KR101626698B1 - 콘덴서식 용접 장치 및 콘덴서식 용접 방법 - Google Patents

콘덴서식 용접 장치 및 콘덴서식 용접 방법 Download PDF

Info

Publication number
KR101626698B1
KR101626698B1 KR1020147024234A KR20147024234A KR101626698B1 KR 101626698 B1 KR101626698 B1 KR 101626698B1 KR 1020147024234 A KR1020147024234 A KR 1020147024234A KR 20147024234 A KR20147024234 A KR 20147024234A KR 101626698 B1 KR101626698 B1 KR 101626698B1
Authority
KR
South Korea
Prior art keywords
charging
welding
circuit
capacitor
thyristor
Prior art date
Application number
KR1020147024234A
Other languages
English (en)
Other versions
KR20140117663A (ko
Inventor
고우지 아라이
야스오 가도야
아키오 고마츠
Original Assignee
오리진 일렉트릭 캄파니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오리진 일렉트릭 캄파니 리미티드 filed Critical 오리진 일렉트릭 캄파니 리미티드
Publication of KR20140117663A publication Critical patent/KR20140117663A/ko
Application granted granted Critical
Publication of KR101626698B1 publication Critical patent/KR101626698B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/26Storage discharge welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • B23K11/245Electric supplies using a stepping counter in synchronism with the welding pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Arc Welding Control (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

충전 경로의 인덕턴스의 영향을 받지 않고 충전 회로의 제어가 확실히 행해지고, 소형화가 가능하고 전력 손실이 작은 경제적인 콘덴서식 용접 장치 및 콘덴서식 용접 방법이 제공된다.
본 발명에 따른 콘덴서식 용접 장치 및 콘덴서식 용접 방법은, 순방향 저지 기능을 가지는 바이패스용 스위치 소자가 충전 회로의 출력 단자 사이에 걸쳐 병렬로 접속되어, 충전 경로에 포함되는 1차 권선 또는 인덕터의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류를 충전 회로로부터 바이패스시키도록 바이패스용 스위치 소자를 도통시키고, 바이패스용 스위치 소자가 비도통으로 되어 순방향 저지 기능을 회복한 후에 방전용 스위치 소자를 도통시키도록 한다.

Description

콘덴서식 용접 장치 및 콘덴서식 용접 방법{CAPACITOR-TYPE WELDING DEVICE AND CAPACITOR-TYPE WELDING METHOD}
본 발명은 충전 회로에 의해서 용접용 콘덴서에 축적된 에너지를 용접용 트랜스를 통해서 단시간에 용접 전극 사이에서 방전하여 피용접물을 용접하는 콘덴서식 용접 장치 및 콘덴서식 용접 방법에 관한 것이다.
콘덴서식 용접 장치는 방전 시간에 비해 긴 시간을 들여 용접용 콘덴서에 용접 전력을 축적하고, 그것을 단시간에 일거에 방전하므로, 일반적인 교류 용접 장치에 비해, 수전(受電) 설비가 대용량화되지 않는다고 하는 설비면에서의 이점이 있다. 또, 피용접물이 가열되는 정도가 작기 때문에, 용접 위치(箇所)의 용접 자국(탐)이 거의 없고, 또 변형 등도 작다고 하는 이점을 갖기 때문에, 소형에서부터 대형까지의 산업 설비에서 채용되고 있다.
콘덴서식 용접 장치는, 일반적으로 다수의 전해(電解) 콘덴서를 병렬 접속하여 이루어진 콘덴서 뱅크를 용접용 콘덴서로서 이용하고 있다. 콘덴서식 용접 장치에 의한 용접 방법은 널리 알려져 있으므로 자세하게 설명하지 않지만, 용접 전극 사이에 피용접물을 배치한 후, 용접 전극 사이의 간격을 좁혀, 용접 전극으로 피용접물에 소정의 가압력(加壓力)을 준다. 이러한 기계적 동작을 행하면서, 병행하여 용접용 콘덴서를 충전한다.
용접용 콘덴서의 충전 전압이 소정치까지 상승하면, 충전 회로를 오프로 하여 충전 동작을 중단시키고, 용접 전극이 피용접물에 가압력을 준 상태에서, 방전용 스위치를 온 시킨다. 이와 같이 함으로써, 용접용 트랜스의 1차 권선(卷線)에는 가파르게 증대하는 펄스 모양의 전류가 흐른다. 용접용 트랜스의 2차 권선은 1턴 정도이고, 1차 권선의 권수보다도 대폭 적기 때문에, 2차 권선에는 1차측 전류보다도 대폭 큰 펄스 모양의 용접 전류가 피용접물에 흘러서 용접을 행하여, 용접 물품을 단시간에 얻을 수 있다.
일반적으로 콘덴서식 용접 장치는 용접용 트랜스를 이용하고 있고, 용접용 트랜스의 편여자(偏勵磁)를 막기 위해서, 용접용 콘덴서와 용접용 트랜스의 1차 권선을 직렬로 접속하여, 용접용 콘덴서의 충전 전류와 그것과는 역방향인 방전 전류 양쪽을 용접용 트랜스의 1차 권선에 흘리는 구성의 것이 있다. 또, 콘덴서식 용접 장치의 구성에 따라서는, 용접용 트랜스의 편여자의 문제는 별개로 하고, 충전 회로와 용접용 콘덴서의 사이에 역률(力率) 개선용 인덕터를 접속하여, 용접용 트랜스의 1차 권선을 통해서 충전 전류를 흘리지 않고, 충전 회로로부터 상기 인덕터를 통해 용접용 콘덴서에 충전 전류를 흘려서, 안정하게 고효율로 용접용 콘덴서를 충전할 수 있도록 하는 구성도 있다. 용접용 트랜스나 상기 인덕터는 용도에 알맞은 인덕턴스를 가진다. 또, 충전 전류가 충전 회로로부터 용접용 콘덴서로 흐르는 경로(이하 「충전 경로」라고 함)에는, 그 외에 충전 경로 내에 존재하는 부유(浮游) 인덕턴스도 포함된다.
용접용 콘덴서의 충전 방법 등에 따라서는, 사이리스터와 정류용 다이오드를 브릿지 접속한 단상(單相) 또는 삼상(三相)의 혼합 브릿지형 전파(全波) 정류 회로를 충전 회로로 하여, 사이리스터의 도통각(導通角)을 제어함으로써 충전 전류를 제어하는 구성도 있다(예를 들면, 특허 문헌 1 참조). 충전 회로에 사이리스터를 이용하고, 또한 전술한 충전 경로에 용접용 트랜스 또는 전술 인덕터를 구비하는 구성에 있어서는, 그러한 인덕턴스나 전술한 부유 인덕턴스(이하 「충전 경로의 인덕턴스」라고 함)에 자기 에너지가 축적된다. 이 자기 에너지에 의해서 흐르는 전류(이하 「환류(還流) 전류」라고 함)가 아래와 같은 악영향을 충전 회로에 미친다.
일반적으로 용접에 있어서는, 큰 용접 전류가 필요하게 되는 경우가 많고, 콘덴서식 용접 장치도 예외는 아니다. 충전 회로로서 혼합 브릿지형 전파 정류 회로를 이용한 고효율의 콘덴서식 용접 장치의 경우에는, 혼합 브릿지형 전파 정류 회로의 각각의 사이리스터를 위상 제어하여, 수십 사이클에서부터 수십 사이클 혹은 그 이상의 기간으로 스위칭시켜 용접용 콘덴서를 충전한다. 예를 들면, 정전류(正電流) 제어 방법의 경우에는, 용접용 콘덴서의 충전 전압이 설정치가 될 때까지, 각각의 사이리스터가 도통할 때마다 충전 회로로부터 용접용 트랜스의 1차 권선 또는 상기 인덕터를 통해 용접용 콘덴서에 거의 일정한 큰 충전 전류를 흘린다. 이때, 충전 경로의 인덕턴스에 자기 에너지가 축적된다.
이 자기 에너지에 의해서 흐르는 환류 전류는, 충전 경로와 같은 경로에서 흐르므로, 충전 전류를 흘리는 혼합 브릿지형 전파 정류 회로를 통해서 흐르게 된다. 특히 삼상의 혼합 브릿지형 전파 정류 회로에 있어서는, 순차적으로 도통 제어되는 사이리스터와 사이리스터 사이의 비도통 구간이 짧으므로, 위상 제어 신호가 고레벨에서부터 제로 레벨로 저하되더라도, 어느 사이리스터를 흐르는 상기 자기 에너지에 의한 환류 전류는 유지 전류(holding current)보다도 작아지지 않는 경우가 있다. 이 경우, 그 사이리스터는 순방향 저지 기능을 회복하는 일 없이 도통을 계속하게 된다.
특히, 콘덴서식 용접 장치에 있어서는, 전술한 것처럼 십수 사이클에서부터 수십 사이클 혹은 그 이상의 기간, 충전 전류가 용접용 트랜스 또는 상기 인덕터 등을 일정 방향으로 흐르므로, 이들 인덕턴스에 축적되는 자기 에너지가 점차 커지는 경우가 있다. 따라서 그 자기 에너지에 의한 환류 전류도 크고, 혼합 브릿지형 전파 정류 회로 중 어느 사이리스터는 비도통이 되지 못하고 계속 도통되는 경우가 있어, 충전 회로의 소망한 제어가 어려워진다.
특허 문헌 1: 일본국 특개평 05-42375호 공보
특허 문헌 1에서는, 충전 회로로서 혼합 브릿지형 전파 정류 회로를 이용한 콘덴서식 용접 장치가 기재되어 있지만, 충전 경로에 존재하는 충전 경로의 인덕턴스에 축적되는 자기 에너지에 의한 환류 전류의 영향에 대해서는 특히 기재되어 있지 않다. 따라서 충전 회로 내의 사이리스터의 제어가 행해지지 않게 되는 것이나 이것을 막는 방법 등에 대해서는 특히 기재되어 있지 않다.
여기서 본 발명은 환류 전류의 영향을 받아 충전 회로 내의 사이리스터의 제어가 행해지지 않게 되는 것을 막을 수 있고, 소형화, 저전력 손실화, 및 저비용화를 도모할 수 있는 콘덴서식 용접 장치 및 그 제어 방법을 제공하는 것을 목적으로 한다. 본 발명은 충전 회로의 직류 출력 단자 사이에 사이리스터 또는 IGBT 등과 같은 역방향 저지 기능과 제어 가능한 순방향 저지 기능의 양쪽을 가지는 바이패스용 스위치 소자를 접속한다. 충전 회로가 충전 동작을 행할 때는 상기 바이패스용 스위치 소자를 온시키고, 상기 바이패스용 스위치 소자의 순방향 저지 기능이 복귀, 즉 상기 바이패스용 스위치 소자가 비도통으로 된 상태에서 용접용 콘덴서의 충전 전하를 방전한다.
따라서 본 발명에서는 상기 바이패스용 스위치 소자가, 충전 경로의 인덕턴스에 축적된 자기 에너지에 의한 환류 전류를 충전 회로로부터 바이패스하므로, 충전 회로 내의 사이리스터의 제어가 행해지지 않게 되는 것을 막는 것이 가능해진다. 또, 용접용 콘덴서의 충전 전하의 방전시에 충전 전류에 비해 큰 방전 전류가 상기 바이패스용 스위치 소자를 흐르는 일이 없기 때문에, 충전 전류의 크기와 같은 정도의 전류 용량의 사이리스터 또는 IGBT 등을 상기 바이패스용 스위치 소자로서 이용할 수 있으므로, 소형화, 저전력 손실화, 및 저비용화를 도모할 수 있다.
상기의 과제를 해결하기 위해서, 본 발명의 콘덴서식 용접 장치는, 사이리스터와 정류용 다이오드를 브릿지 구성으로 접속해서 이루어진 혼합 브릿지형 전파 정류 회로 또는 사이리스터를 브릿지 구성으로 접속해서 이루어진 사이리스터식 전파 정류 회로를 가지고, 입력되는 교류 전력을 직류 전력으로 변환하여 출력하는 충전 회로와, 1차 권선과 2차 권선을 가지는 용접용 트랜스와, 상기 충전 회로로부터 적어도 상기 1차 권선 또는 상기 충전 회로와 상기 1차 권선의 사이에 그 1차 권선과 직렬로 접속되는 인덕터를 포함하는 충전 경로에 흐르는 충전 전류에 의해서 충전되는 용접용 콘덴서와, 상기 충전 회로로부터 상기 직류 전력이 상기 용접용 콘덴서에 공급되고 있지 않을 때에 상기 용접용 콘덴서의 충전 전하를 상기 용접용 트랜스를 통해서 방전시켜서 용접을 행하게 하는 방전용 스위치 소자와, 상기 충전 회로의 출력 단자 사이에 걸쳐 병렬로 접속되어, 상기 충전 경로에 포함되는 상기 1차 권선 또는 상기 인덕터의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류를 상기 충전 회로로부터 바이패스시키는 순방향 저지 기능을 가지는 바이패스용 스위치 소자와, 상기 환류 전류가 흐를 때에 상기 바이패스용 스위치 소자를 도통시키고, 상기 바이패스용 스위치 소자가 비도통으로 되어 상기 순방향 저지 기능을 회복한 후에 상기 방전용 스위치 소자를 도통시키도록 제어하는 제어 회로를 구비하는 것을 특징으로 한다.
또, 상기의 과제를 해결하기 위해서, 본 발명의 콘덴서식 용접 방법은, 사이리스터와 정류용 다이오드를 브릿지 구성으로 접속해서 이루어진 혼합 브릿지형 전파 정류 회로 또는 사이리스터를 브릿지 구성으로 접속해서 이루어진 사이리스터식 전파 정류 회로를 가지고, 교류 입력 전력을 직류 전력으로 변환하여 출력하는 충전 회로와, 1차 권선과 2차 권선을 가지는 용접용 트랜스와, 상기 충전 회로로부터 적어도 상기 1차 권선 또는 상기 충전 회로와 상기 1차 권선의 사이에 그 1차 권선과 직렬로 접속되는 인덕터를 포함하는 충전 경로에 흐르는 충전 전류에 의해서 충전되는 용접용 콘덴서와, 상기 충전 회로로부터 상기 직류 전력이 상기 용접용 콘덴서에 공급되고 있지 않을 때에 상기 용접용 콘덴서의 충전 전하를 상기 용접용 트랜스를 통해서 방전시켜서 용접을 행하게 하는 방전용 스위치 소자를 구비하는 콘덴서식 용접 장치에 의한 용접 방법에 있어서, 상기 충전 회로의 출력 단자 사이에 걸쳐 병렬로 접속되는 순방향 저지 기능을 가지는 바이패스용 스위치 소자를 상기 충전 경로에 포함되는 상기 1차 권선 또는 상기 인덕터의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류를 상기 충전 회로로부터 바이패스시키도록 도통시키고, 상기 바이패스용 스위치 소자가 비도통으로 되어 상기 순방향 저지 기능을 회복한 후에 상기 방전용 스위치 소자를 도통시키는 것을 특징으로 한다.
본 발명에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의하면, 환류 전류의 영향을 받아 충전 회로 내의 사이리스터의 제어가 행해지지 않게 되는 것을 막을 수 있고, 소형화, 저전력 손실화, 및 저비용화를 도모할 수 있다.
도 1은 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법을 설명하기 위한 도면이다.
도 2a는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 충전 신호와 방전 신호의 파형을 나타낸 도면이다.
도 2b는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 제1 위상 제어 신호의 파형을 나타낸 도면이다.
도 2c는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 제2 위상 제어 신호의 파형을 나타낸 도면이다.
도 2d는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 제3 위상 제어 신호의 파형을 나타낸 도면이다.
도 2e는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 제1 구동 신호의 파형을 나타낸 도면이다.
도 2f는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 제2 구동 신호의 파형을 나타낸 도면이다.
도 2g는 본 발명의 실시 형태 1에 따른 콘덴서식 용접 장치 및 그 제어 방법에 의해 생성되는 충전 전압의 파형을 나타낸 도면이다.
도 3은 본 발명의 실시 형태 2에 따른 콘덴서식 용접 장치 및 그 제어 방법을 설명하기 위한 도면이다.
본 발명에 따른 콘덴서식 용접 장치 및 콘덴서식 용접 방법은, 용접용 콘덴서의 충전중에, 충전 경로의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류가 충전 회로를 실질적으로 흐르지 않도록 바이패스로(bypass route)에 의해서 바이패스시키고, 또한 용접용 콘덴서의 충전 전하를 방전하는 경우에는, 용접용 트랜스의 1차 권선을 통해 흐르는 방전 전류가 상기 바이패스로를 흐르지 않도록 하는 것을 특징으로 한다.
첨부된 도면을 참조하여 본 발명의 실시 형태를 설명하지만, 이하에 나타내는 실시 형태에 의해서, 본 발명은 한정되는 것이 아니고, 본 발명의 기술 사상으로부터 일탈하지 않는 한, 본 발명에 포함되는 것으로 한다. 또, 본 발명에서 이용하는 용접이라고 하는 용어는, 용접 위치의 발열에 의해 양쪽의 금속이 용해되어 너깃(nugget)을 형성하는 용접만이 아니고, 용접 위치의 발열에 의해 양쪽의 금속이 소성(塑性) 유동하여 접합하는 확산 접합도 포함한다. 또한, 본 명세서 및 도면에 있어서, 부호가 같은 구성요소는 동일한 명칭의 부재를 나타내는 것으로 한다. 용접 전극 사이에 용접 전류를 흘리기 위해서 가압력(단압(鍛壓))을 주는 가압 기구나 용접 전극을 구동하는 구동 기구, 각종의 검출 회로 등, 본 발명의 동작을 설명하는데 있어서 특히 필요하지 않은 기구에 대해서는 도시를 생략한다.
[실시 형태 1]
도 1 및 도 2a 내지 도 2g에 의해서 본 발명에 따른 실시 형태 1의 콘덴서식 용접 장치 및 콘덴서식 용접 방법에 대해 설명한다. 도 1에 도시된 콘덴서식 용접 장치는, 삼상의 교류 입력 단자(1), 충전 회로(2), 충전 회로(2)의 직류 출력 단자(3과 4), 직류 출력 단자(3과 4)의 사이에 걸쳐 접속되는 바이패스용 스위치 소자(5), 1차 권선(6a)과 2차 권선(6b)을 가지는 용접용 트랜스(6), 용접용 콘덴서(7), 방전용 스위치(8), 2차 권선(6b)에 접속되는 제1 용접 전극(9)과 제2 용접 전극(10), 및 제어 회로(11)를 구비한다.
제어 회로(11)는 충전 회로(2)에 제어 신호 S1, S2, S3을 주고, 바이패스용 스위치 소자(5)에 제1 구동 신호 Sa를, 방전용 스위치(8)에 제2 구동 신호 Sb를 각각 준다. 또, 전압 검출 회로(12)는 용접용 콘덴서(7)의 충전 전압을 검출하여, 그 검출치를 제어 회로(11)에 보낸다. 또한, 도 1에서는, 용접용 콘덴서(7)에 충전되는 역전압을 방전하는 경우에 이용하는 일방향 전력 소비 회로(13)가, 용접용 콘덴서에 병렬로 접속되어 있다.
W1와 W2는, 제1 용접 전극(9)과 제2 용접 전극(10)의 사이에 배치되어, 가압된 상태에서 펄스 모양의 용접 전류가 통전(通電)됨으로써 용접되는 각종의 강재(鋼材), 또는 동이나 알루미늄과 같은 고도전성 금속 재료 등으로 이루어진 피용접물이다. 여기에서는 용접 전류가 통전하여 용접이 행해진 후의 피용접물을 용접 물품이라고 한다. 도 1에 도시된 콘덴서식 용접 장치는, 용접용 콘덴서(7)의 충전 전류와 방전 전류가 용접용 트랜스(6)의 1차 권선(6a)을 서로 역방향으로 흐르므로, 용접용 트랜스(6)가 편여자되기 어렵다고 하는 이점을 가지는 구성으로 되어 있다.
충전 회로(2)는 용접용 콘덴서(7)를 충전하기 위한 회로이며, 도 1에는, 사이리스터(2A, 2B, 2C)와 정류용 다이오드(2a, 2b, 2c)를 브릿지 구성으로 접속한 삼상 혼합 브릿지형 전파 정류 회로를 나타낸다. 충전 회로(2)는, 도시하지 않지만, 정류용 다이오드를 이용하지 않고, 사이리스터를 브릿지 구성으로 접속한 삼상 사이리스터식 전파 정류 회로여도 좋다. 또, 입력 전원이 단상 교류인 경우에는, 도시하지 않지만, 사이리스터와 정류용 다이오드를 브릿지 구성으로 한 단상 혼합 브릿지형 전파 정류 회로, 혹은 정류용 다이오드를 이용하지 않고, 사이리스터를 브릿지 구성으로 접속한 단상 사이리스터식 전파 정류 회로여도 좋다. 충전 회로(2)의 사이리스터(2A, 2B, 2C)는 제어 회로(11)로부터의 위상 제어 신호 S1, S2, S3으로 제어되어, 순차적으로 도통과 비도통을 반복한다. 여기에서는, 충전 회로(2)가 교류 입력 단자(1)의 교류 전력을 직류 전력으로 변환하여 직류 출력 단자(3과 4)의 사이에 직류 전력을 출력하여, 충전 전류를 용접용 콘덴서(7)에 흘리는 동작을 충전 동작이라고 한다.
바이패스용 스위치 소자(5)는, 캐소드측이 충전 회로(2)의 직류 출력 단자(3)에, 애노드측이 직류 출력 단자(4)에 각각 접속되고, 충전 회로(2)와 병렬로 접속된다. 바이패스용 스위치 소자(5)는, 충전 회로(2)가 충전 동작을 행할 때에는, 제어 회로(11)로부터의 제1 구동 신호 Sa로 도통되고, 후술하는 충전 경로의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류를 충전 회로(2)로부터 바이패스시키는 기능을 행한다. 또한, 용접용 콘덴서(7)에 충전된 전하를 방전하고 방전 전류를 흘릴 때는 바이패스용 스위치 소자(5)는 비도통 상태에 있도록 제어된다.
바이패스용 스위치 소자(5)는 제1 구동 신호 Sa가 고레벨에서부터 제로 레벨로 저하, 즉 제1 구동 신호 Sa가 소멸하여, 바이패스용 스위치 소자(5)를 흐르는 환류 전류가 그 유지 전류보다 감소하면 순방향 저지 기능을 회복하여 비도통이 되는 것이다. 본 발명에 따른 각 실시 형태에서는, 바이패스용 스위치 소자(5)로서 사이리스터를 이용하므로, 이하에서는 바이패스용 사이리스터(5)라고 한다. 또한, 사이리스터 외에 IGBT 또는 트랜지스터와 같은 반도체 스위치, 혹은 기계적인 스위치와 다이오드를 직렬로 접속한 구성의 일방향성 스위치 등을 바이패스용 스위치 소자(5)로서 이용할 수도 있다.
용접용 트랜스(6)의 1차 권선(6a)과 용접용 콘덴서(7)를 직렬 접속한 직렬 회로가 충전 회로(2)의 직류 출력 단자(3, 4) 사이에 병렬로 접속된다. 용접용 트랜스(6)는, 1턴 정도의 2차 권선(6b)과 이것에 비해 권수가 큰 1차 권선(6a)을 가지는 일반적인 것이면 되므로, 자세하게 설명하지 않지만, 일반적으로 용접용 트랜스는 충전 전류가 흐르는 충전 경로의 부유 인덕턴스에 비해 큰 인덕턴스를 가진다. 용접용 트랜스(6)의 2차 권선(6b)의 양단에는, 제1, 제2 용접 전극(9, 10)이 각각 접속된다. 제1, 제2 용접 전극(9, 10)은 일반적인 것이어도 되므로 설명을 생략한다. 용접용 콘덴서(7)는 예를 들면, 복수의 유극성(有極性)의 전해 콘덴서를 병렬로 접속한 블록이나 이들 블록을 복수 개 병렬로 접속한 콘덴서 뱅크, 또는 무극성(양극성)의, 예를 들면 폴리프로필렌 필름 콘덴서를 복수 개 병렬로 접속한 블록이나 이들 블록을 복수 개 병렬로 접속한 콘덴서 뱅크 등이다.
방전용 스위치(8)는, 용접용 트랜스(6)의 1차 권선(6a)과 용접용 콘덴서(7)를 직렬 접속해서 이루어진 직렬 회로에 병렬로 접속되어, 방전용 스위치(8)가 온 될 때 용접용 콘덴서(7)의 충전 전하를 단시간에 방전하는 방전 회로가 형성된다. 본 발명에 따른 각 실시 형태에서는, 방전용 스위치(8)로서 사이리스터를 이용하므로, 이하의 설명에서는, 방전용 스위치를 방전용 사이리스터(8)로서 설명한다. 또, 방전용 사이리스터(8)는 애노드측이 충전 회로(2)의 한쪽 직류 출력 단자(3)에, 캐소드측이 다른 쪽 직류 출력 단자(4)에 각각 접속된다. 충전 회로(2)가 용접용 콘덴서(7)를 충전하는 기간에서는 방전용 사이리스터(8)는 비도통 상태로 한다.
제어 회로(11)는 시퀀서(11A)와 위상 제어 신호 생성 회로(11B)와 구동 회로(11C) 등으로 이루어진다. 시퀀서(11A)는 도 2a에 도시된 바와 같이 미리 결정된 시간폭의 충전 신호 X와 방전 신호 Y를 생성한다. 위상 제어 신호 생성 회로(11B)는, 시퀀서(11A)로부터 충전 신호 X를 받음과 아울러, 용접용 콘덴서(7)의 충전 전압의 값에 상응하는 값인 검출 전압 신호 Vc를 전압 검출 회로(12)로부터 받아 동작하여, 도 2b, 도 2c, 도 2d에 도시된 것과 같은 위상 제어 신호 S1, S2, S3을 생성한다. 위상 제어 신호 S1, S2, S3은 각각 충전 회로(2)의 사이리스터(2A, 2B, 2C)의 게이트에 주어진다. 구동 회로(11C)는 시퀀서(11A)로부터 충전 신호 X와 방전 신호 Y를 받아, 충전 신호 X에 동기한 도 2e에 도시된 제1 구동 신호 Sa를 바이패스용 스위치 소자(5)의 게이트에 주고, 방전 신호 Y에 동기한 도 2f에 도시된 제2 구동 신호 Sb를 방전용 스위치(8)의 게이트에 준다.
방전 신호와 다음 방전 신호 사이의 시간 간격은, 전의 방전 신호, 즉 용접의 종료 후부터 용접 물품을 제1 용접 전극(9)과 제2 용접 전극(10)으로부터 분리한 후, 새롭게 용접하는 피용접물 W1와 W2를 제1 용접 전극(9)과 제2 용접 전극(10)의 사이에 설치하여 소망한 위치 맞춤을 종료할 때까지의 시간과 거의 같다. 실제의 용접에 있어서는, 용접용 콘덴서(7)를 설정 전압치까지 충전하는데 필요로 하는 충전 시간에 비해 피용접물 W1와 W2를 제1 용접 전극(9)과 제2 용접 전극(10)의 사이에 설치하여 소망한 위치 맞춤을 하는데 상당한 시간을 필요로 하는 경우가 있다. 이러한 경우에는, 충전 회로(2)의 충전 개시 시각에 따라서는 용접용 콘덴서(7)의 충전 전압이 자연 방전에 의해 저하하는 일이 있어, 보충전(補充電)이 필요하게 되는 케이스가 있다. 실시 형태 1에서는 보충전을 행하는 것을 전제로 충전 신호 X의 시간폭이 결정되어 있다.
충전 신호 X와 동기하여 바이패스용 사이리스터(5)의 게이트에 주어지는 제1 구동 신호 Sa가 제로 레벨로 되어, 바이패스용 스위치 소자(5)를 흐르는 환류 전류가 그 유지 전류보다도 감소하면 바이패스용 사이리스터(5)가 비도통이 된다. 이 때문에, 충전 신호 X의 종료 후는, 바이패스용 사이리스터(5)의 순방향 저지 기능을 회복하는 시간을 고려할 필요가 있다. 도 2a 내지 도 2g에 도시된 바와 같이, 예를 들면, 방전 신호 Y를 생성시키는 시각 t5보다도 수백 밀리초 정도 전의 시각 t4에 충전 신호 X를 종료한다. 즉, 제어 회로(11)는 용접용 콘덴서(7)의 전하를 방전할 때에 흐르는 방전 전류가 실질적으로 바이패스용 사이리스터(5)를 흐르지 않도록, 바이패스용 사이리스터(5)의 비도통 기간을 제어한다.
도 1에 도시된 바와 같이, 일방향 전력 소비 회로(13)의 일례로서, 충전 전류를 흘리지 않는 방향의 다이오드(13A)와 저항기(13B)의 직렬 회로가 용접용 콘덴서(7)와 병렬로 접속된다. 충전 회로(2)의 충전 동작에 의해서 용접용 콘덴서(7)에 충전된 충전 전하는, 방전용 사이리스터(8)를 도통시킴으로써 용접용 트랜스(6)의 1차 권선(6a) 및 방전용 사이리스터(8)를 통해 방전된다. 이때, 용접용 콘덴서(7)의 캐패시턴스와 용접용 트랜스(6)의 1차 권선(6a)의 인덕턴스 등을 포함하는 방전 경로의 인덕턴스로 공진(共振)이 행해지고, 공진의 반주기(半周期) 후에는 용접용 콘덴서(7)의 전압은 극성이 반전된다.
이 극성 반전된 전하(이하 「잔류(殘留) 전하」라고 함)는, 충전 회로(2)의 직류 출력 단자(4)측을 양(positive), 직류 출력 단자(3)측을 음(nagative)으로 하는 극성이 된다. 이 잔류 전하는, 일방향 전력 소비 회로(13)에 의해 소비된다. 이와 같이, 일방향 전력 소비 회로(13)에 의해서 용접용 콘덴서(7)의 잔류 전하를 소비시켰을 경우는, 다음에 용접용 콘덴서(7)의 충전이 개시될 때, 용접용 콘덴서(7)의 전압을 충분히 낮은 값으로 할 수 있다. 또, 일방향 전력 소비 회로(13)가 용접용 콘덴서(7)의 잔류 전하를 소비시켰을 경우는, 다음에 충전 회로(2), 바이패스용 스위치 소자(5)가 도통할 때의 잔류 전하의 방전 전류가 실질적으로 충전 회로(2), 바이패스용 스위치 소자(5)를 흐르지 않도록 할 수 있다.
다음으로, 도 1 및 도 2a 내지 도 2g를 이용하여 실시 형태 1의 콘덴서식 용접 장치의 동작을 설명한다. 도시하지 않은 용접 개시 버튼을 프레스함으로써, 도 2g에 도시된 바와 같이, 시각 t1에서 제어 회로(11)의 시퀀서(11A)가 전술한 것 같은 충전 신호 X를 위상 제어 신호 생성 회로(11B)와 구동 회로(11C)에 공급하기 시작한다. 위상 제어 신호 생성 회로(11B) 및 구동 회로(11C)는 충전 신호 X를 받으면, 각각 동작을 개시한다. 실시 형태 1에서는, 위상 제어 신호 생성 회로(11B)는 용접용 콘덴서(7)를 충전하는 충전 전류가 거의 일정한 값이 되도록 제어되는 도통각의 위상 제어 신호 S1, S2, S3을 충전 회로(2)의 사이리스터(2A, 2B, 2C)의 게이트에 준다. 사이리스터(2A, 2B, 2C)가 위상 제어 신호 S1, S2, S3에 의해서 순차적으로 도통과 비도통을 반복함으로써, 충전 회로(2)는 충전 동작을 행하여, 거의 일정한 충전 전류를 용접용 콘덴서(7)에 흘려서 이것을 정전류 충전한다. 또한, 사이리스터(2A, 2B, 2C)의 제어 방법은 종래와 마찬가지의 것이어도 좋으며, 본 발명은 제어 방법이 한정되는 것은 아니다.
한편으로는, 구동 회로(11C)가 충전 신호 X를 받으면 즉시 제1 구동 신호 Sa를 바이패스용 사이리스터(5)에 주어, 바이패스용 사이리스터(5)를 도통 가능한 상태로 되게 한다. 충전 회로(2)가 충전 동작을 행하고 있을 때는, 바이패스용 사이리스터(5)를 도통 가능한 상태로 해 두는 것이 바람직하다. 이와 같이 바이패스용 사이리스터(5)를 도통 가능한 상태로 해 둠으로써, 환류 전류가 흐를 때 확실히 바이패스용 사이리스터(5)를 도통시킬 수 있다. 충전 회로(2)로부터 출력되는 충전 전류는, 직류 출력 단자(3), 용접용 트랜스(6)의 1차 권선(6a), 용접용 콘덴서(7) 및 직류 출력 단자(4)를 통해 흘러, 용접용 콘덴서(7)를 충전한다.
전술한 것처럼, 충전 경로에는, 용접용 트랜스(6)가 가지는 인덕턴스나 부유 인덕턴스 등으로 이루어진 충전 경로의 인덕턴스가 존재하므로, 충전 회로(2)의 사이리스터(2A, 2B, 2C)가 각 사이클에서 도통하여 충전 전류가 1차 권선(6a)을 흐를 때마다 충전 경로의 인덕턴스에 자기 에너지가 축적된다. 이 자기 에너지는, 충전 회로(2)의 사이리스터(2A, 2B, 2C)의 각 사이클의 비도통 구간에 용접용 콘덴서(7)및 바이패스용 사이리스터(5)를 통해 방출되어, 환류 전류가 흐른다.
바이패스용 사이리스터(5)의 순방향 전압 강하는, 충전 경로를 형성할 때에 도통하는 충전 회로(2)의 사이리스터의 순방향 전압 강하와 다이오드의 순방향 전압 강하, 예를 들면 사이리스터(2A)의 순방향 전압 강하와 정류용 다이오드(2b 또는 2c)의 순방향 전압 강하의 합보다도 작다. 따라서 환류 전류는, 순방향 전압 강하가 작은, 즉 임피던스가 낮은 바이패스용 사이리스터(5)를 실질적으로 흘러 충전 회로(2)를 바이패스한다. 이것에 의해서, 위상 제어 신호 S1, S2, S3가 고레벨에서부터 제로 레벨로 저하한 후에, 충전 회로(2)의 사이리스터(2A, 2B, 2C)를 통류하는 전류가 그러한 유지 전류보다도 저하하므로, 사이리스터(2A, 2B, 2C)는 비도통이 된다.
여기서, 예를 들면 바이패스용 사이리스터(5)가 접속되어 있지 않은 경우에는 하기와 같은 문제가 일어날 가능성이 있다. 충전 초기에는, 충전용 콘덴서(7)의 충전 전압이 낮고, 피크치가 큰 충전 전류가 흐르기 때문에, 각 사이클에서 사이리스터(2A, 2B, 2C)의 도통각이 작고, 비도통 구간은 길어지도록 제어된다. 따라서 충전 경로의 인덕턴스가 비교적 작고, 자기 에너지가 비교적 작은 경우에는, 다음에 도통되는 사이리스터가 도통되기 전에, 지금까지 도통하고 있던 사이리스터가 자기 에너지의 방출을 끝낸 후에 비도통이 되면 제어상 특히 문제가 일어나지 않게 된다.
그러나 충전용 콘덴서(7)의 충전이 진행되면, 충전 전류를 일정하게 유지하기 위해서 사이리스터(2A, 2B, 2C)의 도통각은 커지게 된다. 즉 위상 제어 신호 S1, S2, S3의 펄스폭이 커지게 되고, 각 사이클에서 사이리스터(2A, 2B, 2C)의 비도통 구간이 짧아진다. 비도통 구간이 짧아지면, 지금까지 도통하고 있던 사이리스터에 유지 전류보다도 큰 환류 전류가 통류하고 있는 상태, 즉 전의 사이리스터가 아직 비도통으로 되지 않은 상태에서, 다음 사이리스터가 도통하게 된다. 이 경우, 전의 사이리스터를 흐르는 전류가 유지 전류보다도 감소하지 않기 때문에, 전의 사이리스터는 도통을 계속하여 제어 불능이 된다.
여기서, 충전 경로의 인덕턴스에 축적되는 자기 에너지에 의한 환류 전류의 영향을 저감시키는 방법으로서, 충전 회로의 출력 단자 사이에 바이패스용 다이오드를 병렬로 접속하는 경우, 즉, 도 1에 있어서, 바이패스용 사이리스터(5) 대신에 바이패스용 다이오드를 접속하는 구성을 생각할 수 있다. 충전 회로의 출력 단자 사이에 바이패스용 다이오드를 병렬로 접속함으로써, 충전 경로의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류를 바이패스용 다이오드로 바이패스 할 수 있다. 이와 같이 상기 자기 에너지에 의해서 흐르는 환류 전류를 다이오드로 바이패스하면, 환류 전류는 충전 회로의 사이리스터를 통해 실질적으로 흐르지 않으므로, 사이리스터를 위상 제어하는 위상 제어 신호가 고레벨에서부터 제로 레벨로 저하할 때는 사이리스터가 비도통으로 되어, 혼합 브릿지형 전파 정류 회로 등을 제어하는 것이 가능해진다.
그러나 콘덴서식 용접 장치에 있어서는, 용접용 콘덴서의 충전 전하를 단시간에 방전하므로 충전 전류에 비해 큰 펄스 모양의 방전 전류를 용접용 트랜스의 1차 권선에 통전시키는 공정이 필수가 된다. 전술한 것처럼, 충전 회로의 출력 단자 사이에 바이패스용 다이오드를 병렬로 접속하면, 환류 전류를 충전 회로에 흘리지 않고 바이패스용 다이오드로 바이패스할 수 있다. 그러나 바이패스용 다이오드는 순방향 저지 기능을 가지지 않기 때문에, 충전 회로(2)의 직류 출력 단자(4)를 양, 직류 출력 단자(3)을 음으로 하는 극성의 잔류 전하는, 그 대부분이 임피던스가 큰 일방향 전력 소비 회로(13)보다도 임피던스가 작은 바이패스용 다이오드를 통해 방전되게 된다.
따라서 용접시에 용접용 콘덴서(7)의 잔류 전하의 방전에 의한 큰 방전 전류가 바이패스용 다이오드를 통류한다고 하는 다른 폐해가 생긴다. 이 경우에는, 큰 방전 전류를 통류시킬 수 있는 대전류 용량의 다이오드를 이용할 필요가 있고, 이것에 따라서 그 방열을 행하는 큰 방열 기구가 필요해지기 때문에, 경제성이 떨어질 뿐만 아니라 장치가 대형화되고, 또, 환경면에서도 바람직하지 않다고 하는 문제 등이 생긴다.
그러나 본 발명에서는, 충전 회로(2)의 직류 출력 단자(3과 4)의 사이에 병렬로, 충전 회로(2)의 양단의 순방향 전압 강하보다도 작은 순방향 전압 강하를 나타내는 바이패스용 사이리스터(5)를 접속하여 바이패스로를 형성하고 있다. 따라서, 충전 경로의 인덕턴스에 축적된 자기 에너지의 방출에 의한 환류 전류는 바이패스용 사이리스터(5)를 흐른다. 바이패스용 사이리스터(5)가 도통되고 있을 때는, 충전 회로(2)의 양단에는 바이패스용 사이리스터(5)의 순방향 전압 강하와 같은 전압이 인가되게 된다. 이것에 의해서, 위상 제어 신호 S1, S2, S3가 제로 레벨로 저하되면, 충전 회로(2)의 사이리스터(2A, 2B, 2C)를 흐르는 전류는 유지 전류 이하로 감소하므로, 확실히 비도통으로 되게 할 수 있다. 또, 용접시에 바이패스용 사이리스터(5)를 비도통이 되도록 동작시키므로, 용접용 콘덴서(7)의 잔류 전하에 의한 큰 방전 전류를 흘리지 않도록 할 수 있다.
다음으로, 상술한 보충전을 행하는 충전 동작에 대해 자세하게 설명한다. 충전 회로(2)는 제어된 충전 전류를 용접용 콘덴서(7)에 흘려, 도 2g의 시각 t2에서 용접용 콘덴서(7)의 충전 전압이 소망한 용접을 행하는데 필요한 전압을 나타내는 제1 설정 전압 V1에 이르는 것으로 한다. 전압 검출 회로(12)는, 시각 t2에서 제1 설정 전압 V1에 대응하는 제1 검출 설정 전압과 같은 검출 전압 Vc를 제어 회로(11)의 위상 제어 신호 생성 회로(11B)에 입력하고, 위상 제어 신호 생성 회로(11B)는 위상 제어 신호 S1, S2, S3을 출력하는 것을 중단한다. 이것에 따라서 충전 회로(2)는 충전 동작을 중단하므로, 정전류 제어에 의한 용접용 콘덴서(7)의 주충전(主充電)은 종료하게 된다.
이 상태는 유지되지만, 일반적으로 용접용 콘덴서(7)의 충전 전압은 자연 방전에 의해서 시간의 경과에 따라서 서서히 저하된다. 시각 t3에서 용접용 콘덴서(7)의 충전 전압이 제1 설정 전압 V1보다도 소정의 값만큼 작은 제2 설정 전압 V2까지 저하되면, 전압 검출 회로(12)가 제2 설정 전압 V2에 대응하는 전압 검출 신호 Vc를 위상 제어 신호 생성 회로(11B)에 출력한다. 이것에 따라서, 위상 제어 신호 생성 회로(11B)는 다시 위상 제어 신호 S1, S2, S3을 사이리스터(2A, 2B, 2C)에 공급하고, 충전 회로(2)는 보충전을 개시한다. 보충전일 때의 위상 제어 신호 S1, S2, S3은 미리 결정한 일정 폭의 제어 신호여도 좋다.
충전 회로(2)의 보충전 동작에 의해서, 용접용 콘덴서(7)의 충전 전압이 다시 제1 설정 전압 V1이 되면, 위상 제어 신호 생성 회로(11B)는 위상 제어 신호 S1, S2, S3을 생성하는 것을 멈추고, 보충전 동작을 정지한다. 다음으로, 시각 t4에서 충전 신호 X가 종료되고, 이것과 동시에 구동 회로(11C)는 제1 구동 신호 Sa를 출력하는 것을 멈춘다. 제1 구동 신호 Sa는 충전 신호 X의 상승과 함께 상승하고, 충전 신호 X의 하강과 함께 하강하는, 즉 충전 신호 X와 동기한다.
보충전 기간의 충전 동작에 의해서 충전 경로의 인덕턴스에 자기 에너지가 축적된 경우도, 도 2e의 제1 구동 신호 Sa는, 충전 신호 X가 종료되는 시각 t4까지 고레벨이므로, 상술한 환류 전류가 흐를 때 바이패스용 사이리스터(5)는 도통된다. 따라서 보충전 기간에 충전 경로의 인덕턴스에 축적된 자기 에너지에 의한 환류 전류도 바이패스용 사이리스터(5)를 통해 흐른다. 바이패스용 사이리스터(5)는, 흐르는 환류 전류가 바이패스용 사이리스터(5)의 유지 전류보다도 저하되면, 비도통이 된다.
상술한 바와 같이 바이패스용 사이리스터(5)가 비도통, 즉 순방향 저지 기능을 회복한 후의 시각 t5에서, 구동 회로(11C)는 시퀀서(11A)로부터 방전 신호 Y를 받아 제2 구동 신호 Sb를 방전용 사이리스터(8)의 게이트에 인가한다. 제2 구동 신호 Sb가 주어짐으로써 방전용 사이리스터(8)가 도통되면, 용접용 콘덴서(7)에 충전되어 있던 충전 전하는 용접용 트랜스(6)의 1차 권선(6a) 및 방전용 사이리스터(8)를 통해 방전된다. 이것에 따라서 용접용 트랜스(6)의 2차 권선(6b)으로부터 큰 펄스 모양의 용접 전류가 피용접물 W1, W2를 흘러, 용접이 행해진다. 이때, 용접용 콘덴서(7)의 캐패시턴스와 충전 경로의 인덕턴스에서 공진이 행해진다. 또한, 공진의 반주기 후에는 용접용 콘덴서(7)의 전하는 극성이 반전되어, 전술한 것처럼 충전 회로(2)의 직류 출력 단자(3)측이 음의 극성으로, 직류 출력 단자(4)측이 양의 극성이 되는 잔류 전하가 용접용 콘덴서(7)에 축적되지만, 전술한 것처럼 일방향 전력 소비 회로(13)를 이용함으로써, 잔류 전하를 방출시켜 전력을 소비시킬 수 있다.
시각 t5에서는, 사이리스터(2A, 2B, 2C) 및 바이패스용 사이리스터(5)는 모두 비도통 상태에 있어, 위상 제어 신호 S1, S2, S3 및 제1 구동 신호 Sa가 생성되고 있지 않았기 때문에, 사이리스터(2A, 2B, 2C)도 바이패스용 사이리스터(5)도 도통되는 일은 없다. 따라서 용접시에 큰 전류가 바이패스용 사이리스터(5)를 흐를 일은 없고, 물론, 충전 회로(2)를 흐를 일도 없기 때문에, 용접시에 1차 권선(6a)을 흐르는 방전 전류보다도 작은 전류 용량, 예를 들면 충전 전류 정도의 전류 용량의 사이리스터를 바이패스용 사이리스터(5)로서 이용할 수 있다. 상술한 바와 같이, 환류 전류가 흐를 때 바이패스용 사이리스터(5)를 도통시켜, 바이패스용 스위치 소자(5)가 비도통이 되어서 순방향 저지 기능을 회복한 후에 방전용 사이리스터(8)를 도통시키도록 한다. 전류 용량이 작은 바이패스용 사이리스터(5)에 의해서, 환류 전류를 충전 회로(2)로부터 바이패스하여, 충전 회로(2)의 충전 동작 중에 사이리스터의 제어가 불가능하게 된다고 하는, 환류 전류에 기인하는 문제를 해결할 수 있다.
[실시 형태 2]
다음으로, 도 3을 이용하여, 본 발명의 실시 형태 2에 따른 콘덴서식 용접 장치 및 콘덴서식 용접 방법을 설명한다. 실시 형태 2에서, 실시 형태 1과 다른 회로 구성의 주된 점은, 충전 회로(2)와 용접용 콘덴서(7)의 사이에 충전 효율을 향상시키기 위해서 역률 개선용 인덕터(14)를 접속함과 아울러, 용접용 트랜스(6)의 1차 권선(6a)과 직렬로 방전용 스위치(8)를 접속하고, 1차 권선(6a)과 방전용 스위치(8)의 직렬 회로와 병렬로 용접용 콘덴서(7)를 병렬로 접속한 구성에 있다.
바이패스용 사이리스터(5)는, 실시 형태 1과 마찬가지로 캐소드측이 충전 회로(2)의 직류 출력 단자(3)에, 애노드측이 직류 출력 단자(4)에 각각 접속되고, 충전 회로(2)와 병렬로 접속되어 있다. 또, 실시 형태 1과 마찬가지로 방전용 스위치(8)로서 방전용 사이리스터를 이용하고 있다. 또한, 용접용 콘덴서(7)의 전술한 잔류 전하를 방전시키기 위한 일방향 전력 소비 회로(13)를 이용하는 경우는, 실시 형태 1과 마찬가지로 용접용 콘덴서(7)에 병렬로 접속시킨다.
실시 형태 1의 충전 회로(2)와 마찬가지인 회로 구성의 충전 회로(2)가, 위상 제어 신호 생성 회로(11B)로부터의 위상 제어 신호 S1, S2, S3에 의해서 충전 동작을 개시하면, 충전 전류는 충전 회로(2)의 한쪽 직류 출력 단자(3)로부터 인덕터(14), 용접용 콘덴서(7)를 통해 다른 쪽 직류 출력 단자(4)를 통해 흘러, 용접용 콘덴서(7)를 충전한다. 실시 형태 1과는 다르게, 충전 전류가 용접용 트랜스(6)의 1차 권선(6a)을 흐르지 않는다.
이때, 실시 형태 1과 마찬가지로 시퀀서(11A)로부터의 충전 신호 X에 기초하여, 위상 제어 신호 생성 회로(11B)가 위상 제어 신호 S1, S2, S3을 충전 회로(2)에 준다. 이것과 거의 동시에, 구동 회로(11C)가 제1 구동 신호 Sa를 바이패스용 사이리스터(5)의 게이트에 인가하여, 바이패스용 사이리스터(5)를 도통시켜, 적어도 충전 회로(2)가 충전 동작을 행하는 기간에서는 도통 가능한 상태로 유지된다. 또, 바이패스용 사이리스터(5)는 방전용 사이리스터(8)가 도통되기 전에, 확실히 비도통, 즉 순방향 저지 기능이 회복되어 있다.
실시 형태 2에서는, 인덕터(14)의 인덕턴스 및 충전 전류가 흐르는 충전 경로의 부유 인덕턴스 등으로 이루어진 충전 경로의 인덕턴스가 존재한다. 전술한 것처럼, 충전 회로(2)의 사이리스터(2A, 2B, 2C)는 위상 제어 신호 S1, S2, S3가 순차적으로 인가될 때마다 도통과 비도통을 반복하여, 사이리스터(2A, 2B, 2C)가 순차적으로 도통되는 각 사이클에서 전류가 흐르고, 충전 전류는 직류 전류가 된다. 이때, 위상 제어 신호 S1, S2, S3에 의해서 사이리스터(2A, 2B, 2C)가 도통되는 각 구간에서 충전 경로의 인덕턴스에 자기 에너지가 축적된다.
용접용 콘덴서(7)의 충전시에는, 제어 회로(11)가 충전 회로(2)의 사이리스터(2A, 2B, 2C), 및 바이패스용 사이리스터(5)를 실시 형태 1과 마찬가지로 제어한다. 환류 전류는, 충전 회로(2)의 순방향 전압 강하보다도 작은 순방향 전압 강하를 나타내는 바이패스용 사이리스터(5)를 흘러, 환류 전류가 사이리스터(2A, 2B, 2C)에 유입하는 것을 방지할 수 있다. 이 바이패스용 사이리스터(5)가 도통되어 있는 동안은, 충전 회로(2)의 직류 출력 단자(4와 3) 사이의 전압은, 직류 출력 단자(4)가 양이고 직류 출력 단자(3)가 음으로 하는 극성이며, 바이패스용 사이리스터(5)의 순방향 전압 강하와 같은 전압으로 유지된다. 바이패스용 사이리스터(5)를 이용함으로써, 위상 제어 신호 S1, S2, S3가 제로 레벨로 강하된 후에 사이리스터(2A, 2B, 2C)를 흐르는 전류는 유지 전류보다도 감소된다. 따라서 사이리스터(2A, 2B, 2C)는 확실히 비도통이 되어, 충전 회로(2) 내의 사이리스터의 제어가 행해지지 않게 되는 것을 막을 수 있다.
다음으로 시퀀서(11A)로부터의 방전 신호에 기초하여, 구동 회로(11C)가 제2 구동 신호 Sb를 방전용 사이리스터(8)의 게이트에 인가하여, 방전용 사이리스터(8)를 도통시켜, 용접용 콘덴서(7)의 충전 전하를 용접용 트랜스(6)의 1차 권선(6a)을 통해 방전하여, 용접을 행한다. 이때, 용접용 콘덴서(7)의 캐패시턴스와 충전 경로의 인덕턴스의 공진이 행해져서, 전술한 것처럼 용접용 콘덴서(7)는 역극성으로 충전되어 그 전압은 반전되며, 직류 출력 단자(3)에 대해서 직류 출력 단자(4)측이 양극성이 되는 잔류 전하가 축적된다. 이 잔류 전하는 상기 충전 전하에 비해 작다.
이 용접용 콘덴서(7)의 캐패시턴스와 용접용 트랜스(6)의 1차 권선(6a)의 인덕턴스 등에 의한 공진에 의해, 방전용 사이리스터(8)는 순방향과 역극성의 전압이 인가되므로 즉시 비도통이 된다. 또한, 일방향 전력 소비 회로(13)를 용접용 콘덴서(7)에 병렬로 접속하면, 상술한 바와 같이 일방향 전력 소비 회로(13)에 의해서 잔류 전하를 방전하여 소비시킬 수 있다. 또, 용접시에는, 이미 사이리스터(2A, 2B, 2C) 및 바이패스용 사이리스터(5)는 순방향 저지 기능을 회복한 상태에 있으므로, 용접용 콘덴서(7)의 잔류 전하에 의한 전류가 사이리스터(2A, 2B, 2C) 및 바이패스용 사이리스터(5)를 순방향으로 흐를 일은 없다.
따라서 실시 형태 2의 콘덴서식 용접 장치도, 바이패스용 사이리스터(5)에 용접용 콘덴서(7)의 잔류 전하에 의한 큰 전류가 흐르지 않으므로, 방전 전류에 비해 작은 전류 용량의 사이리스터를 바이패스용 사이리스터(5)로서 이용할 수 있다. 또, 충전 회로(2)의 충전 동작 중에 환류 전류를 충전 회로(2)로부터 바이패스시키므로, 환류 전류에 의해서 충전 회로(2)의 사이리스터의 제어가 불가능하게 된다고 하는 문제를 해결할 수 있다.
상기의 실시 형태에 있어서, 바이패스용 사이리스터(5)의 게이트에 주어지는 제1 구동 신호 Sa는, 도 2e에 도시된 바와 같이, 충전 신호 X에 동기한 충전 개시시의 시각 t1에서부터 시각 t4까지가 연속한 신호로 했지만, 적어도 상술한 환류 전류가 흐를 때 바이패스용 사이리스터(5)를 확실히 도통시킬 수 있는 신호이면 된다. 상술한 보충전을 행하는 충전 동작에 대해서도 마찬가지이다.
또, 상기의 실시 형태에서는, 충전 회로(2)의 사이리스터(2A, 2B, 2C)를 정전류 제어했지만, 예를 들면, 충전 초기에는 큰 돌입 전류가 흐르지 않도록 사이리스터(2A, 2B, 2C)의 도통각을 작은 도통각에서부터 서서히 증가시켜, 용접용 콘덴서(7)의 충전 전압이 소정의 값에 이르면 일정한 도통각으로 제어하는 방법이어도 된다. 또한, 상기의 실시 형태에 있어서, 충전 회로의 충전 개시 시각에 따라서는 용접용 콘덴서의 충전 전압이 자연 방전에 의해 저하됨으로써 보충전이 필요하게 되는 케이스에 대해 언급했지만, 용접용 콘덴서(7)의 충전 전압의 전압 저하분이 적은 경우 등은 보충전을 행하지 않아도 된다. 또는, 용접용 콘덴서(7)의 충전 전압이 자연 방전에 의해서 저하할 것을 전망하고, 그만큼 미리 설정 전압 V1(도 2)을 높게 설정함으로써, 보충전을 행하지 않도록 해도 된다.
본 발명의 콘덴서식 용접기 및 그 충전 방법에 있어서의 각 부의 구성, 구조, 수, 배치, 형상, 재질 등에 관해서는, 상기 구체적인 예로 한정되지 않고, 당업자가 적당히 선택적으로 채용한 것도 본 발명의 범위에 포함된다. 보다 구체적으로는, 예를 들면, 반도체 스위치로서 사이리스터의 기호에 의해 예시된 것 등은, 이들 특정의 전기 소자로는 한정되지 않고, 마찬가지의 기능 또는 작용을 가지는 단일의 전기 소자 혹은 복수의 전기 소자를 포함하는 전기 회로로서 구성할 수 있고, 이러한 모든 변형은, 본 발명의 범위에 포함된다. 마찬가지로, 회로의 구체적인 구성이나, 다이오드, 저항, 스위칭 소자를 비롯한 각 회로 소자의 수나 배치 관계 등에 대해서도, 당업자가 적당히 설계 변경한 것은 본 발명의 범위에 포함된다.
1: 교류 입력 단자, 2: 충전 회로,
2A, 2B, 2C: 사이리스터, 2a, 2b, 2c: 정류용 다이오드,
3, 4: 충전 회로의 직류 출력 단자,
5: 바이패스용 스위치 소자(바이패스용 사이리스터),
6: 용접용 트랜스, 6a: 용접용 트랜스(6)의 1차 코일,
6b: 용접용 트랜스(6)의 2차 코일, 7: 용접용 콘덴서,
8: 방전용 스위치(방전용 사이리스터),
9: 제1 용접 전극, 10: 제2 용접 전극,
11: 제어 회로, 11A: 시퀀서,
11B: 위상 제어 신호 생성 회로, 11C: 구동 회로,
12: 전압 검출 회로, 13: 일방향 전력 소비 회로,
13A: 다이오드, 13B: 저항기,
14: 인덕터, W1, W2: 피용접물,
X: 충전 신호, Y: 방전 신호,
S1, S2, S3: 위상 제어 신호, Sa: 제1 구동 신호,
Sb: 제2 구동 신호,
V1: 용접용 콘덴서(7)의 제1 설정 전압,
V2: 용접용 콘덴서(7)의 제2 설정 전압(보충전 개시 전압),
Vc: 용접용 콘덴서(7)의 충전 전압의 검출 전압

Claims (17)

  1. 사이리스터와 정류용 다이오드를 브릿지 구성으로 접속해서 이루어진 혼합 브릿지형 전파(全波) 정류 회로 또는 사이리스터를 브릿지 구성으로 접속해서 이루어진 사이리스터식 전파 정류 회로를 가지고, 입력되는 교류 전력을 직류 전력으로 변환하여 출력하는 충전 회로와,
    1차 권선과 2차 권선을 가지는 용접용 트랜스와,
    상기 충전 회로로부터 적어도 상기 1차 권선 또는 상기 충전 회로와 상기 1차 권선의 사이에 그 1차 권선과 직렬로 접속되는 인덕터를 포함하는 충전 경로에 흐르는 충전 전류에 의해서 충전되는 용접용 콘덴서와,
    상기 충전 회로로부터 상기 직류 전력이 상기 용접용 콘덴서에 공급되고 있지 않을 때에 상기 용접용 콘덴서의 충전 전하를 상기 용접용 트랜스를 통해서 방전시켜서 용접을 행하게 하는 방전용 스위치 소자와,
    상기 충전 회로의 출력 단자 사이에 걸쳐 병렬로 접속되어, 상기 충전 경로에 포함되는 상기 1차 권선 또는 상기 인덕터의 인덕턴스에 축적되는 자기(磁氣) 에너지에 의해서 흐르는 환류(還流) 전류를 상기 충전 회로로부터 바이패스시키는 순방향 저지 기능을 가지는 바이패스용 스위치 소자와,
    상기 환류 전류가 흐를 때 상기 바이패스용 스위치 소자를 도통시키고, 상기 바이패스용 스위치 소자가 비도통으로 되어서 상기 순방향 저지 기능을 회복한 후에 상기 방전용 스위치 소자를 도통시키도록 제어하는 제어 회로를 구비하는 것을 특징으로 하는 콘덴서식 용접 장치.
  2. 청구항 1에 있어서,
    상기 제어 회로는, 미리 결정된 시간폭의 충전 신호를 생성함과 아울러 상기 충전 신호가 종료된 후에 방전 신호를 생성하는 시퀀서를 구비하고, 상기 충전 신호가 생성되고 있는 기간에 상기 충전 회로의 상기 사이리스터에 제어 신호를 주어 충전 동작을 하게 함과 아울러, 상기 충전 신호에 동기하는 제1 구동 신호를 상기 바이패스용 스위치 소자에 주어 도통 가능한 상태로 되게 하고, 추가로 상기 방전 신호에 동기하여 상기 방전용 스위치 소자에 제2 구동 신호를 주어 상기 방전용 스위치 소자를 도통시키는 것을 특징으로 하는 콘덴서식 용접 장치.
  3. 청구항 2에 있어서,
    상기 용접용 콘덴서의 충전 전압을 검출하여 검출 전압을 상기 제어 회로에 입력하는 전압 검출기를 구비하고, 상기 제어 회로는, 상기 검출 전압이 상기 용접용 콘덴서의 제1 설정 전압에 대응하는 제1 검출 설정 전압을 넘을 때, 상기 충전 회로의 상기 사이리스터에 상기 제어 신호를 주는 것을 멈춤과 아울러, 상기 바이패스용 스위치 소자에 상기 제1 구동 신호를 주는 것을 멈추는 것을 특징으로 하는 콘덴서식 용접 장치.
  4. 청구항 3에 있어서,
    상기 제어 회로는, 상기 검출 전압이 상기 용접용 콘덴서의 제1 설정 전압이 된 후에 상기 용접용 콘덴서의 충전 전압이 강하되어, 상기 검출 전압이 상기 제1 검출 설정 전압보다도 소정 전압만큼 낮은 제2 검출 설정 전압이 될 때, 다시 상기 충전 회로의 상기 사이리스터에 상기 제어 신호를 주어, 상기 용접용 콘덴서를 추가로 충전하는 것을 특징으로 하는 콘덴서식 용접 장치.
  5. 청구항 1 내지 청구항 4 중 어느 한 항에 있어서,
    상기 용접용 콘덴서와 병렬로 접속되는 일방향(一方向) 전력 소비 회로를 구비하고, 상기 용접용 콘덴서에 충전된 전하의 방전에 의해서 흐르는 방전 전류가 상기 일방향 전력 소비 회로에 의해 소비되고, 상기 바이패스용 스위치 소자를 실질적으로 흐르지 않도록, 상기 바이패스용 스위치 소자의 비도통 기간이 제어되는 것을 특징으로 하는 콘덴서식 용접 장치.
  6. 사이리스터와 정류용 다이오드를 브릿지 구성으로 접속해서 이루어진 혼합 브릿지형 전파 정류 회로 또는 사이리스터를 브릿지 구성으로 접속해서 이루어진 사이리스터식 전파 정류 회로를 가지고, 교류 입력 전력을 직류 전력으로 변환하여 출력하는 충전 회로와, 1차 권선과 2차 권선을 가지는 용접용 트랜스와, 상기 충전 회로로부터 적어도 상기 1차 권선 또는 상기 충전 회로와 상기 1차 권선의 사이에 그 1차 권선과 직렬로 접속되는 인덕터를 포함하는 충전 경로에 흐르는 충전 전류에 의해서 충전되는 용접용 콘덴서와, 상기 충전 회로로부터 상기 직류 전력이 상기 용접용 콘덴서에 공급되고 있지 않을 때에 상기 용접용 콘덴서의 충전 전하를 상기 용접용 트랜스를 통해서 방전시켜서 용접을 행하게 하는 방전용 스위치 소자를 구비하는 콘덴서식 용접 장치에 의한 용접 방법에 있어서,
    상기 충전 회로의 출력 단자 사이에 걸쳐 병렬로 접속되는 순방향 저지 기능을 가지는 바이패스용 스위치 소자를 상기 충전 경로에 포함되는 상기 1차 권선 또는 상기 인덕터의 인덕턴스에 축적되는 자기 에너지에 의해서 흐르는 환류 전류를 상기 충전 회로로부터 바이패스시키도록 도통시키고, 상기 바이패스용 스위치 소자가 비도통으로 되어서 상기 순방향 저지 기능을 회복한 후에 상기 방전용 스위치 소자를 도통시키는 것을 특징으로 하는 콘덴서식 용접 방법.
  7. 청구항 1에 있어서,
    상기 충전 회로가 충전 동작을 행할 때에는, 상기 제어 회로는, 상기 바이패스용 스위치 소자를 도통 상태로 유지하는 것을 특징으로 하는 콘덴서식 용접 장치.
  8. 청구항 1에 있어서,
    상기 바이패스용 스위치 소자는, 상기 환류 전류가 상기 바이패스용 스위치 소자의 유지 전류보다 감소하면 비도통이 되는 것을 특징으로 하는 콘덴서식 용접 장치.
  9. 청구항 2에 있어서,
    상기 충전 신호의 종료후 수백 밀리 초가 경과하면, 상기 시퀀서는 상기 방전 신호를 생성하는 것을 특징으로 하는 콘덴서식 용접 장치.
  10. 청구항 1에 있어서,
    상기 바이패스용 스위치 소자가 도통되어 있을 때는, 상기 충전 회로의 양단에는 상기 바이패스용 스위치 소자의 순방향 전압 강하와 같은 전압이 인가되는 것을 특징으로 하는 콘덴서식 용접 장치.
  11. 청구항 4에 있어서,
    상기 용접용 콘덴서의 충전 전압이 다시 상기 제1 설정 전압이 되면, 상기 제어 회로는 상기 용접용 콘덴서로의 추가 충전을 정지하는 것을 특징으로 하는 콘덴서식 용접 장치.
  12. 청구항 4에 있어서,
    상기 용접용 콘덴서가 상기 추가 충전이 되고 있는 동안은, 상기 제어 회로는 상기 바이패스용 스위치 소자를 도통 상태로 유지하는 것을 특징으로 하는 콘덴서식 용접 장치.
  13. 청구항 1에 있어서,
    상기 방전용 스위치 소자가 상기 용접용 트랜스의 1차 권선에 병렬로 접속되고 상기 용접용 콘덴서가 상기 용접용 트랜스의 1차 권선에 직렬로 접속되거나,
    상기 방전용 스위치 소자가 상기 용접용 트랜스의 1차 권선에 직렬로 접속 되고 상기 용접용 콘덴서가 상기 용접용 트랜스의 1차 권선에 병렬로 접속되는 것을 특징으로 하는 콘덴서식 용접 장치.
  14. 청구항 6에 있어서,
    미리 정해진 시간폭의 충전 신호를 생성하고,
    상기 충전 신호가 종료된 후에 방전 신호를 생성하고,
    상기 충전 신호가 생성되고 있는 기간에 상기 충전 회로의 상기 사이리스터에 제어 신호를 주어 충전 동작이 되게 하고,
    상기 충전 신호에 동기하는 제1 구동 신호를 상기 바이패스용 스위치 소자에게 주어 도통 가능한 상태로 되게 하고,
    상기 방전 신호에 동기하여 상기 방전용 스위치 소자에 제2 구동 신호를 주어 상기 방전용 스위치 소자를 도통시키는 것을 특징으로 하는 콘덴서식 용접 방법.
  15. 청구항 14에 있어서,
    상기 용접용 콘덴서의 충전 전압을 검출하고,
    상기 검출 전압이 상기 용접용 콘덴서의 제1 설정 전압에 대응하는 제1 검출 설정 전압을 넘을 때, 상기 충전 회로의 상기 사이리스터에 상기 제어 신호를 주는 것을 멈춤과 아울러, 상기 바이패스용 스위치 소자에 상기 제1 구동 신호를 주는 것을 멈추는 것을 특징으로 하는 콘덴서식 용접 방법.
  16. 청구항 15에 있어서,
    상기 검출 전압이 상기 용접용 콘덴서의 제1 설정 전압이 된 후에 상기 용접용 콘덴서의 충전 전압이 강하하고, 상기 검출 전압이 상기 제1 검출 설정 전압보다도 소정 전압만큼 낮은 제2 검출 설정 전압이 될 때, 다시 상기 충전 회로의 상기 사이리스터에 상기 제어 신호를 주어, 상기 용접용 콘덴서를 추가로 충전하는 것을 특징으로 하는 콘덴서식 용접 방법.
  17. 청구항 6에 있어서,
    상기 용접용 콘덴서와 병렬로 접속되는 일방향 전력 소비 회로를 마련하고,
    상기 용접용 콘덴서에 충전된 전하의 방전에 의해서 흐르는 방전 전류가 상기 일방향 전력 소비 회로에 의해 소비되고, 상기 바이패스용 스위치 소자를 실질적으로 흐르지 않도록, 상기 바이패스용 스위치 소자의 비도통 기간을 제어하는 것을 특징으로 하는 콘덴서식 용접 방법.

KR1020147024234A 2012-02-07 2013-01-24 콘덴서식 용접 장치 및 콘덴서식 용접 방법 KR101626698B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2012-024268 2012-02-07
JP2012024268A JP5580840B2 (ja) 2012-02-07 2012-02-07 コンデンサ式溶接装置及びコンデンサ式溶接方法
PCT/JP2013/051455 WO2013118588A1 (ja) 2012-02-07 2013-01-24 コンデンサ式溶接装置及びコンデンサ式溶接方法

Publications (2)

Publication Number Publication Date
KR20140117663A KR20140117663A (ko) 2014-10-07
KR101626698B1 true KR101626698B1 (ko) 2016-06-01

Family

ID=48947355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147024234A KR101626698B1 (ko) 2012-02-07 2013-01-24 콘덴서식 용접 장치 및 콘덴서식 용접 방법

Country Status (5)

Country Link
US (1) US10005149B2 (ko)
EP (1) EP2813313B1 (ko)
JP (1) JP5580840B2 (ko)
KR (1) KR101626698B1 (ko)
WO (1) WO2013118588A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538656B2 (ja) * 2012-01-12 2014-07-02 オリジン電気株式会社 コンデンサ式溶接機及びその充電方法
EP2871760B1 (en) * 2013-11-08 2018-03-21 DET International Holding Limited Resistorless precharging
US10464161B2 (en) * 2016-09-26 2019-11-05 Fronius International Gmbh Power supply unit for a resistance welding apparatus
CN111390343A (zh) * 2020-05-14 2020-07-10 重庆科技学院 一种高强钢焊机专用控制电路
CN111952035B (zh) * 2020-07-14 2022-03-08 中国科学院电工研究所 一种摆动磁场发生装置及其控制方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB689469A (en) * 1950-04-26 1953-03-25 Gen Electric Co Ltd Improvements in and relating to electric arc welding apparatus and welding systems
US3611103A (en) * 1968-07-29 1971-10-05 Gulf Oil Corp Capacitor charging and discharging control system
US3641306A (en) * 1969-01-08 1972-02-08 Hughes Aircraft Co Welding supply circuit including capacitor bleed
JPH04224084A (ja) * 1990-12-26 1992-08-13 Origin Electric Co Ltd コンデンサ式スポット溶接機の充電制御回路
JPH0542375A (ja) 1991-08-14 1993-02-23 Origin Electric Co Ltd コンデンサ式スポツト溶接機の充電制御回路
JP3667428B2 (ja) * 1996-04-09 2005-07-06 ナストーア株式会社 コンデンサ放電式抵抗溶接装置
JP3528496B2 (ja) * 1997-02-07 2004-05-17 松下電器産業株式会社 コンデンサ式抵抗溶接機
US6825435B1 (en) * 2002-03-12 2004-11-30 Lyndon Brown Power supply and control equipment for a resistance welding machine
JP4641137B2 (ja) * 2002-04-24 2011-03-02 株式会社三社電機製作所 溶接機
US20060071640A1 (en) * 2004-09-30 2006-04-06 Nanotechnologies, Inc. Fast-recovery circuitry and method for a capacitor charging power supply
NZ572826A (en) * 2008-11-13 2010-05-28 Gallagher Group Ltd Electric fence energiser

Also Published As

Publication number Publication date
WO2013118588A1 (ja) 2013-08-15
US10005149B2 (en) 2018-06-26
US20140374389A1 (en) 2014-12-25
KR20140117663A (ko) 2014-10-07
JP5580840B2 (ja) 2014-08-27
EP2813313B1 (en) 2017-03-01
EP2813313A1 (en) 2014-12-17
JP2013158820A (ja) 2013-08-19
EP2813313A4 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
KR101626698B1 (ko) 콘덴서식 용접 장치 및 콘덴서식 용접 방법
JP5457912B2 (ja) コンデンサ式抵抗溶接機
JP4667066B2 (ja) 着磁器用電源
JPH07232102A (ja) 電気集塵装置
KR101676927B1 (ko) 콘덴서식 용접 방법 및 용접 장치
Lin et al. Interleaved four-phase buck-based current source with isolated energy-recovery scheme for electrical discharge machining
JP6673801B2 (ja) ゲートパルス発生回路およびパルス電源装置
GB2320627A (en) Arc welder or cutter with DC arc-initiation assisting circuit
KR101580072B1 (ko) 콘덴서식 용접기 및 그 충전 방법
US11799373B2 (en) DC pulse power supply device
JP3528496B2 (ja) コンデンサ式抵抗溶接機
JP2008048484A (ja) 直流交流変換装置の駆動方法
US20220094269A1 (en) Dc pulse power supply device
JP2004106130A (ja) パルス電源装置
JP2001211650A (ja) 電源装置
JP4037247B2 (ja) コンデンサ式抵抗溶接機
JP2012223785A (ja) コンデンサ型抵抗溶接機
JP2006173447A (ja) 着磁器
JPH07322485A (ja) 突入電流抑制装置
JPH1133720A (ja) 直流アーク溶接用電源装置
JP2006203996A (ja) Dc/dcコンバータ
JPS63242164A (ja) Gtoサイリスタのスナバ−回路
JPH09271169A (ja) インバータ装置
JPH01215477A (ja) コンデンサ式溶接機の通電波形制御回路
JPH07203670A (ja) サイリスタのゲート駆動装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant