KR101943196B1 - 탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치 - Google Patents
탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치 Download PDFInfo
- Publication number
- KR101943196B1 KR101943196B1 KR1020170053627A KR20170053627A KR101943196B1 KR 101943196 B1 KR101943196 B1 KR 101943196B1 KR 1020170053627 A KR1020170053627 A KR 1020170053627A KR 20170053627 A KR20170053627 A KR 20170053627A KR 101943196 B1 KR101943196 B1 KR 101943196B1
- Authority
- KR
- South Korea
- Prior art keywords
- silicon carbide
- epitaxial wafer
- carbide epitaxial
- gas
- growth
- Prior art date
Links
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 187
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 187
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 50
- 239000004065 semiconductor Substances 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 58
- 239000000758 substrate Substances 0.000 claims abstract description 34
- 239000007789 gas Substances 0.000 claims description 110
- 235000012431 wafers Nutrition 0.000 claims description 104
- 238000005121 nitriding Methods 0.000 claims description 37
- 230000000087 stabilizing effect Effects 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 230000006641 stabilisation Effects 0.000 claims description 6
- 238000011105 stabilization Methods 0.000 claims description 6
- 230000001590 oxidative effect Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 claims 1
- 230000007547 defect Effects 0.000 abstract description 26
- 239000013078 crystal Substances 0.000 abstract description 17
- 239000010410 layer Substances 0.000 description 14
- 239000002245 particle Substances 0.000 description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 11
- 125000004429 atom Chemical group 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004888 barrier function Effects 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000005468 ion implantation Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 230000020477 pH reduction Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/36—Carbides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/32—Carbides
- C23C16/325—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/14—Feed and outlet means for the gases; Modifying the flow of the reactive gases
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
- C30B25/20—Epitaxial-layer growth characterised by the substrate the substrate being of the same materials as the epitaxial layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02167—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon carbide not containing oxygen, e.g. SiC, SiC:H or silicon carbonitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02293—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process formation of epitaxial layers by a deposition process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02373—Group 14 semiconducting materials
- H01L21/02378—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02529—Silicon carbide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02612—Formation types
- H01L21/02617—Deposition types
- H01L21/0262—Reduction or decomposition of gaseous compounds, e.g. CVD
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02658—Pretreatments
-
- H01L21/205—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Chemical Vapour Deposition (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
결정 결함이 적은 탄화규소 에피텍셜 웨이퍼를 제조할 수 있는 탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치를 얻는다. 성장로(1)의 내벽에 부착된 탄화규소를 질화, 산화 또는 산질화시켜서 안정화시킨다. 다음에, 성장로(1) 내에 기판(2)을 반입한다. 다음에, 성장로(1) 내에 프로세스 가스를 도입하고, 기판(2)상에 탄화규소 에피텍셜층을 성장시켜서 탄화규소 에피텍셜 웨이퍼를 제조한다.
Description
본 발명은 탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치에 관한 것이다.
근년, 실리콘 반도체에 비해 밴드 갭, 절연 파괴 전기장 강도, 포화 드리프트 속도, 열전도도가 모두 상대적으로 큰 탄화규소(이하 SiC라고 적음) 반도체가, 주로 전력 제어용 파워 디바이스 재료로서 주목받고 있다. 사실, 이 SiC 반도체를 이용한 파워 디바이스는, 전력 손실의 대폭적인 저감, 소형화 등이 가능하고, 전원 전력 변환 시의 에너지 절약화를 실현할 수 있는 것부터, 전기 자동차의 고성능화, 태양전지 시스템 등의 고기능화 등, 저탄소 사회 실현에 있어서 키 디바이스(key device)가 된다. 파워 디바이스로서, MOSFET(Metal Oxide Semiconductor Field Effect Transistor), 쇼트키 배리어 다이오드(Schottky barrier diode), IGBT(Insulated Gate Bipolar Transistor) 및 각종 다이오드 등을 들 수 있다.
SiC 파워 디바이스를 제작할 때에, SiC 벌크 단결정 기판 상에, 반도체 디바이스의 활성 영역을 예열 CVD법(열화학 기상 퇴적법) 등에 의해 에피텍셜 성장시키는 것이 많다. 여기서 말하는 활성 영역이란, 결정 중에 있어서의 도핑 밀도 및 막 두께가 정밀하게 제어된 다음에 만들어지는 성장 방향 축을 포함한 단면 영역이다. 벌크 단결정 기판에 더해, 이러한 에피텍셜 성장층이 필요하게 되는 이유는, 디바이스의 사양에 의해, 도핑 밀도 및 막 두께가 거의 기정(旣定)되고, 또한, 통상, 그 정도로서, 벌크 단결정 기판의 도핑 밀도 및 막 두께보다 높은 것이 요구되기 때문이다.
SiC 벌크 단결정 기판 상에 에피텍셜 성장층을 형성한 웨이퍼를, 이하, 에피텍셜 웨이퍼라고 칭한다. 탄화규소 반도체 장치는, 탄화규소 에피텍셜 웨이퍼에 대해서 여러 가공을 하여 제작되지만, 탄화규소 기판 및 탄화규소 에피텍셜 성장층의 성장 시의 불편에 기인하는 탄화규소 에피텍셜 웨이퍼의 결함이 있으면, 탄화규소 반도체 장치에 국소적으로 고전압을 보지할 수 없는 개소가 생겨서 리크 전류(leak current)가 발생한다. 이러한 결함의 밀도가 증가하면, 탄화규소 반도체 장치의 제조 시의 양품율이 저하한다.
탄화규소 에피텍셜 웨이퍼의 제조 장치로서 예를 들면, 탄화규소로 코팅된 그라파이트(graphite)제의 부재로 서스셉터(susceptor)를 형성한 것이 개시되어 있다(예를 들면, 특허문헌 1 참조). 또한, 에피텍셜막의 형성 시에 서스셉터로의 원료 가스에 기인하는 막의 부착을 저감시키기 위해서, 탄화규소로 코팅된 그라파이트제 서스셉터의 표면에 SiO2막 또는 Si3N4막을 피복시킨 것이 개시되어 있다(예를 들면, 특허문헌 2 참조).
성장로의 내벽에도 탄화규소가 부착하고, 이 탄화규소는 구조상 무르기 때문에 탄화규소 입자가 되기 쉽다. 탄화규소 입자가 탄화규소 웨이퍼의 표면에 부착하면, 해당 개소를 기점으로서 다운 폴(downfall)이나 삼각 결함 등의 결정 결함이 발생해, 디바이스의 수율이 악화된다고 하는 문제가 있다. 또한, 서스셉터의 표면에 SiO2막 또는 Si3N4막을 피복시켰을 경우, 탄화규소를 에피텍셜 성장시키면, SiO2막 또는 Si3N4막과, 탄화규소의 밀착성이 나쁘고, 탄화규소 입자가 발생하기 쉬워져서, 결정 결함이 보다 증대한다고 하는 문제가 있다.
본 발명은 상술과 같은 과제를 해결하기 위해 이루어진 것으로, 그 목적은 결정 결함이 적은 탄화규소 에피텍셜 웨이퍼를 제조할 수 있는 탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치를 얻는 것이다.
본 발명에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법은, 성장로의 내벽에 부착된 탄화규소를 질화, 산화 또는 산질화시켜서 안정화시키는 안정화 공정과, 상기 안정화 공정 후에, 상기 성장로 내에 기판을 반입하는 반입 공정과, 상기 반입 공정 후에, 상기 성장로 내에 프로세스 가스를 도입하고, 상기 기판 상에 탄화규소 에피텍셜층을 성장시켜 탄화규소 에피텍셜 웨이퍼를 제조하는 성장 공정을 구비하는 것을 특징으로 한다.
본 발명에서는, 에피텍셜 성장을 실행하기 전에 성장로의 내벽에 부착된 탄화규소를 질화시켜서 안정화시킴으로써, 탄화규소 입자의 발생을 억제할 수 있다. 이에 의해, 탄화규소 입자에 기인하는 결정 결함이 적은 탄화규소 에피텍셜 웨이퍼를 제조할 수 있다.
도 1은 본 발명의 실시형태 1에 따른 탄화규소 에피텍셜 웨이퍼의 제조 장치를 도시하는 단면도,
도 2는 본 발명의 실시형태 1에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트,
도 3은 질화 공정을 실시했을 경우와 실시하지 않았던 경우의 탄화규소 에피텍셜 웨이퍼의 웨이퍼의 표면 결함 밀도를 비교한 결과를 나타내는 도면,
도 4는 본 발명의 실시형태 1에 따른 방법으로 제조된 탄화규소 에피텍셜 웨이퍼를 이용해 제조된 MOSFET를 도시하는 단면도,
도 5는 본 발명의 실시형태 1에 따른 방법으로 제조된 탄화규소 에피텍셜 웨이퍼를 이용해 제조된 쇼트키 배리어 다이오드를 도시하는 단면도,
도 6은 본 발명의 실시형태 2에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트,
도 7은 본 발명의 실시형태 3에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 성장 시퀀스,
도 8은 본 발명의 실시형태 5에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트.
도 2는 본 발명의 실시형태 1에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트,
도 3은 질화 공정을 실시했을 경우와 실시하지 않았던 경우의 탄화규소 에피텍셜 웨이퍼의 웨이퍼의 표면 결함 밀도를 비교한 결과를 나타내는 도면,
도 4는 본 발명의 실시형태 1에 따른 방법으로 제조된 탄화규소 에피텍셜 웨이퍼를 이용해 제조된 MOSFET를 도시하는 단면도,
도 5는 본 발명의 실시형태 1에 따른 방법으로 제조된 탄화규소 에피텍셜 웨이퍼를 이용해 제조된 쇼트키 배리어 다이오드를 도시하는 단면도,
도 6은 본 발명의 실시형태 2에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트,
도 7은 본 발명의 실시형태 3에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 성장 시퀀스,
도 8은 본 발명의 실시형태 5에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트.
본 발명의 실시형태에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치에 대해 도면을 참조하여 설명한다. 동일 또는 대응하는 구성요소에는 동일한 부호를 부여하여, 설명의 반복을 생략하는 경우가 있다.
(실시형태 1)
도 1은 본 발명의 실시형태 1에 따른 탄화규소 에피텍셜 웨이퍼의 제조 장치를 도시하는 단면도이다. 에피텍셜 성장을 실행하는 성장로(1) 내에, 탄화규소 기판(2)을 탑재하는 웨이퍼 홀더(3)가 마련되어 있다. 제 1 가스 도입구(4)는, 탄화규소 에피텍셜층을 성장시키기 위한 프로세스 가스로서 캐리어 가스와 원료 가스를 성장로(1) 내에 도입한다. 제 1 가스 배기구(5)는 프로세스 가스를 성장로(1)로부터 배출한다.
에피텍셜 성장 공정에 있어서, 탄화규소 기판(2) 상에 탄화규소 에피텍셜층이 성장하지만, 동시에, 성장로(1)의 내벽, 웨이퍼 홀더(3) 및 다른 노내 부재에도 탄화규소 에피텍셜막의 생성물이 부착하여, 수지상(dendritically)으로 성장한다. 그리고, 가스 도입 시의 기류의 변동에 의해서, 구조상 약한 수지상의 얇은 개소가 절단 및 박리되어, 탄화규소 입자가 발생한다.
이 탄화규소 입자는, 에피텍셜 성장 공정에 있어서 프로세스 가스를 도입하기 시작하고부터 설정 압력에 이르기까지 발생하는 기류의 변동에 의해서 다량으로 발생한다. 탄화규소 입자가 탄화규소 기판(2)의 에피텍셜 성장면에 부착한 상태로 에피텍셜 성장하면, 탄화규소 입자를 기점으로서 이상 성장이 일어나, 다운 폴 및 삼각 결함 등의 결정 결함이 형성되어 버린다.
그래서, 제 2 가스 도입구(6)는, 성장로(1)의 내벽에 부착된 탄화규소를 질화시켜서 안정화시키기 위한 안정화 가스를 성장로(1) 내에 도입한다. 제 2 가스 배기구(7)는 안정화 가스를 성장로(1)로부터 배출한다. 가스 도입 조건 제어부(8)는 프로세스 가스 및 안정화 가스의 도입 조건을 제어한다. 제 2 가스 도입구(6)는 가스 유량 제어 장치와 압력 제어 장치를 거쳐서, 안정화 가스의 봄베(bomb)에 접속되어 있다.
질화용의 안정화 가스로서, 질소 가스, NH3 가스 등의 질소 함유 가스를 사용한다. 안정화 가스는 에칭 가스는 아니기 때문에, 서스셉터 질화 공정에서 웨이퍼 홀더(3) 또는 성장로(1) 내의 부재의 보호막인 SiC 피막이 에칭될 우려가 없고, 관리가 용이하다.
또한, 성장로(1)의 내벽에 부착된 탄화규소의 최표면을 질화시키는 또는 탄화규소막의 최표면 원자를 질소 종단(窒素終端)시키는 질화 전용의 제 2 가스 도입구(6)와 제 2 가스 배기구(7)가 마련되어 있다. 이에 의해, 부착된 탄화규소를 효율적으로 질화시킬 수 있기 때문에, 탄화규소막의 결합 상태를 안정화시켜서 탄화규소 입자의 발생을 억제할 수 있다.
웨이퍼를 탑재하는 웨이퍼 홀더(3)의 탑재면 및 탄화규소 기판(2)의 에피텍셜 성장면이 성장로(1)의 천정면에 대향하고 있다. 이 때문에, 탄화규소 기판(2)의 에피텍셜 성장면과 대향한 위치에 있는 성장로(1)의 천정면에 부착하는 탄화규소 입자는, 성장로(1)의 다른 장소에 부착된 탄화규소 입자에 비해 결정 결함의 원인이 되기 쉽다. 또한, 성장로(1)의 천정면은, 부착하는 탄화규소 입자의 양이 성장로(1)의 다른 장소에 비해 많기 때문에, 중점적으로 질화를 실행할 필요가 있다. 그래서, 제 2 가스 도입구(6)는 성장로(1)의 측면의 상부에 있어서 웨이퍼 홀더(3)보다 상방에 마련되어 있다. 이에 의해, 서스셉터 질화용의 가스가 성장로(1)의 천정면을 따라서 흐르기 때문에, 탄화규소 기판(2)의 에피텍셜 성장면에 대향하는 성장로(1)의 천정면에 부착된 탄화규소 입자를 효율적으로 질화시킬 수 있다.
제 2 가스 배기구(7)는, 안정화 가스 전용의 가스 배기구이며, 성장로(1)의 하부에 있어서 웨이퍼 홀더(3)보다 하방에 마련되어 있다. 이에 의해, 성장로(1)의 측면과 웨이퍼 홀더(3)의 하부 영역도 질화시킬 수 있기 때문에, 성장로(1) 내 전체를 질화시킬 수 있다.
에피텍셜 성장 공정에 있어서 성장로(1) 내에서 에피텍셜 성장용의 프로세스 가스가 수평 방향(도 1의 지면의 좌우 방향)으로 흐르기 때문에, 제 1 가스 배기구(5)는 제 1 가스 도입구(4)의 반대측에 마련되어 있다. 이는 탄화규소 기판(2) 상에 균일하게 탄화규소 에피텍셜막을 성장시키기 위해 필요한 구성이다.
질화 공정에 있어서, 에피텍셜 성장용의 제 1 가스 배기구(5)를 이용해도 좋고, 안정화 가스 전용의 제 2 가스 배기구(7)를 이용해도 좋다. 질화 공정 시에 제 1 가스 배기구(5)를 이용했을 경우에는 성장로(1)의 천정면(상면)과 웨이퍼 홀더(3)를 효율적으로 질화할 수 있다. 한편, 질화 공정 시에 제 2 가스 배기구(7)를 이용했을 경우에는 성장로(1) 내 전체를 질화시킬 수 있다. 이와 같이 가스 배기구를 조합함으로써 질화시키는 서스셉터의 영역을 선택할 수 있기 때문에 독립된 가스 배기구를 마련하는 것이 보다 바람직하다. 또한, 질화 전용의 제 2 가스 배기구(7)는, 에피텍셜 성장용의 제 1 가스 배기구(5)와 동시에 사용할 수 있어서, 에피텍셜 성장용의 진공 펌프, 압력 조정 밸브 등을 공용할 수 있다.
또한, 가스 도입 조건 제어부(8)는, 후술하는 질화 조건으로 질화가 실시되도록, 제 1 가스 도입구(4) 및 제 2 가스 도입구(6)에 접속된 가스 유량 제어 장치와 압력 제어 장치를 제어하여, 프로세스 가스 또는 안정화 가스의 가스 유량 또는 압력을 제어한다.
도 2는 본 발명의 실시형태 1에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트이다. 이하, 도 1 및 도 2를 이용하여 탄화규소 에피텍셜 웨이퍼의 제조 방법을 설명한다.
우선, 제 1 가스 도입구(4)로부터 성장로(1) 내에 안정화 가스를 도입하여, 성장로(1)의 내벽에 부착된 탄화규소를 질화시켜서 안정화시킨다(단계 S1). 이 공정을 질화 공정(안정화 공정)이라고 부른다. 또한, 웨이퍼 홀더(3)를 성장로(1) 내에 반입한 상태로 질화 공정을 실행하면, 웨이퍼 홀더(3)에 부착하고 있는 탄화규소의 질화를 실행할 수도 있다.
여기서, 질화 공정의 조건에 대해 설명한다. 우선, 성장로(1) 내를 900도까지 온도 상승시킨다. 900도로 보지시킨 채로 제 2 가스 도입구(6)로부터 예를 들면, NH3 가스를 유량 10slm로 공급한다. 5분간 NH3 가스를 공급시킨 후, 가스 공급을 정지하고 성장로(1) 내의 온도를 실온까지 강온(降溫)시킨다. 이에 의해서 성장로(1)의 내벽 및 웨이퍼 홀더(3)에 부착된 탄화규소의 최표면의 질화 또는 탄화규소막의 최표면 원자를 질소 종단시킨다. 여기서 질화용의 안정화 가스로서 NH3를 사용했지만, N2, 그 외의 질소 함유 가스여도 동일한 효과가 있다. 또한, 질화 시의 성장로(1) 내의 온도에 대해서는 900도로 한정한 것이 아니라, 탄화규소의 최표면 원자를 질소 종단시킬 수 있으면 실온이라도 좋다.
다음에, 성장로(1) 내에 탄화규소 기판(2)을 반입하여 웨이퍼 홀더(3)에 탑재한다(단계 S2). 다음에, 성장로(1) 내에 프로세스 가스를 도입하고, 탄화규소 기판(2) 상에 탄화규소 에피텍셜층을 성장시켜 탄화규소 에피텍셜 웨이퍼를 제조한다(단계 S3). 구체적으로는, 성장로(1)를 1650℃ 정도까지 가열한 후, 성장로(1) 내에 제 1 가스 도입구(4)로부터 원료 가스를 공급하는 것에 의해 탄화규소 기판(2)의 표면 상에 막 두께 10㎛의 탄화규소막을 에피텍셜 성장시킨다. 예를 들면, Si 원자의 공급원으로서 실란 가스(SiH4)를 유량 500sccm로 공급하고, C 원자의 공급원으로서 프로판 가스(C3H8)를 유량 200sccm로 공급한다. N형 도핑으로서 질소 가스를 이용한다. 또한, N형 도핑으로서, 기판 계면에서 캐리어 농도가 1×1017/㎤가 되고, 활성 영역에서 캐리어 농도가 8×1015/㎤가 되도록 질소 가스를 공급한다. 그 후, 원료 가스의 공급을 정지하여, 실온까지 강온시킨다. 이와 같이 하여, 에피텍셜 웨이퍼가 제조된다. 그 후, 완성한 탄화규소 에피텍셜 웨이퍼를 성장로(1)로부터 반출한다(단계 S4).
이와 같이, 에피텍셜 성장을 실행하기 전에 성장로(1)의 내벽에 부착된 탄화규소를 질화시켜 안정화시킴으로써, 탄화규소 입자의 발생을 억제할 수 있다. 이에 의해, 탄화규소 입자에 기인하는 결정 결함이 적은 탄화규소 에피텍셜 웨이퍼를 제조할 수 있다. 또한, 이 탄화규소 에피텍셜 웨이퍼를 이용해 탄화규소 반도체 장치를 제조하는 것에 의해, 염가로 고수율인 SiC 디바이스를 제조할 수 있다.
도 3은 질화 공정을 실행했을 경우와 실행하지 않았던 경우의 탄화규소 에피텍셜 웨이퍼의 웨이퍼의 표면 결함 밀도를 비교한 결과를 도시하는 도면이다. 여기서 표면 결함 밀도는, 공초점 광학계 주사형 현미경의 표면 검사 장치(예를 들면, 레이저테크사제 SICA6X)를 이용해 계측하였다. 질화 공정을 실행한 실시형태 1의 경우에는 표면 결함 밀도는 0.06/㎠로 극히 저밀도인 것에 비해, 질화 공정을 실행하지 않았던 종래의 경우에는 표면 결함 밀도는 0.06/㎠로 10배 크다는 것을 알았다.
도 4는 본 발명의 실시형태 1에 따른 방법으로 제조된 탄화규소 에피텍셜 웨이퍼를 이용해 제조된 MOSFET를 도시하는 단면도이다. 해당 탄화규소 에피텍셜 웨이퍼는 결정 결함이 적기 때문에, MOSFET를 높은 소자 수율로 제조할 수 있다. 탄화규소 기판(2) 상에 탄화규소 에피텍셜 성장층(9)이 형성되어 있다. 알루미늄(Al)을 p형 불순물로서 함유하는 베이스 영역(10)이 탄화규소 에피텍셜 성장층(9)의 표층에 선택적으로 복수 형성되어 있다. 질소(N)를 n형 불순물로서 함유하는 소스 영역(11)이 베이스 영역(10)의 표층에 형성되어 있다. 산화 규소로 구성된 게이트 절연막(12)이 탄화규소 에피텍셜 성장층(9), 베이스 영역(10) 및 소스 영역(11)의 일부 위에 걸쳐서 형성되어 있다. 게이트 전극(13)이, 한 쌍의 소스 영역(11)에 의해 개재된 탄화규소 에피텍셜 성장층(9) 상에 게이트 절연막(12)을 개재시켜서 형성되어 있다. 소스 전극(14)이, 게이트 절연막(12)이 형성되어 있지 않은 n형 소스 영역(11) 상에 형성되어 있다. 드레인 전극(15)이 탄화규소 기판(2)의 이면에 형성되어 있다.
도 5는 본 발명의 실시형태 1에 따른 방법으로 제조된 탄화규소 에피텍셜 웨이퍼를 이용해 제조된 쇼트키 배리어 다이오드를 도시하는 단면도이다. 해당 탄화규소 에피텍셜 웨이퍼는 결정 결함이 적기 때문에, 쇼트키 배리어 다이오드를 높은 소자 수율로 제조할 수 있다. 알루미늄(Al)을 p형 불순물로서 함유하는 이온 주입 영역(16)이 탄화규소 에피텍셜 성장층(9)의 표층에 선택적으로 복수 형성되어 있다. 쇼트키 전극(17)이, 이온 주입 영역(16)에 개재된 탄화규소 에피텍셜 성장층(9)과 이온 주입 영역(16)의 일부 위에 걸쳐서 형성되어 있다. 오믹 전극(ohmic electrode)(18)이 탄화규소 기판(2)의 이면에 형성되어 있다.
(실시형태 2)
도 6은 본 발명의 실시형태 2에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트이다. 실시형태 2의 제조 방법으로 이용하는 제조 장치는 실시형태 1과 동일하다.
우선, 실시형태 1과 마찬가지로 단계 S1 내지 S4를 실시한다. 다음에, 탄화규소 에피텍셜 웨이퍼를 성장로(1)로부터 반출한 후, 단계 S1 내지 S4를 반복하여 복수의 탄화규소 에피텍셜 웨이퍼를 제조한다. 이와 같이 질화 공정과 에피텍셜 성장을 교대로 반복함으로써 성장로(1)의 내벽 및 웨이퍼 홀더(3)에 부착하고 있는 탄화규소막의 결합 상태를 항상 안정화할 수 있다. 이 때문에, 1회 질화 공정을 실행한 후에 연속해서 복수의 성막 처리를 실행하는 것보다도 부착된 막이 안정되어, 결정 결함이 적은 탄화규소 에피텍셜 웨이퍼를 대량으로 제작할 수 있다.
(실시형태 3)
도 7은 본 발명의 실시형태 3에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 성장 시퀀스이다. 본 실시형태에서도 실시형태 1의 단계 S3과 마찬가지로, 성장로(1)를 1650℃ 정도까지 가열한 후, 성장로(1) 내에 제 1 가스 도입구(4)로부터 원료 가스를 공급하는 것에 의해 탄화규소 기판(2)의 표면 위에 막 두께 10㎛의 탄화규소막을 에피텍셜 성장시킨다. 예를 들면, Si 원자의 공급원으로서 실란 가스(SiH4)를 유량 500sccm로 공급하고, C 원자의 공급원으로서 프로판 가스(C3H8)를 유량 200sccm로 공급한다. N형 도핑으로서 질소 가스를 이용한다. 또한, N형 도핑으로서 기판 계면에서 캐리어 농도가 1×1017/㎤가 되고, 활성 영역에서 캐리어 농도가 8×1015/㎤가 되도록 질소 가스를 공급한다. 그 후, 원료 가스의 공급을 정지하여, 실온까지 강온시킨다.
본 실시형태에서는, 에피텍셜 성장 공정 후의 실온까지의 강온 중에, 성장로(1) 내에 제 2 가스 도입구(6)로부터 예를 들면, NH3 가스를 유량 10slm로 공급한다. 이 때 가스 배기로서는, 제 1 가스 배기구(5)를 이용해도 좋고, 질화 가스 전용으로 마련된 제 2 가스 배기구(7)를 이용해도 좋다. 이와 같이 하여, 성장로(1)의 내벽 및 웨이퍼 홀더(3)에 부착된 탄화규소의 최표면을 질화시거나, 탄화규소의 최표면 원자를 질소 종단시킨다. 그 결과, 탄화규소막의 결합 상태를 보다 안정화시킬 수 있어서, 다음에 실시되는 에피텍셜 성장 공정에서 탄화규소 입자는 거의 발생하지 않는다. 이 때문에, 탄화규소 입자에 기인하는 결정 결함이 큰 폭으로 저감된 탄화규소 에피텍셜 웨이퍼를 형성할 수 있다. 이에 의해, 탄화규소 에피텍셜 웨이퍼의 결정 결함을 저감하면서, 질화 공정이 탄화규소 에피텍셜 웨이퍼의 제조 택트(tact)에 미치는 영향을 작게 할 수 있다.
(실시형태 4)
본 발명의 실시형태 4의 제조 방법은 실시형태 1에 나타내는 플로차트와 동일하지만, 성장로(1)에서 웨이퍼 홀더(3)를 탄화규소 에피텍셜 웨이퍼의 제조 장치로부터 취출하여, 다른 질화 전용의 장치를 이용해 질화 공정을 실시한다. 그 이외는 실시형태 1의 제조 방법과 마찬가지이다.
에피텍셜 웨이퍼의 제조 장치의 구성상, 질화 전용의 가스 배관이나 가스 배기구를 마련할 수 없는 경우에는, 본 실시형태와 같이 에피텍셜 성장 공정과는 다른 질화 전용의 제조 장치를 이용해 질화 공정을 실시해도 좋다. 질화 전용의 제조 장치는, 성장로(1)의 내벽과 웨이퍼 홀더(3)에 부착된 탄화규소막의 최표면을 질화시키거나, 탄화규소막의 최표면 원자를 질소 종단시킬 수 있으면 좋다. 실시형태 1에서 나타낸 것과 같이, 예를 들면, 성장로(1)를 900도로 유지하여 NH3 가스를 공급하여 열질화시켜도 좋고, 예를 들면, 플라스마 발광을 이용해 질화시켜도 좋고, 질화의 방법은 이에 한정되지 않는다.
또한, 질화 공정이 완료한 웨이퍼 홀더(3)를 복수대 미리 준비해 두면, 에피텍셜 웨이퍼를 제조한 후에, 탄화규소 에피텍셜 웨이퍼의 제조 장치로부터 웨이퍼 홀더(3)를 취출하고, 질화 공정이 완료한 웨이퍼 홀더(3)에 부착할 수 있어서, 실시형태 1보다 제조 택트를 단축할 수 있다. 이에 의해, 탄화규소 에피텍셜 웨이퍼의 결정 결함을 저감하면서, 질화 공정이 탄화규소 에피텍셜 웨이퍼의 제조 택트에 미치는 영향을 작게 할 수 있다.
(실시형태 5)
도 8은 본 발명의 실시형태 5에 따른 탄화규소 에피텍셜 웨이퍼의 제조 방법을 나타내는 플로차트이다. 본 실시형태에 따른 탄화규소 에피텍셜 웨이퍼의 제조 장치는 실시형태 1과 동일하지만, 제 2 가스 도입구(6)는 가스 유량 제어 장치와 압력 제어 장치를 개재시켜서 산화 또는 산질화용의 안정화 가스의 봄베에 접속되어 있다. 안정화 가스는 O2, NO, N2O, NH3, H2O, 다른 산소 함유 가스, 다른 질소 함유 가스 중 어느 하나이다.
다음에, 본 발명의 실시형태 5에 있어서의 탄화규소 에피텍셜 웨이퍼의 제조 방법에 대해 설명한다. 우선, 성장로(1)에 제 2 가스 도입구(6)로부터 안정화 가스를 도입하여, 성장로(1)의 내벽 및 웨이퍼 홀더(3)에 부착된 탄화규소막의 산화 또는 산질화를 실행한다(단계 S11). 이 공정을 산화 공정 또는 산질화 공정(안정화 공정)이라고 부른다. 또한, 웨이퍼 홀더(3)를 성장로(1) 내에 반입한 상태로 질화 공정을 실행하면, 웨이퍼 홀더(3)에 부착하고 있는 탄화규소의 산화 또는 산질화를 실행할 수도 있다.
여기서, 산화 공정 또는 산질화 공정의 조건에 대해 설명한다. 우선, 성장로(1) 내를 600도까지 온도 상승시킨다. 600도로 보지시킨 채로 제 2 가스 도입구(6)로부터 예를 들면, O2 가스를 유량 10slm로 공급한다. 5분간 O2 가스를 공급시킨 후, 가스 공급을 정지하여 성장로(1) 내의 온도를 실온까지 강온시킨다. 이에 의해서 성장로(1)의 내벽 및 웨이퍼 홀더(3)에 부착된 탄화규소의 최표면의 산화 또는 탄화규소막의 최표면 원자를 산소 종단시킨다. 여기서 산화용의 가스로서 O2를 사용했지만, NO, N2O, H2O, 다른 산소 함유 가스, 또는 다른 질소 함유 가스여도 마찬가지로 산화 또는 산질화시킬 수 있다. 또한, 산화 시의 성장로(1) 내의 온도에 대해서는 600도로 한정한 것이 아니라, 탄화규소의 최표면 원자를 산소 종단시킬 수 있으면 실온이라도 좋다. 산질화시키는 경우도 마찬가지로, 탄화규소의 최표면의 산질화 또는 최표면 원자를 산소 또는 질소로 종단시킬 수 있으면 어떠한 온도·가스 유량의 조건을 이용해도 좋다.
다음에, 성장로(1) 내에 탄화규소 기판(2)을 반입하여 웨이퍼 홀더(3)에 탑재한다(단계 S12). 다음에, 성장로(1) 내에 프로세스 가스를 도입하고, 탄화규소 기판(2) 상에 탄화규소 에피텍셜층을 성장시켜서 탄화규소 에피텍셜 웨이퍼를 제조한다(단계 S13). 그 후, 완성한 탄화규소 에피텍셜 웨이퍼를 성장로(1)로부터 반출한다(단계 S14).
이와 같이, 에피텍셜 성장을 실행하기 전에 성장로(1)의 내벽에 부착된 탄화규소를 산화 또는 산질화시켜 안정화시킴으로써, 탄화규소 입자의 발생을 억제할 수 있다. 이에 의해, 탄화규소 입자에 기인하는 결정 결함이 적은 탄화규소 에피텍셜 웨이퍼를 제조할 수 있다. 또한, 이 탄화규소 에피텍셜 웨이퍼를 이용해 탄화규소 반도체 장치를 제조하는 것에 의해, 염가로 고수율인 SiC 디바이스를 제조할 수 있다. 또한, 실시형태 2 내지 4에 따른 제조 방법에 있어서의 질화 공정을 실시형태 5의 산화 공정 또는 산질화 공정으로 치환해도 동일한 효과를 얻을 수 있다.
본 실시형태에 의해 제조된 에피텍셜 웨이퍼를 공초점 광학계 주사형 현미경의 표면 검사 장치(예를 들면, 레이저테크사제 SICA6X)를 이용해 표면 결함 밀도를 계측하였는데, 산화 공정을 실행한 실시형태 5의 경우에는 표면 결함 밀도는 0.05/㎠로 극히 저밀도였다. 따라서, 실시형태 1의 질화 공정과 마찬가지로, 산화 공정 또는 산질화 공정에서도 탄화규소막의 결합 상태를 보다 안정화시킬 수 있어서 탄화규소 입자의 발생을 억제할 수 있다.
이상, 본 발명의 실시형태를 상세하게 설명했지만, 이상의 기술은 본 발명의 적용 가능한 국면을 예시한 것이며, 본 발명은 이에 한정되는 것은 아니다. 본 발명은 그 발명의 범위 내에 있고, 각 실시형태를 자유롭게 조합하여 변형 또는 생략하는 것이 가능하다.
1 : 성장로 2 : 탄화규소 기판
3 : 웨이퍼 홀더 4 : 제 1 가스 도입구
6 : 제 2 가스 도입구, 7 : 가스 배기구
3 : 웨이퍼 홀더 4 : 제 1 가스 도입구
6 : 제 2 가스 도입구, 7 : 가스 배기구
Claims (9)
- 성장로의 내벽에 부착된 탄화규소를 질화, 산화 또는 산질화시켜서 안정화시키는 안정화 공정과,
상기 안정화 공정 후에, 상기 성장로 내에 기판을 반입하는 반입 공정과,
상기 반입 공정 후에, 상기 성장로 내에 프로세스 가스를 도입하고, 상기 기판 상에 탄화규소 에피텍셜층을 성장시켜서 탄화규소 에피텍셜 웨이퍼를 제조하는 성장 공정을 구비하며,
상기 탄화규소는 에피텍셜 성장시에 도입되는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 방법. - 제 1 항에 있어서,
상기 탄화규소 에피텍셜 웨이퍼를 상기 성장로로부터 반출한 후, 상기 안정화 공정, 상기 반입 공정 및 상기 성장 공정을 반복하여 복수의 탄화규소 에피텍셜 웨이퍼를 제조하는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 방법. - 성장로 내에 기판을 반입하는 반입 공정과,
상기 반입 공정 후에, 상기 기판을 가열하면서 상기 성장로 내에 프로세스 가스를 도입하고, 상기 기판 상에 탄화규소 에피텍셜층을 성장시켜서 탄화규소 에피텍셜 웨이퍼를 제조하는 성장 공정과,
상기 성장 공정 후의 강온 중에 상기 성장로 내에 질소 함유 가스와 산소 함유 가스 중 적어도 1개를 공급하여 상기 성장로의 내벽에 부착된 탄화규소를 질화, 산화 또는 산질화시켜서 안정화시키는 안정화 공정을 구비하며,
상기 탄화규소는 에피텍셜 성장시에 도입되는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 방법. - 제 1 항 내지 제 3 항 중 어느 한 항에 있어서,
상기 안정화 공정은 상기 성장 공정과는 다른 제조 장치를 이용해 실시하는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 방법. - 제 1 항 내지 제 3 항 중 어느 한 항에 기재된 탄화규소 에피텍셜 웨이퍼를 이용해 탄화규소 반도체 장치를 제조하는 것을 특징으로 하는
탄화규소 반도체 장치의 제조 방법. - 에피텍셜 성장을 실행하는 성장로와.
탄화규소 에피텍셜층을 성장시키기 위한 프로세스 가스를 상기 성장로 내에 도입하는 제 1 가스 도입구과,
상기 성장로의 내벽에 부착된 탄화규소를 질화, 산화 또는 산질화시켜서 안정화시키기 위한 안정화 가스를 상기 성장로 내에 도입하는 제 2 가스 도입구를 구비하며,
상기 탄화규소는 에피텍셜 성장시에 도입되는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 장치. - 제 6 항에 있어서,
상기 안정화 가스는 질소 함유 가스와 산소 함유 가스 중 적어도 1개를 갖는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 장치. - 제 6 항 또는 제 7 항에 있어서,
웨이퍼를 탑재하는 탑재면이 상기 성장로의 천정면과 대향하는 웨이퍼 홀더를 더 구비하고,
상기 제 2 가스 도입구는 상기 웨이퍼 홀더보다 상방에 마련되어 있는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 장치. - 제 8 항에 있어서,
상기 웨이퍼 홀더보다 하방에 마련된 가스 배기구를 더 구비하는 것을 특징으로 하는
탄화규소 에피텍셜 웨이퍼의 제조 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2016-089735 | 2016-04-27 | ||
JP2016089735A JP6648627B2 (ja) | 2016-04-27 | 2016-04-27 | 炭化珪素エピタキシャルウエハの製造方法、炭化珪素半導体装置の製造方法及び炭化珪素エピタキシャルウエハの製造装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20170122673A KR20170122673A (ko) | 2017-11-06 |
KR101943196B1 true KR101943196B1 (ko) | 2019-01-28 |
Family
ID=60081753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170053627A KR101943196B1 (ko) | 2016-04-27 | 2017-04-26 | 탄화규소 에피텍셜 웨이퍼의 제조 방법, 탄화규소 반도체 장치의 제조 방법 및 탄화규소 에피텍셜 웨이퍼의 제조 장치 |
Country Status (5)
Country | Link |
---|---|
US (2) | US10370775B2 (ko) |
JP (1) | JP6648627B2 (ko) |
KR (1) | KR101943196B1 (ko) |
CN (1) | CN107316805A (ko) |
DE (1) | DE102017201744B4 (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11509277B2 (en) | 2018-03-30 | 2022-11-22 | Hrl Laboratories, Llc | Piezoelectric single crystal silicon carbide microelectromechanical resonators |
US12020924B2 (en) | 2018-05-09 | 2024-06-25 | Sumitomo Electric Industries, Ltd. | Silicon carbide epitaxial substrate and method of manufacturing silicon carbide semiconductor device |
CN110499530B (zh) * | 2019-08-28 | 2023-09-12 | 大同新成新材料股份有限公司 | 一种电子碳化硅芯片的生产设备及其方法 |
CN111020693B (zh) * | 2019-12-27 | 2021-01-29 | 季华实验室 | 一种碳化硅外延生长设备的进气装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050214455A1 (en) * | 2004-03-26 | 2005-09-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Post-cleaning chamber seasoning method |
US20060118048A1 (en) * | 2002-12-10 | 2006-06-08 | Maccalli Giacomo N | Susceptor system |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001335937A (ja) * | 2000-05-29 | 2001-12-07 | Mitsubishi Heavy Ind Ltd | 金属汚染低減方法及びプラズマ装置の再生方法 |
JP2003282445A (ja) | 2002-03-25 | 2003-10-03 | Sanyo Electric Co Ltd | 半導体薄膜の製造方法 |
US7604841B2 (en) * | 2004-03-31 | 2009-10-20 | Tokyo Electron Limited | Method for extending time between chamber cleaning processes |
JP4534978B2 (ja) | 2005-12-21 | 2010-09-01 | トヨタ自動車株式会社 | 半導体薄膜製造装置 |
US7967912B2 (en) * | 2007-11-29 | 2011-06-28 | Nuflare Technology, Inc. | Manufacturing apparatus for semiconductor device and manufacturing method for semiconductor device |
US8409352B2 (en) * | 2010-03-01 | 2013-04-02 | Hitachi Kokusai Electric Inc. | Method of manufacturing semiconductor device, method of manufacturing substrate and substrate processing apparatus |
JP2012055035A (ja) | 2010-08-31 | 2012-03-15 | Sumitomo Electric Ind Ltd | 配電部材、ステータ、及びモータ |
JP2012080035A (ja) * | 2010-10-06 | 2012-04-19 | Hitachi Kokusai Electric Inc | 基板処理装置及び基板製造方法 |
JP2013016562A (ja) | 2011-06-30 | 2013-01-24 | Nuflare Technology Inc | 気相成長方法 |
JP6232680B2 (ja) * | 2013-09-06 | 2017-11-22 | 大陽日酸株式会社 | サセプタのクリーニング方法 |
JP2016089735A (ja) | 2014-11-06 | 2016-05-23 | 大豊工業株式会社 | ターボチャージャーの軸受ハウジング |
-
2016
- 2016-04-27 JP JP2016089735A patent/JP6648627B2/ja not_active Expired - Fee Related
- 2016-12-08 US US15/372,949 patent/US10370775B2/en not_active Expired - Fee Related
-
2017
- 2017-02-03 DE DE102017201744.9A patent/DE102017201744B4/de not_active Expired - Fee Related
- 2017-04-26 KR KR1020170053627A patent/KR101943196B1/ko active IP Right Grant
- 2017-04-27 CN CN201710287689.4A patent/CN107316805A/zh active Pending
-
2019
- 2019-06-03 US US16/429,905 patent/US10711372B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060118048A1 (en) * | 2002-12-10 | 2006-06-08 | Maccalli Giacomo N | Susceptor system |
US20050214455A1 (en) * | 2004-03-26 | 2005-09-29 | Taiwan Semiconductor Manufacturing Co., Ltd. | Post-cleaning chamber seasoning method |
Also Published As
Publication number | Publication date |
---|---|
DE102017201744A1 (de) | 2017-11-02 |
JP6648627B2 (ja) | 2020-02-14 |
US20170314160A1 (en) | 2017-11-02 |
DE102017201744B4 (de) | 2022-06-23 |
US10370775B2 (en) | 2019-08-06 |
JP2017199810A (ja) | 2017-11-02 |
US10711372B2 (en) | 2020-07-14 |
US20190284718A1 (en) | 2019-09-19 |
CN107316805A (zh) | 2017-11-03 |
KR20170122673A (ko) | 2017-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10711372B2 (en) | Silicon carbide epitaxial wafer manufacturing method, silicon carbide semiconductor device manufacturing method and silicon carbide epitaxial wafer manufacturing apparatus | |
US8203150B2 (en) | Silicon carbide semiconductor substrate and method of manufacturing the same | |
KR101430217B1 (ko) | 에피택셜 탄화규소 단결정 기판 및 그 제조 방법 | |
EP1981076B1 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP4224253B2 (ja) | 半導体装置及びその製造方法 | |
JP5637086B2 (ja) | エピタキシャルウエハ及び半導体素子 | |
US8877656B2 (en) | Method for manufacturing silicon carbide semiconductor device | |
JP6245416B1 (ja) | 炭化珪素エピタキシャルウエハの製造方法及び炭化珪素半導体装置の製造方法 | |
JP6758491B2 (ja) | SiCエピタキシャルウエハおよびその製造方法 | |
US20120199848A1 (en) | Silicon carbide semiconductor device and method for manufacturing same | |
SE533083C2 (sv) | Förfarande för framställning av halvledaranordning | |
KR102165614B1 (ko) | 에피택셜 웨이퍼 | |
KR102098297B1 (ko) | 에피택셜 웨이퍼 | |
US20200321437A1 (en) | Silicon carbide epitaxial wafer, method for manufacturing silicon carbide epitaxial wafer, and power converter | |
KR20150107104A (ko) | 탄화 규소 에피택셜층의 성장 방법 및 전력 소자 | |
KR102565964B1 (ko) | 에피택셜 웨이퍼 및 그 제조 방법 | |
KR20130044789A (ko) | 에피 웨이퍼 제조 장치, 에피 웨이퍼 제조 방법 및 에피 웨이퍼 | |
JP2008071896A (ja) | 金属−絶縁膜−炭化珪素半導体構造 | |
US6500256B2 (en) | Single crystal silicon layer, its epitaxial growth method and semiconductor device | |
JP2008288482A (ja) | 炭化珪素半導体素子及びその製造方法 | |
JP2021150635A (ja) | 炭化珪素半導体装置および炭化珪素半導体装置の製造方法 | |
KR100737515B1 (ko) | 다중 막 에피택셜 웨이퍼 및 그 제조 방법 | |
JP2024089353A (ja) | 半導体装置の製造方法 | |
CN117568925A (zh) | 一种金刚石-类金刚石结构晶圆的制备方法 | |
CN118366849A (zh) | 一种金属氧化物半导体场效应晶体管的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |