ppm, 니켈(Ni)의 농도는 0.15ppm, 코발트(Co)의 농도는 0.05ppm 이하(검출 하한 이하), 붕소(B)의 농도는 16ppm, 크롬(Cr)의 농도는 0.5ppm 이하(검출 하한 이하), 몰리브덴(Mo)의 농도는 0.1ppm 이하(검출 하한 이하), 아연(Zn)의 농도는 0.5ppm 이하(검출 하한 이하)이다.
표 1을 보면, 탄산리튬, 옥살산철(II) 이수화물(FeC2O4 · 2H2O), 인산이수소암모늄의 각각에 대하여 시료 4에 사용한 원료는 시료 5에 사용한 원료보다 불순물 농도가 저감되는 것을 알 수 있다. 특히, 옥살산철(II) 이수화물에 대하여는 표 1에 나타내는 불순물 원소의 합계 함유 농도가 시료 5에서는 1697ppm이지만, 시료 4에서는 66.04ppm으로 대폭으로 저감된다.
시료 5에서는, 불순물 원소인 황이 옥살산철(II) 이수화물에 1100ppm 포함되는 것을 알 수 있었다. 이 값은 옥살산철(II) 이수화물의 불순물 원소 농도의 대략 65%를 차지하다. 또한, 불순물 원소 농도가 저감되지 않는 원재료를 사용하여 제작된 인산철리튬에 있어서, 황이 300ppm 포함되는 것을 알 수 있었다. 이 값은 인산철리튬의 불순물 원소 농도의 대략 46%를 차지하다.
이것에 대하여 시료 4에서는 옥살산철(II) 이수화물에 포함되는 황이 1.6ppm까지 저감되는 것을 알 수 있었다. 또한, 불순물 원소 농도가 저감된 원재료를 사용하여 제작된 인산철리튬에 있어서 황이 5.1ppm까지 저감되는 것을 알 수 있었다. 이로써, 옥살산철(II) 이수화물에 포함되는 황의 농도를 저감시키는 것은, 인산철리튬의 불순물 원소의 농도의 저감에 크게 기여하는 것을 알 수 있었다.
또한, 시료 5에서는, 불순물 원소인 망간이 옥살산철(II) 이수화물에 300ppm 포함되는 것을 알 수 있었다. 이 값은 옥살산철(II) 이수화물의 불순물 원소 농도의 대략 18%를 차지하다. 또한, 불순물 원소 농도가 저감되지 않는 원재료를 사용하여 제작된 인산철리튬에 있어서, 망간이 150ppm 포함되는 것을 알 수 있었다. 이 값은 인산철리튬의 불순물 원소 농도의 대략 23%를 차지하다.
이것에 대하여 시료 4에서는 옥살산철(II) 이수화물에 포함되는 망간이 0.1ppm까지 저감되는 것을 알 수 있었다. 또한, 불순물 원소 농도가 저감된 원재료를 사용한 인산철리튬에 있어서 망간이 0.55ppm까지 저감되는 것을 알 수 있었다. 이로써, 옥살산철(II) 이수화물에 포함되는 망간의 농도를 저감시키는 것은, 인산철리튬의 불순물 원소 농도의 저감에 크게 기여하는 것을 알 수 있었다.
또한, 표 1을 보면, 시료 4의 정극 활물질로서 사용한 인산철리튬의 불순물 원소 농도는, 122ppm 이하이고, 시료 5의 정극 활물질로서 사용한 인산철리튬의 불순물 원소 농도의 650.27ppm과 비교하여 저감된다. 구체적으로는, 시료 4에 사용한 인산철리튬의 황(S)의 농도는 5.1ppm, 망간(Mn)의 농도는 0.55ppm, 니켈(Ni)의 농도는 0.1ppm 이하, 코발트(Co)의 농도는 0.1ppm 이하, 붕소(B)의 농도는 1.7ppm, 크롬(Cr)의 농도는 0.38ppm, 몰리브덴(Mo)의 농도는 0.1ppm 이하, 아연(Zn)의 농도는 0.59ppm이다. 또한, 상술한 원소의 함유량의 합계는 8.62ppm 이하이었다. 또한, 시료 5에 사용한 인산철리튬의 황(S)의 농도는 300ppm, 망간(Mn)의 농도는 150ppm, 니켈(Ni)의 농도는 71ppm, 코발트(Co)의 농도는 37ppm, 붕소(B)의 농도는 9.5ppm, 크롬(Cr)의 농도는 4.1ppm, 몰리브덴(Mo)의 농도는 3.9ppm, 아연(Zn)의 농도는 2.6ppm이다. 또한, 상술한 원소의 함유량의 합계는 578.1ppm 이하이었다.
또한, 시료 4 및 시료 5의 정극 활물질로서 사용한 인산철리튬의 격자 정수를 X선 회절에 의하여 측정한 결과에 대하여 각각 표 2에 나타낸다. 또한, 시료 4에 대하여는 샘플 개수 n=1의 측정 결과를 나타내고, 시료 5에 대하여는 샘플 개수 n=9의 측정 결과의 평균값을 나타낸다. 또한, 표 2에 있어서 데이터 베이스값이란, 무기 화합물 결정 구조 데이터 베이스(ICSD)에 개시된 인산철리튬의 격자 정수의 값이다.
Figure 112019009931714-pat00002
표 2에 나타내는 바와 같이, 불순물 원소 농도가 저감된 시료 4의 인산철리튬에 있어서는, a축의 격자 정수가 10.3258×10-10(m)이고, b축의 격자 정수가 6.0052×10-10(m)이고, c축의 격자 정수가 4.6902×10-10(m)이다. 시료 4에 사용한 인산철리튬은 시료 5와 비교하여 데이터 베이스값의 a축의 격자 정수 10.3254×10-10(m), b축의 격자 정수 6.0035×10-10(m), c축의 격자 정수 4.6879×10-10(m)에 보다 가까운 값이 되었다.
이것은, 불순물 원소 농도가 저감되지 않는 시료 5에서는, 인산철리튬의 결정 구조에 있어서 불순물 원소로 인한 이종 원소 치환이 일어나서 결정 왜곡이 생긴다고 생각할 수 있다. “시료 4에 사용한 인산철리튬은 시료 5에 사용한 인산철리튬보다 결정성이 향상된다”고 바꾸어 말할 수도 있다.
다음에, 시료 4 및 시료 5를 사용하여 충방전 시험(TOYO SYSTEM Co., LTD제 충방전 시험 장치 TOSCAT-3100을 사용하였다)을 행한 결과에 대하여 설명한다. 측정 전압은 2.0V 내지 4.2V의 범위로 설정하고, 충전시에는 정전류 정전압(CCCV) 측정, 방전시에는 정전류(CC) 측정을 행하였다. 정전류의 레이트는 0.2C, 정전압의 컷 오프 전류는 0.016C 상당의 전류값을 사용하였다. 또한, 충전과 방전의 중지 시간은 2시간으로 하였다.
도 5에 시료 4 및 시료 5의 축전 장치의 방전 특성의 결과를 도시한다. 도 5에서는, 가로 축을 방전 용량(mAh/g)으로 하고, 세로 축을 전압(V)으로 한다. 또한, 굵은 실선은 시료 4의 방전 특성, 가는 실선은 시료 5의 방전 특성이다.
도 5를 보면, 결정성이 향상된 시료 4의 인산철리튬을 축전 장치에 적용함으로써, 축전 장치의 방전 용량을 향상시킬 수 있는 것을 알 수 있었다.
상술한 결과에 따르면, 이하에 기재하는 것을 고찰할 수 있다. 정극 활물질인 인산철리튬에 있어서, 리튬의 확산 경로는 1차원적이다. 따라서, 인산철리튬의 결정 구조에 결정 왜곡이 존재하면, 리튬의 확산 경로에 폐해가 일어나기 쉽다. 이와 같은 결정 왜곡이 생기는 원인으로서는, 저결정성, 구성 원소의 결손 등이 생각될 수 있다. 또한, 결정 구조에 있어서 불순물 원소 등으로 인한 이종 원소 치환도 결정 왜곡이 생기는 큰 요인이라고 말할 수 있다.
본 실시예에서 나타낸 바와 같이, 불순물 원소 농도가 저감되지 않는 시료 5에서는, 인산철리튬의 결정 구조에 있어서 불순물 원소로 인한 이종 원소 치환이 일어나서 결정 왜곡이 생긴다고 생각할 수 있다. 따라서, 리튬 이온의 확산 경로에 폐해가 생겨, 방전 용량이 이론 용량보다 낮은 값이 된다고 생각할 수 있다.
이것에 대하여 불순물 원소 농도가 저감된 시료 4에 있어서는, 인산철리튬의 결정 구조에 있어서, 불순물 원소로 인한 이종 원소 치환이 저감됨으로써 결정 왜곡의 발생이 억제되어 결정성이 향상된다고 생각할 수 있다. 따라서, 리튬 이온은 양호하게 확산되어 방전 용량이 이론 용량에 가까워진 값이 된다고 생각할 수 있다.
상술한 것에 의하여 인산철리튬의 결정성을 향상시킴으로써, 축전 장치의 전지 특성을 향상시킬 수 있는 것을 알 수 있다.
(실시예 3)
본 실시예에서는, 인산철리튬에 탄소 재료를 코팅한 경우, 인산철리튬의 원료에 포함되는 불순물 원소 농도가 축전 장치의 전지 특성에 어떤 영향을 주는지를 조사한 결과에 대하여 설명한다.
본 실시예에서 사용한 축전 장치(시료 6)의 제작 방법에 대하여 설명한다.
인산철리튬의 재료로서, 탄산리튬(Li2CO3), 옥살산철(II) 이수화물(FeC2O4 · 2H2O), 및 인산이수소암모늄(NH4H2PO4)을 사용하여 제 1 볼밀 처리에 의하여 혼합하였다. 또한, 상기 원재료는 불순물 원소가 저감된 재료를 사용하였다.
제 1 볼밀 처리는, 용매로서 아세톤을 첨가하고, 회전수 400rpm, 회전 시간 2시간, 볼 직경Φ 3mm의 조건으로 행하였다. 또한, 볼밀 포트(원통 용기) 및 지르코니아제의 볼을 사용하였다.
제 1 볼밀 처리를 행한 후, 원료의 혼합물을 1.47×102N(150kgf)의 힘으로 펠릿을 성형하였다.
다음에, 펠릿에 제 1 열 처리(임시 소성)를 행하였다. 제 1 열 처리는 혼합물을 질소 분위기 중에서 350℃, 10시간으로 행하였다.
제 1 열 처리를 행한 후, 소성물을 막자사발을 사용하여 분쇄하였다.
다음에, 분쇄된 소성물에 글루코오스를 첨가하였다. 글루코오스의 양은 10wt%로 하였다.
글루코오스를 첨가한 혼합물에 제 2 볼밀 처리를 행하였다. 제 2 볼밀 처리는, 용매로서 아세톤을 첨가하고, 회전수 400rpm, 회전 시간 2시간, 볼 직경Φ 3mm의 조건으로 행하였다.
제 2 볼밀 처리를 행한 후, 혼합물을 1.47×102N(150kgf)의 힘으로 펠릿을 성형하였다.
다음에, 펠릿에 제 2 열 처리(본 소성)를 행하였다. 제 2 열 처리는 혼합물을 질소 분위기 중에서 600℃, 10시간으로 행하였다. 상술한 공정에 의하여 소성물로서 탄소 재료가 표면에 코팅된 인산철리튬을 얻었다.
제 2 열 처리를 행한 후, 소성물을 막자사발을 사용하여 분쇄하였다.
다음에, 얻어진 소성물(인산철리튬(LiFePO4)), 도전조제(아세틸렌 블랙(AB)), 바인더(폴리테트라플루오로에틸렌(PTFE))를, 80:15:5(wt%)가 되도록 칭량하였다.
다음에, 인산철리튬과 아세틸렌 블랙을 막자사발을 사용하여 혼합하고, 그 혼합물에 폴리테트라플루오로에틸렌을 첨가하여 혼련함으로써 분산시켰다.
이들의 혼합물을 롤 프레스를 행함으로써 압연(壓延)을 4번 행하고, 막 두께 114μm의 시트 형상의 전극층을 얻었다. 이것에 알루미늄 메시 집전체를 압착하여 Φ 12mm의 원형이 되도록 떠냄으로써 축전 장치의 정극을 얻었다.
또한, 부극으로서 리튬 박, 세퍼레이터로서 폴리프로필렌(PP)을 사용하였다. 그리고, 전해액으로서는 용질에 육불화인산리튬(LiPF6), 용매로서 에틸렌카보네이트(EC) 및 디메틸카보네이트(DMC)를 사용하였다. 또한, 세퍼레이터 및 정극은 전해액에 함침시켰다.
상술한 바와 같이 하여, 정극, 부극, 세퍼레이터, 및 전해액을 갖는 코인형 축전 장치(시료 6)를 얻었다. 정극, 부극, 세퍼레이터, 및 전해액 등은 아르곤 분위기의 글로브박스 내에서 구성되었다.
다음에, 비교예로서 사용한 축전 장치(시료 7)의 제작 방법에 대하여 설명한다.
시료 7에 있어서는, 인산철리튬의 원료로서 불순물 원소 농도가 저감되지 않는 탄산리튬, 옥살산철(II) 이수화물, 인산이수소암모늄을 사용한 것 이외는 시료 6과 같은 제작 방법에 의하여 축전 장치를 제작하였다.
또한, 시료 6 및 시료 7의 정극 활물질인 인산철리튬의 불순물 원소 농도는 실시예 2의 표 1에 나타내는 시료 4 및 시료 5와 같다.
다음에, 시료 6 및 시료 7을 사용하여 충방전 시험(TOYO SYSTEM Co., LTD제 충방전 시험 장치 TOSCAT-3100을 사용하였다)을 행한 결과에 대하여 설명한다. 측정 전압은 2.0V 내지 4.2V의 범위로 설정하고, 충전시에는 정전류 정전압(CCCV) 측정, 방전시에는 정전류(CC) 측정을 행하였다. 정전류의 레이트는 0.2C, 정전압의 컷 오프 전류는 0.016C 상당의 전류값을 사용하였다. 또한, 충전과 방전의 중지 시간은 2시간으로 하였다.
도 6에 시료 6 및 시료 7의 축전 장치의 방전 특성의 결과를 도시한다. 도 6에 있어서, 가로 축을 방전 용량(mAh/g)으로 하고, 세로 축을 전압(V)으로 한다. 또한, 굵은 실선은 시료 6의 방전 특성이며, 가는 실선은 시료 7의 방전 특성이다.
도 6을 보면, 원재료의 불순물 원소 농도를 저감시킴으로써, 에너지 밀도를 향상시킬 수 있는 것이 확인될 수 있었다.
100: 정극 집전체 101: 정극 활물질층
102: 정극 105: 부극 집전체
106: 부극 활물질층 107: 부극
110: 세퍼레이터 111: 전해액
120: 케이스 121: 전극
122: 전극 3010: 휴대 전화기
3011: 케이스 3012: 표시부
3013: 조작 버튼 3014: 외부 접속 포트
3015: 스피커 3016: 마이크
3017: 조작 버튼 3030: 전자 서적용 단말
3031: 케이스 3032: 축부
3033: 케이스 3035: 표시부
3037: 표시부 3039: 조작 버튼
3041: 스피커 3043: 전원
3050: 전기 자동차 3051: 축전 장치
3053: 제어 회로 3055: 컴퓨터
3057: 구동 장치 3070: 휠체어
3073: 제어부 3075: 구동부
3077: 컨트롤러

Claims (2)

  1. 리튬을 포함하는 화합물과, 철을 포함하는 화합물과, 인을 포함하는 화합물을 혼합한 혼합물을 형성하고,
    상기 혼합물에 압력을 가하여 펠릿을 성형하고,
    상기 펠릿에 제 1 열처리를 행하여, 소성물을 형성하고,
    상기 소성물을 분쇄하는 분쇄 공정을 행하고,
    상기 분쇄 공정을 행한 소성물에, 알칼리성의 세정액을 사용하여 세정 공정을 행하고,
    상기 세정 공정을 행한 소성물에, 제 2 열처리를 행함으로써 인산철리튬을 형성하고,
    상기 리튬을 포함하는 화합물은, 탄산리튬이고,
    상기 인산철리튬에 포함되는 불순물의 농도는, 황의 농도가 5.1ppm 이하, 망간의 농도가 0.55ppm 이하, 니켈의 농도가 0.1ppm 이하, 코발트의 농도가 0.1ppm 이하, 붕소의 농도가 1.7ppm 이하, 크롬의 농도가 0.38ppm 이하, 몰리브덴의 농도가 0.1ppm 이하, 및 아연의 농도가 0.59ppm 이하인 것을 특징으로 하는, 인산철리튬의 제작 방법.
  2. 리튬을 포함하는 화합물과, 철을 포함하는 화합물과, 인을 포함하는 화합물을 혼합한 혼합물을 형성하고,
    상기 혼합물에 압력을 가하여 펠릿을 성형하고,
    상기 펠릿에 제 1 열처리를 행하여, 소성물을 형성하고,
    상기 소성물을 분쇄하는 분쇄 공정을 행하고,
    상기 분쇄 공정을 행한 소성물에, 알칼리성의 세정액을 사용하여 세정 공정을 행하고,
    상기 세정 공정을 행한 소성물에, 제 2 열처리를 행함으로써 인산철리튬을 형성하고,
    상기 제 1 열처리는, 300℃ 이상 400℃ 이하에서 행해지고,
    상기 인산철리튬에 포함되는 불순물의 농도는, 황의 농도가 5.1ppm 이하, 망간의 농도가 0.55ppm 이하, 니켈의 농도가 0.1ppm 이하, 코발트의 농도가 0.1ppm 이하, 붕소의 농도가 1.7ppm 이하, 크롬의 농도가 0.38ppm 이하, 몰리브덴의 농도가 0.1ppm 이하, 및 아연의 농도가 0.59ppm 이하인 것을 특징으로 하는, 인산철리튬의 제작 방법.

KR1020190010627A 2010-10-08 2019-01-28 전극용 재료 및 축전 장치 KR102121179B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200058255A KR102270377B1 (ko) 2010-10-08 2020-05-15 전극용 재료 및 축전 장치

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JPJP-P-2010-228857 2010-10-08
JPJP-P-2010-228849 2010-10-08
JP2010228857 2010-10-08
JP2010228849 2010-10-08

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180049046A Division KR20180050619A (ko) 2010-10-08 2018-04-27 전극용 재료 및 축전 장치

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200058255A Division KR102270377B1 (ko) 2010-10-08 2020-05-15 전극용 재료 및 축전 장치

Publications (2)

Publication Number Publication Date
KR20190014031A KR20190014031A (ko) 2019-02-11
KR102121179B1 true KR102121179B1 (ko) 2020-06-10

Family

ID=45924415

Family Applications (7)

Application Number Title Priority Date Filing Date
KR1020110102233A KR20120036764A (ko) 2010-10-08 2011-10-07 전극용 재료, 및 축전 장치의 제작 방법
KR1020180001166A KR101865548B1 (ko) 2010-10-08 2018-01-04 전극용 재료, 및 축전 장치의 제작 방법
KR1020180049046A KR20180050619A (ko) 2010-10-08 2018-04-27 전극용 재료 및 축전 장치
KR1020190010627A KR102121179B1 (ko) 2010-10-08 2019-01-28 전극용 재료 및 축전 장치
KR1020200058255A KR102270377B1 (ko) 2010-10-08 2020-05-15 전극용 재료 및 축전 장치
KR1020210078715A KR102599149B1 (ko) 2010-10-08 2021-06-17 전극용 재료, 및 축전 장치의 제작 방법
KR1020230147868A KR20230154783A (ko) 2010-10-08 2023-10-31 전극용 재료, 및 축전 장치의 제작 방법

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020110102233A KR20120036764A (ko) 2010-10-08 2011-10-07 전극용 재료, 및 축전 장치의 제작 방법
KR1020180001166A KR101865548B1 (ko) 2010-10-08 2018-01-04 전극용 재료, 및 축전 장치의 제작 방법
KR1020180049046A KR20180050619A (ko) 2010-10-08 2018-04-27 전극용 재료 및 축전 장치

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020200058255A KR102270377B1 (ko) 2010-10-08 2020-05-15 전극용 재료 및 축전 장치
KR1020210078715A KR102599149B1 (ko) 2010-10-08 2021-06-17 전극용 재료, 및 축전 장치의 제작 방법
KR1020230147868A KR20230154783A (ko) 2010-10-08 2023-10-31 전극용 재료, 및 축전 장치의 제작 방법

Country Status (4)

Country Link
US (2) US8980126B2 (ko)
JP (6) JP5887095B2 (ko)
KR (7) KR20120036764A (ko)
TW (2) TWI562444B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9318741B2 (en) 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
JP6135980B2 (ja) * 2013-01-11 2017-05-31 株式会社Gsユアサ 正極活物質及び蓄電素子
KR102295238B1 (ko) * 2013-08-21 2021-09-01 하이드로-퀘벡 리튬 2차 전지용 양극 물질
EP3224882B1 (en) * 2014-11-28 2018-04-11 Basf Se Process for making lithiated transition metal oxides
JP6878927B2 (ja) * 2017-02-07 2021-06-02 日立金属株式会社 リチウムイオン二次電池用正極活物質の製造方法
EP3670454A1 (en) * 2018-12-21 2020-06-24 Höganäs AB (publ) Pure iron containing compound
CN113044821B (zh) * 2021-02-04 2022-12-13 湖南邦普循环科技有限公司 一种镍铁合金资源化回收的方法和应用
TW202406185A (zh) * 2022-04-01 2024-02-01 美商亞斯朋空氣凝膠公司 含磷酸鐵鋰正極材料的碳粉
WO2024054046A1 (ko) * 2022-09-06 2024-03-14 주식회사 엘지에너지솔루션 리튬 이차 전지

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294238A (ja) * 1999-04-06 2000-10-20 Sony Corp LiFePO4の合成方法及び非水電解質電池の製造方法
WO2008105490A1 (ja) * 2007-02-28 2008-09-04 Santoku Corporation オリビン型構造を有する化合物、非水電解質二次電池用正極、非水電解質二次電池
JP2009032656A (ja) * 2007-02-28 2009-02-12 Sanyo Electric Co Ltd リチウム二次電池用活物質の製造方法、リチウム二次電池用電極の製造方法、リチウム二次電池の製造方法、及びリチウム二次電池用活物質の品質モニタリング方法
JP2009532323A (ja) * 2006-04-06 2009-09-10 ハイ パワー リチウム ソシエテ アノニム リチウム二次電池用のリチウム金属リン酸塩正極物質のナノ粒子の合成

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1125983A (ja) 1997-07-04 1999-01-29 Japan Storage Battery Co Ltd リチウム電池用活物質
KR20010025116A (ko) 1999-04-06 2001-03-26 이데이 노부유끼 양극 활물질의 제조 방법 및 비수 전해질 이차 전지의제조 방법
CN1323447C (zh) 1999-04-06 2007-06-27 索尼株式会社 正极活性物质及无水电解质二次电池
JP4306868B2 (ja) * 1999-04-08 2009-08-05 三井金属鉱業株式会社 スピネル型マンガン酸リチウムの製造方法
JP3456181B2 (ja) 1999-11-30 2003-10-14 日本電気株式会社 リチウムマンガン複合酸化物およびそれを用いた非水電解液二次電池
CA2320661A1 (fr) * 2000-09-26 2002-03-26 Hydro-Quebec Nouveau procede de synthese de materiaux limpo4 a structure olivine
JP4187524B2 (ja) 2002-01-31 2008-11-26 日本化学工業株式会社 リチウム鉄リン系複合酸化物炭素複合体、その製造方法、リチウム二次電池正極活物質及びリチウム二次電池
KR100437340B1 (ko) 2002-05-13 2004-06-25 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질의 제조 방법
JP4297406B2 (ja) 2002-07-31 2009-07-15 三井造船株式会社 2次電池正極材料の製造方法、および2次電池
KR100537745B1 (ko) 2004-06-21 2005-12-19 한국전기연구원 리튬이차전지용 음극 활물질 및 그 제조방법
JP5098146B2 (ja) 2005-10-14 2012-12-12 株式会社Gsユアサ 非水電解質二次電池用正極材料の製造方法およびそれを備える非水電解質二次電池
CA2622675A1 (en) 2007-02-28 2008-08-28 Sanyo Electric Co., Ltd. Method of producing active material for lithium secondary battery, method of producing electrode for lithium secondary battery, method of producing lithium secondary battery, and method of monitoring quality of active material for lithium secondary battery
CN101399343B (zh) * 2007-09-25 2011-06-15 比亚迪股份有限公司 锂离子二次电池正极活性物质磷酸铁锂的制备方法
JP2009259807A (ja) * 2008-03-26 2009-11-05 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
WO2009122686A1 (ja) 2008-03-31 2009-10-08 戸田工業株式会社 リン酸鉄リチウム粒子粉末の製造方法、オリビン型構造のリン酸鉄リチウム粒子粉末、該リン酸鉄リチウム粒子粉末を用いた正極材シート及び非水溶媒系二次電池
EP2231514A4 (en) * 2008-04-07 2013-04-10 Byd Co Ltd PROCESS FOR THE PREPARATION OF AN IRON SOURCE FOR PREPARING LITHIUM FERROUS PHOSPHATE, AND PROCESS FOR PREPARING LITHIUM FERROUS PHOSPHATE
KR101118008B1 (ko) 2008-10-22 2012-03-13 주식회사 엘지화학 올리빈 구조의 리튬 철인산화물 및 이의 제조방법
BRPI0919654B1 (pt) 2008-10-22 2019-07-30 Lg Chem, Ltd. Fosfato de ferro-lítio do tipo olivina, mistura de catodo e bateria secundária de lítio
KR101108444B1 (ko) * 2008-10-22 2012-01-31 주식회사 엘지화학 전극 효율 및 에너지 밀도 특성이 개선된 양극 합제
CN104201379B (zh) 2008-10-22 2017-09-15 株式会社Lg化学 正极活性材料、正极混合物、正极和锂二次电池
JP5509598B2 (ja) * 2009-01-09 2014-06-04 住友大阪セメント株式会社 電極材料及びその製造方法、並びに電極及び電池
EP2237346B1 (en) 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
KR101316413B1 (ko) 2009-03-12 2013-10-08 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 희생 나노입자를 포함하는 전기 전도성 나노복합체 물질 및 이에 의해 생산된 개방 다공성 나노복합체
CN101519198A (zh) * 2009-04-16 2009-09-02 丁建民 一种正极材料磷酸铁锂的制备方法
US20110024288A1 (en) * 2009-07-23 2011-02-03 Sai Bhavaraju Decarboxylation cell for production of coupled radical products
WO2011030697A1 (en) 2009-09-11 2011-03-17 Semiconductor Energy Laboratory Co., Ltd. Power storage device and method for manufacturing the same
CA2678540A1 (fr) 2009-09-15 2011-03-15 Hydro-Quebec Materiau constitue de particules composites d'oxyde, procede pour sa preparation, et son utilisation comme matiere active d'electrode
CN102781827B (zh) * 2010-03-19 2016-05-04 户田工业株式会社 磷酸锰铁锂颗粒粉末的制造方法、磷酸锰铁锂颗粒粉末和使用该颗粒粉末的非水电解质二次电池
US20120088157A1 (en) 2010-10-08 2012-04-12 Semiconductor Energy Laboratory Co., Ltd. Electrode material, power storage device, and electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294238A (ja) * 1999-04-06 2000-10-20 Sony Corp LiFePO4の合成方法及び非水電解質電池の製造方法
JP2009532323A (ja) * 2006-04-06 2009-09-10 ハイ パワー リチウム ソシエテ アノニム リチウム二次電池用のリチウム金属リン酸塩正極物質のナノ粒子の合成
WO2008105490A1 (ja) * 2007-02-28 2008-09-04 Santoku Corporation オリビン型構造を有する化合物、非水電解質二次電池用正極、非水電解質二次電池
JP2009032656A (ja) * 2007-02-28 2009-02-12 Sanyo Electric Co Ltd リチウム二次電池用活物質の製造方法、リチウム二次電池用電極の製造方法、リチウム二次電池の製造方法、及びリチウム二次電池用活物質の品質モニタリング方法

Also Published As

Publication number Publication date
JP2012099471A (ja) 2012-05-24
JP2016054158A (ja) 2016-04-14
JP2019094259A (ja) 2019-06-20
TWI562444B (en) 2016-12-11
KR20190014031A (ko) 2019-02-11
JP2018008877A (ja) 2018-01-18
KR20180006467A (ko) 2018-01-17
KR102270377B1 (ko) 2021-06-30
JP6836612B2 (ja) 2021-03-03
JP6495981B2 (ja) 2019-04-03
US8980126B2 (en) 2015-03-17
JP2023015393A (ja) 2023-01-31
KR102599149B1 (ko) 2023-11-08
US20150162612A1 (en) 2015-06-11
KR20180050619A (ko) 2018-05-15
TWI626782B (zh) 2018-06-11
TW201717461A (zh) 2017-05-16
US10135069B2 (en) 2018-11-20
US20120085968A1 (en) 2012-04-12
KR20200056375A (ko) 2020-05-22
KR20120036764A (ko) 2012-04-18
KR20230154783A (ko) 2023-11-09
TW201232903A (en) 2012-08-01
KR101865548B1 (ko) 2018-06-11
JP2021077655A (ja) 2021-05-20
JP5887095B2 (ja) 2016-03-16
KR20210079247A (ko) 2021-06-29

Similar Documents

Publication Publication Date Title
KR102121179B1 (ko) 전극용 재료 및 축전 장치
KR101900424B1 (ko) 축전 장치용 정극 활물질의 제작 방법
JP5820221B2 (ja) 電極用材料、蓄電装置及び電子機器
JP2021193674A (ja) 蓄電装置の製造方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant