KR102007497B1 - 복수의 하전 입자 빔을 이용하는 장치 - Google Patents

복수의 하전 입자 빔을 이용하는 장치 Download PDF

Info

Publication number
KR102007497B1
KR102007497B1 KR1020187003901A KR20187003901A KR102007497B1 KR 102007497 B1 KR102007497 B1 KR 102007497B1 KR 1020187003901 A KR1020187003901 A KR 1020187003901A KR 20187003901 A KR20187003901 A KR 20187003901A KR 102007497 B1 KR102007497 B1 KR 102007497B1
Authority
KR
South Korea
Prior art keywords
beamlets
probe spots
primary
lens
sample
Prior art date
Application number
KR1020187003901A
Other languages
English (en)
Other versions
KR20180030605A (ko
Inventor
웨이밍 런
수에동 리우
쉐랑 후
종웨이 첸
Original Assignee
에이에스엠엘 네델란즈 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에이에스엠엘 네델란즈 비.브이. filed Critical 에이에스엠엘 네델란즈 비.브이.
Publication of KR20180030605A publication Critical patent/KR20180030605A/ko
Application granted granted Critical
Publication of KR102007497B1 publication Critical patent/KR102007497B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/12Lenses electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/14Lenses magnetic
    • H01J37/141Electromagnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/10Lenses
    • H01J37/145Combinations of electrostatic and magnetic lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1475Scanning means magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • H01J37/1474Scanning means
    • H01J37/1477Scanning means electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1478Beam tilting means, i.e. for stereoscopy or for beam channelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/024Moving components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/045Diaphragms
    • H01J2237/0451Diaphragms with fixed aperture
    • H01J2237/0453Diaphragms with fixed aperture multiple apertures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/049Focusing means
    • H01J2237/0492Lens systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/103Lenses characterised by lens type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/12Lenses electrostatic
    • H01J2237/1205Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/10Lenses
    • H01J2237/14Lenses magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/151Electrostatic means
    • H01J2237/1516Multipoles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1534Aberrations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/153Correcting image defects, e.g. stigmators
    • H01J2237/1536Image distortions due to scanning

Abstract

높은 분해능과 높은 처리량으로 샘플을 관측하기 위한 멀티빔 장치가 제안된다. 이러한 장치에서는, 소스 변환 유닛이 평행한 1차 전자 빔의 복수의 빔릿을 편향시킴으로써 하나의 단일 전자 소스의 복수의 병렬적인 이미지를 형성하게 되고, 하나의 대물 렌즈가 복수의 편향된 빔릿을 샘플 표면 상으로 포커싱하여 샘플 표면 상에 복수의 프로브 스팟을 형성하게 된다. 1차 전자 빔을 시준하고 복수의 프로브 스팟의 흐름을 변경하기 위해 이동가능한 집속 렌즈가 이용되고, 사전 빔릿 형성 수단이 1차 전자 빔의 쿨롱 효과를 약화시키며, 소스 변환 유닛은 대물 렌즈 및 집속 렌즈의 축외 수차를 최소화 및 보상함으로써 복수의 프로브 스팟의 크기를 최소화한다.

Description

복수의 하전 입자 빔을 이용하는 장치
본 출원은 Ren 등에 의해 2015년 7월 22일에 출원되고 발명의 명칭이 "Appratus of Plural Charged-Particle Beams"인 미국 임시 출원 제62/195,353호에 대해 우선권을 주장하며, 이러한 문헌의 전체 내용은 원용에 의해 본원에 통합된다.
본 출원은 Weiming Ren 등에 의해 2016년 3월 9일에 출원되고 발명의 명칭이 "Apparatus of Plural Charged-Particle Beams"인 미국 출원 제15/065,342호와 관련되며, 이러한 문헌의 전체 내용은 원용에 의해 본원에 통합된다.
본 출원은 Weiming Ren 등에 의해 2016년 3월 23일에 출원되고 발명의 명칭이 "Apparatus of Plural Charged-Particle Beams"인 미국 출원 제15/078,369호와 관련되며, 이러한 문헌의 전체 내용은 원용에 의해 본원에 통합된다.
본 출원은 Xuedong Liu 등에 의해 2016년 3월 10일에 출원되고 발명의 명칭이 "Apparatus of Plural Charged-Particle Beams"인 미국 출원 제15/150,858호와 관련되며, 이러한 문헌의 전체 내용은 원용에 의해 본원에 통합된다.
본 출원은 Shuai Li 등에 의해 2016년 7월 19일에 출원되고 발명의 명칭이 "Apparatus of Plural Charged-Particle Beams"인 미국 출원 제15/213,781호와 관련되며, 이러한 문헌의 전체 내용은 원용에 의해 본원에 통합된다.
본 발명은 복수의 하전 입자 빔을 이용하는 하전 입자 장치에 관한 것이다. 보다 구체적으로는, 샘플 표면 상에서 관측 영역의 복수의 스캔 영역에 대한 이미지를 동시에 얻기 위해 복수의 하전 입자 빔을 채용하는 장치에 관한 것이다. 따라서, 이러한 장치는 반도체 제조 산업에서 높은 분해능과 높은 처리량으로 웨이퍼/마스크 상의 결함을 검사 및/또는 검토하는데 이용될 수 있다.
반도체 IC 칩을 제조하는데 있어서, 패턴 결함 및/또는 원치 않는 입자(잔여물)가 제조 공정 중에 웨이퍼 및/또는 마스크 상에 불가피하게 발생하게 되며, 이로 인하여 수율이 크게 떨어진다. IC 칩의 성능에 대해 더욱더 진전된 요구사항을 충족시키기 위해서, 더욱더 작은 임계 피처 치수를 갖는 패턴이 채용된다. 그에 따라, 광학 빔을 이용하는 기존의 수율 관리 툴은 회절 효과로 인하여 점차 부적절하게 되었고 전자 빔을 이용하는 수율 관리 툴이 점점 더 많이 채용되고 있다. 광자 빔에 비해 전자 빔은 더 짧은 파장을 가짐으로써 우수한 공간 분해능을 제공할 수 있다. 현재 전자 빔을 이용하는 수율 관리 툴은 단일 전자 빔을 이용하는 주사 전자 현미경(SEM)의 원리를 채용하고 있으므로, 더 높은 분해능을 제공할 수는 있지만 대량 생산을 위해 적절한 처리량을 제공할 수 없다. 처리량을 늘리기 위해 단일 전자 빔의 점점 더 큰 흐름이 이용될 수 있지만, 빔 흐름과 함께 증가하는 쿨롱 효과로 인하여 우수한 공간 분해능이 근본적으로 열화될 것이다.
처리량에 대한 제한을 완화시키기 위해, 큰 흐름을 갖는 단일 전자 빔을 이용하는 대신에, 각각 작은 흐름을 갖는 복수의 전자 빔을 이용하는 것이 유망한 해결책이다. 이러한 복수의 전자 빔은 샘플의 검사 또는 관측 중인 하나의 표면 상에 복수의 프로브 스팟을 형성하게 된다. 복수의 프로프 스팟은 샘플 표면 상에서 넓은 관측 영역 내의 복수의 작은 스캔 영역을 각각 그리고 동시에 스캔할 수 있다. 각각의 프로브 스팟의 전자는 이들이 도달하는 샘플 표면으로부터 2차 전자를 생성한다. 이러한 2차 전자는 느린 2차 전자(에너지가 50 eV 이하) 및 후방산란 전자(에너지가 전자들의 도달 에너지에 근접함)를 포함한다. 복수의 작은 스캔 영역으로부터의 2차 전자는 복수의 전자 검출기에 의해 각각 그리고 동시에 수집될 수 있다. 결과적으로, 단일 빔을 이용하여 스캐닝되는 경우보다 작은 스캔 영역 모두를 포함하는 큰 관측 영역에 대한 이미지를 훨씬 빠르게 얻을 수 있다.
복수의 전자 빔은 복수의 전자 소스 각각으로부터 또는 단일 전자 소스로부터 기인한 것일 수 있다. 전자의 경우, 복수의 전자 빔은 통상적으로 각각 복수의 컬럼 내에서 복수의 작은 스캔 영역 상에 포커싱되어 이를 스캔하고, 각각의 스캔 영역으로부터의 2차 전자가 대응하는 컬럼 내부에서 하나의 전자 검출기에 의해 검출된다. 따라서 이러한 장치는 일반적으로 멀티 컬럼 장치라 불린다. 복수의 컬럼은 독립적이거나 다중축 자기 또는 전자기 복합 대물 렌즈를 공유할 수 있다(예컨대, US 8,294,095). 샘플 표면 상에서 2개의 인접한 빔 사이의 빔 간격은 통상 30~50mm에 이른다.
후자의 경우에는 소스 변환 유닛이 단일 전자 소스를 복수의 서브 소스로 가상으로 변화시킨다. 소스 변환 유닛은 복수의 빔 제한 개구를 갖는 하나의 빔릿 형성(또는 빔릿 제한) 수단과 복수의 전자 광학 요소를 갖는 하나의 이미지 형성 수단을 포함한다. 복수의 빔릿 제한 개구는 단일 전자 소스에 의해 생성된 1차 전자 빔을 복수의 서브 빔 또는 빔릿으로 각각 분할하고, 복수의 전자 광학 요소는 단일 전자 소스의 복수의 병렬 (가상 또는 실제) 이미지를 형성하도록 복수의 빔릿에 영향을 미친다. 각각의 이미지는 하나의 대응하는 빔릿을 방출하는 하나의 서브 소스로 취급될 수 있다. 보다 많은 빔릿을 이용가능하게 하기 위해, 빔릿 간격은 마이크로 미터 레벨이다. 당연하게도, 복수의 병렬 이미지를 복수의 작은 스캔 영역으로 각각 투영하여 스캐닝하기 위해 하나의 단일 컬럼 내에서 하나의 1차 투영 이미징 시스템 및 하나의 편향 스캐닝 유닛이 이용된다. 그로부터의 복수의 2차 전자 빔은 하나의 빔 분리기에 의해 하나의 2차 투영 이미징 시스템으로 지향되어, 그러한 단일 컬럼 내부에서 하나의 전자 검출 디바이스의 복수의 검출 요소에 의해 각각 검출되도록 이러한 2차 투영 이미징 시스템에 의해 포커싱된다. 복수의 검출 요소는 나란히 배치된 복수의 전자 검출기 또는 하나의 전자 검출기의 복수의 픽셀일 수 있다. 그러므로 장치는 일반적으로 멀티빔 장치라 불린다.
빔릿 형성(또는 빔릿 제한) 수단은 통상적으로 관통 홀을 갖는 전기 전도 플레이트이고, 그 안의 복수의 관통 홀이 복수의 빔 제한 개구로 각각 기능한다. 이러한 이미지 형성 수단에 의해 복수의 병렬 이미지를 형성하는데 두 가지 방법이 이용되고 있다. 첫 번째 방법에서는, 예를 들면 US 7,244,949에서와 같이, 각각의 전자 광학 요소가 하나의 빔릿을 포커싱하여 하나의 실제 이미지를 형성하는 정전식 마이크로 렌즈를 구비한다. 두 번째 방법에서는, 예를 들면 US6,943,349에서와 같이, 각각의 전자 광학 요소가 하나의 빔릿을 편향시켜 하나의 가상 이미지를 형성하는 정전식 마이크로 편향기를 구비한다. 전자 소스의 가상 이미지를 형성하기 위해 정전식 편향기를 이용하는 개념은 1950년대에 이미 유명했던 2-슬릿 전자 간섭 실험에서 이용된 바 있다(Physics in Perspective, 14 (2012) 178-195에 공개된 Rodolfo Rosa의 논문 "The Merli-Missiroli-Pozzi Two-Slit Electron-Interference Experiment"의 도 1 참조). 두 번째 방법에서 쿨롱 효과는 하나의 실제 이미지가 더 큰 흐름 밀도를 갖기 때문에 첫 번째 방법보다 약하고, 따라서 높은 처리량과 높은 분해능을 얻기 위해서는 두 번째 방법이 더 유리하다.
복수의 프로브 스팟의 수차를 줄이기 위해서, 1차 투영 이미징 시스템은 기본적으로 하나의 전사 렌즈(transfer lens) 및 하나의 대물 렌즈를 포함하고, 전사 렌즈는 복수의 빔릿을 굴절시켜 대물 렌즈를 광축에 가능한 가까이 통과하게 한다. 두 번째 방법에서 소스 변환 유닛으로는, 전사 렌즈의 굴절 기능이 복수의 마이크로 편향기에 의해 수행될 수 있고, 따라서 전사 렌즈는 첫 번째 참고 문헌에서 제안되고 도 1에 도시된 바와 같이 제거될 수 있다. 전사 렌즈가 없다면, 투영 이미징 시스템은 단순화될 것이고, 제조 및 동작이 용이해질 것이다.
도 1에서, 1차 광축(100_1) 상의 전자 소스(101)는 소스 크로스오버(101s)(가상 또는 실제)를 갖는 1차 전자 빔(102)를 생성한다. 집속 렌즈(110)는 요구되는 흐름 밀도를 갖고 소스 변환 유닛(120) 상으로 입사되는 1차 전자 빔(102)을 포커싱한다. 1차 전자 빔(102)의 외곽 전자는 메인 애퍼처 플레이트(171)의 메인 개구에 의해 차단되고, 이러한 플레이트 또한 집속 렌즈(110)의 위에 배치될 수 있다. 1차 전자 빔(102)의 3개의 빔릿(102_1, 102_2 및 102_3)이 이미지 형성 수단(122)의 3개의 마이크로 편향기(122_1, 122_2 및 122_3)에 의해 각각 1차 광축(100_1)을 향해 편향되고, 빔릿 제한 수단(121)의 3개의 빔 제한 개구(121_1, 121_2 및 121_3)를 통과한다. 이렇게 편향된 3개의 빔릿에 의해 형성되는 3개의 가상 이미지(102_1v, 102_2v 및 102_3v)가 대물 렌즈(131)에 의해 샘플(8)의 표면(7) 상에 투영되어 3개의 프로브 스팟(102_1s, 102_2s 및 102_3s)이 그 위에 형성된다.
3개의 빔릿이 대물 렌즈(131)의 전방 초점에 가까이 편향되거나 이러한 초점을 통과하는 경우, 빔릿은 샘플 표면(7) 상에 수직으로 도달하게 될 것이고, 대물 렌즈(131)로 인한 축외 프로브 스팟(예컨대, 102_2s)의 수차가 상당히 감소될 것이다. 그러나 이러한 경우 3개의 빔릿의 편향 각도가 더 커지게 되고, 이는 3개의 마이크로 편향기의 더 강력한 편향력을 요할 뿐만 아니라 더 큰 편향 수차를 생성하게 된다. 첫 번째 문제는 3개의 마이크로 편향기의 전기 절연 붕괴를 유발할 수 있고, 두 번째 문제는 축외 프로브 스팟의 크기를 수용할 수 없을 정도로 확대할 수 있다.
빔 제한 개구는 3개의 프로브 스팟의 흐름을 제한하는데, 1차 전자 빔(102)의 흐름 밀도를 변경하도록 집속 렌즈(110)의 초점력을 조정함으로써 이러한 흐름이 변화된다. 3개의 마이크로 편향기의 경우, 3개의 빔릿의 입사 각도가 초점력에 따라 변화하고, 그에 따라 편향력이 조정되어야 한다. 관측 조건을 변화시키기 위한 시간과 노력이 적을수록 유리하다.
그러므로, 앞서 언급한 문제가 전혀 없거나 문제가 줄어들어 높은 이미지 분해능과 높은 처리량을 제공할 수 있는 멀티빔 장치를 제공할 필요가 있다. 특히, 반도체 제조 산업의 로드맵에 부합하기 위해서 높은 분해능과 높은 처리량으로 웨이퍼/마스크 상의 결함을 검사 및/또는 검토할 수 있는 멀티빔 장치가 요구된다.
본 발명의 목적은 (샘플 표면 상에서의 프로브 스팟의 흐름 및 도달 에너지, 정전기장 등의) 유연하게 변화하는 관측 조건 하에서 샘플을 관측하기 위해 높은 분해능과 높은 처리량을 제공하는 새로운 멀티빔 장치를 제공하고자 하는 것이다. 장치는 반도체 제조 산업에 있어서 웨이퍼/마스크 상의 결함을 검사 및/또는 검토하기 위한 수율 관리 툴로서 기능할 수 있다.
장치에서는, 하나의 집속 렌즈가 1차 전자 빔을 하나의 소스 변환 유닛으로 시준하거나 실질적으로 시준하고, 소스 변환 유닛은 1차 전자 빔의 복수의 빔릿을, 하나의 대물 렌즈의 광축을 향해 편향시키며, 대물 렌즈는 하나의 샘플의 하나의 관측 중인 표면 상으로 복수의 편향된 빔릿을 포커싱하여 복수의 프로브 스팟이 그 위에 형성되고, 복수의 편향된 빔릿의 편향 각도는 복수의 프로브 스팟의 크기를 줄이도록 조정된다. 복수의 프로브 스팟의 흐름은, 집속 렌즈의 제1 주 평면의 위치 및 초점력 중 하나 또는 양자 모두를 변화시킴으로써 변경될 수 있다. 소스 변환 유닛은 복수의 프로브 스팟의 축외 수차를 보상함으로써 복수의 프로브 스팟의 크기 및 크기 차이를 추가로 줄일 수 있다. 나아가, 1차 전자 빔으로 인한 쿨롱 효과를 가능한 약화시키기 위해서, 소스 변환 유닛의 빔릿 형성 수단은 단일 전자 소스 가까이에 배치될 수 있고, 사전 빔릿 형성 수단이 단일 전자 소스 가까이에 채용될 수 있다.
그에 따라 본 발명은 멀티빔 장치를 제공하며, 이러한 장치는: 전자 소스, 전자 소스 아래에 있는 집속 렌즈, 집속 렌즈 아래에 있는 소스 변환 유닛, 소스 변환 유닛의 아래에 있는 대물 렌즈, 소스 변환 유닛의 아래에 있는 편향 스캐닝 유닛, 대물 렌즈 아래에 있는 샘플 스테이지, 소스 변환 유닛의 아래에 있는 빔 분리기, 2차 투영 이미징 시스템, 및 복수의 검출 요소를 구비하는 전자 검출 디바이스를 포함한다. 전자 소스, 집속 렌즈 및 대물 렌즈는 장치의 1차 광축과 정렬되고, 샘플 스테이지는 표면이 대물 렌즈와 마주하도록 샘플을 지탱한다. 소스 변환 유닛은 복수의 빔 제한 개구를 갖는 빔릿 형성 수단과 복수의 전자 광학 요소를 갖는 이미지 형성 수단을 포함한다. 전자 소스는 1차 광축을 따라 1차 전자 빔을 생성하고, 1차 전자 빔은 실질적으로 평행한 빔이 되어 소스 변환 유닛으로 입사되도록 집속 렌즈에 의해 포커싱된다. 1차 전자 빔의 복수의 빔릿이 소스 변환 유닛으로부터 나오고, 복수의 빔릿은 각각 복수의 빔 제한 개구를 통과하고 복수의 전자 광학 요소에 의해 1차 광축을 향해 편향되고, 복수의 빔릿의 편향 각도는 서로 상이하다. 대물 렌즈에 의해 표면 상으로 포커싱되어 그 위에 복수의 프로브 스팟을 형성하는 복수의 빔릿은 편향 스캐닝 유닛에 의해 편향되어 복수의 프로브 스팟을 표면 상의 관측 영역 내에서 복수의 스캔 영역에 걸쳐 각각 스캐닝하게 되며, 복수의 프로브 스팟의 흐름은 복수의 빔 제한 개구에 의해 제한된다. 복수의 프로브 스팟에 의해 복수의 스캔 영역으로부터 각각 생성되고 빔 분리기에 의해 2차 투영 이미징 시스템으로 지향되는 복수의 2차 전자 빔이 2차 투영 이미징 시스템에 의해 포커싱되어 복수의 검출 요소에 의해 각각 검출되도록 복수의 2차 전자 빔을 유지하고, 각각의 검출 요소가 하나의 대응하는 스캔 영역의 이미지 신호를 제공한다.
일 실시예로서, 편향 각도는 각각 복수의 프로브 스팟의 수차를 줄이도록 개별적으로 설정될 수 있다. 복수의 전자 광학 요소는 각각 복수의 빔 제한 개구 아래에서 복수의 빔 제한 개구와 정렬된다. 복수의 전자 광학 요소는 각각 4극 렌즈일 수 있다. 복수의 프로브 스팟의 흐름은, 집속 렌즈를 이용하여 소스 변환 유닛으로 입사되는 1차 전자 빔의 흐름 밀도를 변화시킴으로써 변경된다. 장치는 소스 변환 유닛 위에 복수의 빔릿 형성 애퍼처를 갖는 사전 빔릿 형성 수단을 더 포함할 수 있고, 복수의 빔릿은 복수의 빔릿 형성 애퍼처를 각각 통과하고 복수의 빔릿 외부의 전자 대부분은 차단된다.
본 실시예에서, 복수의 전자 광학 요소는 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상할 수 있다. 각각의 복수의 전자 광학 요소는 각각 8극 렌즈일 수 있다. 복수의 전자 광학 요소는 각각, 각각의 복수의 전자 광학 요소의 광축과 정렬되어 광축을 따라 배치되는 하나의 마이크로 렌즈 및 2개의 4극 렌즈를 포함할 수 있고, 2개의 4극 렌즈는 방위각에 있어서 45° 차이를 가진다. 각각의 복수의 전자 요소에 대하여, 2개의 4극 렌즈 중 하나의 4극 렌즈는 빔릿 출구 측에 있고 대응하는 하나의 빔릿이 하나의 4극 렌즈에 의해 편향된다.
일 실시예로서, 집속 렌즈는, 서로 상이한 축방향 위치에서 1차 광축을 따라 배치되어 1차 광축과 정렬되는 다수의 환형 전극을 포함할 수 있고, 흐름 밀도를 변화시키도록 환형 전극의 전압이 조정될 수 있다. 이와 다른 실시예로서, 집속 렌즈는, 서로 상이한 축방향 위치에서 1차 광축을 따라 배치되어 1차 광축과 정렬되는 적어도 2개의 단일 자기 렌즈를 포함할 수 있고, 소스 변환 유닛으로 입사되는 1차 전자 빔의 흐름 밀도를 변화시키도록 단일 자기 렌즈의 여기(excitation)가 조정될 수 있다. 또 다른 실시예로서, 집속 렌즈는, 서로 상이한 축방향 위치에서 1차 광축을 따라 배치되어 1차 광축과 정렬되는 다수의 환형 전극 및 적어도 하나의 단일 자기 렌즈를 포함할 수 있고, 흐름 밀도를 변화시키도록 환형 전극의 전압 및 단일 자기 렌즈의 여기가 조정될 수 있다.
표면 상에서의 복수의 빔릿의 도달 에너지는 전위를 변화시킴으로써 변경된다.
본 발명은 또한 멀티빔 장치를 제공하는데, 이러한 장치는: 전자 소스, 전자 소스 아래에 있는 집속 렌즈, 집속 렌즈 아래에 있는 소스 변환 유닛, 소스 변환 유닛의 아래에 있는 대물 렌즈, 소스 변환 유닛의 아래에 있는 편향 스캐닝 유닛, 대물 렌즈 아래에 있는 샘플 스테이지, 소스 변환 유닛의 아래에 있는 빔 분리기, 2차 투영 이미징 시스템, 및 복수의 검출 요소를 구비하는 전자 검출 디바이스를 포함한다. 전자 소스, 집속 렌즈 및 대물 렌즈는 장치의 1차 광축과 정렬되고, 샘플 스테이지는 표면이 대물 렌즈와 마주하도록 샘플을 지탱한다. 소스 변환 유닛은 복수의 빔 제한 개구를 갖는 빔릿 형성 수단과 복수의 전자 광학 요소를 갖는 이미지 형성 수단을 포함한다. 전자 소스는 1차 광축을 따라 1차 전자 빔을 생성하고, 1차 전자 빔은 집속 렌즈에 의해 포커싱되어 수렴 또는 발산 각도로 소스 변환 유닛으로 입사된다. 1차 전자 빔의 복수의 빔릿이 소스 변환 유닛으로부터 나오고, 복수의 빔릿은 각각 복수의 빔 제한 개구를 통과하고 복수의 전자 광학 요소에 의해 1차 광축을 향해 편향된다. 복수의 빔릿은 대물 렌즈에 의해 표면 상으로 포커싱되어 그 위에 복수의 프로브 스팟을 형성한다. 복수의 빔릿의 편향 각도는 각각 복수의 프로브 스팟의 수차를 줄이도록 개별적으로 설정되며, 편향 스캐닝 유닛은 복수의 프로브 스팟을 표면 상의 관측 영역 내에서 복수의 스캔 영역에 걸쳐 각각 스캐닝하도록 복수의 빔릿을 편향시킨다. 복수의 프로브 스팟의 흐름은 복수의 빔 제한 개구에 의해 제한된다. 복수의 2차 전자 빔이 복수의 프로브 스팟에 의해 복수의 스캔 영역으로부터 각각 생성되고 빔 분리기에 의해 2차 투영 이미징 시스템으로 지향된다. 2차 투영 이미징 시스템은 복수의 검출 요소에 의해 각각 검출되도록 복수의 2차 전자 빔을 포커싱 및 유지함으로써, 각각의 검출 요소가 하나의 대응하는 스캔 영역의 이미지 신호를 제공한다.
복수의 전자 광학 요소는 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상할 수 있다. 복수의 프로브 스팟의 흐름은, 집속 렌즈를 이용하여 소스 변환 유닛으로 입사되는 1차 전자 빔의 흐름 밀도를 변화시킴으로써 변경된다. 복수의 전자 광학 요소는 복수의 빔 제한 개구 아래에 있을 수 있다. 장치는 복수의 빔 제한 개구 위에 각각 복수의 사전 굴절 마이크로 편향기(pre-bending micro-deflector)를 갖는 사전 빔릿 굴절 수단을 더 포함할 수 있다. 복수의 사전 굴절 마이크로 편향기는 복수의 빔 제한 개구로 수직으로 입사되도록 복수의 빔릿을 편향시킬 수 있다. 장치는 소스 변환 유닛 위에 복수의 빔릿 형성 애퍼처를 갖는 사전 빔릿 형성 수단을 더 포함할 수 있고, 복수의 빔릿은 복수의 빔릿 형성 애퍼처를 각각 통과하고 복수의 빔릿 외부의 전자 대부분은 차단된다.
본 발명은 또한 멀티빔 장치를 제공하는데, 이러한 장치는: 전자 소스, 전자 소스 아래에서 복수의 빔 제한 개구를 제공하는 빔릿 형성 플레이트, 빔릿 형성 플레이트의 아래에 있는 집속 렌즈, 집속 렌즈의 아래에 있는 복수의 전자 광학 요소, 복수의 전자 광학 요소의 아래에 있는 대물 렌즈, 복수의 전자 광학 요소의 아래에 있는 편향 스캐닝 유닛, 대물 렌즈 아래에 있는 샘플 스테이지, 복수의 전자 광학 요소의 아래에 있는 빔 분리기, 2차 투영 이미징 시스템, 및 복수의 검출 요소를 구비하는 전자 검출 디바이스를 포함한다. 전자 소스, 집속 렌즈 및 대물 렌즈는 장치의 1차 광축과 정렬되고, 샘플 스테이지는 표면이 대물 렌즈와 마주하도록 샘플을 지탱한다. 전자 소스는 1차 광축을 따라 1차 전자 빔을 생성하고, 빔릿 형성 플레이트에 의해 1차 전자 빔은, 제1 그룹의 복수의 관통 홀을 각각 통과하는 복수의 빔릿으로 트리밍(trimming)되고, 복수의 관통 홀은 장치의 복수의 빔 제한 개구로 작용한다. 집속 렌즈는 복수의 빔릿을 포커싱하여 복수의 전자 광학 요소에 의해 각각 1차 광축을 향해 편향되도록 한다. 복수의 빔릿은 대물 렌즈에 의해 표면 상으로 포커싱되어 그 위에 복수의 프로브 스팟을 형성하고, 복수의 빔릿의 편향 각도는 각각 복수의 프로브 스팟의 수차를 줄이도록 개별적으로 설정된다. 편향 스캐닝 유닛은 복수의 프로브 스팟을 표면 상의 관측 영역 내에서 복수의 스캔 영역에 걸쳐 각각 스캐닝하도록 복수의 빔릿을 편향시키고, 복수의 프로브 스팟의 흐름은 복수의 빔 제한 개구에 의해 제한된다. 복수의 2차 전자 빔이 복수의 프로브 스팟에 의해 복수의 스캔 영역으로부터 각각 생성되고 빔 분리기에 의해 2차 투영 이미징 시스템으로 지향된다. 2차 투영 이미징 시스템은 복수의 검출 요소에 의해 각각 검출되도록 복수의 2차 전자 빔을 포커싱 및 유지함으로써, 각각의 검출 요소가 하나의 대응하는 스캔 영역의 이미지 신호를 제공한다.
복수의 빔릿은 복수의 전자 광학 요소로 수직으로 입사된다. 복수의 전자 광학 요소는 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상한다. 일 실시예로서, 복수의 빔릿의 흐름은, 전자 소스의 각도 세기를 조정함으로써 변경될 수 있다. 이와 다른 실시예로서, 복수의 빔릿의 흐름은, 복수의 빔 제한 개구의 반경방향 크기를 변화시킴으로써 변경될 수 있다. 반경방향 크기는, 복수의 빔 제한 개구로서 제2 그룹의 복수의 관통 홀을 위치시키도록 빔릿 형성 플레이트를 이동시킴으로써 변화된다.
본 발명은 또한 SEM에서 복수의 프로브 스팟을 형성하는 방법을 제공하는데, 이러한 방법은: 전자 소스에 의해 1차 전자 빔을 생성하는 단계, 집속 렌즈에 의해 1차 전자 빔을 시준하거나 실질적으로 시준하는 단계, 시준된 1차 전자 빔을, 제1 관통 홀을 갖는 제1 플레이트에 의해 복수의 빔릿으로 트리밍하는 단계, 복수의 빔릿을, 복수의 전자 광학 요소에 의해 대물 렌즈의 광축을 향해 상이한 편향 각도로 편향시키는 단계, 및 편향된 복수의 빔릿을, 대물 렌즈에 의해 샘플의 관측 중인 표면 상으로 포커싱하는 단계를 포함하고, 편향되고 포커싱된 복수의 빔릿은 복수의 프로브 스팟을 형성한다.
방법은, 각각 복수의 프로브 스팟의 수차를 줄이도록 복수의 빔릿의 편향 각도를 개별적으로 설정하는 단계를 더 포함할 수 있다. 방법은, 복수의 전자 광학 요소에 의해, 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는 단계를 더 포함할 수 있다. 방법은, 집속 렌즈의 제1 주 평면을 이동시킴으로써, 시준된 1차 전자 빔의 흐름 밀도를 변경하는 단계를 더 포함할 수 있다. 방법은, 트리밍하는 단계에 앞서 제2 관통 홀을 갖는 제2 플레이트에 의해 복수의 빔릿 외부의 전자 대부분을 차단하는 단계를 더 포함할 수 있다.
본 발명은 또한 SEM에서 복수의 프로브 스팟을 형성하는 방법을 제공하는데, 이러한 방법은: 전자 소스에 의해 1차 전자 빔을 생성하는 단계, 1차 전자 빔을, 복수의 관통 홀을 갖는 플레이트에 의해 복수의 빔릿으로 트리밍하는 단계, 복수의 빔릿을 집속 렌즈에 의해 포커싱하는 단계, 복수의 빔릿을, 복수의 전자 광학 요소에 의해 대물 렌즈의 광축을 향해 편향시키는 단계, 편향된 복수의 빔릿을, 대물 렌즈에 의해 샘플의 관측 중인 표면 상으로 포커싱하는 단계로서, 편향되고 포커싱된 복수의 빔릿은 복수의 프로브 스팟을 형성하는, 포커싱 단계, 및 각각 복수의 프로브 스팟의 수차를 줄이도록 복수의 빔릿의 편향 각도를 개별적으로 설정하는 단계를 포함한다.
방법은, 복수의 전자 광학 요소에 의해, 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는 단계를 더 포함할 수 있다. 방법은, 전자 소스의 각도 세기를 조정함으로써 복수의 빔릿의 흐름을 변경하는 단계를 더 포함할 수 있다. 방법은, 트리밍하는 단계에서 플레이트의 또 다른 복수의 관통 홀을 이용하여 복수의 빔릿의 흐름을 변화시키는 단계를 더 포함할 수 있다.
본 발명은 또한 다수의 소스를 제공하기 위한 디바이스를 제공하는데, 이러한 디바이스는: 디바이스의 광축을 따라 1차 빔을 제공하기 위한 하전 입자 소스, 1차 빔을 실질적으로 시준하기 위한 수단, 및 시준된 1차 빔의 복수의 빔릿으로 하전 입자 소스의 복수의 가상 이미지를 이미징하기 위한 수단을 포함하고, 복수의 가상 이미지는 복수의 빔릿을 각각 방출하는 다수의 소스가 된다.
디바이스는 복수의 빔릿의 흐름을 변경하기 위한 수단을 더 포함할 수 있다. 디바이스는 또한 1차 빔으로 인한 쿨롱 효과를 억제하기 위한 수단을 더 포함할 수 있다.
본 발명은 또한 멀티빔 장치를 제공하는데, 이러한 장치는: 앞서 살펴본 다수의 소스를 제공하기 위한 디바이스, 샘플 표면 상에 복수의 프로브 스팟이 형성되도록 샘플 표면 상에 복수의 가상 이미지를 투영하기 위한 수단, 샘플 표면 상에서 복수의 프로브 스팟을 스캐닝하기 위한 수단, 및 복수의 프로브 스팟으로 인해 샘플 표면으로부터 생성되는 복수의 신호 입자 빔을 수신하기 위한 수단을 포함한다. 멀티빔 장치는 각각 복수의 프로브 스팟의 수차를 줄이도록 복수의 빔릿을 개별적으로 편향시키기 위한 수단을 더 포함할 수 있다. 멀티빔 장치는 복수의 프로브 스팟의 수차를 개별적으로 보상하기 위한 수단을 더 포함할 수 있다. 투영하기 위한 수단은 단일 대물 렌즈이다.
본 발명의 기타 다른 장점은 첨부된 도면을 참고하여 이루어지는 다음의 설명으로 명백해질 것이고, 여기서는 본 발명의 특정 실시예가 예시의 목적으로 제시될 것이다.
본 발명은 첨부된 도면과 함께 다음의 상세한 설명으로부터 손쉽게 이해될 것이고, 도면에서는 유사한 도면 부호가 유사한 구성 요소를 나타낸다.
도 1은 첫 번째 참고 문헌에서 개시된 기존의 멀티빔 장치를 개략적으로 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 새로운 멀티빔 장치의 일 구성예를 개략적으로 나타낸 것이다.
도 3은 본 발명의 다른 실시예에 따른 새로운 멀티빔 장치의 다른 구성예를 개략적으로 나타낸 것이다.
도 4는 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
도 5는 본 발명의 또 다른 실시예에 따른 도 4의 마이크로 편향기-보상기 어레이의 일 구성예를 개략적으로 나타낸 것이다.
도 6a는 본 발명의 또 다른 실시예에 따른 도 4의 마이크로 편향기-보상기 어레이의 일 구성예를 개략적으로 나타낸 것이다.
도 6b-6d는 본 발명의 또 다른 실시예에 따른 도 6a의 마이크로 편향기-보상기 어레이의 구성의 일례를 개략적으로 나타낸 것이다.
도 7a 및 7b는 각각 본 발명의 또 다른 실시예에 따른 도 4의 마이크로 편향기-보상기 어레이의 일 구성예를 개략적으로 나타낸 것이다.
도 8은 도 3의 장치의 한 가지 동작 모드를 개략적으로 나타낸 것이다.
도 9는 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
도 10은 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
도 11a 및 도 11b는 각각 도 10의 장치의 한 가지 동작 모드를 개략적으로 나타낸 것이다.
도 12, 13a 및 13b는 각각 도 10의 이동가능한 집속 렌즈의 일 실시예를 개략적으로 나타낸 것이다.
도 14는 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
도 15a는 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
도 15b는 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
도 16은 본 발명의 또 다른 실시예에 따른 새로운 멀티빔 장치의 또 다른 구성예를 개략적으로 나타낸 것이다.
이제 본 발명의 다양한 예시적인 실시예에 대해 첨부된 도면을 참조로 하여 설명할 것이고, 도면에는 본 발명의 몇몇 예시적인 실시예가 도시되어 있다. 본 발명의 보호범위를 제한함이 없이 이러한 실시예에 대한 모든 설명과 도면은 예를 들어 전자 빔을 언급할 것이다. 그러나 이러한 실시예는 본 발명을 특정 하전 입자로 제한하고자 하는 것이 아니다.
도면에서는 각 구성요소의 상대적인 치수 및 각 구성 사이의 치수가 명확화를 위해 과장되어 있을 수 있다. 도면에 대한 이어지는 설명에서는 동일하거나 유사한 도면 부호가 동일하거나 유사한 구성요소 또는 개체를 지칭하며 개개의 실시예에 대하여 단지 차이점에 대해서만 설명할 것이다.
따라서, 본 발명의 예시적인 실시예는 다양한 수정 및 대안적인 형태가 가능하고, 도면에서는 그 실시예를 예시의 목적으로 도시한 것이며 본 명세서에서 이에 대해 상세히 설명할 것이다. 그러나 본 발명의 예시적인 실시예를 개시된 특정 형태로 제한하고자 하는 것은 아니며, 그와 반대로 본 발명의 예시적인 실시예는 본 발명의 범위 내에 속하는 모든 수정예, 균등예, 및 대안예를 포괄하고자 한다.
본 발명에서, "축방향"이란 "전자 광학 요소(예컨대, 라운드 렌즈 또는 다중극 렌즈), 또는 장치의 광축 방향"을 의미하고, "반경방향"이란 "광축에 수직인 방향"을 의미하며, "축상(on-axial)"이란 "광축상에 있거나 또는 광축과 정렬됨"을 의미하며, "축외"란 "광축상에 있지 않거나 광축과 정렬되지 않음"을 의미한다.
본 발명에서 X, Y, Z 축은 직교좌표계를 형성하고, 광축은 Z 축 상에 있고 1차 전자 빔은 Z 축을 따라 진행한다.
본 발명에서 "1차 전자"란 "전자 소스로부터 방출되어 샘플의 관측 중인 또는 검사 중인 표면 상에 입사되는 전자"를 의미하고, "2차 전자"란 "1차 전자에 의해 표면으로부터 생성된 전자"를 의미한다.
본 발명에서 관통 홀, 개구 및 오리피스에 관한 모든 용어는 하나의 플레이트를 통해 관통되는 개구 또는 홀을 의미한다.
새로운 멀티빔 장치에서는, 1차 전자 빔이 하나의 집속기에 의해 하나의 소스 변환 유닛으로 평행하게 또는 실질적으로 평행하게 포커싱된다. 1차 전자 빔의 복수의 빔릿은 처음에 소스 변환 유닛에 의해 하나의 대물 렌즈의 광축을 향해 편향된 다음, 대물 렌즈에 의해 샘플 표면 상으로 포커싱되고, 결국 그 위에 복수의 프로브 스팟을 형성하게 된다. 복수의 편향된 빔릿의 편향 각도는 대물 렌즈로 인한 축외 수차를 최소화하도록 설정된다. 복수의 프로브 스팟의 흐름은, 집속 렌즈의 제1 주 평면의 위치 및 초점력 중 하나 또는 양자 모두를 변화시킴으로써 변경될 수 있고, 소스 변환 유닛에 의해 잔여 축외 수차를 보상함으로써 복수의 프로브 스팟의 크기 및 그 크기 차이가 추가로 줄어들 수 있다. 또한, 복수의 프로브 스팟에 대해서, 1차 전자 빔의 강한 쿨롱 효과로 인한 번짐 현상(blur)이, 소스 변환 유닛의 빔릿 형성 수단을 단일 전자 소스 가까이에 배치하거나 부가적으로 소스 변환 유닛 위에 있는 사전 빔릿 형성 수단을 이용함으로써 줄어들 수 있다.
다음으로, 새로운 장치의 몇몇 실시예에 관해 설명할 것이다. 명확화를 위해, 단지 3개의 빔릿만이 도시되어 있지만 빔릿의 개수는 임의의 수일 수 있다. 종래 기술의 편향 스캐닝 유닛, 빔 분리기, 2차 투영 이미징 시스템 및 전자 검출 디바이스가 여기서 이용될 수 있고, 단순화를 위해 실시예에 관한 설명과 예시에서는 이러한 구성요소가 도시되거나 언급되어 있지 않다.
새로운 장치의 일 실시예(200A)가 도 2에 도시되어 있다. 도 2에서는, 전자 소스(101), 메인 애퍼처 플레이트(271)의 메인 개구, 집속 렌즈(210), 소스 변환 유닛(220) 및 대물 렌즈(131)가 장치의 1차 광축(200_1)과 정렬되어 있다. 전자 소스(101)는 1차 광축(200_1)을 따라 소스 크로스오버(가상 또는 실제)(101s)를 갖는 1차 전자 빔(102)을 생성하고, 집속 렌즈(210)는 이러한 1차 전자 빔(102)을 포커싱하여 1차 광축(200_1)을 따라 평행한 빔이 되어 소스 변환 유닛(220) 상으로 수직으로 입사되게 한다. 소스 변환 유닛(220)에서는, 1차 전자 빔(102)의 3개의 빔릿(102_1, 102_2 및 102_3)이 각각 이미지 형성 수단(222)의 3개의 마이크로 편향기(222_1d, 222_2d, 222_3d)에 의해 1차 광축(200_1)을 향해 편향되고 빔릿 제한 수단(221)의 3개의 빔 제한 개구(221_1, 221_2 및 221_3)를 통과하게 된다. 3개의 빔 제한 개구는 3개의 편향된 빔릿의 흐름을 제한한다. 대물 렌즈(131)는 3개의 편향된 빔릿을 샘플(8)의 표면(7) 상으로 포커싱하고, 그에 따라 표면 상에 소스 크로스오버(101s)의 3개의 이미지(102_1s, 102_2s 및 102_3s)를 생성한다. 각각의 이미지는 표면(7) 상에 하나의 프로브 스팟을 형성하고, 3개의 이미지는 또한 3개의 프로브 스팟(102_1s, 102_2s 및 102_3s)이라 지칭된다. 3개의 편향된 빔릿의 편향 각도는 대물 렌즈(131)로 인한 3개의 이미지의 축외 수차를 최소화하도록 설정되며, 3개의 편향된 빔릿은 통상적으로 대물 렌즈(131)의 전방 초점을 통과하거나 이러한 초점에 근접하게 된다. 메인 애퍼터 플레이트(271)는 쿨롱 효과를 가능한 줄이도록 1차 전자 빔(102)의 외곽 전자를 차단한다.
빔릿 형성 수단(221)은 관통 홀을 갖는 전기 전도 플레이트일 수 있고, 3개의 관통 홀은 각각 3개의 빔 제한 개구(221_1~221_3)로 기능한다. 도 2에서는, 3개의 편향된 빔릿(102_1~102_3)이 3개의 빔 제한 개구(221_1~221_3)를 수직으로 통과하지 않으므로, 편향 각도와 관련하여 일정 정도로 전자 산란을 겪게 된다. 각 빔릿에서의 산란된 전자는 프로브 스팟을 확대하고 및/또는 백그라운드 노이즈가 되어, 대응하는 스캔 영역의 이미지 분해능을 열화시킬 것이다. 이러한 문제를 피하기 위해서, 3개의 빔릿의 흐름은 이러한 빔릿이 1차 광축(200_1)에 평행할 때 컷팅될 수 있다. 그에 따라, 새로운 장치의 또 다른 실시예(300A)가 도 3에 제안되어 있다. 도 2의 실시예(200A)에 비해서, 도 3에서는 빔릿 제한 수단(221)이 이미지 형성 수단(222) 위에 배치되고 소스 변환 유닛(320)에서 빔릿 형성 수단(321)으로 명칭 변경된다. 빔릿 형성 수단(321)의 3개의 빔 제한 개구(321_1, 321_2 및 321_3)는 이미지 형성 수단(222)의 3개의 마이크로 편향기(222_1d, 222_2d 및 222_3d)와 각각 정렬되고, 3개의 빔릿(102_1, 102_2 및 102_3)은 3개의 빔 제한 개구 및 3개의 마이크로 편향기에 연속하여 수직으로 입사된다.
알려져 있는 바와 같이, 집속 렌즈(210) 및 대물 렌즈(131)는 축외 수차(예컨대, 상면 만곡, 비점수차 및 왜곡 등)를 발생시키고, 이는 그러한 축외 빔릿(장치의 1차 광축을 따르지 않는)에 의해 형성되는 프로브 스팟의 크기를 확대시키고 및/또는 그 위치에 영향을 미친다. 위에서 언급한 바와 같이, 대물 렌즈(131)로 인한 축외 수차는 축외 빔릿의 궤적을 개별적으로 최적화함으로써(즉, 편향 각도를 적절히 설정함으로써) 최소화되어 왔다. 프로브 스팟의 크기 및 크기 차이를 추가로 줄이기 위해서, 집속 렌즈(210)로 인한 축외 수차와 대물 렌즈(131)로 인한 잔여 축외 수차가 보상되어야 한다. 따라서, 도 4에서는 새로운 장치의 또 다른 실시예(400A)가 제안되며, 이미지 형성 수단(422)이 3개의 마이크로 편향기-보상기 요소(422_1dc, 422_2dc 및 422_3dc)를 가진다. 각각의 마이크로 편향기-보상기 요소는 빔릿 형성 수단(321)의 3개의 빔 제한 개구(321_1, 321_2 및 321_3) 중 하나와 정렬되어, 하나의 빔릿을 편향시키기 위한 하나의 마이크로 편향기 및 대응하는 프로브 스팟의 상면 만곡, 비점수차 및 왜곡을 보상하기 위한 하나의 보상기로 기능한다.
도 2 및 도 3에서의 3개의 마이크로 편향기(222_1d~222_3d)는 각각, 대응하는 빔릿의 요구되는 편향 방향으로 쌍극 필드를 생성하도록 두 전극이 배향되는 쌍극 렌즈, 또는 4개의 전극이 임의의 요구되는 방향으로 쌍극 필드를 생성할 수 있는 사중극 또는 4극 렌즈에 의해 단순히 형성될 수 있다. 후자의 경우, 모든 마이크로 편향기는 구조 및 배향에 있어서 동일하게 구성될 수 있다. 이는 제조의 관점에서 유리하다.
도 4에서는, 3개의 마이크로 편향기-보상기 요소(422_1dc~422_3dc)가 각각, 4개의 전극이 임의의 요구되는 방향으로 쌍극 필드를 생성하고 대응하는 프로브 스팟의 요구되는 보상 방향으로 라운드 렌즈 필드 및 사중극 필드를 생성할 수 있는 4극 렌즈, 또는 8개의 전극이 임의의 요구되는 방향으로 라운드 렌즈 필드, 쌍극 필드 및 사중극 필드를 생성할 수 있는 8중극 또는 8극 렌즈에 의해 단순히 형성될 수 있다. 라운드 렌즈 필드를 생성하기 위해서, 4개 또는 8개의 전극의 내측 표면이 도 5에 도시된 바와 같이 반경방향 단면으로 원형의 형상을 형성한다. 후자의 경우, 모든 마이크로 편향기-보상기 요소는 구조 및 배향에 있어서 동일하게 구성될 수 있다. 이는 제조의 관점에서 유리하다.
앞선 모든 필드를 생성하기 위해서, 하나의 4극 렌즈 또는 8극 렌즈에서의 전극들의 전압이 서로 상이하고 전기 절연 붕괴를 유발할 정도로 충분히 높을 수도 있다. 이러한 문제를 피하기 위해, 각각의 마이크로 편향기-보상기 요소가 둘 이상의 마이크로 다중극 렌즈, 또는 하나 이상의 마이크로 다중극 렌즈 및 하나 이상의 마이크로 렌즈에 의해 형성될 수 있다. 부가적으로, 각각의 마이크로 편향기-보상기 요소로 인한 수차를 줄이기 위해서, 대응하는 빔릿이 광축을 따라 라운드 렌즈 필드 및 사중극 필드를 더 양호하게 통과하고, 즉 빔릿 편향에 앞서 축외 수차 보상이 더 양호하게 이루어진다. 그러므로, 각각의 마이크로 편향기-보상기 요소의 빔릿 출구 측에서 마이크로 다중극 렌즈에 의해 쌍극 필드가 더 양호하게 생성된다. 그에 따라, 도 6a는 도 4의 이미지 형성 수단(422)의 일 실시예를 나타내며, 여기서는 3개의 마이크로 편향기-보상기 요소(422_1dc~422_3dc)가 각각, 제1 층(422-1)에서 하나의 마이크로 렌즈에 의해, 제2 층(422-2)에서 하나의 마이크로 다중극 렌즈에 의해, 그리고 제3 층(422-3)에서 하나의 마이크로 다중극 렌즈에 의해 형성되고, 이러한 마이크로 렌즈 및 2개의 마이크로 다중극 렌즈는 그 광축과 정렬된다. 예를 들여, 마이크로 렌즈(422-1_2) 및 2개의 마이크로 다중극 렌즈(422-2_2 및 422-3_2)는 마이크로 편향기-보상기 요소(422_2dc)를 형성하고, 그 광축(422_2dc_1)과 정렬된다.
도 6a에서의 각각의 마이크로 편향기-보상기 요소에 있어서, 2개의 마이크로 다중극 렌즈는 각각 쌍극 렌즈와 4극 렌즈이거나, 또는 쌍극 렌즈와 8극 렌즈이거나, 또는 4극 렌즈 등일 수 있다. 도 6b, 6c, 6d는 한 가지 예를 보여주는데, 각각의 마이크로 렌즈가 둥근 내측 표면을 갖는 하나의 환형 전극에 의해 형성되고, 각각의 마이크로 다중극 렌즈는 4극 렌즈이며, 제2 층(422-2)의 각각의 4극 렌즈 및 제3 층(422-3)의 대응하는 4극 렌즈는 방위각 또는 배향에 있어서 45°차이가 있다. 각각의 마이크로 편향기-보상기 요소에 대해, 마이크로 렌즈는 라운드 렌즈 필드를 생성하고, 2개의 4극 렌즈는 사중극 필드를 생성하며, 제3 층(422-3)에서 4극 렌즈에 의해 쌍극 필드가 더 양호하게 생성된다.
도 4의 하나의 마이크로 렌즈-보상기 요소를 동작시키기 위해서, 구동 회로는 각각의 전극과 연결되어야 한다. 이러한 구동 회로가 빔릿(102_1~102_3)에 의해 손상되는 것을 방지하기 위해, 이미지 형성 수단(422)은 하나의 전기 전도 커버 플레이트를 포함할 수 있는데, 이는 복수의 관통 홀을 가지며 모든 마이크로 렌즈-보상기 요소의 전극 위에 배치된다. 각각의 관통 홀은 통과하는 대응 빔릿을 위한 것이다. 각각의 마이크로 렌즈-보상기 요소의 앞서 언급한 필드는 제한된 범위 내에 더 양호하게 위치하여 인접한 빔릿에 영향을 미치지 않게 된다. 그러므로, 2개의 전기 전도 차폐 플레이트를 이용하여 모든 마이크로 렌즈-보상기 요소의 전극들 사이를 개재시키는 것이 바람직하고, 각각의 차폐 플레이트는 통과하는 빔릿을 위해 복수의 관통 홀을 가진다. 도 7a는 도 6a의 실시예에서 앞서 언급한 방안을 구현하는 한 가지 방법을 보여준다.
도 7a에서는, 제1 상부 전기 전도 플레이트(422-1-CL1)와 제1 하부 전기 전도 플레이트(422-1-CL2)가 각각 제1 층(422-1)에서 마이크로 렌즈(422-1_1, 422-1_2 및 422-1_3)의 위와 아래에 배치된다. 제1 상부 절연체 플레이트(422-1-IL1) 및 제1 하부 절연체 플레이트(422-1-IL2)는, 각각 통과하는 빔릿을 위한 3개의 제1 상부 오리피스 및 제1 하부 오리피스와 함께, 마이크로 렌즈(422-1_1, 422-1_2 및 422-1_3)를 지지하고, 따라서 제1 층(422-1)의 구성을 보다 안정되게 한다. 마찬가지로, 제2 층(422-2)에서는, 제2 상부 전기 전도 플레이트(422-2-CL1)와 제1 하부 전기 전도 플레이트(422-2-CL2)가 각각 마이크로 다중극 렌즈(422-2_1, 422-2_2 및 422-2_3)의 위와 아래에 배치된다. 제2 상부 절연체 플레이트(422-2-IL1) 및 제2 하부 절연체 플레이트(422-2-IL2)는, 각각 통과하는 빔릿을 위한 3개의 제2 상부 오리피스 및 제2 하부 오리피스와 함께, 마이크로 렌즈(422-2_1, 422-2_2 및 422-2_3)를 지지하고, 따라서 제2 층(422-2)의 구성을 보다 안정되게 한다. 제3 층(422-3)에서는, 제3 상부 전기 전도 플레이트(422-3-CL1)와 제3 하부 전기 전도 플레이트(422-3-CL2), 및 제3 상부 절연체 플레이트(422-3-IL1) 및 제3 하부 절연체 플레이트(422-3-IL2)가 제2 층(422-2)에서의 대응 부분과 동일하게 기능한다.
도 7a의 각각의 층에서, 관통 홀의 반경방향 치수는, 내부 측벽에 전하가 쌓이는 것(charging-up)을 막기 위해서 오리피스의 반경방향 치수보다 작고, 필드들이 누출되는 것을 보다 효율적으로 줄이기 위해서 마이크로 렌즈/마이크로 다중극 렌즈의 전극의 내측 반경방향 치수보다 작은 것이 바람직하다. 빔릿이 전자 산란을 유발할 가능성을 줄이기 위해서, 제1 상부 전기 전도 플레이트에서의 각각의 관통 홀은 뒤집힌 깔대기 형상(즉, 작은 단부가 빔릿 입사 측에 있음)인 것이 바람직하다. 빔릿 형성 수단(321)은 관통 홀을 갖는 전기 전도 플레이트일 수 있고, 그 안의 3개의 관통 홀은 각각 3개의 빔 제한 개구(321_1~321_3)로 기능한다. 그러므로, 빔릿 형성 수단(321)은 제조 및 구조상의 단순화를 위해 도 7a의 이미지 형성 수단(422)의 실시예와 조합될 수 있다. 도 7b에서는, 빔릿 형성 수단(321)과 제1 상부 전기 전도 플레이트(422-1-CL1)가 조합되고, 제1 하부 전기 전도 플레이트(422-1-CL2)와 제2 상부 전기 전도 플레이트(422-2-CL1)가 조합되며, 제2 하부 전기 전도 플레이트(422-2-CL2)와 제3 상부 전기 전도 플레이트(422-3-CL1)가 조합된다.
도 2, 도 3 및 도 4의 새로운 장치의 앞선 실시예에 대해서, 프로브 스팟(102_1s~102_3)의 흐름은, 1차 전자 빔(102)이 약간 발산 또는 수렴하도록 집속 렌즈(210)의 초점력을 조정함으로써 작은 범위 내에서 변경될 수 있다. 도 8은 도 3의 실시예(300)에서 하나의 발산 모드를 나타낸다. 하나의 발산 모드에서는 1차 전자 빔(102)의 흐름 밀도가 도 3의 평행 모드에서의 흐름 밀도보다 작고, 따라서 빔릿 형성 수단(321) 아래의 3개의 빔릿의 흐름이 줄어든다. 도 3 및 도 4의 실시예의 하나의 발산/수렴 모드에서는 3개의 빔릿이 3개의 빔 제한 개구(321_1~321_3)를 수직으로 통과하지 않을 것이므로, 일정 정도로 전자 산란을 겪게 된다. 이러한 문제를 피하기 위해서, 소스 변환 유닛(도 3의 320 또는 도 4의 420)의 빔릿 형성 수단(321) 위에 하나의 사전 빔릿 굴절 수단이 배치될 수 있고, 이는 3개의 빔 제한 개구를 수직으로 통과하는 3개의 빔릿을 각각 편향시키기 위해 3개의 사전 굴절 마이크로 편향기를 포함한다. 도 9는, 도 3의 실시예(300A)에서 이러한 방식을 어떻게 구현하는지, 그리고 하나의 발산 모드에 있어서 대응하는 실시예(500A)에서 새로운 소스 변환 유닛(520)의 사전 빔릿 굴절 수단(523)의 3개의 사전 굴절 마이크로 편향기(523_1d, 523_2d 및 523_3d)를 어떻게 작동시키는지를 보여준다.
도 2, 도 3 및 도 4에서 새로운 장치의 앞선 실시예에 대해서, 프로브 스팟(102_1s~102_3)의 흐름은, 집속 렌즈(210)의 제1 주 평면을 이동시키고 그에 따라 1차 전자 빔(102)이 평행한 빔이 되도록 집속 렌즈(210)의 초점력을 조정함으로써 큰 범위 내에서 변경될 수 있고, 즉 집속 렌즈(210)의 제1 주 평면은 새로운 장치의 1차 광축을 따라 이동가능하다. 제1 주 평면이 전자 소스(101)에 더 가까운 경우, 1차 전자 빔(102)은 더 이른 시기에, 보다 높은 흐름 밀도로 포커싱되고, 따라서 빔릿 형성 수단(321)의 아래에서 3개의 빔릿의 흐름이 증가한다. 제1 주 평면이 전자 소스(101)에 더 가까울수록 이러한 흐름은 더 커지고, 그 역도 성립한다. 따라서, 제1 주 평면이 1차 광축을 따라 이동됨에 따라, 3개의 프로브 스팟의 흐름도 변화하게 되고, 3개의 빔릿은 3개의 빔 제한 개구를 계속해서 수직으로 통과하게 된다.
도 10은 도 3의 실시예(300A)에서 집속 렌즈(210)를 대체하기 위해 이동가능한 집속 렌즈(610)를 이용하는 한 실시예(600A)를 나타내며, 여기서는 제1 주 평면(610_2)이 위치 P1에 있고 장치의 1차 광축(600_1)을 따라 이동될 수 있다. 도 11a에서는 제1 주 평면(610_2)이 위치 P1로부터 위치 P2로 전자 소스(101)로부터 더 멀리 이동되고, 그에 따라 빔릿(102_1, 102_2 및 102_3)의 흐름이 감소한다. 도 11b에서는 제1 주 평면(610_2)이 위치 P1로부터 위치 P3로 전자 소스(101)에 더 가까이 이동되고, 그에 따라 빔릿(102_1, 102_2 및 102_3)의 흐름이 증가한다. 빔릿의 흐름을 변경할 때 1차 전자 빔(102)은 평행 빔으로 유지되기 때문에, 편향 각도는 재조정될 필요가 없다. 이로써, 마이크로 편향기를 조정하는데 필요한 시간이 없어질 것이다.
흐름 변화 범위를 확장하기 위해서, 도 11a에서 1차 전자 빔(102)은 발산을 유지하도록 약하게 포커싱될 수 있고, 도 11b에서 1차 전자 빔(102)은 수렴하는 빔이 되도록 강하게 포커싱될 수 있다. 알려져 있는 바와 같이, 각각의 프로브 스팟의 크기는 소스 크로스오버(101s)의 가우시안 이미지 크기, 기하학적 수차, 회절 효과 및 쿨롱 효과에 의해 결정되고, 그 크기는 이러한 번짐 현상을 밸런싱함으로써 최소화될 수 있다. 이동가능한 집속 렌즈(610)의 제1 주 평면(610_2)의 위치를 조정하게 되면 이러한 밸런스를 일정 정도 깨뜨릴 것이고, 따라서 흐름이 변화될 때 각 프로브 스팟의 크기가 증가할 수 있다. 제1 주 평면(610_2)의 위치를 변화시킬 때, 1차 전자 빔(102)의 적절한 발산 또는 수렴을 다소간 유지함으로써 프로브 스팟의 크기 증가를 약화시킬 수 있다.
제1 주 평면(610_2)의 위치 이동은, 이동가능한 집속 렌즈(610)의 위치를 기계적으로 이동시키거나 라운드 렌즈 필드의 위치를 전기적으로 이동 및/또는 라운드 렌즈 필드의 형상을 변화시킴으로써 이루어질 수 있다. 이동가능한 집속 렌즈(610)는 정전형, 또는 자기형, 또는 전자기형 복합체일 수 있다. 도 12는 이동가능한 집속 렌즈(610)의 한 가지 정전형 실시예(610e)를 나타내는데, 제1 주 평면(610e_2)이 각각 위치 P1, P2 및 P3에 있을 때의 1차 전자 빔(102)의 형상을 보여준다. 이동가능한 집속 렌즈(610e)는 4개의 환형 전극(610e-e1, 610e-e2, 610e-e3 및 610e-e4)이 그 광축(610e_1)과 정렬되어 있는 정전형 렌즈이다. 광축(610e_1)은 1차 광축(600_1)과 일치하도록 배치된다. 실시예(610e)의 제1 주 평면(610e_2)의 위치 및 초점력은 환형 전극(610e-e1~610e-e4)의 여기 모드에 따라 변한다. 전극(610e-e1, 610e-e2 및 610e-e4)이 동일한 전위에 있는 경우, 전극(610e-e3)의 전위를 적절히 설정함으로써, 제1 주 평면(610e_2)은 전극(610e-e3)에 인접한 위치 P2에 있을 것이고 1차 전자 빔(102)은 그 위에서 시준될 수 있다. 전극(610e-e1, 610e-e3 및 610e-e4)이 동일한 전위에 있는 경우, 전극(610e-e2)의 전위를 적절히 설정함으로써, 제1 주 평면(610e_2)은 전극(610e-e2)에 인접한 위치 P3에 있을 것이고 1차 전자 빔(102)은 그 위에서 시준될 수 있다. 전극(610e-e1 및 610e-e4)이 동일한 전위에 있는 경우, 전극(610e-e2 및 610e-e3)의 전위를 적절히 설정함으로써, 제1 주 평면(610e_2)은 전극(610e-e2)과 전극(610e-e3) 사이의 위치(예컨대, P1)에 있을 것이고 1차 전자 빔(102)은 그 위에서 시준될 수 있다.
1차 전자 빔(102)의 흐름은 제1 주 평면(610e_2)의 위치에 따라 변화하지 않지만, 그 폭은 변화하므로 그 흐름 밀도 또한 변화한다. 제1 주 평면(610e_2)이 전자 소스(101)에 더 가까이 이동됨에 따라, 1차 전자 빔(102)의 폭은 더 작아지므로 흐름 밀도는 증가한다. 따라서, 제1 주 평면(610m_2)이 P3에서 P1로, 그 후 P2로 이동함에 따라, 1차 전자 빔(102)의 폭은 102W_P3에서 102W_P1으로, 그 후 102W_P2로 넓어진다. 정전형 실시예(610e)가 광축(610e_1)을 따라 더 긴 영역 내에 배치되는 보다 많은 전극을 포함하는 경우, 흐름 밀도는 더 큰 범위 내에서 보다 평활하게 변화될 수 있다.
도 13a는 도 10에서 이동가능한 집속 렌즈(610)의 한 가지 자기형 실시예(610m)를 나타내는데, 제1 주 평면(610m_2)이 각각 위치(P1, P2 및 P3)에 있을 때의 1차 전자 빔(102)의 형상을 보여준다. 이동가능한 집속 렌즈(610m)는 광축(610m_1)과 정렬된 2개의 단일 자기 렌즈(610m-m1 및 610m-m2)를 포함하는 복합형 자기 렌즈이다. 광축(610m_1)은 1차 광축(600_1)과 일치하도록 배치된다. 실시예(610m)의 제1 주 평면(610m_2)의 위치 및 초점력은 단일 자기 렌즈(610m-m1 및 610m-m2)의 여기 모드에 따라 변한다. 단일 자기 렌즈(610m-m2)의 여기가 0으로 설정되는 경우, 단일 자기 렌즈(610m-m1)의 여기를 적절히 설정함으로써, 제1 주 평면(610m_2)이 자기 회로 갭 내의 위치 P3에 있을 것이고 1차 전자 빔(102)은 그 위에서 시준될 수 있다. 단일 자기 렌즈(610m-m1)의 여기가 0으로 설정되는 경우, 단일 자기 렌즈(610m-m2)의 여기를 적절히 설정함으로써, 제1 주 평면(610m_2)이 자기 회로 갭 내의 위치 P2에 있을 것이고 1차 전자 빔(102)은 그 위에서 시준될 수 있다. 단일 자기 렌즈(610m-m1 및 610m-m2)의 여기가 0이 아닌 경우, 이들의 여기 비율을 적절히 설정함으로써, 제1 주 평면(610m_2)은 자기 회로 갭 사이의 위치(예컨대, P1)에 있을 것이고 1차 전자 빔(102)은 그 위에서 시준될 수 있다. 따라서, 제1 주 평면(610m_2)이 P3에서 P1로, 그 후 P2로 이동함에 따라, 1차 전자 빔(102)의 폭은 102W_P3에서 102W_P1으로, 그 후 102W_P2로 넓어진다. 자기형 실시예(610m)가 광축(610m_1)을 따라 더 긴 영역 내에 배치되는 보다 많은 단일 자기 렌즈를 포함하는 경우, 1차 전자 빔(102)의 흐름 밀도는 더 큰 범위 내에서 보다 평활하게 변화될 수 있다. 제조 비용을 줄이기 위해, 도 13b에 도시된 바와 같이, 이웃하는 자기 렌즈는 그 사이에 자기 회로를 공유할 수 있다.
이동가능한 집속 렌즈(610)는 또한 다수의 환형 전극 및 적어도 하나의 단일 자기 렌즈를 포함하는 전자기 복합 렌즈일 수 있고, 제1 주 평면은 환형 전극과 단일 자기 렌즈의 여기 모드를 조정함으로써 이동될 수 있다.
1차 전자 빔(102)의 큰 흐름으로 인하여, 에너지가 충분히 높지 않은 경우 1차 전자의 상호작용이 매우 강할 수 있음을 쉽게 인식할 것이다. 메인 애퍼처 플레이트(271)의 메인 개구를 통과하는 1차 전자 빔(102)에 대해서, 단지 하나의 부분만이 3개의 빔릿(102_1~102_3)으로 사용되고 나머지 부분은 유용하지 않다. 나머지 부분의 흐름은 3개의 빔릿의 전체 흐름보다 크고, 따라서 3개의 빔릿의 1차 전자의 이동을 교란하는 더 강한 쿨롱 효과를 발생시키고 그 결과 3개의 프로브 스팟의 크기를 증가시키게 된다. 그러므로, 나머지 부분 모두 또는 일부를 가능한 이른 시기에 차단하는 것이 바람직하다. 이를 수행하는 몇 가지 방법이 있다.
도 3의 실시예(300A)를 예로 들면, 한 가지 방법은 소스 변환 유닛(320)의 빔릿 형성 수단(321)을 집속 렌즈(210) 위에 전자 소스(101) 가까이에 배치하는 것이다. 이러한 경우, 메인 애퍼처 플레이트(271)가 제거될 수 있다. 그에 따라, 도 14에서는 새로운 장치의 이러한 실시예(700A)를 나타낸다. 도 14에서는, 3개의 빔릿(102_1, 102_2 및 102_3)이 각각 빔릿 형성 수단(721)의 3개의 빔 제한 개구(721_1, 721_2 및 721_3)를 통과하고, 1차 전자 빔(102)의 남은 부분은 차단된다. 집속 렌즈(210)는 3개의 빔릿을 이미지 형성 수단(222)으로 시준하고 3개의 마이크로 편향기(222_1d, 222_2d 및 222_3d)는 도 3과 동일한 방식으로 3개의 빔릿을 편향시킨다. 이러한 경우, 축외 빔 제한 개구(예컨대, 721_2)는 각각 도 3에 도시된 바와 같이 대응하는 마이크로 편향기(예컨대, 222_2d)와 정렬되지 않을 수 있고, 집속 렌즈(210)의 영향과 관련하여 배치될 필요가 있다. 3개의 빔릿의 흐름은, 전자 소스(101)의 방출(각도 세기) 또는 빔 제한 개구(721_1, 721_2 및 721_3)의 크기를 변경함으로써 변화될 수 있다. 빔릿 형성 수단(721)은 다수의 관통 홀 그룹을 갖는 전기 전도 플레이트일 수 있고, 각각의 관통 홀 그룹은 3개의 관통 홀을 포함하며, 하나의 관통 홀 그룹에서 3개의 관통 홀의 반경방향 크기는 다른 관통 홀 그룹에서 3개의 관통 홀의 크기와 상이하다. 하나의 관통 홀 그룹에서 3개의 관통 홀은 3개의 빔 제한 개구(721_1~721_3)로 기능하고, 그러므로 3개의 빔 제한 개구의 크기가 상이한 관통 홀 그룹을 이용하여 변화될 수 있다.
또 다른 방법은 소스 변환 유닛 위에서 사전 빔릿 형성 수단을 이용하는 것이다. 그에 따라, 도 15A에서는 새로운 장치의 이러한 한 가지 실시예(800A)를 보여주는데, 여기서는 3개의 빔릿 형성 애퍼처(872_1, 872_2 및 872_3)를 갖는 하나의 사전 빔릿 형성 수단(872)이 집속 렌즈(210) 위에, 메인 애퍼처 플레이트(271) 아래에 가까이 배치된다. 처음에는 3개의 빔릿 형성 애퍼처가 넓은 1차 전자 빔(102)을 3개의 빔릿(102_1, 102_2 및 102_3)으로 컷팅하고, 그 다음에 빔 제한 개구(321_1, 321_2 및 321_3)가 빔릿(102_1, 102_2 및 102_3)의 외곽 전자를 차단하여 그 흐름을 제한한다. 이러한 경우, 빔릿(102_1, 102_2 및 102_3)의 흐름은, 단일 전자 소스의 방출 또는 빔 제한 개구의 크기를 변경함으로써 또는 도 10에 도시된 바와 같은 이동가능한 집속 렌즈를 이용하여 변화될 수 있다. 도 15b는 새로운 장치의 이러한 또 다른 실시예(900A)를 나타내는데, 여기서는 3개의 빔릿 형성 애퍼처(972_1, 972_2 및 972_3)를 갖는 하나의 사전 빔릿 형성 수단(972)이 집속 렌즈(210) 아래에 배치된다. 쿨롱 효과의 감소라는 관점에서, 도 15b의 사전 빔릿 형성 수단(972)은 도 15a의 사전 빔릿 형성 수단(872)보다 낫지 않지만, 많은 명백한 이유로 인하여, 특히 빔릿의 흐름을 변화시키기 위해 자기형의 이동가능한 렌즈를 이용할 때 더 쉽게 구현된다.
이제까지, 새로운 장치의 성능을 개선하기 위한 상기 모든 방법은 도 3의 실시예(300A)에 기초하여 각각 기술되었다. 이러한 방법 중 일부 또는 모두가 함께 이용될 수 있다는 점은 명백하다. 도 16은 새로운 장치의 이러한 실시예를 나타내며, 여기서는 1차 전자 빔(102)으로 인한 쿨롱 효과를 줄이기 위해 도 15에 도시된 하나의 사전 빔릿 형성 수단(872)을 이용하고, 프로브 스팟(102_1s~102_3s)의 흐름을 변경하기 위해 도 10에 도시된 하나의 이동가능한 집속 렌즈(610)를 이용하며, 프로브 스팟의 축외 수차를 보상하기 위해 도 4의 하나의 이미지 형성 수단(422)을 이용한다. 실시예(1000A)와 유사한 또 다른 실시예(미도시)에서는, 도 15b에 도시된 사전 빔릿 형성 수단(972)을 채용함으로써 1차 전자 빔(102)으로 인한 쿨롱 효과가 줄어든다.
알려진 바와 같이, 복수의 빔릿의 도달 에너지는 전자 소스(101)에서의 방출기의 전위 및 샘플 표면(7)의 전위 중 하나 또는 양자 모두를 변화시킴으로써 변경될 수 있다. 그러나, 소스 변환 유닛에 대한 대응하는 조정은 미미하므로 샘플 표면(7)의 전위만을 변경하는 것이 유리하다.
요약하자면, 본 발명은 유연하게 변화하는 관측 조건에서 샘플을 관측하기 위해 높은 분해능과 높은 처리량을 제공하여 반도체 제조 산업에 있어서 웨이퍼/마스크 상의 결함을 검사 및/또는 검토하기 위한 수율 관리 툴로서 기능할 수 있는 새로운 멀티빔 장치를 제공하고자 하는 것이다. 새로운 장치에서는, 하나의 집속 렌즈가 1차 전자 빔을 하나의 소스 변환 유닛으로 시준하거나 실질적으로 시준하고, 소스 변환 유닛은 1차 전자 빔의 복수의 빔릿을, 하나의 대물 렌즈의 광축을 향해 편향시키며, 대물 렌즈는 샘플 표면 상으로 복수의 편향된 빔릿을 포커싱하여 복수의 프로브 스팟이 그 위에 형성되고, 복수의 편향된 빔릿의 편향 각도는 복수의 프로브 스팟의 크기를 줄이도록 조정된다. 복수의 프로브 스팟의 흐름은, 집속 렌즈의 제1 주 평면의 위치 및 초점력의 양자 모두를 변화시킴으로써 큰 범위 내에서 변경될 수 있다. 복수의 프로브 스팟의 크기를 추가로 줄이기 위해서, 소스 변환 유닛에 의해 복수의 프로브 스팟의 축외 수차를 보상할 수 있고, 소스 변환 유닛의 빔릿 형성 수단을 단일 전자 소스 가까이에 배치함으로써 또는 하나의 사전 빔릿 형성 수단을 이용함으로써 1차 전자 빔으로 인한 쿨롱 효과를 약화시킬 수 있다.
본 발명에서는 그 바람직한 실시예와 관련하여 설명하였지만, 이하에서 청구되는 본 발명의 범위 및 사상을 벗어나지 않고 다른 수정 및 변형이 이루어질 수 있음을 이해할 것이다.

Claims (48)

  1. 샘플의 표면을 관측하기 위한 멀티빔 장치로서,
    전자 소스;
    상기 전자 소스 아래에 있는 집속 렌즈;
    상기 집속 렌즈 아래에 있는 소스 변환 유닛;
    상기 소스 변환 유닛의 아래에 있는 대물 렌즈;
    상기 소스 변환 유닛의 아래에 있는 편향 스캐닝 유닛;
    상기 대물 렌즈 아래에 있는 샘플 스테이지;
    상기 소스 변환 유닛의 아래에 있는 빔 분리기;
    2차 투영 이미징 시스템; 및
    복수의 검출 요소를 구비하는 전자 검출 디바이스를 포함하고,
    상기 전자 소스, 상기 집속 렌즈 및 상기 대물 렌즈는 상기 장치의 1차 광축과 정렬되고, 상기 샘플 스테이지는 상기 표면이 상기 대물 렌즈와 마주하도록 상기 샘플을 지탱하고,
    상기 소스 변환 유닛은 복수의 빔 제한 개구를 갖는 빔릿 형성 수단과 복수의 전자 광학 요소를 갖는 이미지 형성 수단을 포함하고,
    상기 전자 소스는 상기 1차 광축을 따라 1차 전자 빔을 생성하고, 상기 1차 전자 빔은 실질적으로 평행한 빔이 되어 상기 소스 변환 유닛으로 입사되도록 상기 집속 렌즈에 의해 포커싱되고,
    상기 1차 전자 빔의 복수의 빔릿이 상기 소스 변환 유닛으로부터 나오고, 상기 복수의 빔릿은 각각 상기 복수의 빔 제한 개구를 통과하고 상기 복수의 전자 광학 요소에 의해 상기 1차 광축을 향해 편향되고, 상기 복수의 빔릿의 편향 각도는 서로 상이하며,
    상기 복수의 빔릿은 상기 대물 렌즈에 의해 상기 표면 상으로 포커싱되어 그 위에 복수의 프로브 스팟을 형성하고, 상기 편향 스캐닝 유닛은 상기 복수의 프로브 스팟을 상기 표면 상의 관측 영역 내에서 복수의 스캔 영역에 걸쳐 각각 스캐닝하도록 상기 복수의 빔릿을 편향시키고, 상기 복수의 프로브 스팟의 흐름은 상기 복수의 빔 제한 개구에 의해 제한되고,
    복수의 2차 전자 빔이 상기 복수의 프로브 스팟에 의해 상기 복수의 스캔 영역으로부터 각각 생성되고 상기 빔 분리기에 의해 상기 2차 투영 이미징 시스템으로 지향되며, 상기 2차 투영 이미징 시스템은 상기 복수의 검출 요소에 의해 각각 검출되도록 상기 복수의 2차 전자 빔을 포커싱 및 유지함으로써, 각각의 검출 요소가 하나의 대응하는 스캔 영역의 이미지 신호를 제공하고,
    상기 편향 각도는 각각 상기 복수의 프로브 스팟의 수차를 줄이도록 개별적으로 설정되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  2. 삭제
  3. 제1항에 있어서,
    상기 복수의 전자 광학 요소는 각각 상기 복수의 빔 제한 개구 아래에서 복수의 빔 제한 개구와 정렬되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  4. 제3항에 있어서,
    상기 복수의 전자 광학 요소는 각각 4극 렌즈인, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  5. 제3항에 있어서,
    상기 복수의 프로브 스팟의 흐름은, 상기 집속 렌즈를 이용하여 상기 소스 변환 유닛으로 입사되는 상기 1차 전자 빔의 흐름 밀도를 변화시킴으로써 변경되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  6. 제5항에 있어서,
    상기 장치는 상기 소스 변환 유닛 위에 복수의 빔릿 형성 애퍼처를 갖는 사전 빔릿 형성 수단을 더 포함하고, 상기 복수의 빔릿은 상기 복수의 빔릿 형성 애퍼처를 각각 통과하고 상기 복수의 빔릿 외부의 전자는 차단되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  7. 제3항에 있어서,
    상기 복수의 전자 광학 요소는 상기 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 상기 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  8. 제7항에 있어서,
    상기 복수의 전자 광학 요소는 각각 8극 렌즈인, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  9. 제7항에 있어서,
    상기 복수의 전자 광학 요소는 각각, 각각의 상기 복수의 전자 광학 요소의 광축과 정렬되어 광축을 따라 배치되는 하나의 마이크로 렌즈 및 2개의 4극 렌즈를 포함하고, 상기 2개의 4극 렌즈는 방위각에 있어서 45° 차이를 가지는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  10. 제9항에 있어서,
    각각의 상기 복수의 전자 요소에 대하여, 상기 2개의 4극 렌즈 중 하나의 4극 렌즈는 빔릿 출구 측에 있고 대응하는 하나의 빔릿이 상기 하나의 4극 렌즈에 의해 편향되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  11. 제7항에 있어서,
    상기 복수의 프로브 스팟의 흐름은, 상기 집속 렌즈를 이용하여 상기 소스 변환 유닛으로 입사되는 상기 1차 전자 빔의 흐름 밀도를 변화시킴으로써 변경되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  12. 제11항에 있어서,
    상기 집속 렌즈는, 서로 상이한 축방향 위치에서 상기 1차 광축을 따라 배치되어 1차 광축과 정렬되는 다수의 환형 전극을 포함하고, 상기 흐름 밀도를 변화시키도록 환형 전극의 전압이 조정될 수 있는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  13. 제11항에 있어서,
    상기 집속 렌즈는, 서로 상이한 축방향 위치에서 상기 1차 광축을 따라 배치되어 1차 광축과 정렬되는 적어도 2개의 단일 자기 렌즈를 포함하고, 상기 흐름 밀도를 변화시키도록 단일 자기 렌즈의 여기(excitation)가 조정될 수 있는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  14. 제11항에 있어서,
    상기 집속 렌즈는, 서로 상이한 축방향 위치에서 상기 1차 광축을 따라 배치되어 1차 광축과 정렬되는 다수의 환형 전극 및 적어도 하나의 단일 자기 렌즈를 포함하고, 상기 흐름 밀도를 변화시키도록 환형 전극의 전압 및 단일 자기 렌즈의 여기가 조정될 수 있는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  15. 제11항에 있어서,
    상기 장치는 상기 소스 변환 유닛 위에 복수의 빔릿 형성 애퍼처를 갖는 사전 빔릿 형성 수단을 더 포함하고, 상기 복수의 빔릿은 상기 복수의 빔릿 형성 애퍼처를 각각 통과하고 상기 복수의 빔릿 외부의 전자는 차단되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  16. 제10항에 있어서,
    상기 집속 렌즈는, 서로 상이한 축방향 위치에서 상기 1차 광축을 따라 배치되어 1차 광축과 정렬되는 적어도 2개의 단일 자기 렌즈를 포함하고, 상기 소스 변환 유닛으로 입사되는 상기 1차 전자 빔의 흐름 밀도를 변화시키도록 단일 자기 렌즈의 여기가 조정될 수 있는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  17. 제16항에 있어서,
    상기 표면 상에서의 상기 복수의 빔릿의 도달 에너지는 전위를 변화시킴으로써 변경되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  18. 제17항에 있어서,
    상기 장치는 상기 소스 변환 유닛 위에 복수의 빔릿 형성 애퍼처를 갖는 사전 빔릿 형성 수단을 더 포함하고, 상기 복수의 빔릿은 상기 복수의 빔릿 형성 애퍼처를 각각 통과하고 상기 복수의 빔릿 외부의 전자는 차단되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  19. 샘플의 표면을 관측하기 위한 멀티빔 장치로서,
    전자 소스;
    상기 전자 소스 아래에 있는 집속 렌즈;
    상기 집속 렌즈 아래에 있는 소스 변환 유닛;
    상기 소스 변환 유닛의 아래에 있는 대물 렌즈;
    상기 소스 변환 유닛의 아래에 있는 편향 스캐닝 유닛;
    상기 대물 렌즈 아래에 있는 샘플 스테이지;
    상기 소스 변환 유닛의 아래에 있는 빔 분리기;
    2차 투영 이미징 시스템; 및
    복수의 검출 요소를 구비하는 전자 검출 디바이스를 포함하고,
    상기 전자 소스, 상기 집속 렌즈 및 상기 대물 렌즈는 상기 장치의 1차 광축과 정렬되고, 상기 샘플 스테이지는 상기 표면이 상기 대물 렌즈와 마주하도록 상기 샘플을 지탱하고,
    상기 소스 변환 유닛은 복수의 빔 제한 개구를 갖는 빔릿 형성 수단과 복수의 전자 광학 요소를 갖는 이미지 형성 수단을 포함하고,
    상기 전자 소스는 상기 1차 광축을 따라 1차 전자 빔을 생성하고, 상기 집속 렌즈는 상기 1차 전자 빔을 포커싱하여 상기 1차 전자 빔이 수렴 또는 발산 각도로 상기 소스 변환 유닛으로 입사되며,
    상기 1차 전자 빔의 복수의 빔릿이 상기 소스 변환 유닛으로부터 나오고, 상기 복수의 빔릿은 각각 상기 복수의 빔 제한 개구를 통과하고 상기 복수의 전자 광학 요소에 의해 상기 1차 광축을 향해 편향되고,
    상기 복수의 빔릿은 상기 대물 렌즈에 의해 상기 표면 상으로 포커싱되어 그 위에 복수의 프로브 스팟을 형성하고, 상기 복수의 빔릿의 편향 각도는 각각 상기 복수의 프로브 스팟의 수차를 줄이도록 개별적으로 설정되며, 상기 편향 스캐닝 유닛은 상기 복수의 프로브 스팟을 상기 표면 상의 관측 영역 내에서 복수의 스캔 영역에 걸쳐 각각 스캐닝하도록 상기 복수의 빔릿을 편향시키고, 상기 복수의 프로브 스팟의 흐름은 상기 복수의 빔 제한 개구에 의해 제한되고,
    복수의 2차 전자 빔이 상기 복수의 프로브 스팟에 의해 상기 복수의 스캔 영역으로부터 각각 생성되고 상기 빔 분리기에 의해 상기 2차 투영 이미징 시스템으로 지향되며, 상기 2차 투영 이미징 시스템은 상기 복수의 검출 요소에 의해 각각 검출되도록 상기 복수의 2차 전자 빔을 포커싱 및 유지함으로써, 각각의 검출 요소가 하나의 대응하는 스캔 영역의 이미지 신호를 제공하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  20. 제19항에 있어서,
    상기 복수의 전자 광학 요소는 상기 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 상기 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  21. 제19항에 있어서,
    상기 복수의 프로브 스팟의 흐름은, 상기 집속 렌즈를 이용하여 상기 소스 변환 유닛으로 입사되는 상기 1차 전자 빔의 흐름 밀도를 변화시킴으로써 변경되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  22. 제21항에 있어서,
    상기 복수의 전자 광학 요소는 상기 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 상기 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  23. 제22항에 있어서,
    상기 복수의 전자 광학 요소는 상기 복수의 빔 제한 개구 아래에 있는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  24. 제23항에 있어서,
    상기 복수의 빔 제한 개구 위에 각각 복수의 사전 굴절 마이크로 편향기(pre-bending micro-deflector)를 갖는 사전 빔릿 굴절 수단을 더 포함하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  25. 제24항에 있어서,
    상기 복수의 사전 굴절 마이크로 편향기는 상기 복수의 빔 제한 개구로 수직으로 입사되도록 상기 복수의 빔릿을 편향시키는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  26. 제25항에 있어서,
    상기 장치는 상기 소스 변환 유닛 위에 복수의 빔릿 형성 애퍼처를 갖는 사전 빔릿 형성 수단을 더 포함하고, 상기 복수의 빔릿은 상기 복수의 빔릿 형성 애퍼처를 각각 통과하고 상기 복수의 빔릿 외부의 전자는 차단되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  27. 샘플의 표면을 관측하기 위한 멀티빔 장치로서,
    전자 소스;
    상기 전자 소스 아래에서 복수의 빔 제한 개구를 제공하는 빔릿 형성 플레이트;
    상기 빔릿 형성 플레이트의 아래에 있는 집속 렌즈;
    상기 집속 렌즈의 아래에 있는 복수의 전자 광학 요소;
    상기 복수의 전자 광학 요소의 아래에 있는 대물 렌즈;
    상기 복수의 전자 광학 요소의 아래에 있는 편향 스캐닝 유닛;
    상기 대물 렌즈 아래에 있는 샘플 스테이지;
    상기 복수의 전자 광학 요소의 아래에 있는 빔 분리기;
    2차 투영 이미징 시스템; 및
    복수의 검출 요소를 구비하는 전자 검출 디바이스를 포함하고,
    상기 전자 소스, 상기 집속 렌즈 및 상기 대물 렌즈는 상기 장치의 1차 광축과 정렬되고, 상기 샘플 스테이지는 상기 표면이 상기 대물 렌즈와 마주하도록 상기 샘플을 지탱하고,
    상기 전자 소스는 상기 1차 광축을 따라 1차 전자 빔을 생성하고, 상기 빔릿 형성 플레이트는 상기 1차 전자 빔을, 제1 그룹의 복수의 관통 홀을 각각 통과하는 복수의 빔릿으로 트리밍(trimming)하고, 상기 복수의 관통 홀은 상기 장치의 복수의 빔 제한 개구로 작용하고,
    상기 집속 렌즈는 상기 복수의 빔릿을 포커싱하여 상기 복수의 전자 광학 요소에 의해 각각 상기 1차 광축을 향해 편향되도록 하며,
    상기 복수의 빔릿은 상기 대물 렌즈에 의해 상기 표면 상으로 포커싱되어 그 위에 복수의 프로브 스팟을 형성하고, 상기 복수의 빔릿의 편향 각도는 각각 상기 복수의 프로브 스팟의 수차를 줄이도록 개별적으로 설정되며, 상기 편향 스캐닝 유닛은 상기 복수의 프로브 스팟을 상기 표면 상의 관측 영역 내에서 복수의 스캔 영역에 걸쳐 각각 스캐닝하도록 상기 복수의 빔릿을 편향시키고, 상기 복수의 프로브 스팟의 흐름은 상기 복수의 빔 제한 개구에 의해 제한되고,
    복수의 2차 전자 빔이 상기 복수의 프로브 스팟에 의해 상기 복수의 스캔 영역으로부터 각각 생성되고 상기 빔 분리기에 의해 상기 2차 투영 이미징 시스템으로 지향되며, 상기 2차 투영 이미징 시스템은 상기 복수의 검출 요소에 의해 각각 검출되도록 상기 복수의 2차 전자 빔을 포커싱 및 유지함으로써, 각각의 검출 요소가 하나의 대응하는 스캔 영역의 이미지 신호를 제공하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  28. 제27항에 있어서,
    상기 복수의 빔릿은 상기 복수의 전자 광학 요소로 수직으로 입사되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  29. 제28항에 있어서,
    상기 복수의 전자 광학 요소는 상기 복수의 프로브 스팟의 크기 및 왜곡을 추가로 줄이도록 상기 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  30. 제29항에 있어서,
    상기 복수의 빔릿의 흐름은, 상기 전자 소스의 각도 세기를 조정함으로써 변경되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  31. 제29항에 있어서,
    상기 복수의 빔릿의 흐름은, 상기 복수의 빔 제한 개구의 반경방향 크기를 변화시킴으로써 변경되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  32. 제31항에 있어서,
    상기 반경방향 크기는, 상기 복수의 빔 제한 개구로서 제2 그룹의 복수의 관통 홀을 위치시키도록 상기 빔릿 형성 플레이트를 이동시킴으로써 변화되는, 샘플의 표면을 관측하기 위한 멀티빔 장치.
  33. SEM에서 복수의 프로브 스팟을 형성하는 방법으로서,
    전자 소스에 의해 1차 전자 빔을 생성하는 단계;
    집속 렌즈에 의해 상기 1차 전자 빔을 시준하거나 실질적으로 시준하는 단계;
    시준된 상기 1차 전자 빔을, 제1 관통 홀을 갖는 제1 플레이트에 의해 복수의 빔릿으로 트리밍하는 단계;
    상기 복수의 빔릿을, 복수의 전자 광학 요소에 의해 대물 렌즈의 광축을 향해 상이한 편향 각도로 편향시키는 단계;
    편향된 상기 복수의 빔릿을, 상기 대물 렌즈에 의해 샘플의 관측 중인 표면 상으로 포커싱하는 단계로서, 편향되고 포커싱된 상기 복수의 빔릿은 상기 복수의 프로브 스팟을 형성하는, 포커싱 단계; 및
    각각 상기 복수의 프로브 스팟의 수차를 줄이도록 상기 편향 각도를 개별적으로 설정하는 단계를 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  34. 삭제
  35. 제33항에 있어서,
    상기 복수의 전자 광학 요소에 의해, 상기 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는 단계를 더 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  36. 제35항에 있어서,
    상기 집속 렌즈의 제1 주 평면을 이동시킴으로써, 시준된 상기 1차 전자 빔의 흐름 밀도를 변경하는 단계를 더 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  37. 제36항에 있어서,
    상기 트리밍하는 단계에 앞서 제2 관통 홀을 갖는 제2 플레이트에 의해 상기 복수의 빔릿 외부의 전자를 차단하는 단계를 더 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  38. SEM에서 복수의 프로브 스팟을 형성하는 방법으로서,
    전자 소스에 의해 1차 전자 빔을 생성하는 단계;
    상기 1차 전자 빔을, 복수의 관통 홀을 갖는 플레이트에 의해 복수의 빔릿으로 트리밍하는 단계;
    상기 복수의 빔릿을 집속 렌즈에 의해 포커싱하는 단계;
    상기 복수의 빔릿을, 복수의 전자 광학 요소에 의해 대물 렌즈의 광축을 향해 편향시키는 단계;
    편향된 상기 복수의 빔릿을, 상기 대물 렌즈에 의해 샘플의 관측 중인 표면 상으로 포커싱하는 단계로서, 편향되고 포커싱된 상기 복수의 빔릿은 상기 복수의 프로브 스팟을 형성하는, 포커싱 단계; 및
    각각 상기 복수의 프로브 스팟의 수차를 줄이도록 복수의 편향된 빔릿의 편향 각도를 개별적으로 설정하는 단계를 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  39. 제38항에 있어서,
    상기 복수의 전자 광학 요소에 의해, 상기 복수의 프로브 스팟의 상면 만곡, 비점수차 및 왜곡 수차 중 하나 또는 둘 또는 전부를 보상하는 단계를 더 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  40. 제39항에 있어서,
    상기 전자 소스의 각도 세기를 조정함으로써 상기 복수의 빔릿의 흐름을 변경하는 단계를 더 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  41. 제39항에 있어서,
    상기 트리밍하는 단계에서 상기 플레이트의 또 다른 복수의 관통 홀을 이용하여 상기 복수의 빔릿의 흐름을 변화시키는 단계를 더 포함하는, SEM에서 복수의 프로브 스팟을 형성하는 방법.
  42. 다수의 소스를 제공하기 위한 디바이스로서,
    상기 디바이스의 광축을 따라 1차 빔을 제공하기 위한 하전 입자 소스;
    상기 1차 빔을 실질적으로 시준하기 위한 수단;
    시준된 상기 1차 빔의 복수의 빔릿으로 상기 하전 입자 소스의 복수의 가상 이미지를 이미징하기 위한 수단으로서, 상기 복수의 가상 이미지는 상기 복수의 빔릿을 각각 방출하는 상기 다수의 소스가 되는, 이미징 수단;
    샘플 표면 상에 복수의 프로브 스팟이 형성되도록 샘플 표면 상에 복수의 가상 이미지를 투영하기 위한 수단; 및
    각각 상기 복수의 프로브 스팟의 수차를 줄이도록 상기 복수의 빔릿을 개별적으로 편향시키기 위한 수단
    을 포함하는, 다수의 소스를 제공하기 위한 디바이스.
  43. 제42항에 있어서,
    상기 복수의 빔릿의 흐름을 변경하기 위한 수단을 더 포함하는, 다수의 소스를 제공하기 위한 디바이스.
  44. 제43항에 있어서,
    상기 1차 빔으로 인한 쿨롱 효과를 억제하기 위한 수단을 더 포함하는, 다수의 소스를 제공하기 위한 디바이스.
  45. 멀티빔 장치로서,
    제44항에 따른 다수의 소스를 제공하기 위한 디바이스;
    상기 샘플 표면 상에서 상기 복수의 프로브 스팟을 스캐닝하기 위한 수단; 및
    복수의 프로브 스팟으로 인해 상기 샘플 표면으로부터 생성되는 복수의 신호 입자 빔을 수신하기 위한 수단을 포함하는, 멀티빔 장치.
  46. 삭제
  47. 제45항에 있어서,
    상기 복수의 프로브 스팟의 수차를 개별적으로 보상하기 위한 수단을 더 포함하는, 멀티빔 장치.
  48. 제47항에 있어서,
    상기 투영하기 위한 수단은 단일 대물 렌즈인, 멀티빔 장치.
KR1020187003901A 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치 KR102007497B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562195353P 2015-07-22 2015-07-22
US62/195,353 2015-07-22
PCT/US2016/043375 WO2017015483A1 (en) 2015-07-22 2016-07-21 Apparatus of plural charged-particle beams

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020197022495A Division KR20190091577A (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치

Publications (2)

Publication Number Publication Date
KR20180030605A KR20180030605A (ko) 2018-03-23
KR102007497B1 true KR102007497B1 (ko) 2019-08-05

Family

ID=57834634

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020227033146A KR102651558B1 (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치
KR1020247009580A KR20240042242A (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치
KR1020187003901A KR102007497B1 (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치
KR1020197022495A KR20190091577A (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020227033146A KR102651558B1 (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치
KR1020247009580A KR20240042242A (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020197022495A KR20190091577A (ko) 2015-07-22 2016-07-21 복수의 하전 입자 빔을 이용하는 장치

Country Status (7)

Country Link
US (5) US10395886B2 (ko)
EP (2) EP3809124A3 (ko)
JP (1) JP6703092B2 (ko)
KR (4) KR102651558B1 (ko)
CN (2) CN111681939B (ko)
IL (2) IL256895B (ko)
WO (1) WO2017015483A1 (ko)

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11348756B2 (en) 2012-05-14 2022-05-31 Asml Netherlands B.V. Aberration correction in charged particle system
DE102015202172B4 (de) 2015-02-06 2017-01-19 Carl Zeiss Microscopy Gmbh Teilchenstrahlsystem und Verfahren zur teilchenoptischen Untersuchung eines Objekts
US9922799B2 (en) * 2015-07-21 2018-03-20 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
IL256895B (en) * 2015-07-22 2022-08-01 Hermes Microvision Inc Device for multiple charged particle beams
KR102480232B1 (ko) * 2016-01-27 2022-12-22 에이에스엠엘 네델란즈 비.브이. 복수의 하전 입자 빔들의 장치
US10242839B2 (en) * 2017-05-05 2019-03-26 Kla-Tencor Corporation Reduced Coulomb interactions in a multi-beam column
TWI787802B (zh) * 2017-02-08 2022-12-21 荷蘭商Asml荷蘭公司 源轉換單元、多射束裝置及組態多射束裝置之方法
TWI729368B (zh) * 2017-02-08 2021-06-01 荷蘭商Asml荷蘭公司 源轉換單元、多射束裝置及組態多射束裝置之方法
US10157727B2 (en) * 2017-03-02 2018-12-18 Fei Company Aberration measurement in a charged particle microscope
JP6959989B2 (ja) 2017-04-28 2021-11-05 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子の複数のビームを使用した装置
US10176965B1 (en) * 2017-07-05 2019-01-08 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Aberration-corrected multibeam source, charged particle beam device and method of imaging or illuminating a specimen with an array of primary charged particle beamlets
KR20230032003A (ko) 2017-09-07 2023-03-07 에이에스엠엘 네델란즈 비.브이. 복수의 하전 입자 빔에 의한 샘플 검사 방법
CN111527581B (zh) 2017-09-29 2023-11-14 Asml荷兰有限公司 利用多个带电粒子束检查样品的方法
CN111164729B (zh) 2017-09-29 2023-04-11 Asml荷兰有限公司 带电粒子束检查的样品检查选配方案的动态确定的方法
JP7395466B2 (ja) 2017-09-29 2023-12-11 エーエスエムエル ネザーランズ ビー.ブイ. サンプル検査における画像コントラスト強調
WO2019068666A1 (en) 2017-10-02 2019-04-11 Asml Netherlands B.V. APPARATUS USING CHARGED PARTICLE BEAMS
US10741354B1 (en) 2018-02-14 2020-08-11 Kla-Tencor Corporation Photocathode emitter system that generates multiple electron beams
DE102018202421B3 (de) 2018-02-16 2019-07-11 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenstrahlsystem
DE102018202428B3 (de) 2018-02-16 2019-05-09 Carl Zeiss Microscopy Gmbh Vielstrahl-Teilchenmikroskop
DE102018202728B4 (de) * 2018-02-22 2019-11-21 Carl Zeiss Microscopy Gmbh Verfahren zum Betrieb eines Teilchenstrahlgeräts, Computerprogrammprodukt und Teilchenstrahlgerät zur Durchführung des Verfahrens
CN112055886A (zh) 2018-02-27 2020-12-08 卡尔蔡司MultiSEM有限责任公司 带电粒子多束系统及方法
CN111819654B (zh) * 2018-03-09 2023-11-14 Asml荷兰有限公司 具有改善的信号电子检测性能的多束检测设备
KR102523547B1 (ko) 2018-05-01 2023-04-19 에이에스엠엘 네델란즈 비.브이. 멀티-빔 검사 장치
US10811215B2 (en) 2018-05-21 2020-10-20 Carl Zeiss Multisem Gmbh Charged particle beam system
SG11202011505RA (en) 2018-06-08 2020-12-30 Asml Netherlands Bv Semiconductor charged particle detector for microscopy
US10483080B1 (en) * 2018-07-17 2019-11-19 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam device, multi-beam blanker for a charged particle beam device, and method for operating a charged particle beam device
JP2021532545A (ja) 2018-08-09 2021-11-25 エーエスエムエル ネザーランズ ビー.ブイ. 複数の荷電粒子ビームのための装置
CN112840432A (zh) 2018-09-13 2021-05-25 Asml荷兰有限公司 用于监测束轮廓和功率的方法和装置
DE102018007455B4 (de) 2018-09-21 2020-07-09 Carl Zeiss Multisem Gmbh Verfahren zum Detektorabgleich bei der Abbildung von Objekten mittels eines Mehrstrahl-Teilchenmikroskops, System sowie Computerprogrammprodukt
DE102018007652B4 (de) 2018-09-27 2021-03-25 Carl Zeiss Multisem Gmbh Teilchenstrahl-System sowie Verfahren zur Stromregulierung von Einzel-Teilchenstrahlen
DE102018124044B3 (de) 2018-09-28 2020-02-06 Carl Zeiss Microscopy Gmbh Verfahren zum Betreiben eines Vielstrahl-Teilchenstrahlmikroskops und Vielstrahl-Teilchenstrahlsystem
JP2022506149A (ja) 2018-11-16 2022-01-17 エーエスエムエル ネザーランズ ビー.ブイ. 電磁複合レンズ及びそのようなレンズを備えた荷電粒子光学システム
WO2020135963A1 (en) * 2018-12-28 2020-07-02 Asml Netherlands B.V. An apparatus for multiple charged-particle beams
WO2020135996A1 (en) 2018-12-28 2020-07-02 Asml Netherlands B.V. Improved scanning efficiency by individual beam steering of multi-beam apparatus
DE102018133703B4 (de) 2018-12-29 2020-08-06 Carl Zeiss Multisem Gmbh Vorrichtung zur Erzeugung einer Vielzahl von Teilchenstrahlen und Vielstrahl-Teilchenstrahlsysteme
US20220084777A1 (en) 2018-12-31 2022-03-17 Asml Netherlands B.V. Apparatus for obtaining optical measurements in a charged particle apparatus
WO2020141030A1 (en) 2018-12-31 2020-07-09 Asml Netherlands B.V. In-lens wafer pre-charging and inspection with multiple beams
CN111477530B (zh) 2019-01-24 2023-05-05 卡尔蔡司MultiSEM有限责任公司 利用多束粒子显微镜对3d样本成像的方法
TWI743626B (zh) 2019-01-24 2021-10-21 德商卡爾蔡司多重掃描電子顯微鏡有限公司 包含多束粒子顯微鏡的系統、對3d樣本逐層成像之方法及電腦程式產品
US10748743B1 (en) * 2019-02-12 2020-08-18 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Device and method for operating a charged particle device with multiple beamlets
JP7280367B2 (ja) 2019-02-13 2023-05-23 エーエスエムエル ネザーランズ ビー.ブイ. 荷電粒子ビームのエネルギーの広がりを制御するための装置及び方法
EP3846197A1 (en) 2020-01-06 2021-07-07 ASML Netherlands B.V. Apparatus for and method of control of a charged particle beam
EP3696846A1 (en) 2019-02-13 2020-08-19 ASML Netherlands B.V. Apparatus for and method of producing a monochromatic charged particle beam
CN113490993A (zh) 2019-02-26 2021-10-08 Asml荷兰有限公司 具有增益元件的带电粒子检测器
WO2020200745A1 (en) * 2019-03-29 2020-10-08 Asml Netherlands B.V. Multi-beam inspection apparatus with single-beam mode
JP7323642B2 (ja) * 2019-05-28 2023-08-08 エーエスエムエル ネザーランズ ビー.ブイ. 多重荷電粒子ビーム装置
JP7316106B2 (ja) 2019-06-14 2023-07-27 株式会社ニューフレアテクノロジー 収差補正器及びマルチ電子ビーム照射装置
EP3761340A1 (en) 2019-07-02 2021-01-06 ASML Netherlands B.V. Apparatus for and method of local phase control of a charged particle beam
IL292290A (en) * 2019-10-18 2022-06-01 Asml Netherlands Bv Systems and methods for stress contrast defect detection
TW202238175A (zh) 2019-11-05 2022-10-01 荷蘭商Asml荷蘭公司 用於高速應用之大主動區域偵測器封裝
EP3828916A1 (en) * 2019-11-28 2021-06-02 ASML Netherlands B.V. Multi-source charged particle illumination apparatus
US20220415611A1 (en) * 2019-11-28 2022-12-29 Asml Netherlands B.V. Multi-source charged particle illumination apparatus
TWI773020B (zh) 2019-12-19 2022-08-01 荷蘭商Asml荷蘭公司 用於色像差減輕之系統及方法
EP3840010A1 (en) 2019-12-19 2021-06-23 ASML Netherlands B.V. Systems and methods for chromatic aberration mitigation
EP3852127A1 (en) 2020-01-06 2021-07-21 ASML Netherlands B.V. Charged particle assessment tool, inspection method
TW202335018A (zh) 2020-07-10 2023-09-01 荷蘭商Asml荷蘭公司 電子計數偵測裝置之感測元件位準電路系統設計
TWI812991B (zh) * 2020-09-03 2023-08-21 荷蘭商Asml荷蘭公司 帶電粒子系統及操作帶電粒子系統之方法
EP3982390A1 (en) * 2020-10-08 2022-04-13 ASML Netherlands B.V. Charged particle system, aperture array, charged particle tool and method of operating a charged particle system
CN116601530A (zh) 2020-11-23 2023-08-15 Asml荷兰有限公司 用于显微镜检查的半导体带电粒子检测器
JP2022094682A (ja) * 2020-12-15 2022-06-27 株式会社ニューフレアテクノロジー 収差補正器
US20240047173A1 (en) 2020-12-23 2024-02-08 Asml Netherlands B.V. Monolithic detector
WO2022136064A1 (en) * 2020-12-23 2022-06-30 Asml Netherlands B.V. Charged particle optical device
WO2022135920A1 (en) 2020-12-24 2022-06-30 Asml Netherlands B.V. Operation methods of 2d pixelated detector for an apparatus with plural charged-particle beams and mapping surface potentials
US11501946B2 (en) * 2021-03-01 2022-11-15 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Method of influencing a charged particle beam, multipole device, and charged particle beam apparatus
WO2022207222A1 (en) 2021-03-30 2022-10-06 Asml Netherlands B.V. On system self-diagnosis and self-calibration technique for charged particle beam systems
CN117355771A (zh) 2021-05-27 2024-01-05 Asml荷兰有限公司 对检测器中载流子传输行为的操纵
WO2023061688A1 (en) 2021-10-12 2023-04-20 Asml Netherlands B.V. Energy band-pass filtering for improved high landing energy backscattered charged particle image resolution
WO2023160959A1 (en) 2022-02-23 2023-08-31 Asml Netherlands B.V. Beam manipulation using charge regulator in a charged particle system
EP4266347A1 (en) 2022-04-19 2023-10-25 ASML Netherlands B.V. Method of filtering false positives for a pixelated electron detector
EP4310884A1 (en) 2022-07-21 2024-01-24 ASML Netherlands B.V. Charged particle detector for microscopy
WO2024017717A1 (en) 2022-07-21 2024-01-25 Asml Netherlands B.V. Enhanced edge detection using detector incidence locations
WO2024033071A1 (en) 2022-08-08 2024-02-15 Asml Netherlands B.V. Particle detector with reduced inter-symbol interference
WO2024061566A1 (en) 2022-09-21 2024-03-28 Asml Netherlands B.V. Readout design for charged particle counting detectors
WO2024074314A1 (en) 2022-10-07 2024-04-11 Asml Netherlands B.V. Adc calibration for microscopy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168606A1 (en) * 2000-04-27 2003-09-11 Pavel Adamec Multi beam charged particle device
US20120091358A1 (en) * 2008-04-15 2012-04-19 Mapper Lithography Ip B.V. Projection lens arrangement
US20120241606A1 (en) * 2011-03-23 2012-09-27 Liqun Han Multiple-beam system for high-speed electron-beam inspection

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051839A (en) * 1996-06-07 2000-04-18 Arch Development Corporation Magnetic lens apparatus for use in high-resolution scanning electron microscopes and lithographic processes
JP3335845B2 (ja) * 1996-08-26 2002-10-21 株式会社東芝 荷電ビーム描画装置及び描画方法
WO1999009582A1 (fr) * 1997-08-19 1999-02-25 Nikon Corporation Dispositif et procede servant a observer un objet
JP2000252207A (ja) * 1998-08-19 2000-09-14 Ims Ionen Mikrofab Syst Gmbh 粒子線マルチビームリソグラフイー
JP2000268755A (ja) * 1999-03-18 2000-09-29 Fujitsu Ltd 薄型静電偏向器及び走査型荷電粒子ビーム装置
US6787772B2 (en) * 2000-01-25 2004-09-07 Hitachi, Ltd. Scanning electron microscope
JP4647820B2 (ja) * 2001-04-23 2011-03-09 キヤノン株式会社 荷電粒子線描画装置、および、デバイスの製造方法
US6750455B2 (en) * 2001-07-02 2004-06-15 Applied Materials, Inc. Method and apparatus for multiple charged particle beams
JP2003203857A (ja) * 2001-10-22 2003-07-18 Nikon Corp 電子線露光装置
KR100813210B1 (ko) * 2002-03-21 2008-03-13 헤르메스-마이크로비전 인코포레이티드 진동 지연 침지 대물 렌즈의 전자 광 포커싱, 검출 및신호 수집 시스템 및 방법
JP2004235062A (ja) * 2003-01-31 2004-08-19 Seiko Instruments Inc 静電レンズユニット及びそれを用いた荷電粒子線装置
US7129502B2 (en) * 2003-03-10 2006-10-31 Mapper Lithography Ip B.V. Apparatus for generating a plurality of beamlets
KR101051370B1 (ko) 2003-09-05 2011-07-22 어플라이드 머티리얼즈 이스라엘 리미티드 입자광 시스템 및 장치와 이와 같은 시스템 및 장치용입자광 부품
JP2005175169A (ja) * 2003-12-10 2005-06-30 Sony Corp 露光装置およびマスク欠陥モニタ方法
US7420164B2 (en) * 2004-05-26 2008-09-02 Ebara Corporation Objective lens, electron beam system and method of inspecting defect
JP2007189117A (ja) * 2006-01-16 2007-07-26 Canon Inc 荷電粒子線装置
JP4878501B2 (ja) * 2006-05-25 2012-02-15 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
US8134135B2 (en) * 2006-07-25 2012-03-13 Mapper Lithography Ip B.V. Multiple beam charged particle optical system
JP5227512B2 (ja) * 2006-12-27 2013-07-03 株式会社日立ハイテクノロジーズ 電子線応用装置
EP2132763B1 (en) * 2007-02-22 2014-05-07 Applied Materials Israel Ltd. High throughput sem tool
EP2110844A1 (en) 2008-04-15 2009-10-21 ICT, Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik Mbh Contactless measurement of beam current in charged partical beam system
EP2128885A1 (en) * 2008-05-26 2009-12-02 FEI Company Charged particle source with integrated energy filter
WO2009145556A2 (ko) * 2008-05-27 2009-12-03 전자빔기술센터 주식회사 전자 칼럼용 다중극 렌즈
US8129693B2 (en) * 2009-06-26 2012-03-06 Carl Zeiss Nts Gmbh Charged particle beam column and method of operating same
WO2011049566A1 (en) * 2009-10-21 2011-04-28 Synvasive Technology, Inc. Surgical saw device and method of manufacture
US9184024B2 (en) * 2010-02-05 2015-11-10 Hermes-Microvision, Inc. Selectable coulomb aperture in E-beam system
EP2385542B1 (en) * 2010-05-07 2013-01-02 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Electron beam device with dispersion compensation, and method of operating same
EP2622626B1 (en) * 2010-09-28 2017-01-25 Applied Materials Israel Ltd. Particle-optical systems and arrangements and particle-optical components for such systems and arrangements
US8294095B2 (en) 2010-12-14 2012-10-23 Hermes Microvision, Inc. Apparatus of plural charged particle beams with multi-axis magnetic lens
JP5832141B2 (ja) * 2011-05-16 2015-12-16 キヤノン株式会社 描画装置、および、物品の製造方法
EP2722868B1 (en) * 2012-10-16 2018-02-21 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Octopole device and method for spot size improvement
JP2014107401A (ja) * 2012-11-27 2014-06-09 Canon Inc 描画装置、それを用いた物品の製造方法
JP2014229481A (ja) * 2013-05-22 2014-12-08 株式会社日立ハイテクノロジーズ 荷電粒子線応用装置
EP2816585A1 (en) * 2013-06-17 2014-12-24 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Charged particle beam system and method of operating thereof
EP2879155B1 (en) * 2013-12-02 2018-04-25 ICT Integrated Circuit Testing Gesellschaft für Halbleiterprüftechnik mbH Multi-beam system for high throughput EBI
US9082577B1 (en) 2014-08-14 2015-07-14 Shimadzu Corporation Adjustment method for electron beam device, and the electron beam device thus adjusted
WO2016145458A1 (en) 2015-03-10 2016-09-15 Hermes Microvision Inc. Apparatus of plural charged-particle beams
US9691588B2 (en) 2015-03-10 2017-06-27 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
US10236156B2 (en) 2015-03-25 2019-03-19 Hermes Microvision Inc. Apparatus of plural charged-particle beams
US9607805B2 (en) 2015-05-12 2017-03-28 Hermes Microvision Inc. Apparatus of plural charged-particle beams
US9922799B2 (en) 2015-07-21 2018-03-20 Hermes Microvision, Inc. Apparatus of plural charged-particle beams
IL256895B (en) * 2015-07-22 2022-08-01 Hermes Microvision Inc Device for multiple charged particle beams
JP2019027841A (ja) * 2017-07-27 2019-02-21 株式会社日立ハイテクノロジーズ 荷電粒子線装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030168606A1 (en) * 2000-04-27 2003-09-11 Pavel Adamec Multi beam charged particle device
US20120091358A1 (en) * 2008-04-15 2012-04-19 Mapper Lithography Ip B.V. Projection lens arrangement
US20120241606A1 (en) * 2011-03-23 2012-09-27 Liqun Han Multiple-beam system for high-speed electron-beam inspection

Also Published As

Publication number Publication date
US10879031B2 (en) 2020-12-29
EP3325950A1 (en) 2018-05-30
US10395886B2 (en) 2019-08-27
KR20190091577A (ko) 2019-08-06
KR20240042242A (ko) 2024-04-01
JP6703092B2 (ja) 2020-06-03
CN108738363B (zh) 2020-08-07
CN111681939B (zh) 2023-10-27
KR102651558B1 (ko) 2024-03-26
IL256895A (en) 2018-03-29
IL256895B (en) 2022-08-01
US20170025243A1 (en) 2017-01-26
EP3809124A3 (en) 2022-03-16
CN111681939A (zh) 2020-09-18
EP3809124A2 (en) 2021-04-21
KR20180030605A (ko) 2018-03-23
US20230282441A1 (en) 2023-09-07
JP2018520495A (ja) 2018-07-26
EP3325950B1 (en) 2020-11-04
KR20220134790A (ko) 2022-10-05
US20240128044A1 (en) 2024-04-18
US20210233736A1 (en) 2021-07-29
US11887807B2 (en) 2024-01-30
IL294759A (en) 2022-09-01
WO2017015483A1 (en) 2017-01-26
US11587758B2 (en) 2023-02-21
US20200152412A1 (en) 2020-05-14
EP3325950A4 (en) 2019-04-17
CN108738363A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
KR102007497B1 (ko) 복수의 하전 입자 빔을 이용하는 장치
US11705304B2 (en) Apparatus of plural charged-particle beams
JP6989658B2 (ja) 複数の荷電粒子ビームの装置
US10115559B2 (en) Apparatus of plural charged-particle beams
KR102320860B1 (ko) 복수의 하전 입자 빔을 이용하는 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant