WO2013118588A1 - コンデンサ式溶接装置及びコンデンサ式溶接方法 - Google Patents

コンデンサ式溶接装置及びコンデンサ式溶接方法 Download PDF

Info

Publication number
WO2013118588A1
WO2013118588A1 PCT/JP2013/051455 JP2013051455W WO2013118588A1 WO 2013118588 A1 WO2013118588 A1 WO 2013118588A1 JP 2013051455 W JP2013051455 W JP 2013051455W WO 2013118588 A1 WO2013118588 A1 WO 2013118588A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding
charging
capacitor
circuit
thyristor
Prior art date
Application number
PCT/JP2013/051455
Other languages
English (en)
French (fr)
Inventor
幸次 新井
康雄 角谷
秋男 小松
Original Assignee
オリジン電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリジン電気株式会社 filed Critical オリジン電気株式会社
Priority to EP13746004.4A priority Critical patent/EP2813313B1/en
Priority to KR1020147024234A priority patent/KR101626698B1/ko
Priority to US14/376,593 priority patent/US10005149B2/en
Publication of WO2013118588A1 publication Critical patent/WO2013118588A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/26Storage discharge welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/10Spot welding; Stitch welding
    • B23K11/11Spot welding
    • B23K11/115Spot welding by means of two electrodes placed opposite one another on both sides of the welded parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/24Electric supply or control circuits therefor
    • B23K11/241Electric supplies
    • B23K11/245Electric supplies using a stepping counter in synchronism with the welding pulses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/18Sheet panels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection

Definitions

  • the present invention relates to a capacitor-type welding apparatus and a capacitor-type welding method for welding an object to be welded by discharging energy stored in a welding capacitor by a charging circuit between welding electrodes in a short time via a welding transformer.
  • Capacitor-type welding equipment stores welding power in a welding capacitor over a long period of time compared to the discharge time, and discharges it at once in a short time. Therefore, the capacity of the power receiving equipment is larger than that of general AC welding equipment. There is an advantage in terms of equipment that does not. Further, since the degree to which the workpiece is heated is small, there is an advantage that there is almost no welding mark (burn) at the welded portion, and distortion is small, so that it is used in small to large industrial facilities.
  • Capacitor-type welding equipment generally uses a capacitor bank formed by connecting a large number of electrolytic capacitors in parallel as a welding capacitor.
  • the welding method using the capacitor welding apparatus is widely known and will not be described in detail. However, after placing the workpieces between the welding electrodes, the interval between the welding electrodes is narrowed, and a predetermined pressure is applied to the workpieces with the welding electrodes. give. While performing such a mechanical operation, the welding capacitor is charged in parallel.
  • the charging circuit When the charging voltage of the welding capacitor rises to a predetermined value, the charging circuit is turned off to stop the charging operation, and the discharging switch is turned on while the welding electrode applies pressure to the workpiece. By doing so, a steeply increasing pulsed current flows in the primary winding of the welding transformer. Since the secondary winding of the welding transformer is about one turn and is significantly less than the number of turns of the primary winding, the secondary winding has a pulsed welding current that is significantly larger than the primary current. A welded article can be obtained in a short time by flowing through the work piece and performing welding.
  • a capacitor-type welding apparatus uses a welding transformer.
  • a welding capacitor and a primary winding of the welding transformer are connected in series, and the charging current of the welding capacitor is
  • the charging current of the welding capacitor is
  • an inductor for power factor improvement is connected between the charging circuit and the welding capacitor, and the primary of the welding transformer.
  • a charging current is allowed to flow from the charging circuit to the welding capacitor through the inductor without flowing a charging current through the winding, so that the welding capacitor can be charged stably and with high efficiency.
  • the welding transformer and the inductor have an inductance suitable for the application.
  • the path through which the charging current flows from the charging circuit to the welding capacitor (hereinafter referred to as “charging path”) includes stray inductance that exists in the charging path.
  • the charging current is controlled by controlling the conduction angle of the thyristor using a single-phase or three-phase mixed bridge type full-wave rectifier circuit in which a thyristor and a rectifying diode are bridge-connected as a charging circuit.
  • a thyristor is used for the charging circuit and the above-described charging path includes a welding transformer or the above-described inductor
  • magnetic energy is present in these inductances and the above-described floating inductance (hereinafter referred to as “inductance of the charging path”).
  • the current flowing by the magnetic energy (hereinafter referred to as “return current”) has the following adverse effects on the charging circuit.
  • a large welding current is often required for welding, and a capacitor-type welding apparatus is no exception.
  • the phase of each thyristor of the mixed bridge type full-wave rectifier circuit is controlled, and a dozen to dozens of cycles or more
  • the welding capacitor is charged by switching in the above period.
  • each time each thyristor is turned on until the charging voltage of the welding capacitor reaches a set value the welding capacitor passes through the primary winding of the welding transformer or the inductor from the charging circuit. An almost constant large charging current is passed through. At this time, magnetic energy is stored in the inductance of the charging path.
  • the return current that flows by this magnetic energy flows through the same path as the charging path, it flows through the mixed bridge type full-wave rectifier circuit that flows the charging current.
  • the non-conduction section between the thyristors that are sequentially controlled for conduction is short, so even if the phase control signal drops from a high level to a zero level, The return current due to the magnetic energy flowing through the thyristor may not be smaller than the holding current. In this case, the thyristor continues to conduct without restoring the forward blocking function.
  • the charging current flows through the welding transformer or the inductor in a certain direction for a period of dozens of cycles to several tens of cycles or more.
  • the magnetic energy produced may increase gradually. Therefore, the return current due to the magnetic energy is also large, and any thyristor of the mixed bridge type full-wave rectifier circuit may not be turned off and may continue to be turned on, making desired control of the charging circuit difficult.
  • Patent Document 1 a capacitor type welding device using a mixed bridge type full-wave rectifier circuit as a charging circuit is described, but the influence of the return current due to magnetic energy stored in the inductance of the charging path existing in the charging path is described. Not specifically described. Therefore, there is no particular description regarding the inability to control the thyristor in the charging circuit and a method for preventing this.
  • the present invention can prevent the thyristor in the charging circuit from being disabled due to the influence of the reflux current, and can be reduced in size, reduced in power loss, and reduced in cost.
  • An object is to provide a device and a control method thereof.
  • a bypass switch element having both a reverse blocking function such as a thyristor or IGBT and a controllable forward blocking function is connected between the DC output terminals of the charging circuit.
  • the bypass switch element bypasses the return current due to the magnetic energy stored in the inductance of the charging path from the charging circuit, it is possible to prevent the thyristor in the charging circuit from being disabled. Become.
  • a discharge current larger than the charging current does not flow through the bypass switch element when the charging charge of the welding capacitor is discharged, a thyristor or IGBT having a current capacity comparable to the magnitude of the charging current is bypassed. Therefore, it is possible to reduce the size, reduce the power loss, and reduce the cost.
  • a capacitor type welding apparatus includes a mixed bridge type full-wave rectifier circuit in which a thyristor and a rectifier diode are connected in a bridge configuration, or a thyristor in which a thyristor is connected in a bridge configuration.
  • a full-wave rectifier circuit a charging circuit that converts input AC power into DC power and outputs it, a welding transformer having a primary winding and a secondary winding, and at least the above-described charging circuit
  • a bypass switch element having a forward blocking function for bypassing, and after the bypass switch element is turned on when the return current flows, and the bypass switch element is turned off to restore the forward blocking function
  • a control circuit that controls the discharge switch element to conduct.
  • the capacitor welding method of the present invention includes a mixed bridge type full-wave rectifier circuit or a thyristor formed by connecting a thyristor and a rectifier diode in a bridge configuration.
  • a thyristor-type full-wave rectifier circuit, a charging circuit for converting AC input power to DC power and outputting it, a welding transformer having a primary winding and a secondary winding, and at least the above-described charging circuit A welding capacitor charged by a charging current flowing in a charging path including a primary winding or an inductor connected in series with the primary winding between the charging circuit and the primary winding; and the charging circuit Discharge that causes welding to be performed by discharging a charging charge of the welding capacitor through the welding transformer when the DC power is not supplied to the welding capacitor from
  • the primary winding included in the charging path includes a bypass switching element having a forward blocking function connected in parallel across the output terminals of the charging
  • the capacitor type welding apparatus and the control method thereof according to the present invention it is possible to prevent the thyristor in the charging circuit from being unable to be controlled due to the influence of the reflux current, and to achieve downsizing, low power loss, and low Cost can be reduced.
  • the capacitor-type welding apparatus and the capacitor-type welding method according to the present invention provide a bypass path so that a reflux current caused by magnetic energy stored in the inductance of the charging path does not substantially flow through the charging circuit during charging of the welding capacitor.
  • a reflux current caused by magnetic energy stored in the inductance of the charging path does not substantially flow through the charging circuit during charging of the welding capacitor.
  • Mechanisms that are not particularly necessary for explaining the operation of the present invention, such as a pressurizing mechanism that applies pressure (forging pressure) to cause welding current to flow between welding electrodes, a driving mechanism that drives the welding electrodes, and various detection circuits
  • a pressurizing mechanism that applies pressure (forging pressure) to cause welding current to flow between welding electrodes
  • a driving mechanism that drives the welding electrodes
  • various detection circuits The illustration is omitted.
  • the capacitor type welding apparatus and the capacitor type welding method according to the first embodiment of the present invention will be described with reference to FIGS.
  • the capacitor-type welding apparatus shown in FIG. 1 is for a bypass connected across a three-phase AC input terminal 1, a charging circuit 2, DC output terminals 3 and 4 of the charging circuit 2, and DC output terminals 3 and 4.
  • Switch element 5 welding transformer 6 having primary winding 6a and secondary winding 6b, welding capacitor 7, discharge switch 8, first welding electrode 9 connected to secondary winding 6b and second Two welding electrodes 10 and a control circuit 11 are provided.
  • the control circuit 11 gives control signals S1, S2 and S3 to the charging circuit 2, gives a first drive signal Sa to the bypass switch element 5, and gives a second drive signal Sb to the discharge switch 8.
  • the voltage detection circuit 12 detects the charging voltage of the welding capacitor 7 and sends the detected value to the control circuit 11.
  • a unidirectional power consumption circuit 13 used for discharging a reverse voltage charged in the welding capacitor 7 is connected in parallel to the welding capacitor.
  • W1 and W2 are arranged between the first welding electrode 9 and the second welding electrode 10, and various steel materials welded by applying a pulsed welding current in a pressurized state, Or it is a to-be-welded object which consists of highly conductive metal materials, such as copper and aluminum.
  • a welded article an object to be welded after a welding current is applied and welding is referred to as a welded article.
  • the charging current and the discharging current of the welding capacitor 7 flow in the primary winding 6a of the welding transformer 6 in opposite directions, so that the welding transformer 6 is difficult to be biased. It has a configuration with advantages.
  • the charging circuit 2 is a circuit for charging the welding capacitor 7.
  • FIG. 1 shows a three-phase mixed bridge type in which thyristors 2A, 2B and 2C and rectifying diodes 2a, 2b and 2c are connected in a bridge configuration. A full wave rectifier circuit is shown.
  • the charging circuit 2 may be a three-phase thyristor type full-wave rectifier circuit in which thyristors are connected in a bridge configuration without using a rectifying diode.
  • the thyristor When the input power source is a single-phase AC, although not shown, the thyristor can be operated without using a single-phase mixed bridge type full-wave rectifier circuit in which a thyristor and a rectifier diode are bridged or a rectifier diode. It may be a single-phase thyristor full-wave rectifier circuit connected in a bridge configuration.
  • the thyristors 2A, 2B, and 2C of the charging circuit 2 are controlled by phase control signals S1, S2, and S3 from the control circuit 11, and sequentially repeat conduction and non-conduction.
  • the charging circuit 2 converts the AC power of the AC input terminal 1 into DC power, outputs the DC power between the DC output terminals 3 and 4, and charges the charging current to the welding capacitor 7. It is called operation.
  • the bypass switch element 5 is connected to the DC output terminal 3 of the charging circuit 2 on the cathode side and to the DC output terminal 4 on the anode side, and connected in parallel with the charging circuit 2.
  • the bypass switch element 5 is turned on by the first drive signal Sa from the control circuit 11 and flows by magnetic energy stored in the inductance of the charging path described later. Is bypassed from the charging circuit 2.
  • the bypass switch element 5 is controlled so as to be in a non-conductive state.
  • a thyristor is used as the bypass switch element 5, and therefore, hereinafter referred to as a bypass thyristor 5.
  • a semiconductor switch such as an IGBT or a transistor, or a unidirectional switch in which a mechanical switch and a diode are connected in series can be used as the bypass switch element 5.
  • a series circuit in which the primary winding 6 a of the welding transformer 6 and the welding capacitor 7 are connected in series is connected in parallel between the DC output terminals 3 and 4 of the charging circuit 2.
  • the welding transformer 6 may be a general one having a secondary winding 6b of about one turn and a primary winding 6a having a larger number of turns than the secondary winding 6b. Has a larger inductance than the floating inductance of the charging path through which the charging current flows.
  • First and second welding electrodes 9 and 10 are connected to both ends of the secondary winding 6b of the welding transformer 6, respectively. Since the first and second welding electrodes 9 and 10 may be general ones, description thereof is omitted.
  • the welding capacitor 7 includes, for example, a block in which a plurality of polar electrolytic capacitors are connected in parallel, a capacitor bank in which a plurality of these blocks are connected in parallel, or a plurality of nonpolar (bipolar) polypropylene film capacitors, for example.
  • the discharge switch 8 is connected in parallel to a series circuit formed by connecting the primary winding 6a of the welding transformer 6 and the welding capacitor 7 in series, and charging the welding capacitor 7 when the discharge switch 8 is turned on.
  • a discharge circuit that discharges the charge in a short time is formed.
  • a thyristor is used as the discharge switch 8, and therefore, in the following description, the discharge switch is described as the discharge thyristor 8.
  • the discharge thyristor 8 has an anode connected to one DC output terminal 3 of the charging circuit 2 and a cathode connected to the other DC output terminal 4. During the period in which the charging circuit 2 charges the welding capacitor 7, the discharging thyristor 8 is turned off.
  • the control circuit 11 includes a sequencer 11A, a phase control signal generation circuit 11B, a drive circuit 11C, and the like.
  • the sequencer 11A generates a charging signal X and a discharging signal Y having a predetermined time width as shown in FIG.
  • the phase control signal generation circuit 11B receives the charge signal X from the sequencer 11A and operates by receiving the detection voltage signal Vc having a value corresponding to the value of the charging voltage of the welding capacitor 7 from the voltage detection circuit 12, as shown in FIG. B), phase control signals S1, S2, and S3 as shown in (C) and (D) are generated.
  • the phase control signals S1, S2, and S3 are applied to the gates of the thyristors 2A, 2B, and 2C of the charging circuit 2, respectively.
  • the drive circuit 11C receives the charge signal X and the discharge signal Y from the sequencer 11A, applies the first drive signal Sa shown in FIG. 2 (E) synchronized with the charge signal X to the gate of the bypass switch element 5, and discharges it.
  • a second drive signal Sb shown in FIG. 2 (F) synchronized with the signal Y is applied to the gate of the discharge switch 8.
  • the time interval between the discharge signal and the next discharge signal is the same as that of the previous discharge signal, that is, after the welding article is removed from the first welding electrode 9 and the second welding electrode 10 after the end of welding.
  • the workpieces W1 and W2 to be welded are placed between the first welding electrode 9 and the second welding electrode 10 and are approximately equal to the time until the desired alignment is completed. In actual welding, the workpieces W1 and W2 are placed between the first welding electrode 9 and the second welding electrode 10 as compared with the charging time required to charge the welding capacitor 7 to the set voltage value. Thus, it may take a considerable amount of time to achieve the desired alignment.
  • the charging voltage of the welding capacitor 7 may decrease due to spontaneous discharge, and supplementary charging may be necessary.
  • the time width of the charging signal X is determined on the assumption that auxiliary charging is performed.
  • the bypass thyristor 5 When the first drive signal Sa applied to the gate of the bypass thyristor 5 in synchronism with the charge signal X becomes zero level and the return current flowing through the bypass switch element 5 decreases below the holding current, the bypass thyristor 5 is turned off. It becomes conductive. For this reason, after the end of the charging signal X, it is necessary to consider the time for restoring the forward blocking function of the bypass thyristor 5. As shown in FIG. 2, for example, the charge signal X is terminated at a time t4 that is several hundred milliseconds before the time t5 at which the discharge signal Y is generated. That is, the control circuit 11 controls the non-conduction period of the bypass thyristor 5 so that the discharge current that flows when discharging the electric charge of the welding capacitor 7 does not substantially flow through the bypass thyristor 5.
  • a series circuit of a diode 13 ⁇ / b> A and a resistor 13 ⁇ / b> B that are not directed to charge current is connected in parallel with the welding capacitor 7.
  • the charging charge charged in the welding capacitor 7 by the charging operation of the charging circuit 2 is discharged through the primary winding 6a of the welding transformer 6 and the discharging thyristor 8 by making the discharging thyristor 8 conductive.
  • resonance is performed by the capacitance of the welding capacitor 7 and the inductance of the discharge path including the inductance of the primary winding 6a of the welding transformer 6, and the voltage of the welding capacitor 7 is polar after a half cycle of the resonance. Is reversed.
  • the polarity-inverted charge (hereinafter referred to as “residual charge”) has a polarity in which the DC output terminal 4 side of the charging circuit 2 is positive and the DC output terminal 3 side is negative.
  • This residual charge is consumed by the one-way power consumption circuit 13.
  • the voltage of the welding capacitor 7 is sufficiently low when charging of the welding capacitor 7 is started next time. Can be a value.
  • the one-way power consumption circuit 13 consumes the residual charge of the welding capacitor 7, the discharge current of the residual charge when the charging circuit 2 and the bypass switch element 5 become conductive next is substantially the charging circuit. 2. It is possible to prevent the bypass switch element 5 from flowing.
  • the sequencer 11A of the control circuit 11 outputs the charge signal X as described above to the phase control signal generation circuit 11B and the drive circuit 11C at time t1. Begin to supply.
  • the phase control signal generation circuit 11B and the drive circuit 11C receive the charge signal X, the operation starts.
  • the phase control signal generating circuit 11B outputs the conduction angle phase control signals S1, S2, and S3 controlled so that the charging current for charging the welding capacitor 7 becomes a substantially constant value. 2A, 2B, and 2C gates.
  • the thyristors 2A, 2B, and 2C are sequentially turned on and off by the phase control signals S1, S2, and S3, so that the charging circuit 2 performs a charging operation, and a substantially constant charging current is supplied to the welding capacitor 7. This is charged with a constant current.
  • the control method of the thyristors 2A, 2B, and 2C may be the same as the conventional one, and the control method of the present invention is not limited.
  • the first drive signal Sa is given to the bypass thyristor 5 to make the bypass thyristor 5 conductive.
  • the charging circuit 2 is performing the charging operation, it is preferable to keep the bypass thyristor 5 in a conductive state.
  • the bypass thyristor 5 can be reliably turned on when the return current flows.
  • the charging current output from the charging circuit 2 flows through the DC output terminal 3, the primary winding 6 a of the welding transformer 6, the welding capacitor 7 and the DC output terminal 4 to charge the welding capacitor 7.
  • the charging path includes the inductance of the welding transformer 6 and the inductance of the charging path including the floating inductance
  • the thyristors 2A, 2B, and 2C of the charging circuit 2 are turned on and charged in each cycle.
  • Each time current flows through the primary winding 6a magnetic energy is stored in the inductance of the charging path.
  • This magnetic energy is discharged from the thyristors 2A, 2B, 2C of the charging circuit 2 through the welding capacitor 7 and the bypass thyristor 5 during the non-conduction period of each cycle, and a reflux current flows.
  • the forward voltage drop of the bypass thyristor 5 includes the forward voltage drop of the thyristor of the charging circuit 2 and the forward voltage drop of the diode that are turned on when forming the charging path, for example, the forward voltage drop of the thyristor 2A and the rectifying diode. It is smaller than the sum of the forward voltage drop and 2b or 2c. Accordingly, the return current substantially flows through the bypass thyristor 5 having a small forward voltage drop, that is, low impedance, and bypasses the charging circuit 2.
  • phase control signals S1, S2, and S3 are reduced from the high level to the zero level, the currents flowing through the thyristors 2A, 2B, and 2C of the charging circuit 2 are lower than their holding currents. 2B and 2C become non-conductive.
  • the bypass thyristor 5 when the bypass thyristor 5 is not connected, the following problem may occur.
  • the charging voltage of the charging capacitor 7 is low, and a charging current having a large peak value flows. Therefore, in each cycle, the conduction angle of the thyristors 2A, 2B, 2C is small and the non-conduction period is controlled to be long. The Therefore, if the inductance of the charging path is relatively small and the magnetic energy is relatively small, before the next conducting thyristor is turned on, the current conducting thyristor has finished releasing the magnetic energy and is not conducting. If this is the case, there will be no particular problem in control.
  • the conduction angle of the thyristors 2A, 2B, and 2C increases in order to keep the charging current constant. That is, the pulse widths of the phase control signals S1, S2, and S3 are increased, and the non-conduction intervals of the thyristors 2A, 2B, and 2C are shortened in each cycle.
  • the non-conducting section is shortened, the next thyristor is conducted in a state where a reflux current larger than the holding current is flowing through the thyristor that has been conducted until now, that is, the previous thyristor is not yet non-conducting. become. In this case, since the current flowing through the previous thyristor does not decrease below the holding current, the previous thyristor continues to conduct and becomes uncontrollable.
  • a bypass thyristor 5 exhibiting a forward voltage drop smaller than the forward voltage drop at both ends of the charging circuit 2 is connected in parallel between the DC output terminals 3 and 4 of the charging circuit 2.
  • a bypass path is formed. Therefore, the return current caused by the release of the magnetic energy stored in the charging path inductance flows through the bypass thyristor 5.
  • the bypass thyristor 5 is conductive, a voltage equal to the forward voltage drop of the bypass thyristor 5 is applied to both ends of the charging circuit 2.
  • the charging circuit 2 supplies a controlled charging current to the welding capacitor 7, and the charging voltage of the welding capacitor 7 indicates a voltage necessary for performing desired welding at time t2 in FIG. 2 (G). Assume that voltage V1 is reached.
  • the voltage detection circuit 12 inputs a detection voltage Vc equal to the first detection setting voltage corresponding to the first setting voltage V1 to the phase control signal generation circuit 11B of the control circuit 11 at time t2, and the phase control signal generation circuit 11B. Interrupts the output of the phase control signals S1, S2, S3. Accordingly, the charging circuit 2 interrupts the charging operation, so that the main charging of the welding capacitor 7 by the constant current control is ended.
  • the charging voltage of the welding capacitor 7 gradually decreases with time due to spontaneous discharge.
  • the voltage detection circuit 12 detects the voltage corresponding to the second set voltage V2.
  • the signal Vc is output to the phase control signal generation circuit 11B. Accordingly, the phase control signal generation circuit 11B supplies the phase control signals S1, S2, and S3 to the thyristors 2A, 2B, and 2C again, and the charging circuit 2 starts supplementary charging.
  • the phase control signals S1, S2, and S3 at the time of auxiliary charging may be control signals having a predetermined constant width.
  • the phase control signal generation circuit 11B stops generating the phase control signals S1, S2, and S3, and Stop charging operation.
  • the charge signal X ends at time t4, and at the same time, the drive circuit 11C stops outputting the first drive signal Sa.
  • the first drive signal Sa rises with the rise of the charge signal X and falls with the fall of the charge signal X, that is, synchronizes with the charge signal X.
  • the first drive signal Sa in FIG. 2E is at a high level until time t4 when the charging signal X ends.
  • the bypass thyristor 5 conducts when the above-described reflux current flows. Accordingly, the return current due to the magnetic energy stored in the charging path inductance during the auxiliary charging period also flows through the bypass thyristor 5.
  • the bypass thyristor 5 becomes non-conductive when the flowing back current is lower than the holding current of the bypass thyristor 5.
  • the drive circuit 11C receives the discharge signal Y from the sequencer 11A and sends the second drive signal Sb to the discharge thyristor 8. Apply to the gate.
  • the discharge thyristor 8 is turned on by the application of the second drive signal Sb, the charge charged in the welding capacitor 7 is discharged through the primary winding 6a of the welding transformer 6 and the discharge thyristor 8. The Accordingly, a large pulsed welding current flows from the secondary winding 6b of the welding transformer 6 through the workpieces W1 and W2, and welding is performed.
  • the thyristors 2A, 2B, 2C and the bypass thyristor 5 are all in a non-conductive state, and the phase control signals S1, S2, S3 and the first drive signal Sa are not generated, so the thyristors 2A, 2B, Neither 2C nor the bypass thyristor 5 is conducted. Accordingly, since a large current does not flow through the bypass thyristor 5 during welding and, of course, does not flow through the charging circuit 2, a current capacity smaller than a discharge current flowing through the primary winding 6a during welding, For example, a thyristor having a current capacity approximately equal to the charging current can be used as the bypass thyristor 5.
  • bypass thyristor 5 is turned on when the return current flows, and the discharge thyristor 8 is turned on after the bypass switch element 5 is turned off and the forward blocking function is restored.
  • the bypass thyristor 5 with a small current capacity can solve the problem caused by the reflux current, in which the reflux current is bypassed from the charging circuit 2 and the thyristor cannot be controlled during the charging operation of the charging circuit 2.
  • the capacitor type welding apparatus and the capacitor type welding method according to Embodiment 2 of the present invention will be described with reference to FIG.
  • the main difference of the circuit configuration from the first embodiment is that a power factor improving inductor 14 is connected between the charging circuit 2 and the welding capacitor 7 in order to improve charging efficiency, and welding is performed.
  • the discharge switch 8 is connected in series with the primary winding 6 a of the transformer 6, and the welding capacitor 7 is connected in parallel with the series circuit of the primary winding 6 a and the discharge switch 8.
  • the bypass thyristor 5 is connected to the DC output terminal 3 of the charging circuit 2 on the cathode side and to the DC output terminal 4 on the anode side, and is connected in parallel to the charging circuit 2. Further, as in the first embodiment, a discharging thyristor is used as the discharging switch 8. In addition, when using the one-way power consumption circuit 13 for discharging the residual electric charge of the welding capacitor 7 described above, the welding capacitor 7 is connected in parallel as in the first embodiment.
  • the charging current is one of the charging circuits 2.
  • the current flows from the DC output terminal 3 through the inductor 14 and the welding capacitor 7 to the other DC output terminal 4 to charge the welding capacitor 7.
  • the charging current does not flow through the primary winding 6 a of the welding transformer 6.
  • the phase control signal generation circuit 11B supplies the phase control signals S1, S2, and S3 to the charging circuit 2 based on the charging signal X from the sequencer 11A as in the first embodiment.
  • the drive circuit 11C applies the first drive signal Sa to the gate of the bypass thyristor 5 to make the bypass thyristor 5 conductive, and at least the charge circuit 2 can conduct in the charging period. Hold on. Further, the bypass thyristor 5 is reliably non-conductive, that is, the forward blocking function is restored before the discharge thyristor 8 is conductive.
  • the inductance of the inductor 14 and the inductance of the charging path including the floating inductance of the charging path through which the charging current flows exist.
  • the thyristors 2A, 2B, and 2C of the charging circuit 2 repeat conduction and non-conduction each time the phase control signals S1, S2, and S3 are sequentially applied, and the thyristors 2A, 2B, and 2C are sequentially conducted. A current flows in each cycle, and the charging current becomes a direct current. At this time, magnetic energy is stored in the inductance of the charging path in each section where the thyristors 2A, 2B, and 2C are conducted by the phase control signals S1, S2, and S3.
  • the control circuit 11 controls the thyristors 2A, 2B, 2C and the bypass thyristor 5 of the charging circuit 2 in the same manner as in the first embodiment.
  • the return current flows through the bypass thyristor 5 that exhibits a forward voltage drop smaller than the forward voltage drop of the charging circuit 2, and can prevent the return current from flowing into the thyristors 2 ⁇ / b> A, 2 ⁇ / b> B, and 2 ⁇ / b> C.
  • the bypass thyristor 5 While the bypass thyristor 5 is conducting, the voltage between the DC output terminals 4 and 3 of the charging circuit 2 has a polarity such that the DC output terminal 4 is positive and the DC output terminal 3 is negative.
  • the voltage is kept equal to the forward voltage drop of the bypass thyristor 5.
  • the currents flowing through the thyristors 2A, 2B, and 2C after the phase control signals S1, S2, and S3 drop to the zero level are smaller than the holding current. Therefore, the thyristors 2A, 2B, and 2C are surely turned off, and it is possible to prevent the thyristors in the charging circuit 2 from being disabled.
  • the drive circuit 11C applies the second drive signal Sb to the gate of the discharge thyristor 8 to cause the discharge thyristor 8 to conduct, and charge the welding capacitor 7 to charge. Discharge is performed through the primary winding 6a of the welding transformer 6 to perform welding. At this time, resonance occurs between the capacitance of the welding capacitor 7 and the inductance of the charging path, and as described above, the welding capacitor 7 is charged with a reverse polarity and its voltage is inverted. Residual charges that are positive on the output terminal 4 side are stored. This residual charge is smaller than the charged charge.
  • the discharge thyristor 8 is immediately turned off because a voltage having a polarity opposite to the forward direction is applied to the discharge thyristor 8 due to resonance caused by the capacitance of the welding capacitor 7 and the inductance of the primary winding 6a of the welding transformer 6. If the unidirectional power consumption circuit 13 is connected to the welding capacitor 7 in parallel, the residual charge can be discharged and consumed by the unidirectional power consumption circuit 13 as described above. Further, at the time of welding, since the thyristors 2A, 2B, 2C and the bypass thyristor 5 have already recovered the forward blocking function, the current due to the residual charge of the welding capacitor 7 causes the thyristors 2A, 2B, 2C and the bypass thyristor. 5 does not flow in the forward direction.
  • the capacitor-type welding apparatus of the second embodiment also uses a thyristor having a smaller current capacity than the discharge current as the bypass thyristor 5 because a large current due to the residual charge of the welding capacitor 7 does not flow through the bypass thyristor 5. Can do. Further, since the reflux current is bypassed from the charging circuit 2 during the charging operation of the charging circuit 2, the problem that the control of the thyristor of the charging circuit 2 becomes impossible due to the reflux current can be solved.
  • the first drive signal Sa given to the gate of the bypass thyristor 5 is from the time t1 to the time t4 when charging is started in synchronization with the charging signal X, as shown in FIG.
  • it is a continuous signal, any signal can be used as long as the bypass thyristor 5 can be reliably turned on at least when the above-described return current flows. The same applies to the charging operation for performing the above-described auxiliary charging.
  • the thyristors 2A, 2B, and 2C of the charging circuit 2 are controlled at a constant current.
  • a method of gradually increasing from the conduction angle and controlling at a constant conduction angle when the charging voltage of the welding capacitor 7 reaches a predetermined value may be used.
  • the case where supplementary charging is required due to the charging voltage of the welding capacitor being reduced due to spontaneous discharge depending on the charging start time of the charging circuit has been described. When there is little voltage drop, supplementary charging need not be performed.
  • the charging voltage of the welding capacitor 7 is expected to decrease due to natural discharge, and the set voltage V1 (FIG. 2) is set higher in advance so that the auxiliary charging is not performed.
  • each part in the capacitor type welding machine and the charging method of the present invention are not limited to the above-described specific examples, and those appropriately and appropriately adopted by those skilled in the art are also included in the present invention. It is included in the range. More specifically, for example, those exemplified by the symbol of a thyristor as a semiconductor switch are not limited to these specific electric elements, and a single electric element or a plurality of electric elements having the same function or action are used. All of these variations are included within the scope of the present invention. Similarly, the specific configuration of the circuit and the number and arrangement relationship of each circuit element including a diode, resistor, and switching element are appropriately modified by those skilled in the art within the scope of the present invention. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Power Engineering (AREA)
  • Arc Welding Control (AREA)
  • Rectifiers (AREA)

Abstract

【課題】充電経路のインダクタンスの影響を受けずに充電回路の制御が確実に行え、小型化が可能で電力損失の小さい経済的なコンデンサ式溶接装置及びコンデンサ式溶接方法を提供すること。 【解決手段】本発明に係るコンデンサ式溶接装置及びコンデンサ式溶接方法は、順方向阻止機能を有するバイパス用スイッチ素子(5)が充電回路(2)の出力端子(3、4)間に跨って並列に接続され、充電経路に含まれる1次巻線(6a)又はインダクタ(14)のインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流を充電回路からバイパスさせるようにバイパス用スイッチ素子(5)を導通させ、バイパス用スイッチ素子(5)が非導通となって順方向阻止機能を回復した後に放電用スイッチ素子(8)を導通させるようにする。

Description

コンデンサ式溶接装置及びコンデンサ式溶接方法
 この発明は、充電回路によって溶接用コンデンサに蓄えたエネルギーを溶接用トランスを介して短時間で溶接電極間に放電して被溶接物を溶接するコンデンサ式溶接装置及びコンデンサ式溶接方法に関する。
 コンデンサ式溶接装置は、放電時間に比べて長い時間をかけて溶接用コンデンサに溶接電力を蓄え、それを短時間で一気に放電するので、一般的な交流溶接装置に比べて、受電設備が大容量化しないという設備面での利点がある。また、被溶接物が加熱される度合いが小さいので、溶接箇所の溶接痕(焼け)がほとんど無く、また歪なども小さいという利点を有することから小型から大型までの産業設備で採用されている。
 コンデンサ式溶接装置は、一般的に多数の電解コンデンサを並列接続してなるコンデンサバンクを溶接用コンデンサとして用いている。コンデンサ式溶接装置による溶接方法は広く知られているので詳しく説明しないが、溶接電極間に被溶接物を配置した後、溶接電極間の間隔を狭め、溶接電極で被溶接物に所定の加圧力を与える。このような機械的動作を行いながら、並行して溶接用コンデンサを充電する。
 溶接用コンデンサの充電電圧が所定値まで上昇すると、充電回路をオフにして充電動作を中断させ、溶接電極が被溶接物に加圧力を与えた状態で、放電用スイッチをオンさせる。このようにすることによって、溶接用トランスの1次巻線には急峻に増大するパルス状の電流が流れる。溶接用トランスの2次巻線は1ターン程度であって、1次巻線の巻数よりも大幅に少ないので、2次巻線には1次側電流よりも大幅に大きなパルス状の溶接電流が被溶接物に流れて溶接を行い、溶接物品を短時間で得ることができる。
 一般にコンデンサ式溶接装置は溶接用トランスを用いており、溶接用トランスの偏励磁を防ぐために、溶接用コンデンサと溶接用トランスの1次巻線とを直列に接続し、溶接用コンデンサの充電電流とそれとは逆方向の放電電流との双方を溶接用トランスの1次巻線に流す構成のものがある。また、コンデンサ式溶接装置の構成によっては、溶接用トランスの偏励磁の問題は別にして、充電回路と溶接用コンデンサとの間に力率改善用のインダクタを接続し、溶接用トランスの1次巻線を介して充電電流を流さずに、充電回路から前記インダクタを通して溶接用コンデンサに充電電流を流して、安定に高効率で溶接用コンデンサを充電できるようにする構成のものもある。溶接用トランスや前記インダクタは用途に見合ったインダクタンスを有する。また、充電電流が充電回路から溶接用コンデンサに流れる経路(以下「充電経路」という。)には、その他に充電経路内に存在する浮遊インダクタンスも含まれる。
 溶接用コンデンサの充電方法などによっては、サイリスタと整流用ダイオードとをブリッジ接続した単相又は三相の混合ブリッジ形全波整流回路を充電回路として、サイリスタの導通角を制御することによって充電電流を制御する構成のものもある(例えば、特許文献1参照)。充電回路にサイリスタを用い、かつ前述の充電経路に溶接用トランス又は前述インダクタを備える構成にあっては、それらのインダクタンスや前述の浮遊インダクタンス(以下「充電経路のインダクタンス」という。)に磁気エネルギーが蓄えられる。この磁気エネルギーによって流れる電流(以下「還流電流」という。)が下記のような悪影響を充電回路に及ぼす。
 一般に溶接にあっては、大きな溶接電流が必要とされる場合が多く、コンデンサ式溶接装置も例外ではない。充電回路として混合ブリッジ形全波整流回路を用いた高効率のコンデンサ式溶接装置の場合には、混合ブリッジ形全波整流回路のそれぞれのサイリスタを位相制御し、十数サイクルから数十サイクル若しくはそれ以上の期間でスイッチングさせて溶接用コンデンサを充電する。例えば、定電流制御方法の場合には、溶接用コンデンサの充電電圧が設定値になるまで、それぞれのサイリスタが導通する度に充電回路から溶接用トランスの1次巻線又は前記インダクタを通して溶接用コンデンサにほぼ一定の大きな充電電流を流す。このとき、充電経路のインダクタンスに磁気エネルギーが蓄えられる。
 この磁気エネルギーによって流れる還流電流は、充電経路と同じ経路で流れるので、充電電流を流す混合ブリッジ形全波整流回路を介して流れることになる。特に三相の混合ブリッジ形全波整流回路においては、順次に導通制御されるサイリスタとサイリスタとの間の非導通区間が短いので、位相制御信号が高レベルからゼロレベルに低下しても、いずれかのサイリスタを流れる前記磁気エネルギーによる還流電流は保持電流よりも小さくならないことがある。この場合、そのサイリスタは順方向阻止機能を回復することなく導通を続けることになる。
 特に、コンデンサ式溶接装置にあっては、前述したように十数サイクルから数十サイクル若しくはそれ以上の期間、充電電流が溶接用トランス又は前記インダクタなどを一定方向に流れるので、それらのインダクタンスに蓄えられる磁気エネルギーが次第に大きくなる場合がある。したがって、その磁気エネルギーによる還流電流も大きく、混合ブリッジ形全波整流回路のいずれかのサイリスタは非導通になることができずに導通し続けることがあり、充電回路の所望の制御が難しくなる。
特開平05-42375号公報
 特許文献1では、充電回路として混合ブリッジ形全波整流回路を用いたコンデンサ式溶接装置が記載されているが、充電経路に存在する充電経路のインダクタンスに蓄えられる磁気エネルギーによる還流電流の影響については特に記載されていない。したがって、充電回路内のサイリスタの制御が行えなくなることやこれを防ぐ方法などについては特に記載されていない。
 そこで、本発明は、還流電流の影響を受けて充電回路内のサイリスタの制御が行えなくなることを防ぐことができ、小型化、低電力損失化、及び低コスト化を図ることができるコンデンサ式溶接装置及びその制御方法を提供することを目的とする。本発明は、充電回路の直流出力端子間にサイリスタ又はIGBTなどのような逆方向阻止機能と制御可能な順方向阻止機能の双方を有するバイパス用スイッチ素子を接続する。充電回路が充電動作を行うときには前記バイパス用スイッチ素子をオンさせ、前記バイパス用スイッチ素子の順方向阻止機能が復帰、つまり前記バイパス用スイッチ素子が非導通になった状態で溶接用コンデンサの充電電荷を放電する。
 したがって、本発明では前記バイパス用スイッチ素子が、充電経路のインダクタンスに蓄えられた磁気エネルギーによる還流電流を充電回路からバイパスするので、充電回路内のサイリスタの制御が行えなくなることを防ぐことが可能となる。また、溶接用コンデンサの充電電荷の放電時に充電電流に比べて大きな放電電流が前記バイパス用スイッチ素子を流れることがないので、充電電流の大きさと同程度の電流容量のサイリスタ又はIGBTなどを前記バイパス用スイッチ素子として用いることができるので小型化、低電力損失化、及び低コスト化を図ることができる。
 上記の課題を解決するために、本発明のコンデンサ式溶接装置は、サイリスタと整流用ダイオードとをブリッジ構成に接続してなる混合ブリッジ形全波整流回路又はサイリスタをブリッジ構成に接続してなるサイリスタ式全波整流回路を有し、入力される交流電力を直流電力に変換して出力する充電回路と、1次巻線と2次巻線とを有する溶接用トランスと、前記充電回路から少なくとも前記1次巻線又は前記充電回路と前記1次巻線との間に該1次巻線と直列に接続されるインダクタを含む充電経路に流れる充電電流によって充電される溶接用コンデンサと、前記充電回路から前記直流電力が前記溶接用コンデンサに供給されていないときに前記溶接用コンデンサの充電電荷を前記溶接用トランスを介して放電させて溶接を行わせる放電用スイッチ素子と、前記充電回路の出力端子間に跨って並列に接続されて、前記充電経路に含まれる前記1次巻線又は前記インダクタのインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流を前記充電回路からバイパスする順方向阻止機能を有するバイパス用スイッチ素子と、前記還流電流が流れるときに前記バイパス用スイッチ素子を導通させ、前記バイパス用スイッチ素子が非導通となって前記順方向阻止機能を回復した後に前記放電用スイッチ素子を導通させるように制御する制御回路と、を備えることを特徴とする。
 また、上記の課題を解決するために、本発明のコンデンサ式溶接方法は、サイリスタと整流用ダイオードとをブリッジ構成に接続してなる混合ブリッジ形全波整流回路又はサイリスタをブリッジ構成に接続してなるサイリスタ式全波整流回路を有し、交流入力電力を直流電力に変換して出力する充電回路と、1次巻線と2次巻線とを有する溶接用トランスと、前記充電回路から少なくとも前記1次巻線又は前記充電回路と前記1次巻線との間に該1次巻線と直列に接続されるインダクタを含む充電経路に流れる充電電流によって充電される溶接用コンデンサと、前記充電回路から前記直流電力が前記溶接用コンデンサに供給されていないときに前記溶接用コンデンサの充電電荷を前記溶接用トランスを介して放電させて溶接を行わせる放電用スイッチ素子とを備えるコンデンサ式溶接装置による溶接方法において、前記充電回路の出力端子間に跨って並列に接続される順方向阻止機能を有するバイパス用スイッチ素子を前記充電経路に含まれる前記1次巻線又は前記インダクタのインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流を前記充電回路からバイパスさせるように導通させ、前記バイパス用スイッチ素子が非導通となって前記順方向阻止機能を回復した後に前記放電用スイッチ素子を導通させることを特徴とする。
 本発明に係るコンデンサ式溶接装置及びその制御方法によれば、還流電流の影響を受けて充電回路内のサイリスタの制御が行えなくなることを防ぐことができ、小型化、低電力損失化、及び低コスト化を図ることができる。
本発明の実施形態1に係るコンデンサ式溶接装置及びその制御方法を説明するための図である。 本発明の実施形態1に係るコンデンサ式溶接装置及びその制御方法を説明するための各部の波形を示す図である。 本発明の実施形態2に係るコンデンサ式溶接装置及びその制御方法を説明するための図である。
 本発明に係るコンデンサ式溶接装置及びコンデンサ式溶接方法は、溶接用コンデンサの充電中に、充電経路のインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流が充電回路を実質的に流れないようにバイパス路によってバイパスし、かつ溶接用コンデンサの充電電荷を放電するときには、溶接用トランスの1次巻線を通して流れる放電電流が前記バイパス路を流れないようにすることを特徴とする。
 添付の図面を参照して本発明の実施形態を説明するが、以下に示す実施形態によって、本発明は限定されるものではなく、本発明の技術思想から逸脱しない限り、本発明に含まれるものとする。また、本発明で用いる溶接という用語は、溶接箇所の発熱により双方の金属が溶融してナゲットを形成する溶接だけではなく、溶接箇所の発熱により双方の金属が塑性流動して接合する拡散接合も含む。なお、本明細書及び図面において、符号が同じ構成要素は同一の名称の部材を示すものとする。溶接電極間に溶接電流を流すために加圧力(鍛圧)を与える加圧機構や溶接電極を駆動する駆動機構、各種の検出回路など、本発明の動作を説明する上で特に必要とならない機構については図示を省略する。
 [実施形態1]
 図1及び図2によって本発明に係る実施形態1のコンデンサ式溶接装置及びコンデンサ式溶接方法について説明する。図1に示すコンデンサ式溶接装置は、三相の交流入力端子1、充電回路2、充電回路2の直流出力端子3と4、直流出力端子3と4との間に跨って接続されるバイパス用スイッチ素子5、1次巻線6aと2次巻線6bとを有する溶接用トランス6、溶接用コンデンサ7、放電用スイッチ8、2次巻線6bに接続される第1の溶接電極9と第2の溶接電極10、及び制御回路11を備える。
 制御回路11は、充電回路2に制御信号S1、S2、S3を与え、バイパス用スイッチ素子5に第1の駆動信号Saを、放電用スイッチ8に第2の駆動信号Sbをそれぞれ与える。また、電圧検出回路12は、溶接用コンデンサ7の充電電圧を検出し、その検出値を制御回路11に送る。なお、図1では、溶接用コンデンサ7に充電される逆電圧を放電する場合に用いる一方向電力消費回路13が、溶接用コンデンサに並列に接続されている。
 W1とW2とは、第1の溶接電極9と第2の溶接電極10との間に配置され、加圧された状態でパルス状の溶接電流が通電されることにより溶接される各種の鋼材、又は銅やアルミニウムのような高導電性金属材料などからなる被溶接物である。ここでは溶接電流が通電して溶接が行われた後の被溶接物を溶接物品という。図1に示すコンデンサ式溶接装置は、溶接用コンデンサ7の充電電流と放電電流とが溶接用トランス6の1次巻線6aを互いに逆方向に流れるので、溶接用トランス6が偏励磁され難いという利点をもつ構成となっている。
 充電回路2は、溶接用コンデンサ7を充電するための回路であり、図1には、サイリスタ2A、2B、2Cと整流用ダイオード2a、2b、2cとをブリッジ構成に接続した三相混合ブリッジ形全波整流回路を示す。充電回路2は、図示しないが、整流用ダイオードを用いずに、サイリスタをブリッジ構成に接続した三相サイリスタ式全波整流回路であってもよい。また、入力電源が単相交流である場合には、図示しないが、サイリスタと整流用ダイオードとをブリッジ構成にした単相混合ブリッジ形全波整流回路、あるいは整流用ダイオードを用いずに、サイリスタをブリッジ構成に接続した単相サイリスタ式全波整流回路であってもよい。充電回路2のサイリスタ2A、2B、2Cは制御回路11からの位相制御信号S1、S2、S3で制御され、順次導通と非導通とを繰り返す。ここでは、充電回路2が交流入力端子1の交流電力を直流電力に変換して直流出力端子3と4との間に直流電力を出力して、充電電流を溶接用コンデンサ7に流す動作を充電動作という。
 バイパス用スイッチ素子5は、カソード側が充電回路2の直流出力端子3に、アノード側が直流出力端子4にそれぞれ接続され、充電回路2と並列に接続される。バイパス用スイッチ素子5は、充電回路2が充電動作を行う際には、制御回路11からの第1の駆動信号Saで導通して、後述する充電経路のインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流を充電回路2からバイパスする働きを行う。なお、溶接用コンデンサ7に充電された電荷を放電して放電電流を流すときにはバイパス用スイッチ素子5は非導通状態にあるように制御される。
 バイパス用スイッチ素子5は、第1の駆動信号Saが高レベルからゼロレベルに低下、つまり第1の駆動信号Saが消滅して、バイパス用スイッチ素子5を流れる還流電流がその保持電流より減少すると順方向阻止機能を回復して非導通になるものである。本発明に係る各実施形態では、バイパス用スイッチ素子5としてサイリスタを用いるので、以下ではバイパス用サイリスタ5という。なお、サイリスタの他にIGBT又はトランジスタのような半導体スイッチ、あるいは機械的なスイッチとダイオードとを直列に接続した構成の一方向性スイッチなどをバイパス用スイッチ素子5として用いることもできる。
 溶接用トランス6の1次巻線6aと溶接用コンデンサ7とを直列接続した直列回路が充電回路2の直流出力端子3、4間に並列に接続される。溶接用トランス6は、1ターン程度の2次巻線6bとこれに比べて巻数の大きな1次巻線6aとを有する一般的なものでよいので、詳しく説明しないが、一般的に溶接用トランスは充電電流が流れる充電経路の浮遊インダクタンスに比べて大きなインダクタンスを有する。溶接用トランス6の2次巻線6bの両端には、第1、第2の溶接電極9、10がそれぞれ接続される。第1、第2の溶接電極9、10は一般的なものでもよいので説明を省略する。溶接用コンデンサ7は例えば、複数の有極性の電解コンデンサを並列に接続したブロックやこれらのブロックを複数個並列に接続したコンデンサバンク、又は無極性(両極性)の、例えばポリプロピレンフィルムコンデンサを複数個並列に接続したブロックやこれらのブロックを複数個並列に接続したコンデンサバンクなどである。
 放電用スイッチ8は、溶接用トランス6の1次巻線6aと溶接用コンデンサ7とを直列接続してなる直列回路に並列に接続され、放電用スイッチ8がオンするとき溶接用コンデンサ7の充電電荷を短時間で放電する放電回路が形成される。本発明に係る各実施形態では、放電用スイッチ8としてサイリスタを用いるので、以下の説明では、放電用スイッチを放電用サイリスタ8として説明する。また、放電用サイリスタ8は、アノード側が充電回路2の一方の直流出力端子3に、カソード側が他方の直流出力端子4にそれぞれ接続される。充電回路2が溶接用コンデンサ7を充電する期間では放電用サイリスタ8は非導通状態にする。
 制御回路11はシーケンサ11Aと位相制御信号発生回路11Bと駆動回路11Cなどからなる。シーケンサ11Aは図2(A)に示すような予め決められた時間幅の充電信号Xと放電信号Yとを発生する。位相制御信号発生回路11Bは、シーケンサ11Aから充電信号Xを受けると共に、溶接用コンデンサ7の充電電圧の値に相応する値の検出電圧信号Vcを電圧検出回路12から受けて動作し、図2(B)、(C)、(D)に示すような位相制御信号S1、S2、S3を発生する。位相制御信号S1、S2、S3はそれぞれ充電回路2のサイリスタ2A、2B、2Cのゲートに与えられる。駆動回路11Cはシーケンサ11Aから充電信号Xと放電信号Yとを受けて、充電信号Xに同期した図2(E)に示す第1の駆動信号Saをバイパス用スイッチ素子5のゲートに与え、放電信号Yに同期した図2(F)に示す第2の駆動信号Sbを放電用スイッチ8のゲートに与える。
 放電信号と次の放電信号との間の時間間隔は、前の放電信号、つまり溶接の終了後から溶接物品を第1の溶接電極9と第2の溶接電極10から取り外した後、新たに溶接する被溶接物W1とW2とを第1の溶接電極9と第2の溶接電極10との間に設置して所望の位置合わせを終了するまでの時間とほぼ等しい。実際の溶接においては、溶接用コンデンサ7を設定電圧値まで充電するのに要する充電時間に比べて被溶接物W1とW2を第1の溶接電極9と第2の溶接電極10との間に設置して所望の位置合わせをするのにかなりの時間を必要とする場合がある。このような場合には、充電回路2の充電開始時刻によっては溶接用コンデンサ7の充電電圧が自然放電により低下することがあり、補充電が必要になるケースがある。実施形態1では補充電を行うことを前提に充電信号Xの時間幅が決定されている。
 充電信号Xと同期してバイパス用サイリスタ5のゲートに与えられる第1の駆動信号Saがゼロレベルとなり、バイパス用スイッチ素子5を流れる還流電流がその保持電流よりも減少するとバイパス用サイリスタ5が非導通になる。このため、充電信号Xの終了後は、バイパス用サイリスタ5の順方向阻止機能を回復する時間を考慮する必要がある。図2に示すように、例えば、放電信号Yを発生させる時刻t5よりも数百ミリ秒程度前の時刻t4に充電信号Xを終了する。つまり、制御回路11は、溶接用コンデンサ7の電荷を放電するときに流れる放電電流が実質的にバイパス用サイリスタ5を流れないように、バイパス用サイリスタ5の非導通期間を制御する。
 図1に示すように、一方向電力消費回路13の一例として、充電電流を流さない向きのダイオード13Aと抵抗器13Bとの直列回路が溶接用コンデンサ7と並列に接続される。充電回路2の充電動作によって溶接用コンデンサ7に充電された充電電荷は、放電用サイリスタ8を導通させることによって溶接用トランス6の1次巻線6a及び放電用サイリスタ8を通して放電される。このとき、溶接用コンデンサ7のキャパシタンスと溶接用トランス6の1次巻線6aのインダクタンスなどを含む放電経路のインダクタンスとで共振が行われ、共振の半周期後には溶接用コンデンサ7の電圧は極性が反転する。
 この極性反転した電荷(以下「残留電荷」という。)は、充電回路2の直流出力端子4側を正、直流出力端子3側を負とする極性となる。この残留電荷は、一方向電力消費回路13よって消費される。このように、一方向電力消費回路13によって溶接用コンデンサ7の残留電荷を消費させた場合は、次に溶接用コンデンサ7の充電が開始されるときに、溶接用コンデンサ7の電圧を十分に低い値にすることができる。また、一方向電力消費回路13が溶接用コンデンサ7の残留電荷を消費させた場合は、次に充電回路2、バイパス用スイッチ素子5が導通するときの残留電荷の放電電流が実質的に充電回路2、バイパス用スイッチ素子5を流れないようにすることができる。
 次に、図1及び図2を用いて実施形態1のコンデンサ式溶接装置の動作を説明する。不図示の溶接開始ボタンを押すことによって、図2(G)に示すように、時刻t1で制御回路11のシーケンサ11Aが前述したような充電信号Xを位相制御信号発生回路11Bと駆動回路11Cとに供給し始める。位相制御信号発生回路11B及び駆動回路11Cは充電信号Xを受けると、それぞれ動作を開始する。実施形態1では、位相制御信号発生回路11Bは溶接用コンデンサ7を充電する充電電流がほぼ一定の値になるように制御される導通角の位相制御信号S1、S2、S3を充電回路2のサイリスタ2A、2B、2Cのゲートに与える。サイリスタ2A、2B、2Cが位相制御信号S1、S2、S3によって順次に導通と非導通とを繰り返すことによって、充電回路2は充電動作を行い、ほぼ一定の充電電流を溶接用コンデンサ7に流してこれを定電流充電する。なお、サイリスタ2A、2B、2Cの制御方法は従来と同様のものでもよく、本発明は制御方法が限定されるものではない。
 他方では、駆動回路11Cが充電信号Xを受けると直ぐに第1の駆動信号Saをバイパス用サイリスタ5に与え、バイパス用サイリスタ5を導通可能な状態にさせる。充電回路2が充電動作を行っているときには、バイパス用サイリスタ5を導通可能な状態にしておくことが好ましい。このようにバイパス用サイリスタ5を導通可能な状態にしておくことで、還流電流が流れるときに確実にバイパス用サイリスタ5を導通させることができる。充電回路2から出力される充電電流は、直流出力端子3、溶接用トランス6の1次巻線6a、溶接用コンデンサ7及び直流出力端子4を通して流れ、溶接用コンデンサ7を充電する。
 前述したように、充電経路には、溶接用トランス6が有するインダクタンスや浮遊インダクタンスなどからなる充電経路のインダクタンスが存在するので、充電回路2のサイリスタ2A、2B、2Cが各サイクルで導通して充電電流が1次巻線6aを流れる度に充電経路のインダクタンスに磁気エネルギーが蓄えられる。この磁気エネルギーは、充電回路2のサイリスタ2A、2B、2Cが各サイクルの非導通区間に溶接用コンデンサ7及びバイパス用サイリスタ5を通して放出され、還流電流が流れる。
 バイパス用サイリスタ5の順方向電圧降下は、充電経路を形成する際に導通する充電回路2のサイリスタの順方向電圧降下とダイオードの順方向電圧降下、例えばサイリスタ2Aの順方向電圧降下と整流用ダイオード2b又は2cとの順方向電圧降下との和よりも小さい。したがって、還流電流は、順方向電圧降下の小さい、すなわちインピーダンスの低いバイパス用サイリスタ5を実質的に流れて充電回路2をバイパスする。これによって、位相制御信号S1、S2、S3が高レベルからゼロレベルに低下した後に、充電回路2のサイリスタ2A、2B、2Cを通流する電流がそれらの保持電流よりも低下するので、サイリスタ2A、2B、2Cは非導通になる。
 ここで、例えばバイパス用サイリスタ5が接続されていない場合には下記のような問題が起こる可能性がある。充電初期には、充電用コンデンサ7の充電電圧が低く、ピーク値の大きな充電電流が流れるから、各サイクルでサイリスタ2A、2B、2Cの導通角が小さく、非導通区間は長くなるように制御される。したがって、充電経路のインダクタンスが比較的小さく、磁気エネルギーが比較的小さい場合には、次に導通するサイリスタが導通する前に、今まで導通していたサイリスタが磁気エネルギーの放出を終えた後に非導通になれば制御上特に問題が起こらないことになる。
 しかし、充電用コンデンサ7の充電が進むと、充電電流を一定に保持するためにサイリスタ2A、2B、2Cの導通角は大きくなる。つまり位相制御信号S1、S2、S3のパルス幅が大きくなり、各サイクルでサイリスタ2A、2B、2Cの非導通区間が短くなる。非導通区間が短くなると、今まで導通していたサイリスタに保持電流よりも大きな還流電流が通流している状態、つまり前のサイリスタがまだ非導通にはならない状態で、次のサイリスタが導通することになる。この場合、前のサイリスタを流れる電流が保持電流よりも減少しないので、前のサイリスタは導通を続けて制御不能となる。
 そこで、充電経路のインダクタンスに蓄えられる磁気エネルギーによる還流電流の影響を低減する方法として、充電回路の出力端子間にバイパス用のダイオードを並列に接続する場合、つまり、図1において、バイパス用サイリスタ5の代わりにバイパス用のダイオードを接続する構成が考えられる。充電回路の出力端子間にバイパス用のダイオードを並列に接続することによって、充電経路のインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流をバイパス用のダイオードでバイパスすることができる。このように上記磁気エネルギーによって流れる還流電流をダイオードでバイパスすれば、還流電流は充電回路のサイリスタを通して実質的に流れないので、サイリスタを位相制御する位相制御信号が高レベルからゼロレベルに低下するときにはサイリスタが非導通になり、混合ブリッジ形全波整流回路などを制御することが可能となる。
 しかし、コンデンサ式溶接装置にあっては、溶接用コンデンサの充電電荷を短時間で放電するので充電電流に比べて大きなパルス状の放電電流を溶接用トランスの1次巻線に通電させる工程が必須となる。前述したように、充電回路の出力端子間にバイパス用のダイオードを並列に接続すれば、環流電流を充電回路に流さずにバイパス用のダイオードでバイパスすることができる。しかし、バイパス用のダイオードは順方向阻止機能を有していないから、充電回路2の直流出力端子4を正、直流出力端子3を負とする極性の残留電荷は、そのほとんどがインピーダンスの大きな一方向電力消費回路13よりもインピーダンスの小さなバイパス用のダイオードを通して放電されることになる。
 したがって、溶接時に溶接用コンデンサ7の残留電荷の放電による大きな放電電流がバイパス用のダイオードを通流するという別の弊害が生じる。この場合には、大きな放電電流を通流させることができる大電流容量のダイオードを用いる必要があり、これに伴いその放熱を行う大きな放熱機構が必要となるために、経済性に劣るだけでなく装置が大型化し、また、環境面でも好ましくないという問題などが生じる。
 しかし、本発明では、充電回路2の直流出力端子3と4との間に並列に、充電回路2の両端の順方向電圧降下よりも小さな順方向電圧降下を呈するバイパス用サイリスタ5を接続してバイパス路を形成している。したがって、充電経路のインダクタンスに蓄えられた磁気エネルギーの放出による還流電流はバイパス用サイリスタ5を流れる。バイパス用サイリスタ5が導通しているときには、充電回路2の両端にはバイパス用サイリスタ5の順方向電圧降下に等しい電圧が印加されることになる。これによって、位相制御信号S1、S2、S3がゼロレベルに低下すると、充電回路2のサイリスタ2A、2B、2Cを流れる電流は保持電流以下に減少するので、確実に非導通にさせることができる。また、溶接時にバイパス用サイリスタ5を非導通になるように動作させるので、溶接用コンデンサ7の残留電荷による大きな放電電流を流さないようにすることができる。
 次に、上述の補充電を行う充電動作について詳しく説明する。充電回路2は制御された充電電流を溶接用コンデンサ7に流し、図2(G)の時刻t2で溶接用コンデンサ7の充電電圧が所望の溶接を行うのに必要な電圧を示す第1の設定電圧V1に達するものとする。電圧検出回路12は、時刻t2で第1の設定電圧V1に対応する第1の検出設定電圧に等しい検出電圧Vcを制御回路11の位相制御信号発生回路11Bに入力し、位相制御信号発生回路11Bは位相制御信号S1、S2、S3を出力するのを中断する。これに伴い充電回路2は充電動作を中断するので、定電流制御による溶接用コンデンサ7の主充電は終了することになる。
 この状態は保持されるが、一般的に溶接用コンデンサ7の充電電圧は自然放電によって時間の経過に伴い徐々に低下する。時刻t3で溶接用コンデンサ7の充電電圧が第1の設定電圧V1よりも所定の値だけ小さい第2の設定電圧V2まで低下すると、電圧検出回路12が第2の設定電圧V2に対応する電圧検出信号Vcを位相制御信号発生回路11Bに出力する。これに伴い、位相制御信号発生回路11Bは再び位相制御信号S1、S2、S3をサイリスタ2A、2B、2Cに供給し、充電回路2は補充電を開始する。補充電のときの位相制御信号S1、S2、S3は予め決めた一定幅の制御信号であってもよい。
 充電回路2の補充電動作によって、溶接用コンデンサ7の充電電圧が再び第1の設定電圧V1になると、位相制御信号発生回路11Bは位相制御信号S1、S2、S3を発生するのを止め、補充電動作を停止する。次に、時刻t4で充電信号Xが終了し、これと同時に駆動回路11Cは第1の駆動信号Saを出力するのを止める。第1の駆動信号Saは、充電信号Xの立ち上がりと一緒に立ち上がり、充電信号Xの立下りと一緒に立ち下がる、つまり充電信号Xと同期する。
 補充電期間の充電動作によって充電経路のインダクタンスに磁気エネルギーが蓄えられた場合も、図2(E)の第1の駆動信号Saは、充電信号Xが終了する時刻t4まで高レベルであるので、上述の還流電流が流れるときにバイパス用サイリスタ5は導通する。したがって、補充電期間に充電経路のインダクタンスに蓄えられた磁気エネルギーによる還流電流もバイパス用サイリスタ5を通して流れる。バイパス用サイリスタ5は、流れる還流電流がバイパス用サイリスタ5の保持電流よりも低下すると、非導通となる。
 上述の通りバイパス用サイリスタ5が非導通、つまり順方向阻止機能を回復した後の時刻t5で、駆動回路11Cはシーケンサ11Aから放電信号Yを受けて第2の駆動信号Sbを放電用サイリスタ8のゲートに印加する。第2の駆動信号Sbが与えられたことによって放電用サイリスタ8が導通すると、溶接用コンデンサ7に充電されていた充電電荷は溶接用トランス6の1次巻線6a及び放電用サイリスタ8を通して放電される。これに伴って溶接用トランス6の2次巻線6bから大きなパルス状の溶接電流が被溶接物W1、W2を流れ、溶接が行われる。このとき、溶接用コンデンサ7のキャパシタンスと充電経路のインダクタンスとで共振が行われる。なお、共振の半周期後には溶接用コンデンサ7の電荷は極性が反転し、前述したように充電回路2の直流出力端子3側が負の極性で、直流出力端子4側が正の極性となる残留電荷が溶接用コンデンサ7に蓄えられるが、前述したように一方向電力消費回路13を用いることで、残留電荷を放出させて電力消費させることができる。
 時刻t5では、サイリスタ2A、2B、2C及びバイパス用サイリスタ5はすべて非導通状態にあり、位相制御信号S1、S2、S3及び第1の駆動信号Saが発生していないので、サイリスタ2A、2B、2Cもバイパス用サイリスタ5も導通することはない。したがって、溶接の際に大きな電流がバイパス用サイリスタ5を流れることはなく、勿論、充電回路2を流れることもないので、溶接の際に1次巻線6aを流れる放電電流よりも小さい電流容量、例えば充電電流程度の電流容量のサイリスタをバイパス用サイリスタ5として用いることができる。上述のように、還流電流が流れるときにバイパス用サイリスタ5を導通させ、バイパス用スイッチ素子5が非導通となって順方向阻止機能を回復した後に放電用サイリスタ8を導通させるようにする。電流容量の小さなバイパス用サイリスタ5によって、還流電流を充電回路2からバイパスし、充電回路2の充電動作中にサイリスタの制御が不能になるという、還流電流に起因する問題を解決できる。
 [実施形態2]
 次に、図3を用いて、本発明の実施形態2に係るコンデンサ式溶接装置及びコンデンサ式溶接方法を説明する。実施形態2で、実施形態1と異なる回路構成の主な点は、充電回路2と溶接用コンデンサ7との間に充電効率を向上させるために力率改善用のインダクタ14を接続すると共に、溶接用トランス6の1次巻線6aと直列に放電用スイッチ8を接続し、1次巻線6aと放電用スイッチ8との直列回路と並列に溶接用コンデンサ7を並列に接続した構成にある。
 バイパス用サイリスタ5は、実施形態1と同様にカソード側が充電回路2の直流出力端子3に、アノード側が直流出力端子4にそれぞれ接続され、充電回路2と並列に接続されている。また、実施形態1と同様に放電用スイッチ8として放電用サイリスタを用いている。なお、溶接用コンデンサ7の前述した残留電荷を放電させるための一方向電力消費回路13を用いる場合は、実施形態1と同様に溶接用コンデンサ7に並列に接続させる。
 実施形態1の充電回路2と同様な回路構成の充電回路2が、位相制御信号発生回路11Bからの位相制御信号S1、S2、S3によって充電動作を開始すると、充電電流は充電回路2の一方の直流出力端子3からインダクタ14、溶接用コンデンサ7を通して他方の直流出力端子4に通して流れ、溶接用コンデンサ7を充電する。実施形態1とは違って、充電電流が溶接用トランス6の1次巻線6aを流れない。
 この際、実施形態1と同様にシーケンサ11Aからの充電信号Xに基づいて、位相制御信号発生回路11Bが位相制御信号S1、S2、S3を充電回路2に与える。これとほぼ同時に、駆動回路11Cが第1の駆動信号Saをバイパス用サイリスタ5のゲートに印加して、バイパス用サイリスタ5を導通させ、少なくとも充電回路2が充電動作を行う期間では導通可能な状態に保持する。また、バイパス用サイリスタ5は、放電用サイリスタ8が導通する前に、確実に非導通、つまり順方向阻止機能が回復している。
 実施形態2では、インダクタ14のインダクタンス及び充電電流が流れる充電経路の浮遊インダクタンスなどからなる充電経路のインダクタンスが存在する。前述したように、充電回路2のサイリスタ2A、2B、2Cは位相制御信号S1、S2、S3が順次印加される度に導通と非導通とを繰り返し、サイリスタ2A、2B、2Cが順次に導通する各サイクルで電流が流れ、充電電流は直流電流となる。この際、位相制御信号S1、S2、S3によってサイリスタ2A、2B、2Cが導通する各区間で充電経路のインダクタンスに磁気エネルギーが蓄えられる。
 溶接用コンデンサ7の充電時には、制御回路11が充電回路2のサイリスタ2A、2B、2C、及びバイパス用サイリスタ5を実施形態1と同様に制御する。還流電流は、充電回路2の順方向電圧降下よりも小さい順方向電圧降下を呈するバイパス用サイリスタ5を流れ、還流電流がサイリスタ2A、2B、2Cに流れ込むことを防止できる。このバイパス用サイリスタ5が導通している間は、充電回路2の直流出力端子4と3との間の電圧は、直流出力端子4が正で直流出力端子3が負とする極性であって、バイパス用サイリスタ5の順方向電圧降下と等しい電圧に保持される。バイパス用サイリスタ5を用いることによって、位相制御信号S1、S2、S3がゼロレベルに降下した後にサイリスタ2A、2B、2Cを流れる電流は保持電流よりも減少する。したがって、サイリスタ2A、2B、2Cは確実に非導通になり、充電回路2内のサイリスタの制御が行えなくなることを防ぐことができる。
 次にシーケンサ11Aからの放電信号に基づいて、駆動回路11Cが第2の駆動信号Sbを放電用サイリスタ8のゲートに印加して、放電用サイリスタ8を導通させ、溶接用コンデンサ7の充電電荷を溶接用トランス6の1次巻線6aを通して放電し、溶接を行う。このとき、溶接用コンデンサ7のキャパシタンスと充電経路のインダクタンスとの共振が行われ、前述したように溶接用コンデンサ7は逆極性に充電されてその電圧は反転し、直流出力端子3に対して直流出力端子4側が正極性となる残留電荷が蓄えられる。この残留電荷は前記充電電荷に比べて小さい。
 この溶接用コンデンサ7のキャパシタンスと溶接用トランス6の1次巻線6aのインダクタンスなどによる共振により、放電用サイリスタ8は順方向と逆極性の電圧が印加されるので直ぐに非導通となる。なお、一方向電力消費回路13を溶接用コンデンサ7に並列に接続すれば、上述のように一方向電力消費回路13によって残留電荷を放電して消費させることができる。また、溶接時には、既にサイリスタ2A、2B、2C及びバイパス用サイリスタ5は順方向阻止機能を回復した状態にあるので、溶接用コンデンサ7の残留電荷による電流がサイリスタ2A、2B、2C及びバイパス用サイリスタ5を順方向に流れることはない。
 したがって、実施形態2のコンデンサ式溶接装置も、バイパス用サイリスタ5に溶接用コンデンサ7の残留電荷による大きな電流が流れないので、放電電流に比べて小さい電流容量のサイリスタをバイパス用サイリスタ5として用いることができる。また、充電回路2の充電動作中に還流電流を充電回路2からバイパスするので、還流電流によって充電回路2のサイリスタの制御が不能になるという問題を解決できる。
 上記の実施形態において、バイパス用サイリスタ5のゲートに与えられる第1の駆動信号Saは、図2(E)に示すように、充電信号Xに同期した充電開始時の時刻t1から時刻t4までの連続した信号としたが、少なくとも上述の還流電流が流れるときにバイパス用サイリスタ5を確実に導通させることができる信号であれば良い。上述の補充電を行う充電動作についても同様である。
 また、上記の実施形態では、充電回路2のサイリスタ2A、2B、2Cを定電流制御したが、例えば、充電初期には大きな突入電流が流れないようにサイリスタ2A、2B、2Cの導通角を小さい導通角から徐々に増やし、溶接用コンデンサ7の充電電圧が所定の値に達したら一定の導通角で制御する方法であってもよい。なお、上記の実施形態において、充電回路の充電開始時刻によっては溶接用コンデンサの充電電圧が自然放電により低下することによって補充電が必要になるケースについて述べたが、溶接用コンデンサ7の充電電圧の電圧低下分が少ない場合などは補充電を行わなくてもよい。又は、溶接用コンデンサ7の充電電圧が自然放電によって低下することを見込んで、その分だけ予め設定電圧V1(図2)を高く設定することによって、補充電を行わないようにしてもよい。
 本発明のコンデンサ式溶接機及びその充電方法における各部の構成、構造、数、配置、形状、材質などに関しては、上記具体例に限定されず、当業者が適宜選択的に採用したものも本発明の範囲に包含される。より具体的には、例えば、半導体スイッチとしてサイリスタの記号により例示したものなどは、これら特定の電気素子には限定されず、同様の機能または作用を有する単一の電気素子あるいは複数の電気素子を含む電気回路として構成することができ、これらすべての変形は、本発明の範囲に包含される。同様に、回路の具体的な構成や、ダイオード、抵抗、スイッチング素子をはじめとする各回路素子の数や配置関係などについても、当業者が適宜設計変更したものは本発明の範囲に包含される。
 1…交流入力端子、2…充電回路、2A、2B、2C…サイリスタ、2a、2b、2c…整流用ダイオード、3、4…充電回路の直流出力端子、5…バイパス用スイッチ素子(バイパス用サイリスタ)、6…溶接用トランス、6a…溶接用トランス6の1次巻線、6b…溶接用トランス6の2次巻線、7…溶接用コンデンサ、8…放電用スイッチ(放電用サイリスタ)、9…第1の溶接電極、10…第2の溶接電極、11…制御回路、11A…シーケンサ、11B…位相制御信号発生回路、11C…駆動回路、12…電圧検出回路、13…一方向電力消費回路、13A…ダイオード、13B…抵抗器、14…インダクタ、W1、W2…被溶接物、X…充電信号、Y…放電信号、S1、S2、S3…位相制御信号、Sa…第1の駆動信号、Sb…第2の駆動信号、V1…溶接用コンデンサ7の第1の設定電圧、V2…溶接用コンデンサ7の第2の設定電圧(補充電開始電圧)、Vc…溶接用コンデンサ7の充電電圧の検出電圧

Claims (6)

  1.  サイリスタと整流用ダイオードとをブリッジ構成に接続してなる混合ブリッジ形全波整流回路又はサイリスタをブリッジ構成に接続してなるサイリスタ式全波整流回路を有し、入力される交流電力を直流電力に変換して出力する充電回路と、
     1次巻線と2次巻線とを有する溶接用トランスと、
     前記充電回路から少なくとも前記1次巻線又は前記充電回路と前記1次巻線との間に該1次巻線と直列に接続されるインダクタを含む充電経路に流れる充電電流によって充電される溶接用コンデンサと、
     前記充電回路から前記直流電力が前記溶接用コンデンサに供給されていないときに前記溶接用コンデンサの充電電荷を前記溶接用トランスを介して放電させて溶接を行わせる放電用スイッチ素子と、
     前記充電回路の出力端子間に跨って並列に接続されて、前記充電経路に含まれる前記1次巻線又は前記インダクタのインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流を前記充電回路からバイパスする順方向阻止機能を有するバイパス用スイッチ素子と、
     前記還流電流が流れるときに前記バイパス用スイッチ素子を導通させ、前記バイパス用スイッチ素子が非導通となって前記順方向阻止機能を回復した後に前記放電用スイッチ素子を導通させるように制御する制御回路と、
    を備えることを特徴とするコンデンサ式溶接装置。
  2.  請求項1において、前記制御回路は、予め決められた時間幅の充電信号を発生すると共に前記充電信号が終了した後に放電信号を発生するシーケンサを備え、前記充電信号が発生している期間に前記充電回路の前記サイリスタに制御信号を与えて充電動作をさせると共に、前記充電信号に同期する第1の駆動信号を前記バイパス用スイッチ素子に与えて導通可能な状態にさせ、更に前記放電信号に同期して前記放電用スイッチ素子に第2の駆動信号を与えて前記放電用スイッチ素子を導通させることを特徴とするコンデンサ式溶接装置。
  3.  請求項2において、前記溶接用コンデンサの充電電圧を検出して検出電圧を前記制御回路に入力する電圧検出器を備え、前記制御回路は、前記検出電圧が前記溶接用コンデンサの第1の設定電圧に対応する第1の検出設定電圧を超えるとき、前記充電回路の前記サイリスタに前記制御信号を与えるのを止めると共に、前記バイパス用スイッチ素子に前記第1の駆動信号を与えるのを止めることを特徴とするコンデンサ式溶接装置。
  4.  請求項3において、前記制御回路は、前記検出電圧が前記溶接用コンデンサの第1の設定電圧になった後に前記溶接用コンデンサの充電電圧が降下して、前記検出電圧が前記第1の検出設定電圧よりも所定電圧だけ低い第2の検出設定電圧になるとき、再び前記充電回路の前記サイリスタに前記制御信号を与えて、前記溶接用コンデンサを更に充電することを特徴とするコンデンサ式溶接装置。
  5.  請求項1から請求項4のいずれかにおいて、前記溶接用コンデンサと並列に接続される一方向電力消費回路を備え、前記溶接用コンデンサに充電された電荷の放電によって流れる放電電流が前記バイパス用スイッチ素子を実質的に流れないように前記スイッチ素子の非導通期間が制御されることを特徴とするコンデンサ式溶接装置。
  6.  サイリスタと整流用ダイオードとをブリッジ構成に接続してなる混合ブリッジ形全波整流回路又はサイリスタをブリッジ構成に接続してなるサイリスタ式全波整流回路を有し、交流入力電力を直流電力に変換して出力する充電回路と、1次巻線と2次巻線とを有する溶接用トランスと、前記充電回路から少なくとも前記1次巻線又は前記充電回路と前記1次巻線との間に該1次巻線と直列に接続されるインダクタを含む充電経路に流れる充電電流によって充電される溶接用コンデンサと、前記充電回路から前記直流電力が前記溶接用コンデンサに供給されていないときに前記溶接用コンデンサの充電電荷を前記溶接用トランスを介して放電させて溶接を行わせる放電用スイッチ素子とを備えるコンデンサ式溶接装置による溶接方法において、前記充電回路の出力端子間に跨って並列に接続される順方向阻止機能を有するバイパス用スイッチ素子を前記充電経路に含まれる前記1次巻線又は前記インダクタのインダクタンスに蓄えられる磁気エネルギーによって流れる還流電流を前記充電回路からバイパスさせるように導通させ、前記バイパス用スイッチ素子が非導通となって前記順方向阻止機能を回復した後に前記放電用スイッチ素子を導通させることを特徴とするコンデンサ式溶接方法。
PCT/JP2013/051455 2012-02-07 2013-01-24 コンデンサ式溶接装置及びコンデンサ式溶接方法 WO2013118588A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP13746004.4A EP2813313B1 (en) 2012-02-07 2013-01-24 Capacitor-type welding device and capacitor-type welding method
KR1020147024234A KR101626698B1 (ko) 2012-02-07 2013-01-24 콘덴서식 용접 장치 및 콘덴서식 용접 방법
US14/376,593 US10005149B2 (en) 2012-02-07 2013-01-24 Capacitor-type welding device and capacitor-type welding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-024268 2012-02-07
JP2012024268A JP5580840B2 (ja) 2012-02-07 2012-02-07 コンデンサ式溶接装置及びコンデンサ式溶接方法

Publications (1)

Publication Number Publication Date
WO2013118588A1 true WO2013118588A1 (ja) 2013-08-15

Family

ID=48947355

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051455 WO2013118588A1 (ja) 2012-02-07 2013-01-24 コンデンサ式溶接装置及びコンデンサ式溶接方法

Country Status (5)

Country Link
US (1) US10005149B2 (ja)
EP (1) EP2813313B1 (ja)
JP (1) JP5580840B2 (ja)
KR (1) KR101626698B1 (ja)
WO (1) WO2013118588A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390343A (zh) * 2020-05-14 2020-07-10 重庆科技学院 一种高强钢焊机专用控制电路

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5538656B2 (ja) * 2012-01-12 2014-07-02 オリジン電気株式会社 コンデンサ式溶接機及びその充電方法
EP2871760B1 (en) * 2013-11-08 2018-03-21 DET International Holding Limited Resistorless precharging
US10464161B2 (en) * 2016-09-26 2019-11-05 Fronius International Gmbh Power supply unit for a resistance welding apparatus
CN111952035B (zh) * 2020-07-14 2022-03-08 中国科学院电工研究所 一种摆动磁场发生装置及其控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224084A (ja) * 1990-12-26 1992-08-13 Origin Electric Co Ltd コンデンサ式スポット溶接機の充電制御回路
JPH0542375A (ja) 1991-08-14 1993-02-23 Origin Electric Co Ltd コンデンサ式スポツト溶接機の充電制御回路
JPH09285137A (ja) * 1996-04-09 1997-10-31 Nas Toa Co Ltd コンデンサ放電式抵抗溶接装置
JPH10216957A (ja) * 1997-02-07 1998-08-18 Matsushita Electric Ind Co Ltd コンデンサ式抵抗溶接機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB689469A (en) * 1950-04-26 1953-03-25 Gen Electric Co Ltd Improvements in and relating to electric arc welding apparatus and welding systems
US3611103A (en) * 1968-07-29 1971-10-05 Gulf Oil Corp Capacitor charging and discharging control system
US3641306A (en) * 1969-01-08 1972-02-08 Hughes Aircraft Co Welding supply circuit including capacitor bleed
US6825435B1 (en) * 2002-03-12 2004-11-30 Lyndon Brown Power supply and control equipment for a resistance welding machine
JP4641137B2 (ja) * 2002-04-24 2011-03-02 株式会社三社電機製作所 溶接機
US20060071640A1 (en) * 2004-09-30 2006-04-06 Nanotechnologies, Inc. Fast-recovery circuitry and method for a capacitor charging power supply
NZ572826A (en) * 2008-11-13 2010-05-28 Gallagher Group Ltd Electric fence energiser

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04224084A (ja) * 1990-12-26 1992-08-13 Origin Electric Co Ltd コンデンサ式スポット溶接機の充電制御回路
JPH0542375A (ja) 1991-08-14 1993-02-23 Origin Electric Co Ltd コンデンサ式スポツト溶接機の充電制御回路
JPH09285137A (ja) * 1996-04-09 1997-10-31 Nas Toa Co Ltd コンデンサ放電式抵抗溶接装置
JPH10216957A (ja) * 1997-02-07 1998-08-18 Matsushita Electric Ind Co Ltd コンデンサ式抵抗溶接機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2813313A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111390343A (zh) * 2020-05-14 2020-07-10 重庆科技学院 一种高强钢焊机专用控制电路

Also Published As

Publication number Publication date
KR101626698B1 (ko) 2016-06-01
EP2813313A1 (en) 2014-12-17
JP5580840B2 (ja) 2014-08-27
US10005149B2 (en) 2018-06-26
US20140374389A1 (en) 2014-12-25
JP2013158820A (ja) 2013-08-19
EP2813313B1 (en) 2017-03-01
KR20140117663A (ko) 2014-10-07
EP2813313A4 (en) 2015-12-30

Similar Documents

Publication Publication Date Title
WO2013118588A1 (ja) コンデンサ式溶接装置及びコンデンサ式溶接方法
WO2013121665A1 (ja) Dc/dcコンバータ
AU2014237852B2 (en) Method and apparatus for providing welding power
JP5457912B2 (ja) コンデンサ式抵抗溶接機
JP5250818B1 (ja) フルブリッジ電力変換装置
JP5642621B2 (ja) スイッチング電源装置
JP2006230124A (ja) 着磁器用電源
KR101676927B1 (ko) 콘덴서식 용접 방법 및 용접 장치
JPH05315924A (ja) 無損失サイリスタスイッチ回路プライミング及びスイープアウト装置
US11799373B2 (en) DC pulse power supply device
EP2803440B1 (en) Capacitive welder and method for charging same
CN100459399C (zh) 电源装置
JP2001211650A (ja) 電源装置
JP5927635B2 (ja) 高速反転パルス電源装置
CN113890198B (zh) 一种基于直流降压和输出电流控制的电感线圈充放电源
JP2012223785A (ja) コンデンサ型抵抗溶接機
JP2004167541A (ja) コンデンサ式抵抗溶接機
JPH0681673B2 (ja) コンデンサ蓄勢式インバータ制御型溶接機
JP2742874B2 (ja) サイリスタのゲート駆動装置
JPH1133720A (ja) 直流アーク溶接用電源装置
JPH09271169A (ja) インバータ装置
JPH04167981A (ja) インバータ型の抵抗溶接器
JP2002112556A (ja) インバータ装置
JPS63314173A (ja) 電力変換器のスナバ回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13746004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14376593

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013746004

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013746004

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20147024234

Country of ref document: KR

Kind code of ref document: A