KR101701023B1 - 구멍 뚫기 공구 - Google Patents
구멍 뚫기 공구 Download PDFInfo
- Publication number
- KR101701023B1 KR101701023B1 KR1020150020916A KR20150020916A KR101701023B1 KR 101701023 B1 KR101701023 B1 KR 101701023B1 KR 1020150020916 A KR1020150020916 A KR 1020150020916A KR 20150020916 A KR20150020916 A KR 20150020916A KR 101701023 B1 KR101701023 B1 KR 101701023B1
- Authority
- KR
- South Korea
- Prior art keywords
- tool
- shank
- less
- diameter
- tip
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B51/00—Tools for drilling machines
- B23B51/02—Twist drills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B47/00—Constructional features of components specially designed for boring or drilling machines; Accessories therefor
- B23B47/34—Arrangements for removing chips out of the holes made; Chip- breaking arrangements attached to the tool
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/0011—Working of insulating substrates or insulating layers
- H05K3/0044—Mechanical working of the substrate, e.g. drilling or punching
- H05K3/0047—Drilling of holes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2251/00—Details of tools for drilling machines
- B23B2251/24—Overall form of drilling tools
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Drilling Tools (AREA)
Abstract
[과제] 구멍 위치 정밀도 및 내파손성의 개선이 더 가능한 구멍 뚫기 공구의 제공.
[해결수단] 공구 본체(1)의 선단에 2개의 절삭날(2)이 마련되고, 공구 본체(1)의 외주에 2개의 나선 형상의 칩 배출 홈(3a·3b)이 도중부에서 연결 설치되도록 형성되고, 각 칩 배출 홈(3a·3b)이 연결 설치부로부터 병주되도록 마련된 구멍 뚫기 공구로서, 공구 선단으로부터 축방향으로 공구 직경의 1배 이하의 범위에서 마진(4)의 둘레방향 길이의 합계가 공구 직경의 원의 원주 길이의 20%이상 55%이하이며, 공구 외주면에 마련한 경질 피막(5)의 두께가 공구 선단으로부터 축방향으로 공구 직경의 1배 이하의 범위에서 0.5㎛이상 10㎛이하이며, 경질 피막(5)은 공구 선단측으로 갈수록 두껍게 마련되고, 공구의 중심 두께(W)가 공구 직경의 20%이상 60%이하이다.
[해결수단] 공구 본체(1)의 선단에 2개의 절삭날(2)이 마련되고, 공구 본체(1)의 외주에 2개의 나선 형상의 칩 배출 홈(3a·3b)이 도중부에서 연결 설치되도록 형성되고, 각 칩 배출 홈(3a·3b)이 연결 설치부로부터 병주되도록 마련된 구멍 뚫기 공구로서, 공구 선단으로부터 축방향으로 공구 직경의 1배 이하의 범위에서 마진(4)의 둘레방향 길이의 합계가 공구 직경의 원의 원주 길이의 20%이상 55%이하이며, 공구 외주면에 마련한 경질 피막(5)의 두께가 공구 선단으로부터 축방향으로 공구 직경의 1배 이하의 범위에서 0.5㎛이상 10㎛이하이며, 경질 피막(5)은 공구 선단측으로 갈수록 두껍게 마련되고, 공구의 중심 두께(W)가 공구 직경의 20%이상 60%이하이다.
Description
본 발명은, 구멍 뚫기 공구에 관한 것이다.
최근, 프린트 배선판(PCB)은, 소형화, 박형화 및 경량화가 진행되고 있고, 신뢰성 향상을 위해서 고내열화 및 고강성화가 진행되고 있다. 이 때문에, 글라스 클로스(glass cloth) 및 절연부의 수지 구성이 난삭화(難削化) 되고, 그만큼 PCB의 구멍 뚫기 가공에 사용되는 드릴(이하, PCB 드릴이라 함)의 마모가 진행되기 쉬워지고, 마모에 수반하는 구멍 위치 정밀도의 악화가 문제가 되고 있다.
여기서, 예를 들면 특허 문헌 1에 개시되는, 내마모성을 향상시키기 위한 경질(硬質) 피막이 피복된 드릴이 여러 가지 제안되어 있으며, 상기 구멍 위치 정밀도의 개선이 도모되고 있으나, 개선이 더 요망되고 있다.
본 발명자들은, 여러 가지 검토의 결과, 경질 피막이 피복된 드릴로 구멍 뚫기 가공을 행할 때, 경질 피막의 마멸(摩滅) 및 드릴의 강성 부족에 의한 구멍 위치 정밀도의 악화, 및, 경질 피막이 피복되는 것에 의한 내파손성의 저하가 문제가 되고 있는 것을 밝혀냈다.
구체적으로는, 가공 구멍 수의 증가에 수반하여 드릴 외주의 마모가 진행되고, 피삭재(被削材) 진입 후에 공구 반경 방향의 저항을 받기 쉬워지면, 도 1에 도시한 바와 같이 드릴에 진행 방향에서의 어긋남이 생김으로써 구멍 위치 정밀도가 악화된다. 경질 피막은 상기 드릴 외주(外周)의 마모를 억제하기 위하여 피복되어 있지만, 경질 피막이 마모의 진행에 의해 마멸(소멸)되고, 드릴의 모재가 노출되면 드릴 외주의 마모는 억제할 수 없게 된다. 또한, 드릴 자체의 강성이 낮으면 공구 반경 방향의 약간의 저항에도 구부러지기 쉬워지고, 경질 피막을 피복해도 구멍 위치 정밀도의 악화를 억제하는 효과를 얻기 어렵다. 아울러, 도 1은, 덧댐판 및 여분판으로 협지된 PCB에 PCB 드릴로 구멍 뚫기 가공을 할 때의 예이다.
또한, 드릴에 피복된 경질 피막은 인성(靭性)이 낮고, 구멍 뚫기 가공시의 드릴의 구부러짐에 의한 압축, 인장(引張), 비틀림에 의해 균열이 생기기 쉽고, 경질 피막의 균열은 드릴의 파괴의 기점으로 되므로, 경질 피막을 피복하는 것으로 오히려 내파손성이 저하되는 경우가 있다.
본 발명은, 상술의 문제점을 해결한 것으로, 2날 2홈 형상의 구멍 뚫기 공구에 있어서, 칩 배출 홈이 연결 설치(합류)되는 소정의 칩 배출 홈 형상으로 하고, 소정의 둘레방향 길이의 마진에 소정의 비율로 공구 선단측으로 갈수록 두꺼워지도록 경질 피막을 마련함으로써, 구멍 위치 정밀도 및 내파손성의 개선이 더 가능한 실용성이 우수한 구멍 뚫기 공구를 제공하는 것이다.
첨부 도면을 참조하여 본 발명의 요지를 설명한다.
공구 본체(1)의 선단에 2개의 절삭날(2)이 마련되고, 이 공구 본체(1)의 외주에 공구 선단으로부터 기단측을 향하는 2개의 나선 형상의 칩 배출 홈(3a·3b)이 형성되고, 한쪽의 상기 칩 배출 홈이 다른 쪽의 상기 칩 배출 홈의 도중부에 연결 설치되고, 상기 각 칩 배출 홈(3a·3b)은, 이들 각 칩 배출 홈(3a·3b)의 연결 설치부로부터 각각 비틀림각을 동일하게 하여 병주(竝走)되도록 마련된 구멍 뚫기 공구로서,
공구 선단으로부터 축방향으로 공구 직경의 1배 이하의 범위에서, 마진(4)의 둘레방향 길이의 합계가 공구 직경의 원의 원주 길이의 20%이상 55%이하이며,
공구 외주면에 경질 피막(5)이 마련되고, 이 경질 피막(5)의 두께는 공구 선단으로부터 축방향으로 공구 직경의 1배 이하의 범위에서 0.5㎛이상 10㎛이하이며,
상기 경질 피막(5)은 공구 선단측으로 갈수록 두껍게 마련되고, 상기 마진(4)의 공구 선단측 위치의 상기 경질 피막(5)의 막 두께(T1)와, 상기 마진(4)의 공구 선단으로부터 축방향으로 공구 직경의 2배의 위치 혹은 공구 직경의 2배 이하의 범위에 있어서의 공구 후단측 위치의 상기 경질 피막(5)의 막 두께(T2)의 비 T2/T1가, 0.50 이상 0.98 이하이며,
공구의 중심 두께(W)가 공구 직경의 20%이상 60%이하인 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 1 기재된 구멍 뚫기 공구에 있어서, 한쪽의 상기 칩 배출 홈의 홈 길이는 다른 쪽의 상기 칩 배출 홈의 홈 길이의 50%이상 97%이하로 설정되어 있는 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 1 기재된 구멍 뚫기 공구에 있어서, 상기 구멍 뚫기 공구는 언더 컷 형상이며, 마진 길이가 0.2mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 2 기재된 구멍 뚫기 공구에 있어서, 상기 구멍 뚫기 공구는 언더 컷 형상이며, 마진 길이가 0.2mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 1 내지 4 중 어느 한 항에 기재된 구멍 뚫기 공구에 있어서, 상기 경질 피막(5)은, 금속 성분으로서 적어도 Al와 Cr를 포함하고, 비금속 성분으로서 적어도 N를 포함하는 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 1 내지 4 중 어느 한 항에 기재된 구멍 뚫기 공구에 있어서, 이 구멍 뚫기 공구는, 상기 공구 본체(1) 및 해당 공구 본체(1)보다 지름이 큰 섕크 본체(9)를 가지는 섕크부(10)를 포함하여 구성되고, 적어도 상기 공구 본체(1)는 탄화 텅스텐 및 코발트를 함유하는 초경합금제이며, 공구 직경이 0.05mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 5 기재된 구멍 뚫기 공구에 있어서, 이 구멍 뚫기 공구는, 상기 공구 본체(1) 및 해당 공구 본체(1)보다 지름이 큰 섕크 본체(9)를 가지는 섕크부(10)를 포함하여 구성되고, 적어도 상기 공구 본체(1)는 탄화 텅스텐 및 코발트를 함유하는 초경합금제이며, 공구 직경이 0.05mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 6 기재된 구멍 뚫기 공구에 있어서, 상기 섕크 본체(9)는 스테인리스강제이며, 상기 섕크 본체(9)의 선단측에는 선단측으로 갈수록 가늘어지는 섕크 테이퍼부(8)가 마련되고, 이 섕크 테이퍼부(8)의 적어도 섕크 본체(9) 근방 부위는 스테인리스강으로 형성되어 있는 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
또한, 청구항 7 기재된 구멍 뚫기 공구에 있어서, 상기 섕크 본체(9)는 스테인리스강제이며, 상기 섕크 본체(9)의 선단측에는 선단측으로 갈수록 가늘어지는 섕크 테이퍼부(8)가 마련되고, 이 섕크 테이퍼부(8)의 적어도 섕크 본체(9) 근방 부위는 스테인리스강으로 형성되어 있는 것을 특징으로 하는 구멍 뚫기 공구에 대한 것이다.
본 발명은 상술한 바와 같이 구성했으므로, 구멍 위치 정밀도 및 내파손성의 개선이 더 가능한 실용성이 우수한 구멍 뚫기 공구로 된다.
도 1은 드릴의 피삭재 진입 후의 진행 방향에서의 어긋남을 설명하는 개략 설명도이다.
도 2는 본 실시예의 개략 설명 측면도이다.
도 3은 본 실시예의 공구 본체의 개략 설명도이다.
도 4는 도 3의 공구 회전 위상 0°(도 3의 (a))에 있어서의 공구 본체의 확대 개략 설명 사시도이다.
도 5는 도 4의 A-A 단면도이다.
도 6은 본 실시예의 주요부의 개략 설명 측면도이다.
도 7은 성막 방법을 설명하는 개략 설명도이다.
도 8은 실험 조건 및 실험 결과를 나타내는 표이다.
도 9는 실험 조건 및 실험 결과를 나타내는 표이다.
도 10은 실험 조건 및 실험 결과를 나타내는 표이다.
도 11은 실험 조건 및 실험 결과를 나타내는 표이다.
도 12는 실험 조건 및 실험 결과를 나타내는 표이다.
도 13은 실험 조건 및 실험 결과를 나타내는 표이다.
도 14는 실험 조건 및 실험 결과를 나타내는 표이다.
도 2는 본 실시예의 개략 설명 측면도이다.
도 3은 본 실시예의 공구 본체의 개략 설명도이다.
도 4는 도 3의 공구 회전 위상 0°(도 3의 (a))에 있어서의 공구 본체의 확대 개략 설명 사시도이다.
도 5는 도 4의 A-A 단면도이다.
도 6은 본 실시예의 주요부의 개략 설명 측면도이다.
도 7은 성막 방법을 설명하는 개략 설명도이다.
도 8은 실험 조건 및 실험 결과를 나타내는 표이다.
도 9는 실험 조건 및 실험 결과를 나타내는 표이다.
도 10은 실험 조건 및 실험 결과를 나타내는 표이다.
도 11은 실험 조건 및 실험 결과를 나타내는 표이다.
도 12는 실험 조건 및 실험 결과를 나타내는 표이다.
도 13은 실험 조건 및 실험 결과를 나타내는 표이다.
도 14는 실험 조건 및 실험 결과를 나타내는 표이다.
적합한 것으로 생각되는 본 발명의 실시형태를, 도면에 근거하여 본 발명의 작용을 나타내면서 간단하게 설명한다.
공구 선단부에 있어서 마진(4)의 둘레방향 길이를 충분히 길게 하여 경질 피막(5)의 내구성을 향상시킴과 아울러, 이 경질 피막(5)을 소정의 막 두께로 공구 선단측으로 갈수록 두껍게 마련함으로써, 공구 선단측의 경질 피막(5)이 마모되지 않게 된다. 따라서, 공구의 피삭재 진입 후의 진행 방향에서의 어긋남이 가급적 억제되고, 구멍 위치 정밀도가 악화되지 않는다.
또한, 2개의 칩 배출 홈(3a·3b)을 도중에 연결 설치(합류)시켜서 병주(竝走)시킴으로써, 칩 배출 홈을 독립하여 마련하고 있는 경우에 비하여, 공구 본체(1)의 강성을 향상시킬 수 있고, 상술의 경질 피막(5)에 의한 구멍 위치 정밀도의 악화 방지 효과가 한층 더 양호하게 발휘된다. 또한, 2개의 칩 배출 홈(3a·3b)의 홈 길이를 동일 길이로 설정해도 상기 구멍 위치 정밀도의 악화 방지 효과가 충분히 발휘되지만, 이 2개의 칩 배출 홈(3a·3b)의 홈 길이를 다르게 함으로써, 동일 길이로 한 경우에 비하여, 파손의 기점이 되기 쉬운 공구 기단(基端)측에서 강성을 확보하는 것이 가능해지고, 상기 효과가 가일층 양호하게 발휘되고, 또한 내파손성을 개선할 수 있다.
또한, 경질 피막(5)이 피복되어 있지 않은 칩 배출 홈(3a·3b)의 내면 부분이, 절삭시에 공구에 피복된 경질 피막에 작용하는 압축, 인장, 비틀림 등의 부하를 완화하는 부분으로 되고, 경질 피막(5)에 균열이 생기는 것을 방지할 수 있기 때문에, 공구의 내파손성이 악화되지 않는다.
또한, 공구의 중심 두께를 소정의 크기로 함으로써, 이 점에서도 공구 본체(1)의 강성을 확보하는 것이 가능해지고, 공구에 피복된 경질 피막의 압축, 인장, 비틀림 등의 부하에 대한 내성이 향상된다.
[실시예]
본 발명의 구체적인 실시예에 대해서 도면에 근거하여 설명한다.
본 실시예는, 공구 본체(1)의 선단에 2개의 절삭날(2)이 마련되고, 이 공구 본체(1)의 외주에 공구 선단으로부터 기단측을 향하는 2개의 나선 형상의 칩 배출 홈(3a·3b)이 형성되고, 한쪽의 상기 칩 배출 홈이 다른 쪽의 상기 칩 배출 홈의 도중부(途中部)에 연결 설치되고, 상기 각 칩 배출 홈(3a·3b)은 해당 각 칩 배출 홈(3a·3b)의 연결 설치되는 위치(연결 설치부)로부터 각각 비틀림각을 동일하게 하여 병주(竝走)되도록 마련된 구멍 뚫기 공구로서, 공구 선단으로부터 축방향으로 공구 직경(D)의 1배(1D) 이하의 범위에서, 마진(4)의 둘레방향 길이의 합계가 공구 직경의 원의 원주 길이의 20%이상 55%이하이며, 공구 외주면에 경질 피막(5)이 마련되고, 이 경질 피막(5)의 두께는 공구 선단으로부터 축방향으로 1D 이하의 범위에서 0.5㎛이상 10㎛이하이며, 상기 경질 피막(5)은 공구 선단측으로 갈수록 두껍게 마련되고, 상기 마진(4)의 공구 선단측 위치의 상기 경질 피막(5)의 막 두께(T1)와, 상기 마진(4)의 공구 선단으로부터 축방향으로 공구 직경의 2배의 위치 혹은 공구 직경의 2배(2D) 이하의 범위에 있어서의 공구 후단측 위치의 상기 경질 피막(5)의 막 두께(T2)의 비 T2/T1가, 0.50 이상 0.98 이하이며, 공구의 중심 두께(W)(도 3의 (a) 참조)가 공구 직경의 20%이상 60%이하인 것이다.
구체적으로는, 상기 구멍 뚫기 공구는, 도 2, 도 3에 도시한 바와 같이, 외주에 나선 형상의 칩 배출 홈(3a·3b)이 마련되어 있는 공구 본체(1) 및 해당 공구 본체(1)보다 지름이 큰 섕크(shank) 본체(9)를 가지는 섕크부(10)로 이루어지는 PCB 드릴이다. 또한, 섕크부(10)는, 직경이 3.175mm의 섕크 본체(9)와, 섕크 본체(9)의 선단측에 연결 설치되고 선단측으로 갈수록 가늘어지는 섕크 테이퍼부(8)로 구성되어 있다.
상기 구멍 뚫기 공구에 있어서, 적어도 상기 공구 본체(1)는, 탄화 텅스텐과 코발트를 함유하고 후술하는 경질 피막(5)과 양호하게 밀착되는 초경합금(超硬合金) 부재로 형성되고, 섕크 본체(9)는 스테인리스강 부재로 형성되어 있고, 이 양자(兩者)가 접합되어서 구성되어 있다. 즉, 소위 컴포지트(composite) 타입의 드릴이며 그만큼 비용을 줄일 수 있다. 아울러, 본 실시예에서는, 섕크 테이퍼부(8)의 섕크 본체(9) 근방 부위를 스테인리스강제로 하고 잔여부를 초경합금제로 하고 있다. 즉, 공구 본체(1) 전체를 초경합금제로 하고, 이 공구 본체(1) 및 섕크 테이퍼부(8)의 초경합금제 부분을 일체의 초경합금 부재로 하고, 스테인리스강 부재와 접합하고 있다. 또한, 상기 구멍 뚫기 공구는, 도시하지 않지만, 섕크 테이퍼부(8)의 선단에 연결 설치되고 공구 본체(1)보다 지름이 큰 중간 원기둥부 및 해당 중간 원기둥부의 선단에 연결 설치되고 공구 본체(1)의 기단이 연결 설치되는 선단측으로 갈수록 가늘어지는 제2 테이퍼부를 가지는 형상으로 해도 좋고, 이 경우, 초경합금 부재와 스테인리스강 부재의 접합 위치는 본 실시예와 같이 섕크 테이퍼부(8)에 배치되어 있어도 좋고, 중간 원기둥부나 제2 테이퍼부에 배치되어 있어도 좋다.
아울러, 상기 초경합금 부재의 코발트 함유량은 중량%로 3%이상 15%이하인 것이 바람직하다. 또한, 섕크 테이퍼부의 테이퍼 각도는 본 실시예에 있어서는 30°로 형성되어 있다.
또한, 본 발명은, 공구 마모에 의해 구멍 위치 정밀도가 악화되기 쉬운 공구 본체(1)의 직경(D)이 0.05mm이상 1.0mm이하의 작은 지름 드릴에서 특히 현저한 효과가 발휘된다. 이 직경(D)은 마진(4)에 마련된 경질 피막(5)을 포함한 최대 직경이며(도 6 참조), 더 바람직하게는 0.05mm이상 0.6mm이하이다. 본 실시예에 있어서는 0.3mm로 설정되어 있다.
또한, 공구 본체(1)의 형상은, 공구 본체(1)의 선단측으로부터 기단측에 걸쳐서 지름이 일정해지는 소위 스트레이트 형상(도 6의 (A) 참조)으로 해도 좋고, 기단측에서 한 단 지름이 작은, 소위 언더 컷 형상(도 6의 (B) 참조)으로 해도 좋다.
본 실시예는, 공구 본체(1)를 언더 컷 형상으로 하고, 기단측에 비하여 지름을 크게 한 선단측 부분의 축방향 길이(l2)(마진 길이)가 0.2mm이상 1.0mm이하로 설정되어 있다. 즉, 경질 피막(5)의 내구성을 개선하기 위해서는 마진(4)의 면적을 크게 하는 것이 유효하지만, 가공 구멍 내벽과의 접촉 면적이 너무 커지면 내벽 거칠기가 악화되거나, 절삭 저항이 커져서 파손(折損)이 생기기 쉬워질 가능성이 있다.
이 점에서, 본 실시예에서는 공구 본체(1)를 언더 컷 형상으로 함으로써, (마진(4)의 둘레방향 길이를 길게 하면서) 마진(4)과 가공 구멍 내벽면과의 접촉 면적을 작게 하여, 내벽 거칠기의 악화를 방지하거나 절삭 저항을 적게 하는 것이 가능해진다. 마진 길이가 0.2mm 미만이면 공구의 마모가 진행되기 쉽고, 구멍 위치 정밀도가 악화되기 쉽다. 또한, 1.0mm보다 길면 절삭 저항이 커지고 파손이 발생하기 쉬워진다. 아울러, 더 바람직한 마진 길이는 0.3mm이상 0.9mm이하이다. 본 발명에 있어서, 마진(4)은 구멍 내벽면과 접촉될 수 있는 공구 본체(1)의 공구 외주면을 가리키고, 도 6의 (A)에 도시한 바와 같은 스트레이트 형상의 경우, 공구 본체(1)의 공구 외주면은 마진(4)과 동일한 뜻이지만, 도 6의 (B)에 도시한 바와 같은 언더 컷 형상의 경우, 한 단 지름이 작은 기단측의 원통면(공구 외주면)은 마진(4)과는 다르다. 또한, 공구 본체(1)에 보디 클리어런스를 마련하는 구성으로 한 경우, 보디 클리어런스는 마진(4)과는 다르다.
또한, 본 실시예는, 2개의 절삭날(2)과 2개의 칩 배출 홈(3a·3b)을 공구 선단 위치에 있어서 각각 점 대칭으로 마련한, 도 3, 도 4에 도시한 바와 같은 소위 2날 2홈 형상의 드릴이다. 도면 중, 부호 6은 제1 릴리프면, 7은 제2 릴리프면이다.
본 실시예에 있어서는, 근원부(根元部)에 있어서 강성을 확보하기(홈 용적을 작게 하기) 위해서, 제1의 칩 배출 홈(3a)이 제2의 칩 배출 홈(3b)의 도중부에 연결 설치되는 구성으로 하고 있다. 이 연결 설치부로부터 공구 기단측에서는 각 칩 배출 홈(3a·3b)의 비틀림각이 동일 각도로 설정되고, 각 칩 배출 홈(3a·3b)이 공구 기단측 소정 위치까지 병주되도록 구성되어 있다(도 3 참조. 아울러, 도 3의 (a) ~ (d)는 도 2의 선단부분 (선단면, 측면)을 각각 90° 다른 회전 위상에서 본 것임).
구체적으로는, 제1의 칩 배출 홈(3a)의 홈 길이는, 제2의 칩 배출 홈(3b)의 홈 길이(l)의 50%이상 97%이하로 설정되어 있다. 2개의 칩 배출 홈의 홈 길이를 동일하게 해도 좋지만, 다른 길이로 하여 공구 기단측 소정 위치까지 병주시킴으로써, 파손의 기점으로 되기 쉬운 공구 본체(1)의 기단부(근원부)에서 강성을 확보할 수 있고, 내파손성을 보다 개선할 수 있다. 아울러, 2개의 칩 배출 홈의 홈 길이를 역전시켜서, 제2의 칩 배출 홈(3b)의 홈 길이를 제1의 칩 배출 홈(3a)의 홈 길이보다 짧게 설정하는 구성으로 해도 좋다. 한쪽의 칩 배출 홈의 홈 길이가 다른 쪽의 칩 배출 홈의 홈 길이의 50% 미만인 경우, 기판 외부로 칩를 배출하기 위해서 중요해지는 홈 중간부로부터 기단에 걸친 홈 용적이 작아지기 때문에 칩 막힘에 의해 파손의 가능성이 높아지고, 97%보다 긴 경우, 홈 길이의 차이가 작고, 근원부에 있어서의 강성이 확보되기 어려워진다. 아울러, 한쪽의 칩 배출 홈의 홈 길이를 다른 쪽의 칩 배출 홈의 홈 길이의 70%이상으로 설정한 경우, 더 안정된 칩 배출이 행해지기 때문인지, 더 긴 수명으로 안정적인 구멍 가공을 실현할 수 있다는 것이, 본 발명자들에 의해 확인되었다. 따라서, 한쪽의 칩 배출 홈의 홈 길이를 다른 쪽의 칩 배출 홈의 홈 길이의 70%이상 97%이하로 설정하는 것이 더 바람직하다.
또한, 본 실시예에 있어서는, 도 2 ~ 도 4에 도시한 바와 같이, 공구 선단면 및 칩 배출 홈(3a·3b)의 내면에는 경질 피막(5)을 마련하지 않고 공구 외주면에만 경질 피막(5)을 마련한 구성으로 하고 있다.
여기서, 공구 외주면은, 공구 선단면 및 칩 배출 홈(3a·3b)의 내면을 제외한 공구의 외주면을 가리킨다. 또한, 공구 본체(1)에 보디 클리어런스를 마련하는 구성으로 한 경우, 보디 클리어런스는 공구 외주면과는 다르다. 즉, 도 6의 (A)에 도시한 바와 같은 스트레이트 형상의 경우, 공구 외주면은 마진(4)을 가리키고, 도 6의 (B)에 도시한 바와 같은 언더 컷 형상의 경우, 공구 외주면은 마진(4) 및 한 단 지름이 작은 기단측의 원통면을 가리키고, 해당 공구 외주면에 경질 피막(5)이 마련되어 있다. 즉, 본 실시예에 있어서는, 공구 본체(1)의 공구 외주면에 경질 피막(5)을 마련한 구성으로 하고 있지만, 섕크 테이퍼부(8) 및 섕크 본체(9)의 외주면 등, 공구 본체(1)보다 기단측의 공구의 외주면에도 경질 피막(5)을 마련한 구성으로 해도 좋다. 아울러, 적어도 공구 본체(1)의 공구 외주면에 경질 피막(5)을 마련하는 구성으로 하면 경질 피막에 의한 내마모성 향상 효과가 얻어진다.
따라서, 경질 피막(5)이 피복되어 있지 않은 칩 배출 홈(3a·3b)의 내면 부분이, 절삭시에 공구에 피복된 경질 피막에 작용하는 압축, 인장, 비틀림 등의 부하를 완화하는 부분으로 되고, 경질 피막(5)에 균열이 생기는 것을 방지할 수 있다. 또한, 공구 선단의 릴리프면과 절삭면과의 교차 능선부에 존재하는 절삭날(2)이 경질 피막(5)에 덮이지 않고, 날의 각을 예리하게 할 수 있어, 그만큼 피삭재로의 파고듦이 향상되기 때문에, 피삭재로 파고들 때의 구멍 위치 정밀도가 양호해지고, 공구의 피삭재 진입 후의 진행 방향에서의 어긋남을 미리 방지할 수 있다.
본 실시예에서는 경질 피막(5)로서, 금속 성분으로서 적어도 Al와 Cr를 포함하고, 비금속 성분으로서 적어도 N를 포함하는 것을 채용하고 있다. 이러한 경질 피막(5)은, 공구 모재의 마모를 억제하지만, 가공과 함께 피막 자체가 마모되기 때문에, 적당한 두께가 필요하고, 통상 사용되는 가공 히트수의 범위내에서 소실시키지 않기 위해서, 0.5㎛이상 있는 것이 바람직하다. 한편, 너무 두꺼우면 박리되기 쉬워지기 때문에, 10㎛이하인 것이 바람직하다. 이 때문에, 본 실시예에 있어서는 경질 피막(5)은, 공구 선단으로부터 축방향으로 1D 이하의 범위에 있어서의 막 두께가 0.5㎛이상 10㎛이하로 되도록 설정되어 있다.
본 실시예에서는, 공구 선단으로부터 축방향으로 1D 이하의 범위에서 마진(4)의 둘레방향 길이의 합계(도 5에 있어서의 P1 + P2)가 공구 직경의 원의 원주 길이(πD, π는 원주율)의 20%이상 55%이하로 되도록 설정하고 있다(이하, 이 πD에 대한 마진의 둘레방향 길이의 합계의 비율을 마진 원주비라고 함).
여기서, 마진 원주비가 커지면, 마진(4)의 피막 내구성이 좋아지고, 그만큼 공구 선단부의 코너 부근의 외주 마모가 진행되기 어려워져서 구멍 위치 정밀도가 악화되지 않게 되지만, 마진 원주비가 πD의 55%보다 큰 경우에는, 절삭 저항이 커져서 파손되기 쉬워지고, πD의 20%보다 작은 경우에는, 마진(4)의 피막 내구성이 나빠지고, 공구 선단부의 코너 부근의 외주 마모가 진행되기 쉬워져서 구멍 위치 정밀도가 악화되기 쉬워진다.
또한, 드릴은 선단부로 갈수록 절삭 저항을 강하게 받기 때문에, 공구 선단부의 코너 부근에서 피막의 내구성이 나빠지거나, 마모가 진행되기 쉬워지거나 한다. 따라서, 공구 선단측의 마진(4)만큼 두껍게 경질 피막(5)을 성막하는 편이(공구 본체(1)의 근원측으로부터 선단측에 걸쳐서 막 두께가 점점 증가하도록 마련하는 편이), 구멍 위치 정밀도의 악화를 억제하기 쉽다.
이 때문에, 본 실시예는, 도 6에 도시한 바와 같이, 마진(4)의 공구 선단측 위치(공구 선단부의 코너 위치)(L1)의 경질 피막(5)의 막 두께(T1)와, 마진(4)의 공구 선단으로부터 축방향으로 2D의 위치 혹은 2D 이하의 범위의 공구 후단측 위치(L2)의 경질 피막(5)의 막 두께(T2)와의 비 T2/T1가, 0.50 이상 0.98 이하로 되도록 설정되어 있다. 아울러, 도 6의 (A)는 L2가 마진(4)의 공구 선단으로부터 축방향으로 2D의 위치인 예, 도 6의 (B)는 L2가 마진(4)의 공구 선단으로부터 축방향으로 2D 이하의 범위의 공구 후단측 위치인 예이다. 즉, 도 6의 (B)와 같이 마진(4)의 공구 축방향 후단(지름이 큰 부분( 徑大部 ) 후단)이 공구 선단으로부터 축방향으로 2D 이하의 범위에 위치하는 언더 컷 형상의 경우, 상기 마진(4)의 공구 축방향 후단(지름이 큰 부분 후단)의 위치를 L2로 하고, 또한, 마진(4)의 공구 축방향 후단(지름이 큰 부분 후단)이 공구 선단으로부터 축방향으로 2D의 범위를 초과하여 위치하는 언더 컷 형상(도시 안함)의 경우, 공구 선단으로부터 축방향으로 2D의 위치를 L2로 한다. 즉, 이 경우, 도 6의 (A)에 도시한 바와 같은 스트레이트 형상의 드릴과 동일하게 L2를 설정한다.
여기서, T2/T1가, 0.50 미만의 경우에는, 위치 L1 에 있어서 피막이 공구 지름 방향으로 돌출하는 형상으로 되어서 절삭 부하가 집중하고, 피막 강도 이상의 응력이 발생하기 때문에, 이 부근에서 오히려 피막이 결손되기 쉬워지고, 구멍 위치 정밀도의 악화를 초래한다. T2/T1가, 0.98보다 큰 경우에는, 공구 본체(1)의 근원측으로부터 선단측에 걸쳐서 막 두께가 거의 일정하게, 혹은, 근원측으로부터 선단측에 걸쳐서 막 두께가 점점 감소하게 되기 때문에, 공구 선단부의 코너 부근에 충분한 막 두께가 없어서, 선단부의 피막의 내구성 악화나 마모가 진행되기 쉬워지고, 구멍 위치 정밀도가 악화되기 쉬워진다.
이 T2/T1는, 예를 들면, 도 7에 도시한 바와 같이, 피막을 성막하는 성막로(成膜爐) 내에서 드릴을 유지하는 지그를, 드릴의 직경(D)에 대해서 수평 방향으로 충분히 큰 것으로 하고, 지그에 대한 드릴의 삽입 깊이를 변화시킴으로써, 적절하게 설정할 수 있다. 구체적으로는, 드릴의 삽입 깊이를 깊게 하면 T2/T1를 작게 할 수 있고(L1에 있어서의 T1의 막 두께를 두껍게 할 수 있고), 얕게 하면 T2/T1를 크게 할 수 있다(L1에 있어서의 T1의 막 두께를 얇게 할 수 있다).
또한, 본 실시예는, 드릴 자체의 강성을 확보하고, 드릴에 피복된 경질 피막의 압축, 인장, 비틀림의 부하에 대한 내성을 높이기 위해서, 공구의 중심 두께(W)를 공구 직경(D)의 20%이상 60%이하로 설정하고 있다(이하, 이 공구 직경(D)에 대한 공구의 중심 두께(W)의 비율을 중심 두께 직경비라고 함). 이 공구의 중심 두께(W)는 도 3의 (a)에 나타낸 바와 같이 공구 선단면에 있어서의 중심 두께이며, 중심 두께 직경비가 20% 미만인 경우, 강성 부족에 의한 구멍 위치 정밀도의 악화나 파손이 생기기 쉬워진다. 또한, 중심 두께 직경비가 60%보다 크면 홈 용적이 작아지고, 내벽 거칠기의 악화나 칩 막힘에 의한 파손이 생기기 쉬워진다.
본 실시예는 상술한 바와 같이 구성했기 때문에, 공구 선단부에 있어서 마진(4)의 둘레방향 길이를 충분히 길게 하여 경질 피막(5)의 내구성을 향상시킴과 아울러, 이 경질 피막(5)을 소정의 막 두께로 공구 선단측으로 갈수록 두껍게 마련함으로써, 공구 선단측의 경질 피막(5)이 마모되지 않게 된다. 따라서, 공구의 피삭재 진입 후의 진행 방향에서의 어긋남이 가급적 억제되고, 구멍 위치 정밀도가 악화되지 않게 된다.
또한, 2개의 칩 배출 홈(3a·3b)을 도중에 연결 설치(합류)시켜서 공구 기단측에서 병주시킴으로써, 공구 본체(1)의 강성을 향상시킬 수 있고, 상술의 경질 피막(5)에 의한 구멍 위치 정밀도의 악화 방지 효과가 한층 더 양호하게 발휘된다. 또한, 2개의 칩 배출 홈(3a·3b)의 홈 길이를 다르게 함으로써, 동일 길이로 한 경우에 비하여, 파손의 기점으로 되기 쉬운 공구 기단측에서 강성을 확보하는 것이 가능해진다.
또한, 경질 피막(5)이 피복되어 있지 않은 칩 배출 홈(3a·3b)의 내면 부분이, 절삭시에 공구에 피복된 경질 피막에 작용하는 압축, 인장, 비틀림 등의 부하를 완화하는 부분으로 되어, 경질 피막(5)에 균열이 생기는 것을 방지할 수 있다.
또한, 공구의 중심 두께(W)를 소정의 크기로 함으로써, 이 점에서도 공구 본체(1)의 강성을 확보하는 것이 가능해지고, 공구에 피복된 경질 피막의 압축, 인장, 비틀림 등의 부하에 대한 내성이 향상된다.
따라서, 본 실시예는, 구멍 위치 정밀도 및 내파손성의 개선이 더 가능한 실용성이 우수한 것으로 된다.
본 실시예의 효과를 증명하는 실험예에 대해서 설명한다.
도 8 ~ 도 14는, 드릴 형상이나 경질 피막의 구성을 변화시켜서 구멍 위치 정밀도 등을 평가한 실험 조건 및 실험 결과를 나타내는 표이다.
구체적으로는, 도 8은 칩 배출 홈을 합류시키지 않고 공구 기단측까지 각각 독립하여 마련한 2날 2홈의 통상적인 형상의 드릴과, 칩 배출 홈을 합류시키고 공구 기단측에서 병주시킨 2날 2홈의 홈 연결 설치의 병주(竝走) 형상의 드릴의 경질 피막의 피복 부위 차이의 비교 평가 결과의 도면이다. 도 9는 마진 원주비 차이의 비교 평가 결과의 도면이다. 도 10은 막 두께 차이의 비교 평가 결과의 도면이다. 도 11은 T2/T1 차이의 비교 평가 결과의 도면이다. 도 12는 중심 두께 직경비 차이의 비교 평가 결과의 도면이다. 도 13은 마진 길이 차이의 비교 평가 결과의 도면이다. 도 14는 공구 직경 차이의 비교 평가 결과의 도면이다.
도 8 ~ 도 12에 관한 실험(시험 No. 1 ~ 5)에 대해서 상세히 기술한다.
도 8의 실험에서 사용한 드릴은, 공구 직경(D)을 0.3mm로 한 2날 2홈의 통상형상의 드릴 및 2날 2홈의 홈 연결 설치의 병주 형상 드릴로서, 경질 피막의 피복 부위를 변화시키고 있다.
도 9의 실험에서 사용한 드릴은, 공구 직경(D)을 0.3mm로 한 2날 2홈의 홈 연결 설치의 병주 형상 드릴이며, 마진 원주비를 변화시키고 있다. 중심 두께 직경비는 38%이상 42%이하로 했다.
도 10의 실험에서 사용한 드릴은, 공구 직경(D)을 0.3mm로 한 2날 2홈의 홈 연결 설치의 병주 형상 드릴이며, 막 두께를 변화시키고 있다. 또한, T2/T1는 0.70 이상 0.88 이하로 했다.
도 11의 실험에서 사용한 드릴은, 공구 직경(D)을 0.3mm로 한 2날 2홈의 홈 연결 설치의 병주 형상 드릴로서, T2/T1를 변화시키고 있다. 또한, 막 두께는 8.7㎛이상 9.6㎛이하로 했다.
도 12의 실험에서 사용한 드릴은, 공구 직경(D)을 0.3mm로 한 2날 2홈의 홈 연결 설치의 병주 형상 드릴이며, 중심 두께 직경비를 변화시키고 있다. 마진 원주비는 37%이상 44%이하로 했다.
아울러, 도 8 ~ 도 12에 관한 실험에 있어서, 모든 2날 2홈의 홈 연결 설치의 병주 드릴의 한쪽의 칩 배출 홈의 홈 길이는 다른 쪽의 칩 배출 홈의 홈 길이의 91%로 설정되어 있다. 또한, 도면 중, 피복 부위란의 표시는 각각, 전체: 공구 본체(1)의 전체면에 경질 피막을 피복, 공구 외주면: 공구 본체(1)에 있어서는 공구 외주면에만 경질 피막을 피복, -: 논코팅(경질 피막을 전혀 마련하지 않음)을 나타낸다. 또한, 막 두께는 각각의 드릴의 L1의 위치에 있어서 측정했다. 또한 피복되어 있는 드릴은, 각 실험에 있어서 동일 조건에서 코팅을 행했다.
이상의 드릴에 의해, 기재로서의 「FR-4 할로겐프리재(halogen-free 材) 두께 1.6mm 6층 동박(銅箔)」을 2매 중첩하고, 덧댐판으로서 알루미늄판(두께 0.15mm), 여분판으로서 베이크판(두께 1.5mm)을 이용하고, 각 사양에 대해서 10개씩 소정의 조건으로 구멍 뚫기 가공을 행하고 구멍 위치 정밀도 평가 및 파손 평가 실험을 행했다. 아울러, 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 120,000 min-1, 이송 속도: 1.8m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 10,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 100,000 min-1, 이송 속도: 3.0m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 4,000으로 했다.
도 8 ~ 도 12에 있어서의 평가 방법에 대해서 설명한다. 구멍 위치 정밀도에 대해서는, 10개의 10,000 히트 가공에 있어서의 최하 기판 뒤편(最下基板裏側)의 구멍 위치 편차량의 Avg. +3s 값을 기재했다(×: 효과 작음(45㎛이상), △: 효과 중간 정도(40㎛이상 45㎛ 미만), ○: 효과 큼(40㎛ 미만)). 파손 개수에 대해서는, 4,000 히트 이내에서 10개 중의 파손 개수를 기재했다(×: 효과 작음(4개 이상), △: 효과 중간 정도(2개 이상 4개 미만), ○: 효과 큼(2개 미만)).
평가 결과로부터, 이하의 점을 확인했다.
2날 2홈의 통상형상의 드릴은 강성이 낮고, 구멍 위치 정밀도가 2날 2홈의 홈 연결 설치의 병주 형상보다 떨어진다. 또한, 2날 2홈의 홈 연결 설치의 병주 형상에서도 논코팅의 경우는 경질 피막을 피복하고 있는 경우에 비해 구멍 위치 정밀도는 떨어지고, 경질 피막 피복 부위가 공구 본체의 전체면에 이르면 내파손성이 악화된다(도 8).
또한, 2날 2홈의 홈 연결 설치의 병주 형상에서 공구 외주면에만 경질 피막이 피복되어 있어도, 마진 원주비가 작아지면 구멍 위치 정밀도가 악화되고, 커지면 내파손성이 악화된다. 마진 원주비가 40%, 50%의 경우에 구멍 위치 정밀도와 내파손성에서 특히 양호한 결과가 얻어졌다(도 9).
또한, 막 두께가 3.9㎛, 9.6㎛에서는 구멍 위치 정밀도의 개선 효과가 높아지는 결과가 얻어졌다(도 10).
또한, T2/T1가 0.78, 0.90인 경우에, 구멍 위치 정밀도가 양호한 결과로 되었다(도 11).
또한, 중심 두께 직경비가 작으면 구멍 위치 정밀도가 악화되고, 크면 내파손성이 악화된다. 중심 두께 직경비가 38%, 48%에서 구멍 위치 정밀도와 내파손성의 양쪽 모두 특히 양호한 결과로 되었다(도 12).
이상에서, 본 실시예에 대한 구성은 양호한 구멍 위치 정밀도 및 내파손성이 얻어지는 구성인 것을 확인할 수 있었다.
도 13에 관한 실험(시험 No. 6)에 대해서 상세히 기술한다.
도 13의 실험에서 사용한 드릴은, 공구 직경(D)을 0.3mm, 홈 길이(l)(2개의 칩 배출 홈 중 긴 쪽의 홈 길이)를 5.5mm로 한 2날 2홈의 홈 연결 설치의 병주 형상 드릴로서, 마진 길이(l2)를 변화시키고 있다. 또한, 실험예 8만 스트레이트 형상으로 하고, 다른 것은 언더 컷 형상으로 하고 있다. 경질 피막은 공구 외주면에만 마련하고, 막 두께는 4.3㎛이상 5.0㎛이하로 했다.
이상의 드릴에 의해, 기재로서의 「FR-4 할로겐프리재 두께 1.6mm 6층 동박」을 2매 중첩하고, 덧댐판으로서 알루미늄판(두께 0.15mm), 여분판으로서 베이크판(두께 1.5mm)을 이용하여, 각 사양에 대해서 10개씩 구멍 위치 정밀도 평가 및 파손 평가 실험을 행하고, 각 사양에 대해서 1개씩 구멍 내벽 거칠기 평가 실험을 행했다. 아울러, 구멍 위치 정밀도 평가 실험 및 구멍 내벽 거칠기 평가 실험에서는, 드릴(스핀들)의 회전수: 120,000 min-1, 이송 속도: 1.8m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 10,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 100,000 min-1, 이송 속도: 3.0m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 4,000으로 했다.
도 13에 있어서의 평가 방법에 대해서 설명한다. 구멍 위치 정밀도에 대해서는, 10개의 10,000 히트 가공에 있어서의 최하 기판 뒤편의 구멍 위치 편차량의 Avg. +3s 값을 기재했다(×: 효과 작음(45㎛이상), △: 효과 중간 정도(40㎛이상 45㎛ 미만), ○: 효과 큼(40㎛ 미만)). 구멍 내벽 거칠기에 대해서는, 10,000 히트 부근의 5구멍의 구멍 내벽의 거칠기를 측정했다(×: 효과 작음(30㎛이상), △: 효과 중간 정도(20㎛이상 30㎛ 미만), ○: 효과 큼(20㎛ 미만)). 파손 개수에 대해서는, 4,000 히트 이내에서 10개 중의 파손 개수를 기재했다(×: 효과 작음(4개 이상), △: 효과 중간 정도(2개 이상 4개 미만), ○: 효과 큼(2개 미만)).
평가 결과로부터, 언더 컷 형상을 채용하는 것으로 구멍 내벽 거칠기, 내파손성이 개선되는 것을 확인할 수 있었다. 또한, 마진 길이(l2)가 짧으면 마모가 진행되기 쉽고, 구멍 위치 정밀도가 악화되기 쉬워지고, 길면 절삭 저항이 커지고 파손이 발생되기 쉬워지는 것을 확인할 수 있었다.
이상에서, 본 실시예에서 채용한 언더 컷 형상 및 0.2mm이상 1.0mm이하의 마진 길이는, 양호한 구멍 위치 정밀도, 구멍 내벽 거칠기 및 내파손성이 얻어지는 구성인 것을 확인할 수 있었다.
도 14에 관한 실험(시험 No. 7)에 대해서 상세히 기술한다.
도 14의 실험에서 사용한 드릴은, 공구 직경을 변화시킨 2날 2홈의 홈 연결 설치의 병주 형상의 코팅 드릴(경질 피막을 피복한 드릴) 및 논코팅 드릴이다. 또한, 공구 직경의 변화에 수반하여, 홈 길이(2개의 칩 배출 홈 중 긴 쪽의 홈 길이), 마진 길이, 막 두께도 변화시키고 있다. 코팅 드릴에서는 경질 피막을 공구 외주면에만 마련하고 있다.
이상의 드릴에 의해, 각 공구 직경에 대응하여 하기의 조건으로 구멍 위치 정밀도 평가 실험 및 파손 평가 실험을 행했다.
·공구 직경(D): 0.05mm
기재로서의 「할로겐프리재 두께 0.1mm 2층 동박」을 2매 중첩하고, 덧댐판으로서 수지(樹脂) 부가 알루미늄판(두께 0.1mm), 여분판으로서 베이크판(두께 1.5mm)을 이용했다. 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 300,000 min-1, 이송 속도: 1.5m/min, 스핀들의 상승 속도: 50.0m/min, 히트수: 4,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 250,000 min-1, 이송 속도: 2.5m/min, 스핀들의 상승 속도: 50.0m/min, 히트수: 2,000으로 했다.
·공구 직경(D): 0.15mm
기재로서의 「할로겐프리재 두께 0.4mm 2층 동박」을 3매 중첩하고, 덧댐판으로서 수지 부착 알루미늄판(두께 0.1mm), 여분판으로서 베이크판(두께 1.5mm)을 이용했다. 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 200,000 min-1, 이송 속도: 2.0m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 4,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 180,000 min-1, 이송 속도: 2.6m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 2,000으로 했다.
·공구 직경(D): 0.3mm
기재로서의 「FR-4 할로겐프리재 두께 1.6mm 6층 동박」을 2매 중첩하고, 덧댐판으로서 알루미늄판(두께 0.15mm), 여분판으로서 베이크판(두께 1.5mm)을 이용했다. 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 120,000 min-1, 이송 속도: 1.8m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 6,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 100,000 min-1, 이송 속도: 3.0m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 4,000으로 했다.
·공구 직경(D): 0.6mm
기재로서의 「FR-4재 두께 1.6mm 6층 동박」을 3매 중첩하고, 덧댐판으로서 알루미늄판(두께 0.2mm), 여분판으로서 베이크판(두께 1.5mm)을 이용했다. 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 75,000 min-1, 이송 속도: 2.05m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 4,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 40,000 min-1, 이송 속도: 3.0m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 2,000으로 했다.
·공구 직경(D): 1.0mm
기재로서의 「FR-4재 두께 1.5mm 4층 동박」을 2매 중첩하고, 덧댐판으로서 알루미늄판(두께 0.15mm), 여분판으로서 베이크판(두께 1.5mm)을 이용했다. 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 48,000 min-1, 이송 속도: 0.96m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 3,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 30,000 min-1, 이송 속도: 1.4m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 2,000으로 했다.
·공구 직경(D): 1.2mm
기재로서의 「FR-4재 두께 1.6mm 2층 동박」을 3매 중첩하고, 덧댐판으로서 알루미늄판(두께 0.15mm), 여분판으로서 베이크판(두께 1.5mm)을 이용했다. 구멍 위치 정밀도 평가 실험에서는, 드릴(스핀들)의 회전수: 48,000 min-1, 이송 속도: 0.96m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 3,000으로 하고, 파손 평가 실험에서는, 드릴(스핀들)의 회전수: 30,000 min-1, 이송 속도: 1.5m/min, 스핀들의 상승 속도: 25.4m/min, 히트수: 2,000으로 했다.
도 14에 있어서의 평가 방법에 대해서 설명한다. 구멍 위치 정밀도에 대해서는, 10개의 설정 히트수에 있어서의 논코팅 드릴과 코팅 드릴의 구멍 위치 편차량 Avg. +3s 값의 차이(논코팅 차이)를 기재했다(×: 효과 작음(논코팅 차이가 2㎛ 미만), △: 효과 중간 정도(논코팅 차이가 2㎛이상 4㎛ 미만), ○: 효과 큼(논코팅 차이가 4㎛이상)). 파손 개수에 대해서는, 설정 히트수 이내에서 코팅 드릴 10개중의 파손 개수를 기재했다(×: 효과 작음(4개 이상), △: 효과 중간 정도(2개 이상 4개 미만), ○: 효과 큼(2개 미만)).
평가 결과로부터, 공구 직경(D)이 0.05mm ~ 1.0mm에서 논코팅 드릴에 대해서 코팅 드릴의 효과(경질 피막을 피복하는 것에 의한 구멍 위치 정밀도 및 내파손성 향상 효과)가 발휘되는 것을 확인할 수 있었다.
이상으로부터, 공구 직경(D)이 0.05mm ~ 1.0mm의 드릴에서 특히 본 발명의 효과가 발휘되는 것을 확인할 수 있었다.
1: 공구 본체
2: 절삭날
3a·3b: 칩 배출 홈
4: 마진
5: 경질 피막
8: 섕크 테이퍼부
9: 섕크 본체
10: 섕크부
T1·T2: 막 두께
W: 중심 두께
2: 절삭날
3a·3b: 칩 배출 홈
4: 마진
5: 경질 피막
8: 섕크 테이퍼부
9: 섕크 본체
10: 섕크부
T1·T2: 막 두께
W: 중심 두께
Claims (9)
- 공구 본체의 선단(先端)에 2개의 절삭날이 마련되고, 상기 공구 본체의 외주에 공구 선단으로부터 기단(基端)측을 향하는 2개의 나선 형상의 칩 배출 홈이 형성되고, 한쪽의 상기 칩 배출 홈이 다른 쪽의 상기 칩 배출 홈의 도중부에 연결 설치되고, 상기 각 칩 배출 홈은, 이들 각 칩 배출 홈의 연결 설치부로부터 각각 비틀림각을 동일하게 하여 병주(竝走)되도록 마련된 구멍 뚫기 공구로서,
공구 선단으로부터 축방향으로 공구 직경의 0배에서 1배 이하의 범위에서, 마진의 둘레방향 길이의 합계가 공구 직경의 원의 원주 길이의 20%이상 55%이하이며,
공구 외주면에 경질 피막이 마련되고, 상기 경질 피막의 두께는 공구 선단으로부터 축방향으로 공구 직경의 0배에서 1배 이하의 범위에서 0.5㎛이상 10㎛이하이고,
상기 경질 피막은 공구 선단측으로 갈수록 두껍게 마련되고, 상기 마진의 공구 선단측 위치의 상기 경질 피막의 막 두께(T1)와, 상기 마진의 공구 선단으로부터 축방향으로 공구 직경의 2배의 위치 혹은 공구 직경의 2배 이하의 범위에 있어서의 공구 후단측 위치의 상기 경질 피막의 막 두께(T2)의 비 T2/T1가, 0.50 이상 0.98 이하이며,
공구의 중심 두께가 공구 직경의 20%이상 60%이하인 것을 특징으로 하는 구멍 뚫기 공구. - 제 1 항에 있어서, 한쪽의 상기 칩 배출 홈의 홈 길이는 다른 쪽의 상기 칩 배출 홈의 홈 길이의 50%이상 97%이하로 설정되어 있는 것을 특징으로 하는 구멍 뚫기 공구.
- 제 1 항에 있어서, 상기 구멍 뚫기 공구는 언더 컷 형상이며, 마진 길이가 0.2mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구.
- 제 2 항에 있어서, 상기 구멍 뚫기 공구는 언더 컷 형상이며, 마진 길이가 0.2mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 경질 피막은, 금속 성분으로서 적어도 Al와 Cr를 포함하고, 비금속 성분으로서 적어도 N를 포함하는 것을 특징으로 하는 구멍 뚫기 공구.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서, 상기 구멍 뚫기 공구는, 상기 공구 본체 및 상기 공구 본체보다 지름이 큰 섕크(shank) 본체를 가지는 섕크부를 포함하여 구성되고, 적어도 상기 공구 본체는 탄화 텅스텐 및 코발트를 함유하는 초경합금제이며, 공구 직경이 0.05mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구.
- 제 5 항에 있어서, 상기 구멍 뚫기 공구는, 상기 공구 본체 및 상기 공구 본체보다 지름이 큰 섕크 본체를 가지는 섕크부를 포함하여 구성되고, 적어도 상기 공구 본체는 탄화 텅스텐 및 코발트를 함유하는 초경합금제이며, 공구 직경이 0.05mm이상 1.0mm이하인 것을 특징으로 하는 구멍 뚫기 공구.
- 제 6 항에 있어서, 상기 섕크 본체는 스테인리스강제이며, 상기 섕크 본체의 선단측에는 선단측으로 갈수록 가늘어지는 섕크 테이퍼부가 마련되고, 상기 섕크 테이퍼부의 적어도 섕크 본체 근방 부위는 스테인리스강으로 형성되어 있는 것을 특징으로 하는 구멍 뚫기 공구.
- 제 7 항에 있어서, 상기 섕크 본체는 스테인리스강제이며, 상기 섕크 본체의 선단측에는 선단측으로 갈수록 가늘어지는 섕크 테이퍼부가 마련되고, 상기 섕크 테이퍼부의 적어도 섕크 본체 근방 부위는 스테인리스강으로 형성되어 있는 것을 특징으로 하는 구멍 뚫기 공구.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2014-140814 | 2014-07-08 | ||
JP2014140814A JP5873532B2 (ja) | 2014-07-08 | 2014-07-08 | 穴明け工具 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20160006100A KR20160006100A (ko) | 2016-01-18 |
KR101701023B1 true KR101701023B1 (ko) | 2017-01-31 |
Family
ID=55139901
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020150020916A KR101701023B1 (ko) | 2014-07-08 | 2015-02-11 | 구멍 뚫기 공구 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5873532B2 (ko) |
KR (1) | KR101701023B1 (ko) |
CN (1) | CN105269622B (ko) |
TW (1) | TWI577471B (ko) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017217715A (ja) * | 2016-06-06 | 2017-12-14 | 住友電工ハードメタル株式会社 | 棒材、ドリルの刃先、棒材の製造方法およびドリルの製造方法 |
JP6765361B2 (ja) * | 2017-10-18 | 2020-10-07 | ユニオンツール株式会社 | 切削工具用硬質皮膜及びドリル |
GB2574652A (en) | 2018-06-14 | 2019-12-18 | Black & Decker Inc | Drilling tool |
JP7082934B2 (ja) * | 2018-10-31 | 2022-06-09 | ユニオンツール株式会社 | 穴明け工具及びその製造方法 |
KR102449187B1 (ko) * | 2018-12-29 | 2022-09-28 | 선전 진저우 프리시젼 테크놀로지 코포레이션 | 경질 코팅층을 갖는 절삭공구 및 그 제조 방법 |
JP7140786B2 (ja) * | 2020-01-10 | 2022-09-21 | ユニオンツール株式会社 | 硬脆材切削加工用回転切削工具 |
CN113211539B (zh) * | 2021-04-21 | 2023-01-03 | 汇专机床有限公司 | 背钻刀具、其加工方法及多层线路板控深钻的方法 |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2643496B2 (ja) * | 1989-11-28 | 1997-08-20 | 三菱マテリアル株式会社 | 先端部表面硬質層被覆超硬合金製バックテーパー付きミニチュアドリル |
JP2564700B2 (ja) * | 1990-10-22 | 1996-12-18 | オーエスジー株式会社 | 硬質膜被覆ドリル |
DE19619023A1 (de) * | 1996-05-10 | 1997-11-13 | Bosch Gmbh Robert | Bohreinrichtung |
JP3027538B2 (ja) * | 1996-05-28 | 2000-04-04 | 日東工器株式会社 | 穿孔機制御装置 |
MY115633A (en) * | 1998-01-26 | 2003-08-30 | Hoya Corp | Drill jig for spectacle lens manufacture jig thereof, method of drilling for spectacle lens, and spectacle lens |
JP3019298B1 (ja) * | 1998-12-03 | 2000-03-13 | 日立ツール株式会社 | 表面被覆ドリル |
US6312126B1 (en) * | 1999-04-28 | 2001-11-06 | Vision Optic Co., Ltd. | Eyeglasses having rimless spectacle frame with adjustable temples and lenses |
JP2002126926A (ja) * | 2000-10-25 | 2002-05-08 | Hitachi Tool Engineering Ltd | ツイストドリル |
JP4415485B2 (ja) * | 2000-11-14 | 2010-02-17 | 三菱マテリアル株式会社 | 小型ドリル |
JP2005088149A (ja) * | 2003-09-19 | 2005-04-07 | Nachi Fujikoshi Corp | 超硬合金製油穴付き表面被覆ドリル |
WO2010125881A1 (ja) * | 2009-04-27 | 2010-11-04 | 京セラ株式会社 | ドリル及びこのドリルを用いる被削材の切削方法 |
JP5066229B2 (ja) | 2010-06-30 | 2012-11-07 | ユニオンツール株式会社 | 穴明け工具 |
CN102371379B (zh) * | 2010-07-09 | 2016-01-27 | 三菱综合材料株式会社 | 耐磨损性和切屑排出性优异的表面包覆钻头 |
JP5140142B2 (ja) * | 2010-11-22 | 2013-02-06 | ユニオンツール株式会社 | 穴明け工具 |
JP5899905B2 (ja) * | 2010-12-26 | 2016-04-06 | 三菱マテリアル株式会社 | 炭素膜被覆ドリルおよびその製造方法 |
JP2012148384A (ja) * | 2011-01-21 | 2012-08-09 | Carbide Internatl Co Ltd | ドリルビット構造 |
CN102858483B (zh) * | 2011-04-21 | 2014-11-26 | 住友电工硬质合金株式会社 | 表面被覆切削工具及其制造方法 |
CN203426505U (zh) * | 2012-12-06 | 2014-02-12 | 佑能工具株式会社 | 钻孔工具 |
TWM456238U (zh) * | 2012-12-14 | 2013-07-01 | Tct Global Ltd | 鑽頭結構 |
JP3183463U (ja) * | 2013-02-15 | 2013-05-23 | 凱▲わい▼電子股▲ふん▼有限公司 | 長溝ドリル |
JP5702431B2 (ja) * | 2013-04-25 | 2015-04-15 | ユニオンツール株式会社 | 穴明け工具 |
-
2014
- 2014-07-08 JP JP2014140814A patent/JP5873532B2/ja active Active
-
2015
- 2015-02-11 KR KR1020150020916A patent/KR101701023B1/ko active IP Right Grant
- 2015-03-06 TW TW104100277A patent/TWI577471B/zh active
- 2015-07-02 CN CN201510382962.2A patent/CN105269622B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN105269622A (zh) | 2016-01-27 |
TWI577471B (zh) | 2017-04-11 |
KR20160006100A (ko) | 2016-01-18 |
JP5873532B2 (ja) | 2016-03-01 |
CN105269622B (zh) | 2018-04-06 |
JP2016016481A (ja) | 2016-02-01 |
TW201601862A (zh) | 2016-01-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101701023B1 (ko) | 구멍 뚫기 공구 | |
JP5385976B2 (ja) | ドリル及びこのドリルを用いる被削材の切削方法 | |
KR101329881B1 (ko) | 천공 공구 | |
KR101543518B1 (ko) | 구멍 뚫기 공구 | |
US9987691B2 (en) | Drill and method of manufacturing drilled product | |
JP4505007B2 (ja) | 穴明け工具 | |
US9844819B2 (en) | Twist drill for metal machining | |
US10357832B2 (en) | Drill and method for manufacturing machined product using same | |
WO2016017500A1 (ja) | ドリルおよびそれを用いた切削加工物の製造方法 | |
JP5782497B2 (ja) | 穴明け工具の製造方法 | |
CN109963675B (zh) | 钻具装置及其制造方法 | |
TWI438047B (zh) | Drilling tools | |
KR101594659B1 (ko) | 구멍 뚫기 공구 | |
JP2020023051A (ja) | ドリル | |
JP2017164836A (ja) | ドリル | |
JP2011167781A (ja) | エンドミル刃付きスパイラルタップ | |
JP2013049116A (ja) | ドリルおよび該ドリルを用いる被削加工物の製造方法 | |
JP2000084719A (ja) | 穴明け工具 | |
JP2014054699A (ja) | 3枚刃ドリル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20191106 Year of fee payment: 4 |