KR102054266B1 - 활물질 분리형 리튬-설퍼 전지 - Google Patents

활물질 분리형 리튬-설퍼 전지 Download PDF

Info

Publication number
KR102054266B1
KR102054266B1 KR1020180055038A KR20180055038A KR102054266B1 KR 102054266 B1 KR102054266 B1 KR 102054266B1 KR 1020180055038 A KR1020180055038 A KR 1020180055038A KR 20180055038 A KR20180055038 A KR 20180055038A KR 102054266 B1 KR102054266 B1 KR 102054266B1
Authority
KR
South Korea
Prior art keywords
sulfur
lithium
battery
sulfur battery
anode
Prior art date
Application number
KR1020180055038A
Other languages
English (en)
Other versions
KR20190130402A (ko
Inventor
박상선
사공선혜
고아림
Original Assignee
주식회사 제이이노텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 제이이노텍 filed Critical 주식회사 제이이노텍
Priority to KR1020180055038A priority Critical patent/KR102054266B1/ko
Priority to EP18918606.7A priority patent/EP3796448A4/en
Priority to PCT/KR2018/005690 priority patent/WO2019221316A1/ko
Priority to US16/619,273 priority patent/US20200161697A1/en
Publication of KR20190130402A publication Critical patent/KR20190130402A/ko
Application granted granted Critical
Publication of KR102054266B1 publication Critical patent/KR102054266B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0587Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은, 향상된 전지 용량을 구현할 수 있는, 비황계 양극, 및 활성황을 포함하는 비수 전해액,을 포함하는 활물질 분리형 리튬-설퍼 전지를 제공한다.

Description

활물질 분리형 리튬-설퍼 전지{ACTIVE MATERIAL SEPARATED TYPE LITHIUM-SULFUR BATTERY}
본 발명은 활물질 분리형 리튬-설퍼 전지에 관한 것이다. 보다 구체적으로, 본 발명은 비황계 양극, 및 활성황을 포함하는 비수 전해액을 포함하는 것을 특징으로 하는 리튬-설퍼 전지에 관한 것이다.
이차전지의 용량과 출력, 수명 등은 이차전지의 성능을 판단하는 중요한 요소가 되는데, 이는 기본적으로 양극과 음극의 소재 선택에서부터 크게 영향을 받는다. 리튬-설퍼 일차전지 또는 리튬-설퍼 이차전지는 기존의 리튬-이온 이차전지의 경우와 마찬가지로 양극과 음극 사이에 개재된 전해질 내에서 이동하는 리튬 이온에 의하여 동작된다. 하지만, 리튬 이온이 전극 활물질의 결정구조 내부로 삽입(intercalation)되어 전극 구조를 변형시키는 기존의 리튬-이온 이차전지의 경우와는 달리 리튬-설퍼 전지는 유황과 리튬 이온 간의 단순한 산화, 환원 반응만을 이용하므로, 기존의 리튬-이온 이차전지에 비해 전극 구조에 큰 제약이 없으며 이론적으로 같은 부피에서 더 큰 용량을 가질 수 있다. 이러한 특성으로 인하여 양극인 유황과 음극인 리튬 금속의 구성을 가지는 리튬-설퍼 전지는 고리구조를 가진 단량체 황(S8)이 황화리튬(Li2S)까지 완전히 반응한다고 가정할 경우, 이론 용량이 1,675mAh/g을 나타내게 되며, 이론 에너지 밀도가 2,600Wh/kg으로서 기존의 다른 전지 시스템 (Ni/MH전지: 450Wh/kg, Li/FeS: 480Wh/kg, Li/MnO2: 1,000Wh/kg, Na/S: 800Wh/kg)에 비하여 약 2.6배 내지 5.6배에 이를 만큼 높은 에너지 밀도를 가진다.
또한, 기존의 전이금속 산화물 리튬-이온 이차전지의 경우, 양극에서 5g/mL 이상의 중금속의 밀도보다 더 높은 밀도를 갖는 니켈(Ni), 코발트(Co), 망간(Mn)의 산화물이 사용되기 때문에 중금속 오염의 문제가 제기될 수 있다. 하지만 리튬-설퍼 전지의 경우 이러한 오염원 물질이 배제되어 있으며 무독성의 재료이기 때문에 친환경 적이라고 할 수 있다. 또한, 양극 재료인 유황은 자원이 풍부하며 가격적인 면에서도 저렴하다는 장점을 갖고 있다.
그러나, 아직까지 리튬-설퍼 전지는 상업적으로 널리 사용되고 있지 못하고 있는데, 그 이유는 현재 상업적으로 시판되고 있는 리튬-이온 이차전지에 비하여 수명특성이 열악하고, 체적 에너지밀도가 낮기 때문이다. 리튬-설퍼 전지의 음극인 리튬 금속은 전기화학적으로 가역성이 떨어지고 안정성이 낮은 물질로 알려져 있다. 한편, 유황의 방전 생성물인 폴리설파이드가 음극으로 이동하여 리튬과 비가역적 반응을 통해 활물질이 소실되면서 전지 용량이 감소된다. 이러한 두 가지 이유로 인해 리튬-설퍼 전지의 수명특성이 좋지 않은 것으로 이해되고 있다.
나아가, 리튬-설퍼 전지의 양극 단위 면적당 황의 로딩량을 증가시킬수록 전지의 성능이 떨어지며, 1,000mAh/g의 단위질량용량 및 2단계의 전위 평탄면(potential plateau)을 낼 수 있는 황의 로딩량은 약 3mg/㎠에 불과하다는 연구결과도 있다(Ke Sun et al., Journal of Electrochemical Energy Conversion and Storage, vol. 13, pp. 021002-1, 021002-5, May 2016.).
종래에는 리튬-설퍼 전지의 용량을 높이기 위해서 알루미늄 집전체 위에 유황의 두께를 두껍게 제작하여 양극의 단위면적당 유황의 양을 최대한 많이 적층하는 방법을 사용하였는데, 이러한 방법은 충방전이 반복됨에 따라 집전체에서 멀리 떨어진 전극 표면에서 유황이 일부 떨어져 나가 수명이 단축되거나, 전도성 경로가 줄어들어 도전성이 떨어지고 전지의 출력이 저하되는 문제를 야기할 수 있었다.
또한, 기존의 리튬-설퍼 전지의 양극은 유황, 바인더 및 탄소 도전재를 용매와 혼합하여 슬러리를 만든 후 집전체에 코팅하여 제조하거나, 메조 기공 탄소에 유황을 복합시켜 제조하였다. 이는 제조공정이 복잡한 문제점, 유황의 휘발성으로 인하여 전극 제조 시 건조 온도를 충분히 올리지 못하여 제조 시간이 길어지는 문제점, 및 양극의 단위 면적당 로딩되는 유황의 양이 증가할수록 유황의 활용률이 급격히 감소하는 문제점이 있다.
KR 10-2014-0122886 A
본 발명은 활물질 분리형 리튬-설퍼 전지를 제공하는 것을 목적으로 한다. 구체적으로, 본 발명은 양극 활물질 분리형 리튬-설퍼 전지로서, 비황계 양극, 및 활성황을 포함하는 비수 전해액을 포함하는 리튬-설퍼 전지를 제공하고자 한다.
본 발명의 일 실시상태는, 비황계 양극; 리튬 금속 음극; 및 상기 비황계 양극 및 상기 리튬 금속 음극 사이에, 활성황을 포함하는 비수 전해액에 함침된 다공성 분리막;을 포함하는 리튬-설퍼 전지를 제공한다.
본 발명에 의하면, 상기 활성황은 상기 비수 전해액 내에서 고상, 및 액상 중 적어도 하나의 상으로 구비될 수 있다.
본 발명에 의하면, 상기 활성황의 함량은 상기 비수 전해액에 대하여 0.1M 이상 4M 이하일 수 있다.
본 발명에 의하면, 상기 비황계 양극의 겉보기 밀도는 0.01g/㎤ 이상 1.3g/㎤ 이하일 수 있다.
본 발명에 의하면, 상기 비황계 양극은 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다.
본 발명에 의하면, 상기 비황계 양극은 탄소계 물질로 코팅된 것일 수 있다. 구체적으로, 상기 비황계 양극은 탄소계 물질로 코팅된, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다.
본 발명에 의하면, 상기 비수 전해액은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC4F9SO3, LiSbF6, LiN(SO2CF3)2, LiNO3, 및 LiBETI로 부터 선택되는 1 이상의 리튬염을 더 포함할 수 있다.
본 발명에 의하면, 상기 리튬염의 함량은 상기 비수 전해액에 대하여 0.1M 이상 3.0M 이하일 수 있다.
본 발명에 의하면, 상기 리튬-설퍼 전지는, 상기 비수 전해액에 함침된 상기 비황계 양극을 상기 리튬 금속 음극이 둘러싸는 보빈형(Bobbin type) 구조일 수 있다.
본 발명에 의하면, 상기 리튬-설퍼 전지는, 상기 비황계 양극, 상기 다공성 분리막, 및 상기 리튬 금속 음극이 순차적으로 구비된 시트가 권취된 스피럴형(spiral type) 구조일 수 있다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 활성황을 비수 전해액에 포함시키므로, 기존의 리튬-설퍼 전지에 비하여 충분한 양의 활성황을 로딩하여 향상된 단위 용량을 구현할 수 있다. 나아가, 본 발명의 일 실시상태에 따른 리튬-설퍼 전지는, 기존 리튬-설퍼 전지에서 유황 로딩량 증가에 따른 유황의 이탈로 발생하는 전지 성능 저하를 해결할 수 있다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 전해액에 유황을 첨가하는 간단한 방법으로 활성황을 구비시킬 수 있으므로, 제조 단가를 낮출 수 있는 장점이 있다. 또한, 본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 기존과 같이 유황을 양극에 구비하기 위하여 탄소-황 복합체를 제조하는 등의 제조 과정을 생략할 수 있으므로, 제조 비용을 절감할 수 있다.
도 1은 본 발명의 일 실시상태에 따른 리튬-설퍼 전지의 모식도를 나타낸 것이다.
도 2는 본 발명의 일 실시상태에 따른 보빈형(Bobbin type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다.
도 3은 본 발명의 일 실시상태에 따른 스피럴형(spiral type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다.
도 4는 실시예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 5는 실시예 2에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 6은 실시예 3에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 7은 실시예 4에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 8은 실시예 5에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 9는 실시예 6에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 10은 비교예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 11은 비교예 2에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
본 명세서에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서, 별도의 언급이 없는 이상 "단위 용량"은 리튬-설퍼 전지에 로딩되는 활성황의 단위 질량 당 방전 용량을 의미할 수 있다.
이하, 본 발명에 따른 리튬-설퍼 전지에 대하여 상세히 설명한다.
본 발명의 일 실시상태는, 비황계 양극; 리튬 금속 음극; 및 상기 비황계 양극 및 상기 리튬 금속 음극 사이에, 활성황을 포함하는 비수 전해액에 함침된 다공성 분리막;을 포함하는 리튬-설퍼 전지를 제공한다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 일차전지 또는 이차전지로 사용될 수 있다.
본 발명에 따른 리튬-설퍼 전지는 기존의 리튬-설퍼 전지와 같이 양극에 유황을 구비하지 않고, 비황계 양극을 포함하는 것을 특징으로 한다. 구체적으로, 본 발명에 따른 리튬-설퍼 전지는 비황계 양극을 포함하고, 양극 활물질로서의 활성황이 비수 전해액에 포함된다. 즉, 본 발명에 따른 리튬-설퍼 전지는 활물질 분리형 리튬-설퍼 전지, 구체적으로 양극 활물질 분리형 리튬-설퍼 전지일 수 있다. 본 발명에 따른 리튬-설퍼 전지는 기존과 같이 유황을 양극에 구비시키기 위하여 탄소-황 복합체를 제조하지 않고, 유황을 비수 전해액에 주입하는 간단한 방법으로 제조할 수 있으므로, 제조 단가를 크게 낮출 수 있는 장점이 있다. 나아가, 본 발명에 따른 리튬-설퍼 전지는 비수 전해액에 유황을 첨가하므로, 유황의 로딩량을 크게 증가시켜 전지 용량을 향상시킬 수 있으며, 나아가 유황의 단위 질량당 방전 용량도 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 활성황은 상기 비수 전해액 내에서 고상, 및 액상 중 적어도 하나의 상으로 구비될 수 있다. 구체적으로, 상기 활성황은 상기 비수 전해액에 분산 또는 용해되어 존재할 수 있다. 상기 활성황은 상기 비수 전해액에 고상 및/또는 액상으로 구비될 수 있다. 상기 활성황이 액상으로 구비되는 경우, 상기 활성황이 상기 비수 전해액에 용해 또는 졸-겔화 되어 존재하는 것을 의미할 수 있다. 또한, 상기 활성황이 고상으로 구비되는 경우, 상기 활성황이 상기 비수 전해액에 더이상 용해되지 않고 원소 황으로 존재하는 상태일 수 있다.
상기 활성황은 원소 황 및 이의 황화물일 수 있다. 구체적으로, 상기 활성황은 황-황 결합(S-S bonding)을 갖는 원소 황 및/또는 황 계열 화합물을 의미할 수 있다. 상기 활성황은 방전시에는 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 충전시에는 S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성할 수 있다. 일 예로, 상기 활성황은 원소 황 및 리튬황화물 중 적어도 하나일 수 있다. 구체적으로, 상기 활성황은 고리구조를 가진 단량체 황(S8) 및/또는 상기 단량체 황(S8)이 상기 비수 전해액의 리튬염과 반응하여 형성된 리튬황화물일 수 있다. 상기 리튬황화물은 Li2S8, Li2S6, Li2S4 등의 형태로 존재할 수 있다. 상기 리튬-설퍼 전지의 방전 시, Li2S8로부터 황이 빠져나가며 반응할 수 있으며, 완전히 반응된 경우, Li2S의 형태로 존재하게 된다. 나아가, 방전된 상기 리튬-설퍼 전지의 충전 시, 상기 Li2S는 Li2S4, Li2S6 및 Li2S8 등으로 전환되어 재방전이 가능한 상태가 될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 활성황의 함량은 상기 비수 전해액에 대하여 0.1M 이상 4M 이하, 0.1M 이상 2M 이하, 또는 0.5M 이상 1.5M 이하, 약 1.0M일 수 있다. 상기 활성황은 상기 비수 전해액에 첨가되는 원소 황, 구체적으로 S8의 함량일 수 있다. 즉, 상기 활성황의 함량은 상기 비수 전해액에 포함되는 고상 및 액상의 활성황의 함량을 의미할 수 있다. 상기 활성황의 함량이 상기 범위 내인 경우, 활성황의 단위 질량 당 방전 용량을 최대화할 수 있다. 상기 활성황의 함량이 상기 범위를 초과하는 경우에는 상기 비수 전해액에서 상기 활성황이 충분히 이온화되지 못하고 고상으로 잔존하는 양이 많아져 단위 용량이 감소할 수 있다. 그러므로, 상기 활성황의 함량을 상기 범위 내로 적절하게 조절하여, 상기 비수 전해액에 포함된 활성황의 효율적인 반응을 유도할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비황계 양극은 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다. 구체적으로, 상기 비황계 양극은 황을 포함하지 않으며, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이와 같은 전극 집전체 자체를 사용할 수 있다.
또한, 본 발명의 일 실시상태에 따르면, 비황계 양극은 집전체는 탄소계 물질로 코팅된, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다. 구체적으로, 상기 비황계 양극은 황을 포함하지 않으며, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이와 같은 전극 집전체의 적어도 일부를 탄소계 물질로 코팅하여 적용한 것일 수 있다. 상기 탄소계 물질은 하기의 탄소계 물질과 바인더를 포함하는 슬러리를 상기 전극 집전체의 적어도 일면 상에 도포한 후 건조하는 방법으로 코팅될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 탄소계 물질은 카본블랙, 케첸블랙, 아세틸렌블랙, 그라파이트 및 그래핀으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 다만, 이에 한정되는 것은 아니며, 당 업계에서 도전재로 사용되는 탄소계 물질이라면 적용할 수 있다.
즉, 본 발명의 일 실시상태에 따르면, 상기 비황계 양극은 양극 집전체일 수 있다. 또한, 상기 비황계 양극은 탄소계 물질로 코팅된 양극 집전체일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비황계 양극의 겉보기 밀도는 0.01g/㎤ 이상 1.3g/㎤ 이하, 0.01g/㎤ 이상 1.0g/㎤ 이하, 0.1g/㎤ 이상 1.3g/㎤ 이하, 0.1g/㎤ 이상 1.0g/㎤ 이하, 또는 0.1g/㎤ 이상 0.7g/㎤ 이하 일 수 있다. 상기 비황계 양극의 겉보기 밀도가 상기 범위 이내인 경우, 전해액의 침투가 용이하여 높은 단위 용량을 구현할 수 있다.
상기 다공성 분리막은 펠트, 종이 또는 미세다공성 플라스틱 필름과 같은 고 다공성/투과성 재료를 이용하여 제조된 것일 수 있다. 상기 다공성 분리막은 전지 전위 하에서 전해액 및 기타 전지 성분에 의한 공격에 내성이 있어야 한다. 일 예로, 상기 다공성 분리막은 유리, 플라스틱, 또는 세라믹 재질의 다공성 분리막일 수 있다. 또한, 상기 다공성 분리막은 비수 전해액을 가두기 위하여, 다공성 또는 미세다공성 망 구조를 갖는 폴리머 분리막일 수 있다. 다만, 이에 한정되는 것은 아니며, 당 업계에서 일반적으로 사용되는 것이라면 적용될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비수 전해액은 리튬염을 더 포함할 수 있다. 구체적으로, 상기 비수 전해액은 리튬염 및 상기 활성황을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC4F9SO3, LiSbF6, LiN(SO2CF3)2, LiNO3, 및 LiBETI로 부터 선택되는 1 이상을 포함할 수 있다. 상기 리튬염은 상기 비수 전해액 내에서 상기 활성황과 반응하여 리튬황화물을 형성할 수 있다. 상기 리튬황화물은 보다 낮은 원자수의 황을 포함하는 리튬황화물로 전환되며, 상기 리튬-설퍼 전지의 방전을 가능하게 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 리튬염의 함량은 상기 비수 전해액에 대하여 0.1M 이상 3.0M 이하, 0.1M 이상 2.0M 이하, 0.5M 이상 1.5M 이하, 또는 약 1.0M일 수 있다.
또한, 본 발명의 일 실시상태에 따르면, 상기 리튬염과 상기 활성황의 몰비는 1.5:1 내지 1:1.5, 구체적으로 약 1:1일 수 있다. 상기 리튬염과 상기 활성황의 몰비가 상기 범위 내인 경우, 활성황이 비수 전해액 내에서 높은 비율로 활용될 수 있으며, 이를 통하여 활성황의 단위 질량 당 전지 용량을 최대화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비수 전해액은 비수성 유기 용매를 포함할 수 있다. 구체적으로, 상기 비수성 유기 용매로서, 1,3-디옥솔란(1,3-dioxolane), 2-메틸테트라히드로퓨란, 폴리에틸렌 글라임디메틸 에테르, 테트라히드로퓨란, 및/또는 에테르계 용매를 사용할 수 있다. 상기 비수성 유기 용매로는 디부틸 에테르, 2-메틸테트라히드로퓨란, 폴리에틸렌 글라임디메틸 에테르, 테트라히드로퓨란 등이 사용될 수 있다. 구체적으로, 상기 비수성 유기 용매는 디메톡시에탄(dimethoxyethane), 디글라임(diglyme), 트리글라임(triglyme), 테트라글라임(tetraglyme), 1,3-디옥솔란(1,3-dioxolane), 디메틸 에테르(dimethyl ether), 디에틸 에테르(diethyl ether), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 디메틸포름아마이드, 설포란, 디메틸 아세트아마이드, 디메틸 설폭사이드, 디메틸 설페이트, 에틸렌 글리콜 디아 세테이트, 디메틸 설파이트, 에틸렌 글리콜 설파이트로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으며, 하나 이상 혼합하여 사용되는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절될 수 있다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지의 모식도는 도 1에 나타내었다. 구체적으로, 도 1에 따르면, 다공성 분리막(30)을 사이에 두고 비황계 양극(10) 및 리튬 금속 음극(20)이 구비되며, 다공성 분리막(30)은 비수 전해액(40)에 함침되고, 비수 전해액(40)은 비황계 양극(10)과 리튬 금속 음극(20) 사이에 위치한다. 다만, 본 발명은 도 1의 구조에 한정되는 것은 아니며, 추가적인 부재를 더 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 리튬-설퍼 전지는, 상기 비수 전해액에 함침된 상기 비황계 양극을 상기 리튬 금속 음극이 둘러싸는 보빈형(Bobbin type) 구조일 수 있다. 도 2는 상기 보빈형(Bobbin type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다. 구체적으로, 도 2는 중심부에 비황계 양극(10)이 비수 전해액(40)에 함침되어 있고, 전지 케이스(50)의 내벽면에 리튬 금속 음극(20)이 구비되고, 비황계 양극(10) 및 리튬 금속 음극(20) 사이에 다공성 분리막(30)을 구비한 보빈형 구조의 리튬-설퍼 전지의 측단면도 및 평단면도를 나타낸 것이다.
본 발명의 일 실시상태에 따르면, 상기 리튬-설퍼 전지는, 상기 비황계 양극, 상기 다공성 분리막, 및 상기 리튬 금속 음극이 순차적으로 구비된 시트가 권취된 스피럴형(spiral type) 구조일 수 있다. 도 3은 상기 스피럴형(spiral type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다. 구체적으로, 도 3은 비황계 양극(10), 다공성 분리막(30) 및 리튬 금속 음극(20)이 순차적으로 적층된 적층 시트가 권취되고, 다공성 분리막이 비수 전해액(40)으로 함침된 스피럴형(spiral type) 구조의 리튬-설퍼 전지의 측단면도 및 평단면도를 나타낸 것이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
[ 실시예 1]
비황계 양극의 제조
케첸블랙 및 폴리에틸렌옥사이드를 혼합한 슬러리를 제조한 후, 이를 Ni 폼의 일면 상에 도포한 후 건조하여, 비황계 양극으로서 케첸블랙이 코팅된 Ni 폼을 제조하였다.
비수 전해액의 제조
디메톡시에탄(dimethoxyethane), 디글라임(diglyme), 1,3-디옥솔란(1,3-dioxolane)을 1:1:1의 부피비로 혼합한 유기 용매에 약 1M의 LiTFSi를 용해한 후, 하기 표 1과 같이 황 파우더(S8)를 전해액에 첨가하여, 활성황을 포함하는 비수 전해액을 제조하였다.
리튬- 설퍼 전지의 제조
본 발명에 따른 리튬-설퍼 전지의 성능을 측정하기 위하여, 2032 규격의 코인셀을 제조하였다. 구체적으로, 캡(cap), 버튼(bottom) 및 개스킷(gasket) 등으로 구성된 2032 규격의 코인셀 부품 세트를 준비하였다. 캔 형태의 버튼(bottom) 하면에 Ni 메쉬(Ni mesh)을 용접하고, 니켈 메쉬 상에 음극으로서 리튬 호일(Ø16)을 부착하였다. 그리고, 상기 버튼에 폴리에틸렌 재질의 다공성 분리막(Celgard사, 두께 0.02㎜)(Ø18)과 상기 개스킷을 넣어 음극 부분을 차단한 후, 상기 제조한 전해액을 주입하여 분리막이 충분히 젖도록 하였다. 나아가, 전해액으로 함침된 다공성 분리막 상에 상기 제조된 비황계 양극(Ø16) 및 캡을 위치시킨 후, 클램핑 머신을 이용하여 2032 규격 코인셀 형태의 리튬-설퍼 전지를 제조하였다.
상기와 같이 제조된 리튬-설퍼 전지를 battery test system을 이용하여 100kHz 내지 200MHz 범위에서 임피던스 측정하여 리튬-설퍼 전지의 저항을 확인한 후, 약 1mA의 전류값으로 방전하며, 전류와 시간을 곱한 방전 용량 값을 로딩된 황 (S8)의 질량으로 나누어 단위 용량을 계산하였다.
도 4는 실시예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 4에 따르면, 실시예 1에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 555mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.0V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 실시예 2]
마이크로 유리 섬유 재질의 다공성 분리막(H&V사, 두께 0.24㎜)을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 5는 실시예 2에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 5에 따르면, 실시예 2에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 978mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.1V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 실시예 3]
비황계 양극으로서, 케첸블랙 및 아세틸렌블랙을 3:7의 중량비로 혼합하여, Ni 메쉬 상의 일면 상에 도포한 후 건조하여 제조된 전극을 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 6은 실시예 3에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 6에 따르면, 실시예 3에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 401mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.1 V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 실시예 4]
비황계 양극으로서, 탄소 섬유로 이루어진 시트 형태의 탄소 종이를 전극으로 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 7은 실시예 4에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 7에 따르면, 실시예 4에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 704mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.0V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 실시예 5]
비황계 양극으로서, 탄소 섬유 펠트를 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 8은 실시예 5에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 8에 따르면, 실시예 5에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 869mAh/g인 것을 알 수 있으며, 약 2.4V 및 약 2.1V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 실시예 6]
비황계 양극로서, 니켈 폼을 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 9는 실시예 6에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 9에 따르면, 실시예 6에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 308mAh/g인 것을 알 수 있으며, 약 2.4V 및 약 2.0V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 비교예 1]
황 파우더(S8), 케첸블랙 및 폴리에틸렌옥사이드를 6:2:2의 중량비로 혼합한 슬러리를 제조한 후, 이를 탄소 코팅된 알루미늄 호일 상에 도포한 후 건조하여 양극을 제조하였다. 또한, 디메톡시에탄(dimethoxyethane), 디글라임(diglyme), 1,3-디옥솔란(1,3-dioxolane)을 1:1:1의 부피비로 혼합한 유기 용매에 약 1M의 LiTFSi를 용해시켜 비수 전해액을 제조하였다.
상기와 같이 제조한 양극 및 비수 전해액을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 10은 비교예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 10에 따르면, 비교예 1에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 180mAh/g인 것을 알 수 있으며, 약 2.4V 및 약 2.2V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[ 비교예 2]
황 파우더(S8), 케첸블랙 및 폴리에틸렌옥사이드를 90:5:5의 중량비로 혼합 혼합한 슬러리를 제조한 후, 이를 탄소 코팅된 알루미늄 호일 상에 도포한 후 건조하여 양극을 제조하였다.
상기 제조된 양극을 사용한 것을 제외하고, 비교예 1과 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 11은 비교예 2에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 11에 따르면, 비교예 2에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 58mAh/g인 것을 알 수 있으며, 약 2.4V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
하기 표 1은 실시예 1 내지 6, 및 비교예 1 내지 2에 따른 리튬-설퍼 전지의 황 로딩량, 양극의 겉보기 밀도 및 단위 용량을 측정한 결과를 나타낸 것이다.
S 8 로딩량
(mg/㎠)
양극의 겉보기 밀도
(g/㎤)
단위 용량(mAh/g)
실시예 1 22.5 0.466 555
실시예 2 22.5 0.385 978
실시예 3 19 0.61 401
실시예 4 22.5 0.268 704
실시예 5 24 0.105 869
실시예 6 26 0.161 308
비교예 1 12 1.4 180
비교예 2 13 1.5 58
상기 표 1에서의 양극의 겉보기 밀도는 전극 단위 면적 (16Ø=2.0㎠)에 전극 두께를 곱하여 부피를 결정하고, 질량을 측정하여 겉보기 밀도를 계산한 값이다.
상기 표 1의 결과에 따르면, 비황계 양극을 구비한 본원 실시예 1 내지 6의 경우, 비수 전해액에 황(S8)을 로딩하여, 비교예에 비하여 많은 양의 황을 로딩할 수 있다. 나아가, 실시예 1 내지 6의 경우, 황(S8)의 로딩량이 약 19mg/㎠ 내지 26mg/㎠으로 높음에도, 비교예에 비하여 최대 900mAh/g 이상의 단위 용량을 구현하는 것을 확인할 수 있다. 이는, 실시예 1 내지 6의 양극의 겉보기 밀도가 매우 낮으므로, 비수 전해액이 용이하게 침투할 수 있어 로딩된 황(S8)이 효과적으로 반응에 참여한 것으로 파악된다. 즉, 실시예에 따른 리튬-설퍼 전지는, 활성황을 충분히 포함하는 비수 전해액이 낮은 겉보기 밀도를 가지는 양극에 효과적으로 침투할 수 있으므로, 로딩된 황을 효과적으로 반응시켜 단위 용량을 크게 향상시킬 수 있다.
10: 비황계 양극
20: 리튬 금속 음극
30: 다공성 분리막
40: 비수 전해액
50: 전지 케이스
60: 전지 헤더
70: 리드
80: 인슐레이터

Claims (10)

  1. 비황계 양극; 리튬 금속 음극; 및 상기 비황계 양극 및 상기 리튬 금속 음극 사이에, 활성황을 포함하는 비수 전해액에 함침된 다공성 분리막;을 포함하고,
    상기 비황계 양극의 겉보기 밀도는 0.01g/㎤ 이상 1.3g/㎤ 이하이며,
    상기 활성황은 고체 황(S8)인 것을 특징으로 하는 리튬-설퍼 전지.
  2. 삭제
  3. 청구항 1에 있어서,
    상기 활성황의 함량은 상기 비수 전해액에 대하여 0.1M 이상 4M 이하인 것을 특징으로 하는 리튬-설퍼 전지.
  4. 삭제
  5. 청구항 1에 있어서,
    상기 비황계 양극은 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이인 것을 특징으로 하는 리튬-설퍼 전지.
  6. 청구항 1에 있어서,
    상기 비황계 양극은 탄소계 물질로 코팅된, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이인 것을 특징으로 하는 리튬-설퍼 전지.
  7. 청구항 1에 있어서,
    상기 비수 전해액은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC4F9SO3, LiSbF6, LiN(SO2CF3)2, LiNO3, 및 LiBETI로 부터 선택되는 1 이상의 리튬염을 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지.
  8. 청구항 7에 있어서,
    상기 리튬염의 함량은 상기 비수 전해액에 대하여 0.1M 이상 3.0M 이하인 것을 특징으로 하는 리튬-설퍼 전지.
  9. 청구항 1에 있어서,
    상기 리튬-설퍼 전지는, 상기 비수 전해액에 함침된 상기 비황계 양극을 상기 리튬 금속 음극이 둘러싸는 보빈형(Bobbin type) 구조인 것을 특징으로 하는 리튬-설퍼 전지.
  10. 청구항 1에 있어서,
    상기 리튬-설퍼 전지는, 상기 비황계 양극, 상기 다공성 분리막, 및 상기 리튬 금속 음극이 순차적으로 구비된 시트가 권취된 스피럴형(spiral type) 구조인 것을 특징으로 하는 리튬-설퍼 전지.
KR1020180055038A 2018-05-14 2018-05-14 활물질 분리형 리튬-설퍼 전지 KR102054266B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020180055038A KR102054266B1 (ko) 2018-05-14 2018-05-14 활물질 분리형 리튬-설퍼 전지
EP18918606.7A EP3796448A4 (en) 2018-05-14 2018-05-18 ACTIVE MATERIAL SEPARATION TYPE LITHIUM-SULFUR BATTERY
PCT/KR2018/005690 WO2019221316A1 (ko) 2018-05-14 2018-05-18 활물질 분리형 리튬-설퍼 전지
US16/619,273 US20200161697A1 (en) 2018-05-14 2018-05-18 Active material separation-type lithium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180055038A KR102054266B1 (ko) 2018-05-14 2018-05-14 활물질 분리형 리튬-설퍼 전지

Publications (2)

Publication Number Publication Date
KR20190130402A KR20190130402A (ko) 2019-11-22
KR102054266B1 true KR102054266B1 (ko) 2019-12-10

Family

ID=68540485

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180055038A KR102054266B1 (ko) 2018-05-14 2018-05-14 활물질 분리형 리튬-설퍼 전지

Country Status (4)

Country Link
US (1) US20200161697A1 (ko)
EP (1) EP3796448A4 (ko)
KR (1) KR102054266B1 (ko)
WO (1) WO2019221316A1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647741B1 (ko) * 2005-05-09 2006-11-23 제노에너지(주) 통공을 갖는 리튬전지용 탄소전극 및 그의 제조방법
KR101771295B1 (ko) * 2014-10-29 2017-08-24 주식회사 엘지화학 리튬 금속 전지용 전해질 용액 및 이를 포함하는 리튬 금속 전지

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101511206B1 (ko) * 2012-09-10 2015-04-10 한양대학교 산학협력단 리튬 황 전지
KR101477782B1 (ko) 2013-04-11 2014-12-31 한국과학기술원 고분자 나노섬유, 알루미늄 박막, 탄소나노튜브 및 유황의 복합체를 이용한 리튬-황 이차전지용 전극 및 그 제조 방법
KR101709988B1 (ko) * 2014-11-12 2017-02-27 주식회사 제이이노텍 고에너지 밀도를 갖는 리튬-설퍼 전지
KR101994877B1 (ko) * 2015-06-26 2019-07-01 주식회사 엘지화학 리튬 황 전지 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100647741B1 (ko) * 2005-05-09 2006-11-23 제노에너지(주) 통공을 갖는 리튬전지용 탄소전극 및 그의 제조방법
KR101771295B1 (ko) * 2014-10-29 2017-08-24 주식회사 엘지화학 리튬 금속 전지용 전해질 용액 및 이를 포함하는 리튬 금속 전지

Also Published As

Publication number Publication date
WO2019221316A1 (ko) 2019-11-21
EP3796448A1 (en) 2021-03-24
KR20190130402A (ko) 2019-11-22
EP3796448A4 (en) 2022-03-16
US20200161697A1 (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US9276259B2 (en) Secondary battery of improved lithium ion mobility and cell capacity
KR100629545B1 (ko) 비수전해액 이차전지
US6528212B1 (en) Lithium battery
JP3619125B2 (ja) 非水電解質二次電池
WO2010073332A1 (ja) リチウム空気電池
CN105280880B (zh) 非水电解质二次电池用正极、非水电解质二次电池以及其系统
KR102018756B1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
US10840508B2 (en) Lithium ion secondary battery
KR20140001114A (ko) 비수 전해질 이차 전지 및 그 제조 방법
US20030068555A1 (en) Non-aqueous electrolyte secondary battery
JP2002203609A (ja) 非水電解質二次電池の充電方法
JPH11204145A (ja) リチウム二次電池
JP2004158441A (ja) 非水電解質二次電池
KR20240017067A (ko) 전지 양극재, 그의 제조 방법 및 그의 적용
JP5360860B2 (ja) 非水電解液二次電池
KR102054266B1 (ko) 활물질 분리형 리튬-설퍼 전지
JP2006244921A (ja) 非水電解質二次電池用セパレータ及びこのセパレータを用いた非水電解質二次電池
KR20020055572A (ko) 비수성 전해질 이차 전지
JP2000195550A (ja) 非水電解液二次電池
KR20060063371A (ko) 폴리에틸렌글리콜이 첨가된 전극 및 이를 포함하는 리튬이차 전지
JP2004193139A (ja) 非水電解質二次電池
JP2002203551A (ja) 非水電解質電池
KR101765367B1 (ko) 리튬-황 전지용 양극 및 이의 제조방법
KR102108485B1 (ko) 세라믹 코팅층 및 유황 코팅층이 구비된 분리막을 포함하는 리튬-황 전지
WO2022030109A1 (ja) リチウムイオン二次電池

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant