JP2008288482A - 炭化珪素半導体素子及びその製造方法 - Google Patents

炭化珪素半導体素子及びその製造方法 Download PDF

Info

Publication number
JP2008288482A
JP2008288482A JP2007133715A JP2007133715A JP2008288482A JP 2008288482 A JP2008288482 A JP 2008288482A JP 2007133715 A JP2007133715 A JP 2007133715A JP 2007133715 A JP2007133715 A JP 2007133715A JP 2008288482 A JP2008288482 A JP 2008288482A
Authority
JP
Japan
Prior art keywords
silicon carbide
conductivity type
layer
drift layer
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007133715A
Other languages
English (en)
Inventor
Kunimasa Takahashi
邦方 高橋
Makoto Kitahata
真 北畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2007133715A priority Critical patent/JP2008288482A/ja
Publication of JP2008288482A publication Critical patent/JP2008288482A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Recrystallisation Techniques (AREA)

Abstract

【課題】半導体素子において、半導体基板に存在するBasal Plane転位に起因する素子特性の低下を抑制する。
【解決手段】半導体基板101と、半導体基板101の表面に形成された半導体層102と、半導体層102の上に形成されたゲート絶縁膜111と、ゲート絶縁膜111によって半導体層102から絶縁されたゲート電極113を備える。炭化珪素エピタキシャル層102は、ウェル領域105とゲート絶縁膜111との間にn型不純物を含む蓄積型チャネル層115を有し、ウェル領域105と蓄積型チャネル層115との間にp型の不純物を含むBasalPlane転位を刃状転位に変化させるための転位変化層116を有している。半導体基板101におけるBasal Plane転位の密度は10cm−2以上であり、半導体層102の表面のうちゲート電極113に対向する部分におけるBasal Plane転位の密度は10cm−2以下である。
【選択図】図1

Description

本発明は、炭化珪素を用いた半導体素子及びその製造方法に関する。
炭化珪素(シリコンカーバイド:SiC)は、珪素(Si)に比べてバンドギャップが大きく、絶縁破壊電界強度が高いことなどから、次世代の低損失パワーデバイス等へ応用されることが期待される半導体材料である。炭化珪素は、立方晶系の3C−SiCや六方晶系の6H−SiC、4H−SiC等、多くのポリタイプを有する。この中で、実用的な炭化珪素半導体素子を作製するために一般的に使用されているポリタイプは4H−SiCである。
MOSFETなどの炭化珪素半導体素子を作製する際には、通常、c軸の結晶軸に対し垂直な(0001)面にほぼ一致する面を主面とする4H−SiC基板が用いられる。4H−SiC基板(以下、単に「SiC基板」という)上には、炭化珪素半導体素子の活性領域となるエピタキシャル成長層が形成される。エピタキシャル成長層のうち選択された領域には、作製しようとする半導体素子の種類に応じて、導電型やキャリア濃度が制御された不純物ドープ層が形成される。不純物ドープ層は、例えばMOSFETではp型ウェル領域やnソース領域として機能する。
図7に従来技術によるSiCの蓄積型チャネル構造の縦型パワーMOSFETについて説明する。従来構造の縦型パワーMOSFET300は、炭化珪素基板301上にn型の伝導性を示すドーパントを供給しながらエピタキシャル成長によって形成したn型ドリフト層302有する。ドリフト層の一部分にp型ドーパントとなる不純物(例えばAl)をイオン注入することによりp型のウェル領域305が形成されている。さらに、ウェル領域の一部分にn型ドーパントとなる不純物(例えば窒素)をイオン注入することによりソース領域308、p型不純物をイオン注入することによりコンタクト領域309を形成する。さらに、少なくともウェル領域305上にn型蓄積チャネル層307をn型不純物のイオン注入、もしくはn型ドーパントを供給しながらエピタキシャル成長することにより形成する。蓄積チャネル層307上に例えば熱酸化によりゲート絶縁膜311を形成し、ゲート絶縁膜311上にゲート電極313を形成する。さらに、ソース領域308及びコンタクト領域309と接するようにソース電極312が形成され、炭化珪素基板301の裏面にはドレイン電極314を有する。
SiC基板には、その結晶成長原理などに起因して結晶欠陥が存在することが知られている。SiCパワーデバイス特性に大きな影響を与える代表的な結晶欠陥としては、基板を貫通する欠陥であるマイクロパイプと、Basal Plane転位と呼ばれる結晶欠陥が存在する。以下、Basal Plane転位による課題について説明する。
図8はBasal Plane転位を説明するための図である。図8に示すSiC基板10は、(0001)面より数度(オフ角)傾けてステップ密度を増大させた表面(ステップ構造表面)を有するオフアングル基板である。SiC基板10の上にはエピタキシャル成長層11が形成されている。Basal Plane転位12は、図8に示すように、SiC基板中では(0001)面内に生じる方向性のない転位であり、現在の技術では、SiC基板10に10cm−2以上の密度で存在する。この転位12は、エピタキシャル成長層11に引き継がれる。エピタキシャル成長層11におけるBasal Plane転位13は、所定の方向(オフ方向)に直線状に延びる転位となる。
本発明者らが検討したところ、Basal Plane転位13は、刃状転位など他の転位と比べて、半導体素子の特性に与える影響が大きいことがわかった。特に、エピタキシャル成長層11の表面に形成されるゲート絶縁膜の信頼性を低下させる一因となるため、Basal Plane転位13を有するエピタキシャル層11を用いて半導体素子を形成すると、SiCの優れた物性値から期待されるような高耐圧の半導体素子が得られないという問題がある。
これに対し、Basal Plane転位による素子特性の低下を抑制するために、特許文献1には、炭化珪素エピタキシャル成長前に基板表面をCMP(chemical mechanical polishing)研磨と水素エッチングすることによって、Basal Plane転位が刃状転位に変換することを開示している。
特開2005−311348号公報
特許文献1の方法によると、基板のBasal Plane転位がエピタキシャル成長層で刃状転位に変換されても、CMP研磨によってSiC基板表面がダメージを受けてしまうおそれがある。また、エピタキシャル成長前に水素エッチングを行うことによってエピタキシャル成長層表面にステップバンチングが発生して表面モフォロジーが劣化する可能性が有る。また、蓄積型チャネル層を形成する際には、下地のベース層、コンタクト層及びドリフト層が研磨されてしまうという課題があり、蓄積型チャネル層を形成するうえでは特許文献1を適用することでベース層、コンタクト層、ドリフト層の表面が荒れるため、デバイスの特性が落ちる可能性がある。
これらのため、上述したような特許文献1の方法によってBasal Plane転位を刃状転位に変換して炭化珪素半導体素子を作製しても、所望の素子特性を得ることは困難である。
本発明は、前記従来の問題点に鑑みてなされたものであり、その目的は、炭化珪素基板を用いた炭化珪素半導体素子において、Basal Plane転位に起因する素子特性の低下を抑制することにある。
本発明の炭化珪素半導体素子は、炭化珪素半導体基板の主面上に形成された第1導電型の不純物を含む炭化珪素からなるドリフト層と、前記ドリフト層内に形成された第2導電型の不純物を含むウェル領域と、前記ウェル領域内に形成された第1導電型の不純物を含むソース領域と、前記ウェル領域内に形成された第2導電型の不純物を含むコンタクト領域と、前記ウェル領域内で、かつ前記ソース領域が形成されていない領域上に形成された第2導電型の不純物を含む転位変化層と、前記転位変化層上に形成された第1導電型の不純物を含む蓄積型チャネル層と、少なくとも前記蓄積型チャネル層上に形成されたゲート絶縁膜と、前記ゲート絶縁膜上に設けられたゲート電極と、前記ソース領域と接する位置に設けられたソース電極と、前記半導体基板の主面と対向する面に設けられたドレイン電極を含む。
好ましくは、前記転位変化層は第2導電型の不純物がアルミニウムである。
ある好ましい実施形態において、隣接する前記ウェル領域間で、かつ前記ゲート絶縁膜の下に位置する前記ドリフト領域の上に、第1導電型の高濃度ドリフト層が形成されている。
好ましくは、前記高濃度ドリフト層の第1導電型の不純物濃度は、前記ドリフト層の第1導電型の不純物濃度に比べて高い。
ある好ましい実施形態において、前記半導体基板は、(0001)面を主面とする炭化珪素基板である。
本発明の炭化珪素半導体素子は、炭化珪素半導体基板の主面上に形成された第1導電型の不純物を含む炭化珪素からなるドリフト層と、前記ドリフト層上に形成された第2導電型の不純物を含むウェル領域と、前記ウェル領域内に形成された第1導電型の不純物を含むソース領域と、前記ウェル領域内に形成された第2導電型の不純物を含むコンタクト領域と、前記ウェル領域と接する位置に設けられたゲート絶縁膜と、前記ゲート絶縁膜上に設けられたゲート電極と、前記ソース領域と接する位置に設けられたソース電極と、前記半導体基板の主面と対向する面の上に設けられたドレイン電極と、前記ドリフト層の前記ウェル領域同士間に、第1導電型の高濃度ドリフト層とを含み、前記高濃度ドリフト層中に第2導電型の不純物を含む。
前記高濃度ドリフト層中の第2導電型の不純物濃度が、前記ウェル領域の第2導電型の不純物濃度と等しい。
ある好ましい実施形態において、前記ウェル領域の第2導電型の不純物がアルミニウムである。
好ましくは、前記ウェル領域と前記ゲート絶縁膜との間に第1導電型の不純物を含む蓄積型チャネル層を備えている。
ある好ましい実施形態において、前記高濃度ドリフト層の第1導電型の不純物濃度は、前記ドリフト層の第1導電型の不純物濃度に比べて高い。
前記半導体基板は、(0001)面を主面とする炭化珪素基板である。
本発明の炭化珪素半導体素子の製造方法は、(A)炭化珪素半導体基板上に第1の導電型の炭化珪素からなるドリフト層を形成する工程と、(B)前記ドリフト層の少なくとも一部にイオン注入により第2の導電型のウェル領域を形成する工程と、(C)前記ウェル領域上の少なくとも一部に気相成長により第2導電型の不純物を含む転位変化層を形成する工程と、(D)前記転位変化層の上に第1の導電型の蓄積型チャネル層を形成する工程とを含む。
ある好ましい実施形態において、前記工程(C)は、少なくともアルミニウムを含むガスを供給する工程を含む。
ある好ましい実施形態において、前記工程(C)における前記原料ガスの珪素の含有量に対する炭素の含有量の比であるC/Siは、前記蓄型チャネル層を形成する工程(D)での含有量比C/Siよりも小さい。
前記工程(D)の後に、前記ドリフト層の隣接する前記ウェル領域の間に、第1導電型の高濃度ドリフト層を形成する工程を含むことが好ましい。
本発明の炭化珪素半導体素子の製造方法は、(A)炭化珪素半導体基板上に第1の導電型の炭化珪素からなるドリフト層を形成する工程と、(B)前記ドリフト層上に気相成長により第2の導電型のウェル領域を形成する工程とを包含し、前記工程(B)は、前記ウェル領域同士間に、第1導電型の高濃度ドリフト層を形成する工程(B1)を含む。
ある好ましい実施形態において、前記工程(B)は、少なくともアルミニウムを含むガスを供給する工程を含む。
ある好ましい実施形態において、前記工程(B)における前記原料ガスの珪素の含有量に対する炭素の含有量の比であるC/Siは前記ドリフト層を形成する工程(D)での含有量比C/Siよりも小さい。
前記工程(B)の後に、前記ウェル領域上に第1の導電型の蓄積型チャネル層を形成する工程を含む。
本発明の炭化珪素半導体素子によると、半導体層のうち所望の領域におけるBasal Plane転位の密度が低減されているので、Basal Plane転位に起因するゲート絶縁膜の信頼性の低下を抑制できる。また、本発明の製造方法によると、プロセスを複雑にすることなく、上記半導体素子を製造できる。
本発明の炭化珪素半導体素子は、蓄積チャネル層とウェル領域との間にエピタキシャル成長によりアルミニウムがドーピングされて形成されたp型のドープ層を有する構造となっており、この層が転位変化層として作用することでウェル領域中のBasal Plane転位を蓄積チャネル中では刃状転位に変化していることを特徴としている。
本発明において、Basal Plane転位が刃状転位に変化するのは次のようなメカニズムが考えられる。炭化珪素にドーピングされたアルミニウムは、シリコンの位置を置換するか、過分のアルミニウムは格子間の位置を占めている。Basal Plane転位の転位線は、前記位置に存在するアルミニウムによってその伝搬が緩和、抑制されて、刃状転位に変形する。
(第1の実施形態)
以下、図面を参照しながら、本発明による第1の実施形態を説明する。ここでは、蓄積チャネル層とウェル領域の間にアルミニウムをドーピングしたp型ドープ層を有するMOSFETについて説明する。
図1に示す半導体素子100は、低抵抗のn型炭化珪素基板101と、炭化珪素基板101の主面上に形成された炭化珪素エピタキシャル層102と、炭化珪素エピタキシャル層102上に形成されたソース電極112およびゲート絶縁膜111と、ゲート絶縁膜111上に設けられたゲート電極113と、炭化珪素基板101の裏面に形成されたドレイン電極114とを有している。
炭化珪素基板101は、(0001)面を主面とする炭化珪素基板であり、例えば、4H−SiCからなり、(0001)Si面より数度(オフ角)傾けてステップ密度を増大させた表面を有するオフカット基板である。炭化珪素基板101におけるBasal Plane転位は、例えば10cm−2以上(本実施形態では3×10cm−2)である。
炭化珪素エピタキシャル層102は、複数のp型ウェル領域105とドリフト領域107とを有している。ドリフト領域107は、炭化珪素基板101よりも低濃度でn型不純物を含む炭化珪素層である。ウェル領域105の内部には、高濃度でn型不純物を含むn型ソース領域108と、高濃度でp型不純物を含むコンタクト領域109が形成されている。ソース領域108の一部は、ソース電極112とオーミック接触を形成している。ウェル領域105同士の間にはn型の高濃度ドリフト層117を有している。
また、炭化珪素エピタキシャル層102は、ウェル領域105とゲート絶縁膜111との間にn型不純物を含む蓄積型チャネル層115を有し、ウェル領域105と蓄積型チャネル層115との間にp型の不純物を含むBasalPlane転位を刃状転位に変化させるための転位変化層116を有しており、蓄積型チャネル層115の上面、すなわちゲート電極113に対向する部分におけるBasal Plane転位の密度は、転位変化層116の下面におけるBasal Plane転位の密度よりも2桁ほど小さく、約3×10cm−2である。一旦、Basal Plane転位から刃状転位に変換すれば、再度Basal Plane転位に変換することはないので、転位変化層116上に形成された蓄積型チャネル層115においてもBasal Plane転位密度は約3×10cm−2である。この結果、ゲート絶縁膜111は、蓄積型チャネル層115の上に形成されるので、従来よりも高い信頼性を確保できる。
以下、図面を参照しながら、半導体素子100を製造する方法の一例を説明する。
まず、図2(a)に示すように、炭化珪素基板101の主面上に炭化珪素エピタキシャル層102を成長させる。炭化珪素基板101として、例えば、主面が(0001)面から[11−20](112バー0)方向に8度のオフ角度がついた直径50mmの4H−SiC基板を用いる。基板101はn型であり、基板101におけるキャリア濃度は8×1018cm−3である。
ここで、炭化珪素エピタキシャル成長層102の具体的な形成方法を説明する。
エピタキシャル成長層102は、例えば図3に示すような縦型薄膜成長装置149を用いて形成できる。まず、縦型薄膜成長装置149の構成を説明する。
縦型薄膜成長装置149は、反応炉150と、反応炉150を加熱するためのコイル154とを備えている。コイル154は、反応炉150の周りに設けられており、高周波誘導加熱により反応炉150を加熱する。反応炉150は周囲を断熱材162で覆われている。反応炉150の内部には、支持軸153によって支持されたカーボン製のサセプタ163が配置されており、炭化珪素基板などの試料151は、サセプタ163によって反応炉150の内部に固定される。反応炉150は、ガス排気系159およびガス供給系158にそれぞれ接続されている。ガス排気系159は、排気用配管160と圧力調整バルブ161とを備え、必要に応じて反応炉150のガスを排気する。ガス供給系158は、炭化珪素のエピタキシャル成長に用いる原料ガス155、希釈ガス156、ドーパントガス157などを必要に応じて反応炉150に供給する。
本実施形態では、試料151として炭化珪素基板11をサセプタ163で反応炉150に固定する。次いで、ガス排気系159により、反応炉150の内部を10−6〜10−5Pa程度の真空度にまで真空排気する。続いて、希釈ガス156として水素ガス(流量:2L/min)をガス供給系158から反応炉150に供給し、圧力調整バルブ161を用いて反応炉150の圧力を10kPaに制御する。
この後、水素ガスの流量を維持しながら、反応炉150の周囲に設けられたコイル154に、誘導加熱装置を用いて20.0kHz、20kWの高周波電力を印加し、サセプタ163を加熱する。炭化珪素基板11の温度は1600℃で一定となるように制御される。次いで、原料ガス155として、プロパンガス(流量:3mL/min)およびシランガス(流量:2mL/min)を反応炉150に供給する。プロパンガスおよびシランガスは、それぞれ50mL/minの水素ガスで希釈して供給する。さらに、原料ガス155と同時に、ドーパントガス157として窒素(流量:0.1mL/min)を供給する。このようにして、炭化珪素基板11の上に転位変化層12が形成される。形成されたエピタキシャル層102の厚さは10μmである。このようにして、炭化珪素基板101と、炭化珪素基板101の上に形成された炭化珪素エピタキシャル層102とを備えたエピ基板103が得られる。
続いて、図2(b)に示すように、エピ基板103の炭化珪素エピタキシャル成長層102のうち選択された領域に不純物イオンを注入する。具体的には、炭化珪素エピタキシャル層102のマスク106を形成していない領域にp型不純物(例えばAl)イオンを注入した後、エピ基板103の表面にカーボンのキャップ層を形成した後に活性化アニールを行うことによって、ウェル領域105を形成する。
さらに、図2(c)に示すように、エピタキシャル成長層102の表面にp型の転位変化層116及びn型の蓄積型チャネル層115を形成する。転位変化層116及び蓄積型チャネル層115は前述の縦型薄膜成長装置149を用いて形成し、形成方法もエピタキシャル成長層102の形成方法と同一である。転位変化層116の形成時にはドーパントガスとしてトリメチルアルミニウムガスを用い、p型濃度1×1017cm−3とし、膜厚は50nmとした。蓄積型チャネル層115の形成時にはドーパントガスとして窒素を用い、n型濃度2×1017cm−3とし、膜厚は150nmとした。これにより、エピタキシャル成長層104が形成される。
この後、図2(d)に示すように、ウェル領域105の一部(ソース領域になる部分)にn型不純物(例えば窒素)イオンを注入し、他の一部(コンタクト領域になる部分)にp型不純物(例えばアルミニウム)イオンを注入する。さらに、ドリフト層107のウェル領域105同士間にn型不純物イオンを注入する。これらのイオン注入処理を行ったエピ基板103の表面にカーボンキャップ層を形成して活性化アニールすることでウェル領域内にソース領域108、コンタクト領域109、ドリフト層107内に高濃度ドリフト層117を形成する。
更に、図2(e)に示すように、ゲート絶縁膜111を形成する。ゲート絶縁膜111は、厚さが50nmであるSiO膜であり、約1100℃の温度下で炭化珪素エピタキシャル層104の表面を熱酸化することによって形成できる。
最後に、図2(f)に示すように、ゲート電極113、ソース電極112およびドレイン電極114を形成する。ソース電極112およびドレイン電極114は、それぞれ、電子ビーム(EB)蒸着装置を用いてソース領域108および炭化珪素基板101の裏面にNiを蒸着し、続いて加熱炉を用いて1000℃で加熱することによって形成される。ソース電極112はソース領域108とオーミック接合を形成しており、また、ドレイン電極114は炭化珪素基板101とオーミック接合を形成している。ゲート電極113は、LPCVD装置を用いて、ゲート絶縁膜111上にリンドープpoly-Si膜を堆積することによって形成できる。これにより、半導体素子103が得られる。
なお、本実施形態の半導体素子の製造方法は、上記方法に限定されない。例えば、炭化珪素基板101として4H−SiC以外のポリタイプからなる基板を用いてもよい。また、上記方法では、ゲート絶縁膜111は、炭化珪素エピタキシャル層104を熱酸化することによって形成された熱酸化(SiO)膜であるが、炭化珪素エピタキシャル層104の上にCVD法で堆積されたSiO膜であってもよい。
ここで、エピ基板103の蓄積型チャネル層115の表面におけるBasal Plane転位の密度を測定したので、その方法および結果を説明する。
500℃に加熱して溶融させた水酸化カリウム(KOH)の中に、エピ基板103を5分間浸すことにより、炭化珪素エピタキシャル層表面に対してKOHエッチングを行った。次いで、エッチングされた表面を顕微鏡で観察し、Basal Plane転位の密度を調べた。
貝殻状のピットがBasal Plane転位であり、単位面積当たりのピット数を調べることによって転位密度を測定できる。この結果、サンプル基板の炭化珪素エピタキシャル層表面におけるBasal Plane転位の密度は約10cm−2であった。
上記結果と比較するために、比較エピ基板として、転位変化層116を含まないエピ基板を作製し、上記と同様の転位密度の測定を行った。比較サンプル基板の作製は、転位変化層116を含まない以外はエピ基板103と全く同一の構造とした。得られた比較サンプル基板の表面に対してKOHエッチングを行った後、表面を観察すると、サンプル基板よりも高い密度でBasal Plane転位が観察された。Basal Plane転位の密度は約10cm−2であり、炭化珪素基板101における密度とほぼ等しかった。
本実施形態では、転位変化層116を形成する際に、反応炉150に供給する原料ガス中の珪素の含有量に対する炭素の含有量の比C/Siを、蓄積型チャネル層115を形成する際の原料ガス中における比C/Siよりも大きくなるように設定する。
次に、図面を参照しながら、Basal Plane転位を刃状転位に変換させる原理を説明する。
図4は、本実施形態におけるエピタキシャル成長機構の模式図である。図4に示すように、炭化珪素基板1のステップ構造表面に炭化珪素をエピタキシャル成長させるので、炭化珪素は各ステップから横方向に成長する。転位変化層3を形成するためのエピタキシャル成長工程において、原料ガスに含まれる炭素量を増やすと、p型ドーパントであるアルミニウムは、シリコンの位置を置換するか、過分のアルミニウムは格子間元素となる。Basal Plane転位の転位線は、前記位置に存在するアルミニウムによってその伝搬が緩和、抑制されてBasal Plane転位は上方(c軸方向)に延びる刃状転位に変化する。
一方、従来のエピ基板では、転位変化層12が形成されていないので、図8に示すように、基板10におけるBasal Plane転位12は、そのまま炭化珪素エピタキシャル層11にBasal Plane転位13として引き継がれる。なお、転位変化層を有していない場合でも、Basal Plane転位12の一部は、エピタキシャル成長工程中に刃状転位に変化するが、その割合は、転位変化層を有する場合における変化の割合よりも極めて小さい。
次に、本実施形態における半導体素子の特性を調べたのでその結果を説明する。
まず、図2を参照しながら説明した方法と同様の方法で、実施例の縦型パワーMOSFETを作製した。また、比較例として、図7に示した従来の蓄積型チャネル構造の縦型パワーMOSFET300(比較例の縦型パワーMOSFET)を作製した。
比較例の縦型パワーMOSFET300は、前述の方法で作製し、蓄積チャネル層307はn型のドーパントを供給しながらエピタキシャル成長することによって形成している。
次いで、実施例および比較例の縦型パワーMOSFETにおける電流−電圧特性をそれぞれ測定し、測定結果を比較したところ、実施例の縦型パワーMOSFETでは、比較例の縦型パワーMOSFETに比べて、ゲート絶縁膜の耐圧が約2倍以上高いことがわかった。
この理由は次のように考えられる。比較例の縦型パワーMOSFETでは、炭化珪素エピタキシャル層表面におけるBasal Plane転位密度が炭化珪素基板における密度と同程度(約10cm−2)と高いため、炭化珪素エピタキシャル層上に形成されたゲート絶縁膜の耐圧を大幅に低下させる。これに対し、本実施例の縦型パワーMOSFETでは、蓄積チャネル層とウェル領域との間にエピタキシャル成長によりアルミニウムがドーピングされて形成されたp型のドープ層を有する転位変化層によって、ゲート絶縁膜の耐圧を低下させるBasal Plane転位が、ゲート絶縁膜の信頼性に影響を与えにくい刃状転位に変化していると考えられ、炭化珪素エピタキシャル層表面におけるBasal Plane転位密度は約10cm−2まで約2桁も低減されている。このような転位密度の大幅な低減により、本実施例のMOSFETは、比較例の縦型パワーMOSFETよりもゲート絶縁膜の耐圧を向上でき、この結果、高耐圧で信頼性の高い半導体素子を提供することができる。
(第2の実施形態)
本発明の半導体素子は、p型のウェル領域が、アルミニウムをドーピングしてエピタキシャル成長により形成された構造となっており、この領域が転位変化層として作用することでドリフト層中のBasal Plane転位を蓄積チャネル中で刃状転位に変化していることを特徴としている。
以下、図面を参照しながら、本発明による第2の実施形態を説明する。ここでは、p型のウェル領域をアルミニウムをドーピングしたエピタキシャル成長により形成したMOSFETについて説明する。
図5に示す半導体素子200は、低抵抗のn型炭化珪素基板201と、炭化珪素基板201の主面上に形成された炭化珪素エピタキシャル層202と、炭化珪素エピタキシャル層202に形成されたソース電極212および蓄積型チャネル層211と、蓄積型チャネル層211上に形成されたゲート絶縁膜213216と、ゲート絶縁膜213上に設けられたゲート電極216と、炭化珪素基板201の裏面に形成されたドレイン電極214とを有している。
炭化珪素基板201は、(0001)面を主面とする炭化珪素基板であり、例えば、4H−SiCからなり、(0001)Si面より数度(オフ角)傾けてステップ密度を増大させた表面を有するオフカット基板である。炭化珪素基板201におけるBasal Plane転位は、例えば10cm−2以上(本実施形態では3×10cm−2)である。
炭化珪素エピタキシャル層202は、複数のp型ウェル領域205とドリフト領域207とを有している。ドリフト領域207は、炭化珪素基板201よりも低濃度でn型不純物を含む炭化珪素層である。ウェル領域205の内部には、高濃度でn型不純物を含むn型ソース領域208と、高濃度でp型不純物を含むコンタクト領域209が形成されている。ソース領域208の一部は、ソース電極212とオーミック接触を形成している。ウェル領域205同士の間にはn型の高濃度ドリフト層215を有している。また、ウェル領域205とゲート絶縁膜213との間にはn型不純物を含む蓄積型チャネル層211を有している。
p型ウェル領域205は、アルミニウムをドーピングしてエピタキシャル成長によって形成されるため、このウェル領域205において、Basal Plane転位が刃状転位に変化する転位変化層として作用し、p型ウェル領域におけるBasal Plane転位の密度は、n型ドリフト層207におけるBasal Plane転位の密度よりも2桁ほど小さく、約3×10cm−2である。この結果、ゲート絶縁膜213は、蓄積型チャネル層211を介するものの、Basal Plane転位密度が低減した領域の上方に形成されるので、図7に示すような従来構造よりも高い信頼性を確保できる。
以下、図面を参照しながら、半導体素子200を製造する方法の一例を説明する。
まず、図6(a)に示すように、炭化珪素基板201の主面上に炭化珪素エピタキシャル層202を成長させる。炭化珪素基板201として、例えば、主面が(0001)面から[11−20](112バー0)方向に8度のオフ角度がついた直径50mmの4H−SiC基板を用いる。基板201はn型であり、基板201におけるキャリア濃度は8×1018cm−3である。
ここで、炭化珪素エピタキシャル成長層202は、第1の実施形態と同様方法により、図3に示すような縦型薄膜成長装置149を用いて形成できる。炭化珪素基板201上にn型ドーパントとして窒素を用いてn型ドリフト層202を10μm形成する。
引き続き、図6(b)に示すように、縦型薄膜成長装置149においてドーパントガスを窒素からトリメチルアルミニウムガスに切り替えることによりn型ドリフト層上にp型ドープ層204を形成する。
さらに、図6(c)に示すように、炭化珪素エピタキシャル成長層203のうち選択された領域に不純物イオンを注入する。具体的には、炭化珪素エピタキシャル層203の表面にマスク205を形成していない領域にn型不純物(例えば窒素)イオンを注入する。
この後、図6(d)に示すように、ウェル領域207の一部(ソース領域になる部分)にn型不純物(例えば窒素)イオンを注入し、他の一部(コンタクト領域になる部分)にp型不純物(例えばアルミニウム)イオンを注入する。これらのイオン注入処理を行った炭化珪素エピタキシャル層203の表面にカーボンキャップ層を形成して活性化アニールすることでn型の高濃度ドリフト層215をウェル領域207間に形成する。
更に、図6(e)に示すように、エピタキシャル成長層203の表面にn型の蓄積型チャネル層211を形成する。蓄積型チャネル層211は前述の縦型薄膜成長装置149を用いて形成し、形成方法もエピタキシャル成長層202の形成方法と同一である。蓄積型チャネル層211の形成時にはドーパントガスとして窒素を用い、n型濃度2×1017cm−3とし、膜厚は150nmとした。
最後に、図6(f)に示すように、ゲート絶縁膜213を形成する。ゲート絶縁膜213は、厚さが50nmであるSiO膜であり、約1100℃の温度下で熱酸化することによって形成できる。その後、ゲート電極216、ソース電極212およびドレイン電極214を形成する。ソース電極212およびドレイン電極214は、それぞれ、電子ビーム(EB)蒸着装置を用いてソース領域208および炭化珪素基板201の裏面にNiを蒸着し、続いて加熱炉を用いて1000℃で加熱することによって形成される。ソース電極212はソース領域208とオーミック接合を形成しており、また、ドレイン電極214は炭化珪素基板201とオーミック接合を形成している。ゲート電極216は、LPCVD装置を用いて、ゲート絶縁膜213上にリンドープpoly-Si膜を堆積することによって形成できる。これにより、半導体素子206が得られる。
ここで、エピ基板206の蓄積型チャネル層211の表面におけるBasal Plane転位の密度を測定したので、その方法および結果を説明する。
500℃に加熱して溶融させた水酸化カリウム(KOH)の中に、エピ基板206を5分間浸すことにより、炭化珪素エピタキシャル層表面に対してKOHエッチングを行った。次いで、エッチングされた表面を顕微鏡で観察し、Basal Plane転位の密度を調べた。この結果、サンプル基板の炭化珪素エピタキシャル層表面におけるBasal Plane転位の密度は約10cm−2であり、第1の実施形態の比較サンプル基板に比べて2桁近く低減していることが明らかとなった。これは、第1の実施形態で説明したBasal Plane転位を刃状転位に変換させる原理に起因するものと考えられる。
次に、本実施形態における半導体素子の特性を調べたのでその結果を説明する。
まず、図6を参照しながら説明した方法と同様の方法で、実施例の縦型パワーMOSFETを作製した。また、比較例として、図7に示した従来の蓄積型チャネル構造の縦型パワーMOSFET300(比較例の縦型パワーMOSFET)を作製した。
比較例の縦型パワーMOSFET300は、前述の方法で作製し、p型のウェル領域305はドリフト層の一部分にp型ドーパントとなる不純物(例えばAl)をイオン注入することにより形成している。
次いで、実施例および比較例の縦型パワーMOSFETにおける電流−電圧特性をそれぞれ測定し、測定結果を比較したところ、実施例の縦型パワーMOSFETでは、比較例の縦型パワーMOSFETに比べて、ゲート絶縁膜の耐圧が約2倍以上高いことがわかった。
この理由は次のように考えられる。比較例の縦型パワーMOSFETでは、炭化珪素エピタキシャル層表面におけるBasal Plane転位密度が炭化珪素基板における密度と同程度(約10cm−2)と高いため、炭化珪素エピタキシャル層上に形成されたゲート絶縁膜の耐圧を大幅に低下させる。これに対し、実施例の縦型パワーMOSFETでは、p型のウェル領域にアルミニウムをドーピングしてエピタキシャル成長により形成した転位変化層によって、ゲート絶縁膜の耐圧を低下させるBasal Plane転位が、ゲート絶縁膜の信頼性に影響を与えにくい刃状転位に変化していると考えられ、炭化珪素エピタキシャル層表面におけるBasal Plane転位密度は約10cm−2まで約2桁も低減されている。このような転位密度の大幅な低減により、本実施例のMOSFETは比較例の縦型パワーMOSFETよりもゲート絶縁膜の耐圧を向上でき、この結果、高耐圧で信頼性の高い半導体素子を提供することができる。
本発明は、半導体層のうち所望の領域におけるBasal Plane転位密度を低減することにより、高耐圧で信頼性の高い半導体素子を提供できるので、炭化珪素パワー素子に適用すると、炭化珪素の優れた物性値から期待されるような高い耐圧を実現できるので、特に有利である。
本発明による第1の実施形態の半導体素子の断面模式図 (a)〜(f)は、本発明による第1の実施形態の半導体素子の製造方法を説明するための工程断面図 本発明による実施形態で使用する縦型薄膜成長装置の構造を示す概略図 本発明のエピ基板における基板転位のエピタキシャル層への伝播の様子を説明するための断面図 本発明による第2の実施形態の半導体素子の断面模式図 (a)〜(f)は、本発明による第2の実施形態の半導体素子の製造方法を説明するための工程断面図 従来構造の半導体素子の断面模式図 従来のエピ基板における基板転位のエピタキシャル層への伝播の様子を説明するための断面図
符号の説明
1 基板
2 エピ膜
3,116 転位変化層
4 Basal Plane転位
5 刃状転位
101,201 半導体基板(炭化珪素基板)
102,202 半導体層(炭化珪素エピタキシャル層)
105,205 ウェル領域
107,207 ドリフト領域
108,208 ソース領域
111,213 ゲート絶縁膜
112,212 ソース電極
113,216 ゲート電極
114,214 ドレイン電極
149 縦型薄膜成長装置
215 高濃度ドリフト層

Claims (19)

  1. 炭化珪素半導体基板の主面上に形成された第1導電型の不純物を含む炭化珪素からなるドリフト層と、
    前記ドリフト層内に形成された第2導電型の不純物を含むウェル領域と、
    前記ウェル領域内に形成された第1導電型の不純物を含むソース領域と、
    前記ウェル領域内に形成された第2導電型の不純物を含むコンタクト領域と、
    前記ウェル領域内で、かつ前記ソース領域が形成されていない領域上に形成された第2導電型の不純物を含む転位変化層と、
    前記転位変化層上に形成された第1導電型の不純物を含む蓄積型チャネル層と、
    少なくとも前記蓄積型チャネル層上に形成されたゲート絶縁膜と、
    前記ゲート絶縁膜上に設けられたゲート電極と、
    前記ソース領域と接する位置に設けられたソース電極と、
    前記半導体基板の主面と対向する面に設けられたドレイン電極と、
    を含むことを特徴とする炭化珪素半導体素子。
  2. 前記転位変化層は第2導電型の不純物としてアルミニウムを含むことを特徴とする請求項1に記載の炭化珪素半導体素子。
  3. 隣接する前記ウェル領域間で、かつ前記ゲート絶縁膜の下に位置する前記ドリフト領域の上に、第1導電型の高濃度ドリフト層が形成されていることを特徴とする請求項1または2に記載の炭化珪素半導体素子。
  4. 前記高濃度ドリフト層の第1導電型の不純物濃度は、前記ドリフト層の第1導電型の不純物濃度に比べて高いことを特徴とする請求項1から3のいずれかに記載の炭化珪素半導体素子。
  5. 前記半導体基板は、(0001)面を主面とする炭化珪素基板である請求項1から4のいずれかに記載の炭化珪素半導体素子。
  6. 炭化珪素半導体基板の主面上に形成された第1導電型の不純物を含む炭化珪素からなるドリフト層と、
    前記ドリフト層上に形成された第2導電型の不純物を含むウェル領域と、
    前記ウェル領域内に形成された第1導電型の不純物を含むソース領域と、
    前記ウェル領域内に形成された第2導電型の不純物を含むコンタクト領域と、
    前記ウェル領域と接する位置に設けられたゲート絶縁膜と、
    前記ゲート絶縁膜上に設けられたゲート電極と、
    前記ソース領域と接する位置に設けられたソース電極と、
    前記半導体基板の主面と対向する面の上に設けられたドレイン電極と、
    前記ドリフト層の前記ウェル領域同士間に、第1導電型の高濃度ドリフト層と、
    を含み、前記高濃度ドリフト層中に第2導電型の不純物を含むことを特徴とする炭化珪素半導体素子。
  7. 前記高濃度ドリフト層中の第2導電型の不純物濃度が、前記ウェル領域の第2導電型の不純物濃度と等しいことを特徴とする請求項6に記載の炭化珪素半導体素子。
  8. 前記ウェル領域の第2導電型の不純物がアルミニウムであることを特徴とする請求項6または7に記載の炭化珪素半導体素子。
  9. 前記ウェル領域と前記ゲート絶縁膜との間に第1導電型の不純物を含む蓄積型チャネル層を備えていることを特徴とする請求項6から8のいずれかに記載の炭化珪素半導体素子。
  10. 前記高濃度ドリフト層の第1導電型の不純物濃度は、前記ドリフト層の第1導電型の不純物濃度に比べて高いことを特徴とする請求項6から9のいずれかに記載の炭化珪素半導体素子。
  11. 前記半導体基板は、(0001)面を主面とする炭化珪素基板である請求項6から10のいずれかに記載の炭化珪素半導体素子。
  12. (A)炭化珪素半導体基板上に第1の導電型の炭化珪素からなるドリフト層を形成する工程と、
    (B)前記ドリフト層の少なくとも一部にイオン注入により第2の導電型のウェル領域を形成する工程と、
    (C)前記ウェル領域上の少なくとも一部に気相成長により第2導電型の不純物を含む転位変化層を形成する工程と、
    (D)前記転位変化層の上に第1の導電型の蓄積型チャネル層を形成する工程と、
    を含むことを特徴とする炭化珪素半導体素子の製造方法。
  13. 前記工程(C)は、少なくともアルミニウムを含むガスを供給する工程を含む請求項12に記載の半導体素子の製造方法。
  14. 前記工程(C)における前記原料ガスの珪素の含有量に対する炭素の含有量の比であるC/Siは、前記蓄型チャネル層を形成する工程(D)での含有量比C/Siよりも小さいことを特徴とする請求項12または13に記載の炭化珪素半導体素子の製造方法。
  15. 前記工程(D)の後に、前記ドリフト層の隣接する前記ウェル領域の間に、第1導電型の高濃度ドリフト層を形成する工程を含むことを特徴とする請求項12から14のいずれかに記載の半導体素子の製造方法。
  16. (A)炭化珪素半導体基板上に第1の導電型の炭化珪素からなるドリフト層を形成する工程と、
    (B)前記ドリフト層上に気相成長により第2の導電型のウェル領域を形成する工程と、
    を包含し、
    前記工程(B)は、前記ウェル領域同士間に、第1導電型の高濃度ドリフト層を形成する工程(B1)を含むことを特徴とする炭化珪素半導体素子の製造方法。
  17. 前記工程(B)は、少なくともアルミニウムを含むガスを供給する工程を含む請求項16に記載の半導体素子の製造方法。
  18. 前記工程(B)における前記原料ガスの珪素の含有量に対する炭素の含有量の比であるC/Siは前記ドリフト層を形成する工程(D)での含有量比C/Siよりも小さいことを特徴とする請求項16または17に記載の炭化珪素半導体素子の製造方法。
  19. 前記工程(B)の後に、前記ウェル領域上に第1の導電型の蓄積型チャネル層を形成する工程を含むことを特徴とする請求項16から18のいずれかに記載の半導体素子の製造方法。
JP2007133715A 2007-05-21 2007-05-21 炭化珪素半導体素子及びその製造方法 Pending JP2008288482A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007133715A JP2008288482A (ja) 2007-05-21 2007-05-21 炭化珪素半導体素子及びその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007133715A JP2008288482A (ja) 2007-05-21 2007-05-21 炭化珪素半導体素子及びその製造方法

Publications (1)

Publication Number Publication Date
JP2008288482A true JP2008288482A (ja) 2008-11-27

Family

ID=40147900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007133715A Pending JP2008288482A (ja) 2007-05-21 2007-05-21 炭化珪素半導体素子及びその製造方法

Country Status (1)

Country Link
JP (1) JP2008288482A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004275A (ja) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
US8129758B2 (en) 2008-07-09 2012-03-06 Panasonic Corporation Semiconductor element and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129758B2 (en) 2008-07-09 2012-03-06 Panasonic Corporation Semiconductor element and manufacturing method therefor
JP2012004275A (ja) * 2010-06-16 2012-01-05 Sumitomo Electric Ind Ltd 炭化珪素半導体装置の製造方法
US8642476B2 (en) 2010-06-16 2014-02-04 Sumitomo Electric Industries, Ltd. Method for manufacturing silicon carbide semiconductor device

Similar Documents

Publication Publication Date Title
EP1981076B1 (en) Method for manufacturing silicon carbide semiconductor device
US6995396B2 (en) Semiconductor substrate, semiconductor device and method for fabricating the same
JP5458509B2 (ja) 炭化珪素半導体基板
JP4185215B2 (ja) SiCウエハ、SiC半導体デバイス、および、SiCウエハの製造方法
JP4224253B2 (ja) 半導体装置及びその製造方法
US20110006310A1 (en) Semiconductor device and semiconductor device manufacturing method
JP6634914B2 (ja) 炭化珪素半導体装置
JP4463448B2 (ja) SiC基板及びSiC半導体素子の製造方法
US20170179236A1 (en) Method of producing silicon carbide epitaxial substrate, silicon carbide epitaxial substrate, and silicon carbide semiconductor device
JP2009088223A (ja) 炭化珪素半導体基板およびそれを用いた炭化珪素半導体装置
KR20120023710A (ko) 반도체 장치
KR20070020232A (ko) 쇼트키 접합형 반도체 장치의 제조방법
JPWO2008056698A1 (ja) 炭化珪素半導体装置およびその製造方法
JP2008108824A (ja) 炭化珪素半導体素子およびその製造方法
JP2005303010A (ja) 炭化珪素素子及びその製造方法
JP4857697B2 (ja) 炭化珪素半導体装置
JP2005311347A (ja) ショットキー接合型半導体装置の製造方法
JP2008205296A (ja) 炭化珪素半導体素子及びその製造方法
JP2003234301A (ja) 半導体基板、半導体素子及びその製造方法
JP2006120897A (ja) 炭化珪素素子及びその製造方法
JP2011003825A (ja) 炭化珪素半導体素子及びその製造方法
JP6468112B2 (ja) 炭化珪素半導体装置
JP2008288482A (ja) 炭化珪素半導体素子及びその製造方法
JP2004031471A (ja) 炭化珪素半導体素子及びその製造方法
JP2011023502A (ja) 炭化珪素半導体素子及びその製造方法並びに炭化珪素エピタキシャル基板の製造方法