WO2019221316A1 - 활물질 분리형 리튬-설퍼 전지 - Google Patents
활물질 분리형 리튬-설퍼 전지 Download PDFInfo
- Publication number
- WO2019221316A1 WO2019221316A1 PCT/KR2018/005690 KR2018005690W WO2019221316A1 WO 2019221316 A1 WO2019221316 A1 WO 2019221316A1 KR 2018005690 W KR2018005690 W KR 2018005690W WO 2019221316 A1 WO2019221316 A1 WO 2019221316A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sulfur
- lithium
- battery
- sulfur battery
- metal
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
- H01M10/0587—Construction or manufacture of accumulators having only wound construction elements, i.e. wound positive electrodes, wound negative electrodes and wound separators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0025—Organic electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention relates to an active material separate lithium-sulfur battery. More specifically, the present invention relates to a lithium-sulfur battery comprising a non-sulfur positive electrode and a non-aqueous electrolyte containing active sulfur.
- Lithium-sulfur primary batteries or lithium-sulfur secondary batteries are operated by lithium ions moving in the electrolyte interposed between the positive electrode and the negative electrode as in the case of the conventional lithium-ion secondary battery.
- lithium-sulfur batteries have only a simple oxidation and reduction reaction between sulfur and lithium ions.
- a lithium-sulfur battery having a composition of sulfur as a positive electrode and lithium metal as a negative electrode has a theoretical capacity when the monomer sulfur (S 8 ) having a ring structure fully reacts to lithium sulfide (Li 2 S).
- lithium-sulfur batteries have not yet been widely used commercially, because they have poor life characteristics and low volumetric energy density compared to the lithium-ion secondary batteries currently commercially available.
- Lithium metal which is a negative electrode of a lithium-sulfur battery, is known as an electrochemically reversible and low stability material.
- polysulfide which is a discharge product of sulfur, moves to the negative electrode, and the battery capacity decreases as the active material is lost through irreversible reaction with lithium. For these two reasons, it is understood that the life characteristics of a lithium-sulfur battery are not good.
- the cathode of a conventional lithium-sulfur battery is prepared by mixing sulfur, a binder, and a carbon conductive material with a solvent to make a slurry and coating the current collector, or by combining sulfur with mesoporous carbon.
- An object of the present invention is to provide an active material separation type lithium-sulfur battery.
- the present invention is to provide a lithium-sulfur battery including a non-aqueous positive electrode and a non-aqueous electrolyte containing active sulfur as a positive electrode active material separated lithium-sulfur battery.
- a non-sulfur anode Lithium metal cathode; And a porous separator impregnated with a nonaqueous electrolyte containing active sulfur between the non-sulfur positive electrode and the lithium metal negative electrode.
- the active sulfur may be provided in at least one of a solid phase and a liquid phase in the nonaqueous electrolyte.
- the content of the active sulfur may be 0.1M or more and 4M or less with respect to the nonaqueous electrolyte.
- the apparent density of the non-sulfur anode may be 0.01 g / cm 3 or more and 1.3 g / cm 3 or less.
- the non-sulfur anode may be a metal foil, metal foam, metal mesh, carbon fiber felt, or carbon paper.
- the non-sulfur anode may be coated with a carbonaceous material.
- the non-sulfur anode may be a metal foil, metal foam, metal mesh, carbon fiber felt, or carbon paper, coated with a carbon-based material.
- the nonaqueous electrolyte is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiSbF 6 , LiN (SO 2 CF 3 ) 2 , LiNO 3 , and It may further comprise at least one lithium salt selected from LiBETI.
- the content of the lithium salt may be 0.1M or more and 3.0M or less with respect to the nonaqueous electrolyte.
- the lithium-sulfur battery may have a bobbin type structure in which the lithium metal anode surrounds the non-sulfur cathode impregnated with the nonaqueous electrolyte.
- the lithium-sulfur battery may have a spiral type structure in which a sheet in which the non-sulfur cathode, the porous separator, and the lithium metal anode are sequentially provided is wound.
- the lithium-sulfur battery according to the exemplary embodiment of the present invention includes active sulfur in the nonaqueous electrolyte, it is possible to implement an improved unit capacity by loading a sufficient amount of active sulfur as compared to the conventional lithium-sulfur battery. Furthermore, the lithium-sulfur battery according to the exemplary embodiment of the present invention can solve the degradation of battery performance caused by the release of sulfur due to the increase in sulfur loading in the existing lithium-sulfur battery.
- Lithium-sulfur battery according to one embodiment of the present invention can be provided with active sulfur by a simple method of adding sulfur to the electrolyte, there is an advantage that can lower the manufacturing cost.
- the lithium-sulfur battery according to the exemplary embodiment of the present invention can omit a manufacturing process such as manufacturing a carbon-sulfur composite to include sulfur in the positive electrode as in the prior art, thereby reducing manufacturing costs.
- Figure 1 shows a schematic diagram of a lithium-sulfur battery according to an embodiment of the present invention.
- Figure 2 shows a schematic diagram of a lithium-sulfur battery of the bobbin type (Bobbin type) structure according to an embodiment of the present invention.
- Figure 3 shows a schematic diagram of a lithium-sulfur battery of the spiral type (spiral type) structure according to an embodiment of the present invention.
- Example 4 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared according to Example 1 at a current value of about 1 mA.
- Example 5 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared according to Example 2 at a current value of about 1 mA.
- V 6 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared according to Example 3 at a current value of about 1 mA.
- Example 7 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared according to Example 4 at a current value of about 1 mA.
- V 8 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared according to Example 5 at a current value of about 1 mA.
- V 10 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging a lithium-sulfur battery prepared according to Comparative Example 1 with a current value of about 1 mA.
- FIG. 11 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging a lithium-sulfur battery prepared according to Comparative Example 2 with a current value of about 1 mA.
- unit capacity may mean a discharge capacity per unit mass of active sulfur loaded into a lithium-sulfur battery.
- a non-sulfur anode Lithium metal cathode; And a porous separator impregnated with a nonaqueous electrolyte containing active sulfur between the non-sulfur positive electrode and the lithium metal negative electrode.
- the lithium-sulfur battery according to one embodiment of the present invention may be used as a primary battery or a secondary battery.
- Lithium-sulfur battery according to the present invention is characterized in that it comprises a non-sulfur-based positive electrode, without having sulfur in the positive electrode as in the conventional lithium-sulfur battery.
- the lithium-sulfur battery according to the present invention includes a non-sulfur positive electrode, and active sulfur as a positive electrode active material is included in the non-aqueous electrolyte. That is, the lithium-sulfur battery according to the present invention may be an active material separated lithium-sulfur battery, specifically, a positive electrode active material separated lithium-sulfur battery.
- Lithium-sulfur battery according to the present invention can be produced by a simple method of injecting sulfur into the non-aqueous electrolyte, without producing a carbon-sulfur composite in order to provide sulfur to the positive electrode as in the conventional, it is possible to significantly reduce the manufacturing cost There is an advantage. Furthermore, since the lithium-sulfur battery according to the present invention adds sulfur to the nonaqueous electrolyte, it is possible to greatly increase the loading of sulfur to improve battery capacity, and further improve the discharge capacity per unit mass of sulfur.
- the active sulfur may be provided in at least one of a solid phase and a liquid phase in the nonaqueous electrolyte.
- the active sulfur may be dispersed or dissolved in the nonaqueous electrolyte.
- the active sulfur may be provided in the solid and / or liquid phase in the nonaqueous electrolyte.
- the active sulfur may be provided in the liquid phase, it may mean that the active sulfur is dissolved or sol-gelized in the nonaqueous electrolyte.
- the active sulfur when the active sulfur is provided in a solid phase, the active sulfur may be in a state in which elemental sulfur is no longer dissolved in the nonaqueous electrolyte.
- the active sulfur may be elemental sulfur and sulfides thereof.
- the active sulfur may refer to elemental sulfur and / or sulfur-based compound having sulfur-sulfur bonding (SS bonding).
- the active sulfur may store and generate electrical energy by using an oxidation-reduction reaction in which the oxidation of S decreases as the SS bond is disconnected during discharge and the oxidation of S increases during charging.
- the active sulfur may be at least one of elemental sulfur and lithium sulfide.
- the active sulfur may be a lithium sulfide formed by reacting a monomeric sulfur (S 8 ) having a ring structure and / or the monomeric sulfur (S 8 ) with a lithium salt of the nonaqueous electrolyte.
- the lithium sulfide may be present in the form of Li 2 S 8 , Li 2 S 6 , Li 2 S 4, and the like.
- sulfur When discharging the lithium-sulfur battery, sulfur may react with Li 2 S 8 to escape, and when fully reacted, it is present in the form of Li 2 S.
- the Li 2 S may be converted to Li 2 S 4 , Li 2 S 6 , Li 2 S 8, or the like to be in a state capable of re-discharging.
- the content of the active sulfur may be 0.1M or more and 4M or less, 0.1M or more and 2M or less, or 0.5M or more and 1.5M or less and about 1.0M with respect to the nonaqueous electrolyte.
- the active sulfur may be an elemental sulfur added to the nonaqueous electrolyte, specifically S 8 . That is, the content of the active sulfur may mean the content of the active sulfur of the solid and liquid phase contained in the non-aqueous electrolyte. When the content of the active sulfur is in the above range, it is possible to maximize the discharge capacity per unit mass of the active sulfur.
- the active capacity of the active sulfur may not be sufficiently ionized in the nonaqueous electrolyte and may remain in a solid phase, thereby decreasing a unit capacity. Therefore, by appropriately adjusting the content of the active sulfur in the above range, it is possible to induce an efficient reaction of the active sulfur contained in the non-aqueous electrolyte.
- the non-sulfur anode may be a metal foil, a metal foam, a metal mesh, carbon fiber felt, or carbon paper.
- the non-sulfur anode does not include sulfur, and may use the electrode current collector itself such as metal foil, metal foam, metal mesh, carbon fiber felt, or carbon paper.
- the non-sulfur anode may be a metal foil, a metal foam, a metal mesh, a carbon fiber felt, or a carbon paper, wherein the current collector is coated with a carbon-based material.
- the non-sulfur anode does not include sulfur, and may be applied by coating at least a portion of an electrode current collector such as metal foil, metal foam, metal mesh, carbon fiber felt, or carbon paper with a carbon-based material.
- the carbonaceous material may be coated by applying a slurry including the following carbonaceous material and a binder on at least one surface of the electrode current collector and then drying.
- the carbonaceous material may include at least one selected from the group consisting of carbon black, ketjen black, acetylene black, graphite, and graphene.
- the present invention is not limited thereto, and any carbon-based material used as a conductive material in the art may be applied.
- the non-sulfur cathode may be a positive electrode current collector.
- the non-sulfur anode may be a cathode current collector coated with a carbon-based material.
- the apparent density of the non-sulfur anode is 0.01 g / cm 3 or more and 1.3 g / cm 3 or less, 0.01 g / cm 3 or more and 1.0 g / cm 3 or less, 0.1 g / cm 3 or more and 1.3 g / cm 3 or less, 0.1 g / cm 3 or more and 1.0 g / cm 3 or less, or 0.1 g / cm 3 or more and 0.7 g / cm 3 or less.
- the apparent density of the non-sulfur anode is within the above range, it is possible to easily penetrate the electrolyte solution, thereby realizing a high unit capacity.
- the porous separator may be prepared by using a high porosity / permeable material such as felt, paper or microporous plastic film.
- the porous separator must be resistant to attack by electrolyte and other battery components under cell potential.
- the porous separator may be a porous separator made of glass, plastic, or ceramic material.
- the porous separator may be a polymer separator having a porous or microporous network structure to trap the non-aqueous electrolyte.
- the present invention is not limited thereto and may be applied as long as it is generally used in the art.
- the nonaqueous electrolyte may further include a lithium salt.
- the nonaqueous electrolyte may include a lithium salt and the active sulfur.
- the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiSbF 6 , LiN (SO 2 CF 3 ) 2 , LiNO 3 , and May include one or more selected from LiBETI.
- the lithium salt may react with the active sulfur in the nonaqueous electrolyte to form lithium sulfide.
- the lithium sulfide is converted to lithium sulfide containing lower atomic number sulfur, and may enable the discharge of the lithium-sulfur battery.
- the content of the lithium salt may be 0.1M or more and 3.0M or less, 0.1M or more and 2.0M or less, 0.5M or more and 1.5M or less, or about 1.0M with respect to the nonaqueous electrolyte.
- the molar ratio of the lithium salt and the active sulfur may be 1.5: 1 to 1: 1.5, specifically about 1: 1.
- the active sulfur may be utilized at a high rate in the nonaqueous electrolyte, thereby maximizing the battery capacity per unit mass of the active sulfur.
- the nonaqueous electrolyte may include a nonaqueous organic solvent.
- a nonaqueous organic solvent 1,3-dioxolane (1,3-dioxolane), 2-methyltetrahydrofuran, polyethylene glymedimethyl ether, tetrahydrofuran, and / or an ether solvent may be used.
- Dibutyl ether, 2-methyltetrahydrofuran, polyethyleneglymedimethyl ether, tetrahydrofuran, etc. may be used as the non-aqueous organic solvent.
- the non-aqueous organic solvent may be dimethoxyethane, diglyme, triglyme, tetraglyme, 1,3-dioxolane, 1,3-dioxolane, Dimethyl ether, diethyl ether, N-methylpyrrolidone, 3-methyl-2-oxazolidone, dimethylformamide, sulfolane, dimethyl acetamide, dimethyl sulfoxide, dimethyl sulfate, It may include one or more selected from the group consisting of ethylene glycol diacetate, dimethyl sulfite, ethylene glycol sulfite, and the mixing ratio when used in combination of one or more may be appropriately adjusted according to the desired cell performance. have.
- FIG. 1 A schematic diagram of a lithium-sulfur battery according to an exemplary embodiment of the present invention is shown in FIG. 1.
- the non-sulfur anode 10 and the lithium metal cathode 20 are provided with the porous separator 30 interposed therebetween, and the porous separator 30 is impregnated in the nonaqueous electrolyte 40, and the nonaqueous The electrolyte solution 40 is positioned between the non-sulfur cathode 10 and the lithium metal anode 20.
- the present invention is not limited to the structure of FIG. 1 and may further include additional members.
- the lithium-sulfur battery may have a bobbin type structure in which the lithium metal negative electrode surrounds the non-sulfur positive electrode impregnated with the nonaqueous electrolyte.
- 2 shows a schematic diagram of the lithium-sulfur battery having the bobbin type structure.
- the non-sulfur anode 10 is impregnated in the nonaqueous electrolyte 40 in the center portion, the lithium metal anode 20 is provided on the inner wall surface of the battery case 50, and the non-sulfur cathode 10 is provided.
- a side cross-sectional view and a planar cross-sectional view of a lithium-sulfur battery having a bobbin type structure having a porous separator 30 between the lithium metal anodes 20 are examples of the lithium-sulfur battery having a bobbin type structure having a porous separator 30 between the lithium metal anodes 20.
- the lithium-sulfur battery may have a spiral type structure in which a sheet in which the non-sulfur anode, the porous separator, and the lithium metal anode are sequentially provided is wound.
- Figure 3 shows a schematic diagram of the lithium-sulfur battery of the spiral type (spiral type) structure. Specifically, FIG.
- FIG. 3 is a spiral type in which a non-sulfur anode 10, a porous separator 30, and a laminate sheet in which lithium metal anodes 20 are sequentially stacked are wound, and the porous separator is impregnated with a nonaqueous electrolyte 40 ( side cross-sectional view and a planar cross-sectional view of a lithium-sulfur battery having a spiral type) structure are shown.
- Ketjenblack and polyethylene oxide were mixed, it was coated on one surface of Ni foam and dried to prepare a Ni foam coated with Ketjenblack as a non-sulfur anode.
- a coin cell of the 2032 standard was prepared. Specifically, a set of coin cell parts of 2032 standard consisting of a cap, a button, a gasket, and the like were prepared. A Ni mesh was welded to the bottom of a can-shaped button bottom, and a lithium foil ( ⁇ 16) was attached as a cathode on the nickel mesh. In addition, a porous membrane (Celgard, 0.02 mm) ( ⁇ 18) made of polyethylene and the gasket was inserted into the button to block the cathode, and the prepared electrolyte was injected to sufficiently wet the membrane.
- a porous membrane (Celgard, 0.02 mm) ( ⁇ 18) made of polyethylene and the gasket was inserted into the button to block the cathode, and the prepared electrolyte was injected to sufficiently wet the membrane.
- a lithium-sulfur battery of the 2032 standard coin cell type was manufactured using a clamping machine.
- the battery After checking the resistance of the lithium-sulfur battery by measuring the impedance of the lithium-sulfur battery manufactured as described above in the range of 100 kHz to 200 MHz using a battery test system, the battery was discharged at a current value of about 1 mA, and the discharge capacity was multiplied by the current and time. The unit dose was calculated by dividing the value by the mass of loaded sulfur (S 8 ).
- a lithium-sulfur battery was manufactured in the same manner as in Example 1, except that a porous separator made of micro glass fiber (H & V, 0.24 mm thick) was used.
- FIG. 5 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared in Example 2 at a current value of about 1 mA. According to FIG. 5, it can be seen that the unit capacity in the lithium-sulfur battery prepared according to Example 2 is 978mAh / g, indicating a potential plateau at about 2.3V and about 2.1V. have.
- Ketjenblack and acetylene black were mixed in a weight ratio of 3: 7, and coated on one surface on a Ni mesh, followed by drying and using the electrode manufactured by the same method as in Example 2 except that lithium-sulfur was used.
- the battery was prepared.
- FIG. 6 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared in Example 3 at a current value of about 1 mA.
- the unit capacity in the lithium-sulfur battery prepared according to Example 3 is 401 mAh / g, indicating a potential voltage plateau at about 2.3V and about 2.1V. have.
- a lithium-sulfur battery was manufactured in the same manner as in Example 2, except that a carbon paper in the form of a sheet made of carbon fibers was used as an electrode as a non-sulfur anode.
- Example 7 shows the voltage (V) and the unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared in Example 4 at a current value of about 1 mA. According to FIG. 7, it can be seen that the unit capacity of the lithium-sulfur battery prepared according to Example 4 is 704 mAh / g, indicating a potential voltage plateau at about 2.3V and about 2.0V. have.
- a lithium-sulfur battery was manufactured in the same manner as in Example 2, except that carbon fiber felt was used as the non-sulfur positive electrode.
- Example 8 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared in Example 5 at a current value of about 1 mA. According to FIG. 8, it can be seen that the unit capacity in the lithium-sulfur battery prepared according to Example 5 is 869 mAh / g, indicating a potential voltage plateau at about 2.4V and about 2.1V. have.
- a lithium-sulfur battery was manufactured in the same manner as in Example 2, except that nickel foam was used as the non-sulfur cathode.
- FIG. 9 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging the lithium-sulfur battery prepared according to Example 6 at a current value of about 1 mA. According to FIG. 9, it can be seen that the unit capacity in the lithium-sulfur battery prepared according to Example 6 is 308 mAh / g, indicating a potential voltage plateau at about 2.4V and about 2.0V. have.
- Sulfur powder (S 8 ), Ketjenblack and polyethylene oxide was prepared by mixing a slurry in a weight ratio of 6: 2: 2, and then coated on a carbon coated aluminum foil and dried to prepare a positive electrode.
- about 1 M of LiTFSi was dissolved in an organic solvent in which dimethoxyethane, diglyme, and 1,3-dioxolane were mixed at a volume ratio of 1: 1: 1.
- An electrolyte solution was prepared.
- a lithium-sulfur battery was manufactured in the same manner as in Example 1, except that the positive electrode and the nonaqueous electrolyte solution prepared as described above were used.
- Sulfur powder (S 8 ), Ketjenblack and polyethylene oxide was prepared by mixing a slurry in a weight ratio of 90: 5: 5, and then coated on a carbon coated aluminum foil and dried to prepare a positive electrode.
- a lithium-sulfur battery was manufactured in the same manner as in Comparative Example 1, except that the prepared positive electrode was used.
- FIG. 11 shows the voltage (V) and unit capacity (mAh / g) at the time of discharging a lithium-sulfur battery prepared according to Comparative Example 2 with a current value of about 1 mA. According to FIG. 11, it can be seen that the unit capacity of the lithium-sulfur battery prepared according to Comparative Example 2 is 58 mAh / g, and indicates a plateau voltage plateau at about 2.4V.
- Table 1 shows the results of measuring the sulfur loading amount, the apparent density of the positive electrode and the unit capacity of the lithium-sulfur battery according to Examples 1 to 6 and Comparative Examples 1 to 2.
- sulfur (S 8 ) may be loaded in the non-aqueous electrolyte, and a large amount of sulfur may be loaded in comparison with the comparative example.
- the loading amount of sulfur (S 8 ) is high, about 19 mg / cm 2 to 26 mg / cm 2, it can be seen that a unit capacity of 900mAh / g or more is realized in comparison with the comparative example.
- the lithium-sulfur battery according to the embodiment can effectively penetrate into the positive electrode having a low apparent density including the non-aqueous electrolyte sufficiently containing active sulfur, thereby effectively improving the unit capacity by reacting the loaded sulfur.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
본 발명은, 향상된 전지 용량을 구현할 수 있는, 비황계 양극, 및 활성황을 포함하는 비수 전해액,을 포함하는 활물질 분리형 리튬-설퍼 전지를 제공한다.
Description
본 발명은 활물질 분리형 리튬-설퍼 전지에 관한 것이다. 보다 구체적으로, 본 발명은 비황계 양극, 및 활성황을 포함하는 비수 전해액을 포함하는 것을 특징으로 하는 리튬-설퍼 전지에 관한 것이다.
이차전지의 용량과 출력, 수명 등은 이차전지의 성능을 판단하는 중요한 요소가 되는데, 이는 기본적으로 양극과 음극의 소재 선택에서부터 크게 영향을 받는다. 리튬-설퍼 일차전지 또는 리튬-설퍼 이차전지는 기존의 리튬-이온 이차전지의 경우와 마찬가지로 양극과 음극 사이에 개재된 전해질 내에서 이동하는 리튬 이온에 의하여 동작된다. 하지만, 리튬 이온이 전극 활물질의 결정구조 내부로 삽입(intercalation)되어 전극 구조를 변형시키는 기존의 리튬-이온 이차전지의 경우와는 달리 리튬-설퍼 전지는 유황과 리튬 이온 간의 단순한 산화, 환원 반응만을 이용하므로, 기존의 리튬-이온 이차전지에 비해 전극 구조에 큰 제약이 없으며 이론적으로 같은 부피에서 더 큰 용량을 가질 수 있다. 이러한 특성으로 인하여 양극인 유황과 음극인 리튬 금속의 구성을 가지는 리튬-설퍼 전지는 고리구조를 가진 단량체 황(S8)이 황화리튬(Li2S)까지 완전히 반응한다고 가정할 경우, 이론 용량이 1,675mAh/g을 나타내게 되며, 이론 에너지 밀도가 2,600Wh/kg으로서 기존의 다른 전지 시스템 (Ni/MH전지: 450Wh/kg, Li/FeS: 480Wh/kg, Li/MnO2: 1,000Wh/kg, Na/S: 800Wh/kg)에 비하여 약 2.6배 내지 5.6배에 이를 만큼 높은 에너지 밀도를 가진다.
또한, 기존의 전이금속 산화물 리튬-이온 이차전지의 경우, 양극에서 5g/mL 이상의 중금속의 밀도보다 더 높은 밀도를 갖는 니켈(Ni), 코발트(Co), 망간(Mn)의 산화물이 사용되기 때문에 중금속 오염의 문제가 제기될 수 있다. 하지만 리튬-설퍼 전지의 경우 이러한 오염원 물질이 배제되어 있으며 무독성의 재료이기 때문에 친환경 적이라고 할 수 있다. 또한, 양극 재료인 유황은 자원이 풍부하며 가격적인 면에서도 저렴하다는 장점을 갖고 있다.
그러나, 아직까지 리튬-설퍼 전지는 상업적으로 널리 사용되고 있지 못하고 있는데, 그 이유는 현재 상업적으로 시판되고 있는 리튬-이온 이차전지에 비하여 수명특성이 열악하고, 체적 에너지밀도가 낮기 때문이다. 리튬-설퍼 전지의 음극인 리튬 금속은 전기화학적으로 가역성이 떨어지고 안정성이 낮은 물질로 알려져 있다. 한편, 유황의 방전 생성물인 폴리설파이드가 음극으로 이동하여 리튬과 비가역적 반응을 통해 활물질이 소실되면서 전지 용량이 감소된다. 이러한 두 가지 이유로 인해 리튬-설퍼 전지의 수명특성이 좋지 않은 것으로 이해되고 있다.
나아가, 리튬-설퍼 전지의 양극 단위 면적당 황의 로딩량을 증가시킬수록 전지의 성능이 떨어지며, 1,000mAh/g의 단위질량용량 및 2단계의 전위 평탄면(potential plateau)을 낼 수 있는 황의 로딩량은 약 3mg/㎠에 불과하다는 연구결과도 있다(Ke Sun et al., Journal of Electrochemical Energy Conversion and Storage, vol. 13, pp. 021002-1, 021002-5, May 2016.).
종래에는 리튬-설퍼 전지의 용량을 높이기 위해서 알루미늄 집전체 위에 유황의 두께를 두껍게 제작하여 양극의 단위면적당 유황의 양을 최대한 많이 적층하는 방법을 사용하였는데, 이러한 방법은 충방전이 반복됨에 따라 집전체에서 멀리 떨어진 전극 표면에서 유황이 일부 떨어져 나가 수명이 단축되거나, 전도성 경로가 줄어들어 도전성이 떨어지고 전지의 출력이 저하되는 문제를 야기할 수 있었다.
또한, 기존의 리튬-설퍼 전지의 양극은 유황, 바인더 및 탄소 도전재를 용매와 혼합하여 슬러리를 만든 후 집전체에 코팅하여 제조하거나, 메조 기공 탄소에 유황을 복합시켜 제조하였다. 이는 제조공정이 복잡한 문제점, 유황의 휘발성으로 인하여 전극 제조 시 건조 온도를 충분히 올리지 못하여 제조 시간이 길어지는 문제점, 및 양극의 단위 면적당 로딩되는 유황의 양이 증가할수록 유황의 활용률이 급격히 감소하는 문제점이 있다.
[선행기술문헌]
[특허문헌]
KR 10-2014-0122886 A
본 발명은 활물질 분리형 리튬-설퍼 전지를 제공하는 것을 목적으로 한다. 구체적으로, 본 발명은 양극 활물질 분리형 리튬-설퍼 전지로서, 비황계 양극, 및 활성황을 포함하는 비수 전해액을 포함하는 리튬-설퍼 전지를 제공하고자 한다.
본 발명의 일 실시상태는, 비황계 양극; 리튬 금속 음극; 및 상기 비황계 양극 및 상기 리튬 금속 음극 사이에, 활성황을 포함하는 비수 전해액에 함침된 다공성 분리막;을 포함하는 리튬-설퍼 전지를 제공한다.
본 발명에 의하면, 상기 활성황은 상기 비수 전해액 내에서 고상, 및 액상 중 적어도 하나의 상으로 구비될 수 있다.
본 발명에 의하면, 상기 활성황의 함량은 상기 비수 전해액에 대하여 0.1M 이상 4M 이하일 수 있다.
본 발명에 의하면, 상기 비황계 양극의 겉보기 밀도는 0.01g/㎤ 이상 1.3g/㎤ 이하일 수 있다.
본 발명에 의하면, 상기 비황계 양극은 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다.
본 발명에 의하면, 상기 비황계 양극은 탄소계 물질로 코팅된 것일 수 있다. 구체적으로, 상기 비황계 양극은 탄소계 물질로 코팅된, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다.
본 발명에 의하면, 상기 비수 전해액은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC4F9SO3, LiSbF6, LiN(SO2CF3)2, LiNO3, 및 LiBETI로 부터 선택되는 1 이상의 리튬염을 더 포함할 수 있다.
본 발명에 의하면, 상기 리튬염의 함량은 상기 비수 전해액에 대하여 0.1M 이상 3.0M 이하일 수 있다.
본 발명에 의하면, 상기 리튬-설퍼 전지는, 상기 비수 전해액에 함침된 상기 비황계 양극을 상기 리튬 금속 음극이 둘러싸는 보빈형(Bobbin type) 구조일 수 있다.
본 발명에 의하면, 상기 리튬-설퍼 전지는, 상기 비황계 양극, 상기 다공성 분리막, 및 상기 리튬 금속 음극이 순차적으로 구비된 시트가 권취된 스피럴형(spiral type) 구조일 수 있다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 활성황을 비수 전해액에 포함시키므로, 기존의 리튬-설퍼 전지에 비하여 충분한 양의 활성황을 로딩하여 향상된 단위 용량을 구현할 수 있다. 나아가, 본 발명의 일 실시상태에 따른 리튬-설퍼 전지는, 기존 리튬-설퍼 전지에서 유황 로딩량 증가에 따른 유황의 이탈로 발생하는 전지 성능 저하를 해결할 수 있다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 전해액에 유황을 첨가하는 간단한 방법으로 활성황을 구비시킬 수 있으므로, 제조 단가를 낮출 수 있는 장점이 있다. 또한, 본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 기존과 같이 유황을 양극에 구비하기 위하여 탄소-황 복합체를 제조하는 등의 제조 과정을 생략할 수 있으므로, 제조 비용을 절감할 수 있다.
도 1은 본 발명의 일 실시상태에 따른 리튬-설퍼 전지의 모식도를 나타낸 것이다.
도 2는 본 발명의 일 실시상태에 따른 보빈형(Bobbin type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다.
도 3은 본 발명의 일 실시상태에 따른 스피럴형(spiral type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다.
도 4는 실시예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 5는 실시예 2에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 6은 실시예 3에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 7은 실시예 4에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 8은 실시예 5에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 9는 실시예 6에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 10은 비교예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
도 11은 비교예 2에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다.
본 명세서에서, 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서, 별도의 언급이 없는 이상 "단위 용량"은 리튬-설퍼 전지에 로딩되는 활성황의 단위 질량 당 방전 용량을 의미할 수 있다.
이하, 본 발명에 따른 리튬-설퍼 전지에 대하여 상세히 설명한다.
본 발명의 일 실시상태는, 비황계 양극; 리튬 금속 음극; 및 상기 비황계 양극 및 상기 리튬 금속 음극 사이에, 활성황을 포함하는 비수 전해액에 함침된 다공성 분리막;을 포함하는 리튬-설퍼 전지를 제공한다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지는 일차전지 또는 이차전지로 사용될 수 있다.
본 발명에 따른 리튬-설퍼 전지는 기존의 리튬-설퍼 전지와 같이 양극에 유황을 구비하지 않고, 비황계 양극을 포함하는 것을 특징으로 한다. 구체적으로, 본 발명에 따른 리튬-설퍼 전지는 비황계 양극을 포함하고, 양극 활물질로서의 활성황이 비수 전해액에 포함된다. 즉, 본 발명에 따른 리튬-설퍼 전지는 활물질 분리형 리튬-설퍼 전지, 구체적으로 양극 활물질 분리형 리튬-설퍼 전지일 수 있다. 본 발명에 따른 리튬-설퍼 전지는 기존과 같이 유황을 양극에 구비시키기 위하여 탄소-황 복합체를 제조하지 않고, 유황을 비수 전해액에 주입하는 간단한 방법으로 제조할 수 있으므로, 제조 단가를 크게 낮출 수 있는 장점이 있다. 나아가, 본 발명에 따른 리튬-설퍼 전지는 비수 전해액에 유황을 첨가하므로, 유황의 로딩량을 크게 증가시켜 전지 용량을 향상시킬 수 있으며, 나아가 유황의 단위 질량당 방전 용량도 향상시킬 수 있다.
본 발명의 일 실시상태에 따르면, 상기 활성황은 상기 비수 전해액 내에서 고상, 및 액상 중 적어도 하나의 상으로 구비될 수 있다. 구체적으로, 상기 활성황은 상기 비수 전해액에 분산 또는 용해되어 존재할 수 있다. 상기 활성황은 상기 비수 전해액에 고상 및/또는 액상으로 구비될 수 있다. 상기 활성황이 액상으로 구비되는 경우, 상기 활성황이 상기 비수 전해액에 용해 또는 졸-겔화 되어 존재하는 것을 의미할 수 있다. 또한, 상기 활성황이 고상으로 구비되는 경우, 상기 활성황이 상기 비수 전해액에 더이상 용해되지 않고 원소 황으로 존재하는 상태일 수 있다.
상기 활성황은 원소 황 및 이의 황화물일 수 있다. 구체적으로, 상기 활성황은 황-황 결합(S-S bonding)을 갖는 원소 황 및/또는 황 계열 화합물을 의미할 수 있다. 상기 활성황은 방전시에는 S-S 결합이 끊어지면서 S의 산화수가 감소하고, 충전시에는 S의 산화수가 증가하면서 S-S 결합이 다시 형성되는 산화-환원 반응을 이용하여 전기적 에너지를 저장 및 생성할 수 있다. 일 예로, 상기 활성황은 원소 황 및 리튬황화물 중 적어도 하나일 수 있다. 구체적으로, 상기 활성황은 고리구조를 가진 단량체 황(S8) 및/또는 상기 단량체 황(S8)이 상기 비수 전해액의 리튬염과 반응하여 형성된 리튬황화물일 수 있다. 상기 리튬황화물은 Li2S8, Li2S6, Li2S4 등의 형태로 존재할 수 있다. 상기 리튬-설퍼 전지의 방전 시, Li2S8로부터 황이 빠져나가며 반응할 수 있으며, 완전히 반응된 경우, Li2S의 형태로 존재하게 된다. 나아가, 방전된 상기 리튬-설퍼 전지의 충전 시, 상기 Li2S는 Li2S4, Li2S6 및 Li2S8 등으로 전환되어 재방전이 가능한 상태가 될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 활성황의 함량은 상기 비수 전해액에 대하여 0.1M 이상 4M 이하, 0.1M 이상 2M 이하, 또는 0.5M 이상 1.5M 이하, 약 1.0M일 수 있다. 상기 활성황은 상기 비수 전해액에 첨가되는 원소 황, 구체적으로 S8의 함량일 수 있다. 즉, 상기 활성황의 함량은 상기 비수 전해액에 포함되는 고상 및 액상의 활성황의 함량을 의미할 수 있다. 상기 활성황의 함량이 상기 범위 내인 경우, 활성황의 단위 질량 당 방전 용량을 최대화할 수 있다. 상기 활성황의 함량이 상기 범위를 초과하는 경우에는 상기 비수 전해액에서 상기 활성황이 충분히 이온화되지 못하고 고상으로 잔존하는 양이 많아져 단위 용량이 감소할 수 있다. 그러므로, 상기 활성황의 함량을 상기 범위 내로 적절하게 조절하여, 상기 비수 전해액에 포함된 활성황의 효율적인 반응을 유도할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비황계 양극은 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다. 구체적으로, 상기 비황계 양극은 황을 포함하지 않으며, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이와 같은 전극 집전체 자체를 사용할 수 있다.
또한, 본 발명의 일 실시상태에 따르면, 비황계 양극은 집전체는 탄소계 물질로 코팅된, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이일 수 있다. 구체적으로, 상기 비황계 양극은 황을 포함하지 않으며, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이와 같은 전극 집전체의 적어도 일부를 탄소계 물질로 코팅하여 적용한 것일 수 있다. 상기 탄소계 물질은 하기의 탄소계 물질과 바인더를 포함하는 슬러리를 상기 전극 집전체의 적어도 일면 상에 도포한 후 건조하는 방법으로 코팅될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 탄소계 물질은 카본블랙, 케첸블랙, 아세틸렌블랙, 그라파이트 및 그래핀으로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있다. 다만, 이에 한정되는 것은 아니며, 당 업계에서 도전재로 사용되는 탄소계 물질이라면 적용할 수 있다.
즉, 본 발명의 일 실시상태에 따르면, 상기 비황계 양극은 양극 집전체일 수 있다. 또한, 상기 비황계 양극은 탄소계 물질로 코팅된 양극 집전체일 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비황계 양극의 겉보기 밀도는 0.01g/㎤ 이상 1.3g/㎤ 이하, 0.01g/㎤ 이상 1.0g/㎤ 이하, 0.1g/㎤ 이상 1.3g/㎤ 이하, 0.1g/㎤ 이상 1.0g/㎤ 이하, 또는 0.1g/㎤ 이상 0.7g/㎤ 이하 일 수 있다. 상기 비황계 양극의 겉보기 밀도가 상기 범위 이내인 경우, 전해액의 침투가 용이하여 높은 단위 용량을 구현할 수 있다.
상기 다공성 분리막은 펠트, 종이 또는 미세다공성 플라스틱 필름과 같은 고 다공성/투과성 재료를 이용하여 제조된 것일 수 있다. 상기 다공성 분리막은 전지 전위 하에서 전해액 및 기타 전지 성분에 의한 공격에 내성이 있어야 한다. 일 예로, 상기 다공성 분리막은 유리, 플라스틱, 또는 세라믹 재질의 다공성 분리막일 수 있다. 또한, 상기 다공성 분리막은 비수 전해액을 가두기 위하여, 다공성 또는 미세다공성 망 구조를 갖는 폴리머 분리막일 수 있다. 다만, 이에 한정되는 것은 아니며, 당 업계에서 일반적으로 사용되는 것이라면 적용될 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비수 전해액은 리튬염을 더 포함할 수 있다. 구체적으로, 상기 비수 전해액은 리튬염 및 상기 활성황을 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC4F9SO3, LiSbF6, LiN(SO2CF3)2, LiNO3, 및 LiBETI로 부터 선택되는 1 이상을 포함할 수 있다. 상기 리튬염은 상기 비수 전해액 내에서 상기 활성황과 반응하여 리튬황화물을 형성할 수 있다. 상기 리튬황화물은 보다 낮은 원자수의 황을 포함하는 리튬황화물로 전환되며, 상기 리튬-설퍼 전지의 방전을 가능하게 할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 리튬염의 함량은 상기 비수 전해액에 대하여 0.1M 이상 3.0M 이하, 0.1M 이상 2.0M 이하, 0.5M 이상 1.5M 이하, 또는 약 1.0M일 수 있다.
또한, 본 발명의 일 실시상태에 따르면, 상기 리튬염과 상기 활성황의 몰비는 1.5:1 내지 1:1.5, 구체적으로 약 1:1일 수 있다. 상기 리튬염과 상기 활성황의 몰비가 상기 범위 내인 경우, 활성황이 비수 전해액 내에서 높은 비율로 활용될 수 있으며, 이를 통하여 활성황의 단위 질량 당 전지 용량을 최대화할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 비수 전해액은 비수성 유기 용매를 포함할 수 있다. 구체적으로, 상기 비수성 유기 용매로서, 1,3-디옥솔란(1,3-dioxolane), 2-메틸테트라히드로퓨란, 폴리에틸렌 글라임디메틸 에테르, 테트라히드로퓨란, 및/또는 에테르계 용매를 사용할 수 있다. 상기 비수성 유기 용매로는 디부틸 에테르, 2-메틸테트라히드로퓨란, 폴리에틸렌 글라임디메틸 에테르, 테트라히드로퓨란 등이 사용될 수 있다. 구체적으로, 상기 비수성 유기 용매는 디메톡시에탄(dimethoxyethane), 디글라임(diglyme), 트리글라임(triglyme), 테트라글라임(tetraglyme), 1,3-디옥솔란(1,3-dioxolane), 디메틸 에테르(dimethyl ether), 디에틸 에테르(diethyl ether), N-메틸피롤리돈, 3-메틸-2-옥사졸리돈, 디메틸포름아마이드, 설포란, 디메틸 아세트아마이드, 디메틸 설폭사이드, 디메틸 설페이트, 에틸렌 글리콜 디아 세테이트, 디메틸 설파이트, 에틸렌 글리콜 설파이트로 이루어진 군에서 선택되는 하나 이상을 포함할 수 있으며, 하나 이상 혼합하여 사용되는 경우의 혼합 비율은 목적하는 전지 성능에 따라 적절하게 조절될 수 있다.
본 발명의 일 실시상태에 따른 리튬-설퍼 전지의 모식도는 도 1에 나타내었다. 구체적으로, 도 1에 따르면, 다공성 분리막(30)을 사이에 두고 비황계 양극(10) 및 리튬 금속 음극(20)이 구비되며, 다공성 분리막(30)은 비수 전해액(40)에 함침되고, 비수 전해액(40)은 비황계 양극(10)과 리튬 금속 음극(20) 사이에 위치한다. 다만, 본 발명은 도 1의 구조에 한정되는 것은 아니며, 추가적인 부재를 더 포함할 수 있다.
본 발명의 일 실시상태에 따르면, 상기 리튬-설퍼 전지는, 상기 비수 전해액에 함침된 상기 비황계 양극을 상기 리튬 금속 음극이 둘러싸는 보빈형(Bobbin type) 구조일 수 있다. 도 2는 상기 보빈형(Bobbin type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다. 구체적으로, 도 2는 중심부에 비황계 양극(10)이 비수 전해액(40)에 함침되어 있고, 전지 케이스(50)의 내벽면에 리튬 금속 음극(20)이 구비되고, 비황계 양극(10) 및 리튬 금속 음극(20) 사이에 다공성 분리막(30)을 구비한 보빈형 구조의 리튬-설퍼 전지의 측단면도 및 평단면도를 나타낸 것이다.
본 발명의 일 실시상태에 따르면, 상기 리튬-설퍼 전지는, 상기 비황계 양극, 상기 다공성 분리막, 및 상기 리튬 금속 음극이 순차적으로 구비된 시트가 권취된 스피럴형(spiral type) 구조일 수 있다. 도 3은 상기 스피럴형(spiral type) 구조의 리튬-설퍼 전지의 모식도를 나타낸 것이다. 구체적으로, 도 3은 비황계 양극(10), 다공성 분리막(30) 및 리튬 금속 음극(20)이 순차적으로 적층된 적층 시트가 권취되고, 다공성 분리막이 비수 전해액(40)으로 함침된 스피럴형(spiral type) 구조의 리튬-설퍼 전지의 측단면도 및 평단면도를 나타낸 것이다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나, 본 발명에 따른 실시예들은 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 기술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 명세서의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해 제공되는 것이다.
[실시예 1]
비황계 양극의 제조
케첸블랙 및 폴리에틸렌옥사이드를 혼합한 슬러리를 제조한 후, 이를 Ni 폼의 일면 상에 도포한 후 건조하여, 비황계 양극으로서 케첸블랙이 코팅된 Ni 폼을 제조하였다.
비수 전해액의 제조
디메톡시에탄(dimethoxyethane), 디글라임(diglyme), 1,3-디옥솔란(1,3-dioxolane)을 1:1:1의 부피비로 혼합한 유기 용매에 약 1M의 LiTFSi를 용해한 후, 하기 표 1과 같이 황 파우더(S8)를 전해액에 첨가하여, 활성황을 포함하는 비수 전해액을 제조하였다.
리튬-설퍼 전지의 제조
본 발명에 따른 리튬-설퍼 전지의 성능을 측정하기 위하여, 2032 규격의 코인셀을 제조하였다. 구체적으로, 캡(cap), 버튼(bottom) 및 개스킷(gasket) 등으로 구성된 2032 규격의 코인셀 부품 세트를 준비하였다. 캔 형태의 버튼(bottom) 하면에 Ni 메쉬(Ni mesh)을 용접하고, 니켈 메쉬 상에 음극으로서 리튬 호일(Ø16)을 부착하였다. 그리고, 상기 버튼에 폴리에틸렌 재질의 다공성 분리막(Celgard사, 두께 0.02㎜)(Ø18)과 상기 개스킷을 넣어 음극 부분을 차단한 후, 상기 제조한 전해액을 주입하여 분리막이 충분히 젖도록 하였다. 나아가, 전해액으로 함침된 다공성 분리막 상에 상기 제조된 비황계 양극(Ø16) 및 캡을 위치시킨 후, 클램핑 머신을 이용하여 2032 규격 코인셀 형태의 리튬-설퍼 전지를 제조하였다.
상기와 같이 제조된 리튬-설퍼 전지를 battery test system을 이용하여 100kHz 내지 200MHz 범위에서 임피던스 측정하여 리튬-설퍼 전지의 저항을 확인한 후, 약 1mA의 전류값으로 방전하며, 전류와 시간을 곱한 방전 용량 값을 로딩된 황 (S8)의 질량으로 나누어 단위 용량을 계산하였다.
도 4는 실시예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 4에 따르면, 실시예 1에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 555mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.0V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[실시예 2]
마이크로 유리 섬유 재질의 다공성 분리막(H&V사, 두께 0.24㎜)을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 5는 실시예 2에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 5에 따르면, 실시예 2에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 978mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.1V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[실시예 3]
비황계 양극으로서, 케첸블랙 및 아세틸렌블랙을 3:7의 중량비로 혼합하여, Ni 메쉬 상의 일면 상에 도포한 후 건조하여 제조된 전극을 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 6은 실시예 3에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 6에 따르면, 실시예 3에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 401mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.1 V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[실시예 4]
비황계 양극으로서, 탄소 섬유로 이루어진 시트 형태의 탄소 종이를 전극으로 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 7은 실시예 4에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 7에 따르면, 실시예 4에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 704mAh/g인 것을 알 수 있으며, 약 2.3V 및 약 2.0V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[실시예 5]
비황계 양극으로서, 탄소 섬유 펠트를 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 8은 실시예 5에 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 8에 따르면, 실시예 5에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 869mAh/g인 것을 알 수 있으며, 약 2.4V 및 약 2.1V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[실시예 6]
비황계 양극로서, 니켈 폼을 사용한 것을 제외하고, 실시예 2와 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 9는 실시예 6에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 9에 따르면, 실시예 6에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 308mAh/g인 것을 알 수 있으며, 약 2.4V 및 약 2.0V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[비교예 1]
황 파우더(S8), 케첸블랙 및 폴리에틸렌옥사이드를 6:2:2의 중량비로 혼합한 슬러리를 제조한 후, 이를 탄소 코팅된 알루미늄 호일 상에 도포한 후 건조하여 양극을 제조하였다. 또한, 디메톡시에탄(dimethoxyethane), 디글라임(diglyme), 1,3-디옥솔란(1,3-dioxolane)을 1:1:1의 부피비로 혼합한 유기 용매에 약 1M의 LiTFSi를 용해시켜 비수 전해액을 제조하였다.
상기와 같이 제조한 양극 및 비수 전해액을 사용한 것을 제외하고, 실시예 1과 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 10은 비교예 1에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 10에 따르면, 비교예 1에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 180mAh/g인 것을 알 수 있으며, 약 2.4V 및 약 2.2V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
[비교예 2]
황 파우더(S8), 케첸블랙 및 폴리에틸렌옥사이드를 90:5:5의 중량비로 혼합 혼합한 슬러리를 제조한 후, 이를 탄소 코팅된 알루미늄 호일 상에 도포한 후 건조하여 양극을 제조하였다.
상기 제조된 양극을 사용한 것을 제외하고, 비교예 1과 동일한 방법으로 리튬-설퍼 전지를 제조하였다.
도 11은 비교예 2에 따라 제조된 리튬-설퍼 전지를 약 1mA의 전류값으로 방전 시의 전압(V) 및 단위 용량(mAh/g)을 나타낸 것이다. 도 11에 따르면, 비교예 2에 따라 제조된 리튬-설퍼 전지에서의 단위 용량은 58mAh/g인 것을 알 수 있으며, 약 2.4V에서 평탄 전압 구간(potential plateau)을 나타내는 것을 알 수 있다.
하기 표 1은 실시예 1 내지 6, 및 비교예 1 내지 2에 따른 리튬-설퍼 전지의 황 로딩량, 양극의 겉보기 밀도 및 단위 용량을 측정한 결과를 나타낸 것이다.
S8 로딩량(mg/㎠) | 양극의 겉보기 밀도(g/㎤) | 단위 용량(mAh/g) | |
실시예 1 | 22.5 | 0.466 | 555 |
실시예 2 | 22.5 | 0.385 | 978 |
실시예 3 | 19 | 0.61 | 401 |
실시예 4 | 22.5 | 0.268 | 704 |
실시예 5 | 24 | 0.105 | 869 |
실시예 6 | 26 | 0.161 | 308 |
비교예 1 | 12 | 1.4 | 180 |
비교예 2 | 13 | 1.5 | 58 |
상기 표 1에서의 양극의 겉보기 밀도는 전극 단위 면적 (16Ø=2.0㎠)에 전극 두께를 곱하여 부피를 결정하고, 질량을 측정하여 겉보기 밀도를 계산한 값이다. 상기 표 1의 결과에 따르면, 비황계 양극을 구비한 본원 실시예 1 내지 6의 경우, 비수 전해액에 황(S8)을 로딩하여, 비교예에 비하여 많은 양의 황을 로딩할 수 있다. 나아가, 실시예 1 내지 6의 경우, 황(S8)의 로딩량이 약 19mg/㎠ 내지 26mg/㎠으로 높음에도, 비교예에 비하여 최대 900mAh/g 이상의 단위 용량을 구현하는 것을 확인할 수 있다. 이는, 실시예 1 내지 6의 양극의 겉보기 밀도가 매우 낮으므로, 비수 전해액이 용이하게 침투할 수 있어 로딩된 황(S8)이 효과적으로 반응에 참여한 것으로 파악된다. 즉, 실시예에 따른 리튬-설퍼 전지는, 활성황을 충분히 포함하는 비수 전해액이 낮은 겉보기 밀도를 가지는 양극에 효과적으로 침투할 수 있으므로, 로딩된 황을 효과적으로 반응시켜 단위 용량을 크게 향상시킬 수 있다.
[부호의 설명]
10: 비황계 양극
20: 리튬 금속 음극
30: 다공성 분리막
40: 비수 전해액
50: 전지 케이스
60: 전지 헤더
70: 리드
80: 인슐레이터
Claims (10)
- 비황계 양극; 리튬 금속 음극; 및 상기 비황계 양극 및 상기 리튬 금속 음극 사이에, 활성황을 포함하는 비수 전해액에 함침된 다공성 분리막;을 포함하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 활성황은 상기 비수 전해액 내에서 고상, 및 액상 중 적어도 하나의 상으로 구비되는 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 활성황의 함량은 상기 비수 전해액에 대하여 0.1M 이상 4M 이하인 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 비황계 양극의 겉보기 밀도는 0.01g/㎤ 이상 1.3g/㎤ 이하인 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 비황계 양극은 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이인 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 비황계 양극은 탄소계 물질로 코팅된, 금속 호일, 금속 폼, 금속 메쉬, 탄소 섬유 펠트, 또는 탄소 종이인 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 비수 전해액은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiCF3SO3, LiC4F9SO3, LiSbF6, LiN(SO2CF3)2, LiNO3, 및 LiBETI로 부터 선택되는 1 이상의 리튬염을 더 포함하는 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 7에 있어서,상기 리튬염의 함량은 상기 비수 전해액에 대하여 0.1M 이상 3.0M 이하인 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 리튬-설퍼 전지는, 상기 비수 전해액에 함침된 상기 비황계 양극을 상기 리튬 금속 음극이 둘러싸는 보빈형(Bobbin type) 구조인 것을 특징으로 하는 리튬-설퍼 전지.
- 청구항 1에 있어서,상기 리튬-설퍼 전지는, 상기 비황계 양극, 상기 다공성 분리막, 및 상기 리튬 금속 음극이 순차적으로 구비된 시트가 권취된 스피럴형(spiral type) 구조인 것을 특징으로 하는 리튬-설퍼 전지.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18918606.7A EP3796448A4 (en) | 2018-05-14 | 2018-05-18 | ACTIVE MATERIAL SEPARATION TYPE LITHIUM-SULFUR BATTERY |
US16/619,273 US20200161697A1 (en) | 2018-05-14 | 2018-05-18 | Active material separation-type lithium-sulfur battery |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020180055038A KR102054266B1 (ko) | 2018-05-14 | 2018-05-14 | 활물질 분리형 리튬-설퍼 전지 |
KR10-2018-0055038 | 2018-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019221316A1 true WO2019221316A1 (ko) | 2019-11-21 |
Family
ID=68540485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2018/005690 WO2019221316A1 (ko) | 2018-05-14 | 2018-05-18 | 활물질 분리형 리튬-설퍼 전지 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20200161697A1 (ko) |
EP (1) | EP3796448A4 (ko) |
KR (1) | KR102054266B1 (ko) |
WO (1) | WO2019221316A1 (ko) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100647741B1 (ko) * | 2005-05-09 | 2006-11-23 | 제노에너지(주) | 통공을 갖는 리튬전지용 탄소전극 및 그의 제조방법 |
KR20140122886A (ko) | 2013-04-11 | 2014-10-21 | 한국과학기술원 | 고분자 나노섬유, 알루미늄 박막, 탄소나노튜브 및 유황의 복합체를 이용한 리튬-황 이차전지용 전극 및 그 제조 방법 |
KR101511206B1 (ko) * | 2012-09-10 | 2015-04-10 | 한양대학교 산학협력단 | 리튬 황 전지 |
KR20170001375A (ko) * | 2015-06-26 | 2017-01-04 | 주식회사 엘지화학 | 리튬 황 전지 및 이의 제조방법 |
KR101709988B1 (ko) * | 2014-11-12 | 2017-02-27 | 주식회사 제이이노텍 | 고에너지 밀도를 갖는 리튬-설퍼 전지 |
KR101771295B1 (ko) * | 2014-10-29 | 2017-08-24 | 주식회사 엘지화학 | 리튬 금속 전지용 전해질 용액 및 이를 포함하는 리튬 금속 전지 |
-
2018
- 2018-05-14 KR KR1020180055038A patent/KR102054266B1/ko active IP Right Grant
- 2018-05-18 US US16/619,273 patent/US20200161697A1/en not_active Abandoned
- 2018-05-18 EP EP18918606.7A patent/EP3796448A4/en not_active Withdrawn
- 2018-05-18 WO PCT/KR2018/005690 patent/WO2019221316A1/ko unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100647741B1 (ko) * | 2005-05-09 | 2006-11-23 | 제노에너지(주) | 통공을 갖는 리튬전지용 탄소전극 및 그의 제조방법 |
KR101511206B1 (ko) * | 2012-09-10 | 2015-04-10 | 한양대학교 산학협력단 | 리튬 황 전지 |
KR20140122886A (ko) | 2013-04-11 | 2014-10-21 | 한국과학기술원 | 고분자 나노섬유, 알루미늄 박막, 탄소나노튜브 및 유황의 복합체를 이용한 리튬-황 이차전지용 전극 및 그 제조 방법 |
KR101771295B1 (ko) * | 2014-10-29 | 2017-08-24 | 주식회사 엘지화학 | 리튬 금속 전지용 전해질 용액 및 이를 포함하는 리튬 금속 전지 |
KR101709988B1 (ko) * | 2014-11-12 | 2017-02-27 | 주식회사 제이이노텍 | 고에너지 밀도를 갖는 리튬-설퍼 전지 |
KR20170001375A (ko) * | 2015-06-26 | 2017-01-04 | 주식회사 엘지화학 | 리튬 황 전지 및 이의 제조방법 |
Non-Patent Citations (2)
Title |
---|
KE SUN ET AL., JOURNAL OF ELECTROCHEMICAL ENERGY CONVERSION AND STORAGE, vol. 13, May 2016 (2016-05-01), pages 021002 - 1,021002-5 |
See also references of EP3796448A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3796448A1 (en) | 2021-03-24 |
KR20190130402A (ko) | 2019-11-22 |
US20200161697A1 (en) | 2020-05-21 |
EP3796448A4 (en) | 2022-03-16 |
KR102054266B1 (ko) | 2019-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228576B2 (ja) | リチウムイオン二次電池及び電気自動車用電源 | |
WO2015023154A1 (ko) | 리튬-황 전지용 양극 및 이의 제조방법 | |
WO2014109523A1 (ko) | 리튬-황 전지용 양극 활물질 및 이의 제조방법 | |
WO2019078544A1 (ko) | 리튬 이차전지용 음극, 및 이를 포함하는 리튬 이차전지 | |
WO2013191476A1 (ko) | 첨가제를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 | |
WO2014185750A1 (ko) | 비수성 전해액 및 이를 포함하는 리튬 이차전지 | |
KR102018756B1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2015099243A1 (ko) | 붕소 화합물 함유 전극 활물질 및 이를 이용한 전기화학소자 | |
WO2020204625A1 (ko) | 리튬 이차전지용 전극 | |
WO2020153690A1 (ko) | 리튬 복합 음극 활물질, 이를 포함하는 음극 및 이들의 제조방법 | |
WO2018194345A1 (ko) | 리튬 이차전지용 음극, 이를 포함하는 리튬 이차전지, 및 이의 제조 방법 | |
US11996523B2 (en) | Secondary battery | |
WO2014061973A1 (ko) | 규소 산화물의 제조방법 | |
WO2022149751A1 (ko) | 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지 | |
WO2017061807A1 (ko) | 전극조립체를 구성하는 분리막의 기공 내에 겔화 전해액 성분을 포함하고 있는 전지셀 | |
WO2016122196A1 (ko) | 전극, 전지 및 전극의 제조 방법 | |
WO2019022358A1 (ko) | 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지 | |
KR20210024975A (ko) | 리튬 이차전지 및 이의 제조 방법 | |
WO2017082680A1 (ko) | 음극 활물질 및 이를 포함하는 리튬 이차전지 | |
WO2019093735A1 (ko) | 리튬 이차 전지의 수명 향상 방법 | |
JP2002175807A (ja) | 非水電解質二次電池 | |
WO2019221316A1 (ko) | 활물질 분리형 리튬-설퍼 전지 | |
KR20020055572A (ko) | 비수성 전해질 이차 전지 | |
WO2020017774A1 (ko) | 리튬 이차전지용 바나듐 양극의 전기화학적 전처리 방법 및 이에 의해 전처리된 리튬 이차전지용 바나듐 양극 | |
WO2019221372A1 (ko) | 리튬이차전지용 리튬 코발트 복합 산화물 및 이를 포함한 양극을 함유한 리튬이차전지 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18918606 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018918606 Country of ref document: EP Effective date: 20201214 |