KR101605723B1 - 산화물 박막 트랜지스터의 제조방법 - Google Patents

산화물 박막 트랜지스터의 제조방법 Download PDF

Info

Publication number
KR101605723B1
KR101605723B1 KR1020090118064A KR20090118064A KR101605723B1 KR 101605723 B1 KR101605723 B1 KR 101605723B1 KR 1020090118064 A KR1020090118064 A KR 1020090118064A KR 20090118064 A KR20090118064 A KR 20090118064A KR 101605723 B1 KR101605723 B1 KR 101605723B1
Authority
KR
South Korea
Prior art keywords
layer
oxide semiconductor
source
forming
substrate
Prior art date
Application number
KR1020090118064A
Other languages
English (en)
Other versions
KR20110061419A (ko
Inventor
김대환
이승민
임훈
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020090118064A priority Critical patent/KR101605723B1/ko
Publication of KR20110061419A publication Critical patent/KR20110061419A/ko
Application granted granted Critical
Publication of KR101605723B1 publication Critical patent/KR101605723B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous

Abstract

본 발명의 산화물 박막 트랜지스터의 제조방법은 산화물 반도체층을 증착한 후 바로 절연층을 증착하여 에치 스타퍼(etch stopper)를 형성함으로써 액티브층과 에치 스타퍼의 패터닝 시 화학물질 또는 UV에 의해 액티브층의 백 채널(back channel)이 손상 받는 것을 방지하는 것을 특징으로 한다.
또한, 본 발명의 산화물 박막 트랜지스터의 제조방법은 절연층의 식각을 통해 노출된 산화물 반도체층의 저항을 감소시켜 소오스/드레인전극과의 콘택영역을 형성하는 것을 특징으로 한다.
산화물 박막 트랜지스터, 에치 스타퍼, 액티브층, 백 채널

Description

산화물 박막 트랜지스터의 제조방법{METHOD OF FABRICATING OXIDE THIN FILM TRANSISTOR}
본 발명은 산화물 박막 트랜지스터의 제조방법에 관한 것으로, 보다 상세하게는 AxByCzO(A, B, C = Zn, Cd, Ga, In, Sn, Hf, Zr; x, y, z ≥ 0)의 조합으로 이루어진 삼성분계 또는 사성분계 산화물 반도체를 액티브층으로 사용한 산화물 박막 트랜지스터의 제조방법에 관한 것이다.
최근 정보 디스플레이에 관한 관심이 고조되고 휴대가 가능한 정보매체를 이용하려는 요구가 높아지면서 기존의 표시장치인 브라운관(Cathode Ray Tube; CRT)을 대체하는 경량 박막형 평판표시장치(Flat Panel Display; FPD)에 대한 연구 및 상업화가 중점적으로 이루어지고 있다. 특히, 이러한 평판표시장치 중 액정표시장치(Liquid Crystal Display; LCD)는 액정의 광학적 이방성을 이용하여 이미지를 표현하는 장치로서, 해상도와 컬러표시 및 화질 등에서 우수하여 노트북이나 데스크탑 모니터 등에 활발하게 적용되고 있다.
상기 액정표시장치는 크게 컬러필터(color filter) 기판과 어레이(array) 기판 및 상기 컬러필터 기판과 어레이 기판 사이에 형성된 액정층(liquid crystal layer)으로 구성된다.
상기 액정표시장치에 주로 사용되는 구동 방식인 능동 매트릭스(Active Matrix; AM) 방식은 비정질 실리콘 박막 트랜지스터(Amorphous Silicon Thin Film Transistor; a-Si TFT)를 스위칭소자로 사용하여 화소부의 액정을 구동하는 방식이다.
이하, 도 1을 참조하여 일반적인 액정표시장치의 구조에 대해서 상세히 설명한다.
도 1은 일반적인 액정표시장치를 개략적으로 나타내는 분해사시도이다.
도면에 도시된 바와 같이, 상기 액정표시장치는 크게 컬러필터 기판(5)과 어레이 기판(10) 및 상기 컬러필터 기판(5)과 어레이 기판(10) 사이에 형성된 액정층(liquid crystal layer)(30)으로 구성된다.
상기 컬러필터 기판(5)은 적(Red; R), 녹(Green; G) 및 청(Blue; B)의 색상을 구현하는 다수의 서브-컬러필터(7)로 구성된 컬러필터(C)와 상기 서브-컬러필터(7) 사이를 구분하고 액정층(30)을 투과하는 광을 차단하는 블랙매트릭스(black matrix)(6), 그리고 상기 액정층(30)에 전압을 인가하는 투명한 공통전극(8)으로 이루어져 있다.
또한, 상기 어레이 기판(10)은 종횡으로 배열되어 복수개의 화소영역(P)을 정의하는 복수개의 게이트라인(16)과 데이터라인(17), 상기 게이트라인(16)과 데이터라인(17)의 교차영역에 형성된 스위칭소자인 박막 트랜지스터(T) 및 상기 화소영역(P) 위에 형성된 화소전극(18)으로 이루어져 있다.
상기의 컬러필터 기판(5)과 어레이 기판(10)은 화상표시 영역의 외곽에 형성된 실런트(sealant)(미도시)에 의해 대향하도록 합착되어 액정표시패널을 구성하며, 상기 컬러필터 기판(5)과 어레이 기판(10)의 합착은 상기 컬러필터 기판(5) 또는 어레이 기판(10)에 형성된 합착키(미도시)를 통해 이루어진다.
한편, 전술한 액정표시장치는 가볍고 전력소모가 작아 지금가지 가장 주목받는 디스플레이 소자였지만, 상기 액정표시장치는 발광소자가 아니라 수광소자이며 밝기, 명암비(contrast ratio) 및 시야각 등에 기술적 한계가 있기 때문에 이러한 단점을 극복할 수 있는 새로운 디스플레이 소자에 대한 개발이 활발하게 전개되고 있다.
새로운 평판표시장치 중 하나인 유기전계발광소자(Organic Light Emitting Diode; OLED)는 자체발광형이기 때문에 액정표시장치에 비해 시야각과 명암비 등이 우수하며 백라이트(backlight)가 필요하지 않기 때문에 경량 박형이 가능하고, 소비전력 측면에서도 유리하다. 그리고, 직류 저전압 구동이 가능하고 응답속도가 빠르다는 장점이 있으며, 특히 제조비용 측면에서도 유리한 장점을 가지고 있다.
최근 유기전계발광 디스플레이의 대면적화에 관한 연구가 활발하게 진행되고 있으며, 이를 달성하기 위하여 유기전계발광소자의 구동 트랜지스터로서 정전류 특성을 확보하여 안정된 작동 및 내구성이 확보된 트랜지스터 개발이 요구되고 있다.
전술한 액정표시장치에 사용되는 비정질 실리콘 박막 트랜지스터는 저온 공정에서 제작할 수 있지만 이동도(mobility)가 매우 작고 정전류 테스트(constant current bias) 조건을 만족하지 않는다. 반면에 다결정 실리콘 박막 트랜지스터는 높은 이동도와 만족스러운 정전류 테스트 조건을 가지는 반면에 균일한 특성 확보가 어려워 대면적화가 어렵고 고온 공정이 필요하다.
이에 산화물 반도체로 액티브층을 형성한 산화물 박막 트랜지스터가 개발되고 있는데, 이때 상기 산화물 반도체를 기존의 바텀 게이트(bottom gate) 구조의 박막 트랜지스터에 적용하는 경우 소오스/드레인전극의 식각공정, 특히 플라즈마를 이용한 건식식각 중에 산화물 반도체가 손상을 받아 변성을 일으키는 문제점이 있다.
이를 방지하기 위해 배리어 층(barrier layer)으로 에치 스타퍼(etch stopper)를 액티브층 상부에 추가로 형성하기도 하는데, 이 경우에도 액티브층의 백 채널(back channel)영역이 액티브층과 에치 스타퍼를 형성하기 위한 포토리소그래피(photolithography)공정(이하, 포토공정이라 함)에 사용되는 감광막과 스트리퍼와 같은 화학물질 및 자외선(ultraviolet; UV)에 노출되어 반도체 박막의 특성이 변하게 되어 소자특성의 저하를 유발하게 된다.
도 2는 일반적인 산화물 박막 트랜지스터의 구조를 개략적으로 나타내는 단면도이다.
도면에 도시된 바와 같이, 일반적인 산화물 박막 트랜지스터는 소정의 기판(10) 위에 형성된 게이트전극(21), 상기 게이트전극(21) 위에 형성된 게이트절연막(15a), 상기 게이트절연막(15a) 위에 산화물 반도체로 형성된 액티브층(24)과 소정의 절연물질로 형성된 에치 스타퍼(25), 상기 액티브층(24)의 소정영역과 전기적으로 접속하는 소오스/드레인전극(22, 23), 상기 소오스/드레인전극(22, 23) 위에 형성된 보호막(15b) 및 상기 드레인전극(23)과 전기적으로 접속하는 화소전극(18)으로 이루어져 있다.
도 3a 내지 도 3f는 상기 도 2에 도시된 일반적인 산화물 박막 트랜지스터의 제조공정을 순차적으로 나타내는 단면도이다.
도 3a에 도시된 바와 같이, 소정의 기판(10) 전면에 제 1 도전막을 증착한 후, 포토공정을 통해 선택적으로 패터닝함으로써 상기 기판(10) 위에 상기 제 1 도전막으로 이루어진 게이트전극(21)을 형성한다.
다음으로, 도 3b에 도시된 바와 같이, 상기 기판(10) 전면에 상기 게이트전극(21)을 덮도록 차례대로 게이트절연막(15a)과 소정의 산화물 반도체로 이루어진 산화물 반도체층을 증착한 후, 포토공정을 이용하여 선택적으로 패터닝함으로써 상기 게이트전극(21) 상부에 상기 산화물 반도체로 이루어진 액티브층(24)을 형성한다.
그리고, 도 3c에 도시된 바와 같이, 상기 기판(10) 전면에 소정의 절연물질로 이루어진 절연층을 증착한 후, 포토공정을 이용하여 선택적으로 패터닝함으로써 상기 액티브층(24) 상부에 상기 절연물질로 이루어진 에치 스타퍼(25)를 형성한다.
다음으로, 도 3d에 도시된 바와 같이, 상기 에치 스타퍼(25)가 형성된 기판(10) 전면에 제 2 도전막을 형성한 후, 포토공정을 통해 선택적으로 패터닝함으로써 상기 액티브층(24)과 에치 스타퍼(25) 상부에 상기 제 2 도전막으로 이루어지며 상기 액티브층(24)의 소오스/드레인영역과 전기적으로 접속하는 소오스/드레인전극(22, 23)을 형성하게 된다.
다음으로, 도 3e에 도시된 바와 같이, 상기 소오스/드레인전극(22, 23)이 형성된 기판(10) 전면에 소정의 보호층(15b)을 형성한 후, 포토공정을 통해 선택적으로 패터닝함으로써 상기 드레인전극(23)의 일부를 노출시키는 콘택홀(40)을 형성하게 된다.
그리고, 도 3f에 도시된 바와 같이, 상기 기판(10) 전면에 제 3 도전막을 형성한 후, 포토공정을 통해 선택적으로 패터닝함으로써 상기 콘택홀을 통해 상기 드레인전극(23)과 전기적으로 접속하는 화소전극(18)을 형성하게 된다.
즉, 종래기술은 산화물 반도체층의 증착 후 포토공정을 통해 액티브층을 형성한 다음 에치 스타퍼를 형성하기 위한 절연층을 증착하게 된다. 그리고, 또 다른 포토공정을 통해 상기 절연층을 패터닝함으로써 에치 스타퍼를 형성하게 된다.
이때, 이러한 액티브층의 패터닝 및 절연층의 증착은 진공 챔버의 진공을 해제한 상태에서 진행됨에 따라 산화물 반도체가 대기에 노출되는 한편, 액티브층과 에치 스타퍼를 형성하기 위한 포토공정을 거치면서 감광막과 스트리퍼와 같은 화학물질 및 UV에 노출됨으로써 백 채널영역이 손상을 받게 된다. 그 결과 소자특성이 저하되게 되며, 또한 절연층의 증착시 챔버 장비간 이동에 의해 택 타임(tact time)이 증가하게 된다.
일반적으로 산화물 반도체는 도체와 반도체의 2가지 특성을 모두 가지고 있으며, 박막 내 캐리어(carrier) 농도를 조절하여 전이시킬 수 있다. 상기 캐리어 농도를 조절하는 주 메커니즘(mechanism)은 산소 공격자점(空格子點)(vacancy)이 생성되며 만들어진 전자(electron) 때문이며, 산소 공격자점의 생성은 여러 공정에 서의 산화물 반도체의 손상(damage)에 의해 발생하게 된다. 연구 결과 산화물 반도체는 일반적으로 알려진 산 이외에 염기성 물질의 솔벤트(solvent)에 의해서도 손상이 발생하는 것으로 판단된다.
본 발명은 상기한 문제를 해결하기 위한 것으로, AxByCzO(A, B, C = Zn, Cd, Ga, In, Sn, Hf, Zr; x, y, z ≥ 0)의 조합으로 이루어진 삼성분계 또는 사성분계 산화물 반도체를 액티브층으로 사용한 산화물 박막 트랜지스터의 제조방법을 제공하는데 목적이 있다.
본 발명의 다른 목적은 산화물 반도체층을 증착한 후 바로 절연층을 증착하여 에치 스타퍼를 형성함으로써 액티브층과 에치 스타퍼의 패터닝시 상기 액티브층의 백 채널이 손상 받는 것을 방지하도록 한 산화물 박막 트랜지스터의 제조방법을 제공하는데 있다.
본 발명의 또 다른 목적은 상기 절연층의 식각을 통해 노출된 산화물 반도체층의 저항을 감소시켜 소오스/드레인전극과의 콘택영역을 형성하도록 한 산화물 박막 트랜지스터의 제조방법을 제공하는데 있다.
본 발명의 다른 목적 및 특징들은 후술되는 발명의 구성 및 특허청구범위에서 설명될 것이다.
상기한 목적을 달성하기 위하여, 본 발명의 산화물 박막 트랜지스터의 제조방법은 기판 위에 게이트전극을 형성하는 단계 및 상기 게이트전극이 형성된 상기 기판 위에 연속하여 게이트절연막과, 산화물 반도체층 및 절연층을 형성하는 단계를 포함하여 구성될 수 있다. 이때, 상기 절연층을 선택적으로 식각하여 상기 게이트전극 상부에 에치 스타퍼를 형성하되, 산소 플라즈마 처리로 상기 절연층을 식각하는 과정에서 상기 절연층이 제거되어 노출된 산화물 반도체층의 소정영역에 상기 산소 플라즈마 처리를 하여 소오스/드레인영역을 형성하는 단계 및 상기 소오스/드레인영역이 형성된 상기 산화물 반도체층을 선택적으로 식각하여 액티브층을 형성하는 단계를 포함할 수 있다.
또한, 본 발명의 산화물 박막 트랜지스터의 다른 제조방법은 상기 절연층을 선택적으로 식각하여 상기 게이트전극 상부에 에치 스타퍼를 형성하되, 산소 플라즈마 처리로 상기 절연층을 식각하는 과정에서 상기 절연층이 제거되어 노출된 산화물 반도체층의 소정영역에 상기 산소 플라즈마 처리를 하여 소오스/드레인영역을 형성하는 단계와, 열처리를 진행하여 상기 노출된 산화물 반도체층의 저항을 더 감소시키는 단계 및 상기 소오스/드레인영역이 형성된 상기 산화물 반도체층을 선택적으로 식각하여 액티브층을 형성하는 단계를 포함할 수 있다.
상술한 바와 같이, 본 발명에 따른 산화물 박막 트랜지스터의 제조방법은 비정질 산화물 반도체를 액티브층으로 사용함에 따라 균일도가 우수하여 대면적 디스플레이에 적용 가능한 효과를 제공한다.
이때, 상기의 비정질 산화물 반도체는 후(後)공정에서 플라즈마에 반응을 하여 채널영역의 캐리어 농도가 변화하게 되는데, 본 발명에 따른 산화물 박막 트랜지스터의 제조방법은 에치 스타퍼를 적용하여 상기 채널영역의 캐리어 농도변화를 방지함으로써 산화물 반도체의 열화를 방지하는 효과를 제공한다.
특히, 본 발명에 따른 산화물 박막 트랜지스터의 제조방법은 산화물 반도체층을 증착한 후 바로 절연층을 증착하여 에치 스타퍼를 형성함으로써 백 채널영역의 노출을 완전히 방지하는 한편, 액티브층과 에치 스타퍼의 패터닝시 상기 액티브 층의 백 채널이 손상 받는 것을 방지함으로써 소자특성이 향상되는 효과를 제공한다.
이하, 첨부한 도면을 참조하여 본 발명에 따른 산화물 박막 트랜지스터 및 그 제조방법의 바람직한 실시예를 상세히 설명한다.
도 4는 본 발명의 실시예에 따른 산화물 박막 트랜지스터의 구조를 개략적으로 나타내는 단면도로써, AxByCzO(A, B, C = Zn, Cd, Ga, In, Sn, Hf, Zr; x, y, z ≥ 0)의 조합으로 이루어진 삼성분계 또는 사성분계 산화물 반도체를 액티브층으로 사용한 산화물 박막 트랜지스터의 구조를 개략적으로 나타내고 있다.
도면에 도시된 바와 같이, 본 발명의 실시예에 따른 산화물 박막 트랜지스터는 소정의 기판(110) 위에 형성된 게이트전극(121), 상기 게이트전극(121) 위에 형성된 게이트절연막(115a), 상기 게이트전극(121) 상부에 산화물 반도체로 형성된 액티브층(124)과 소정의 절연물질로 형성된 에치 스타퍼(125) 및 상기 액티브층(124)의 소오스/드레인영역과 전기적으로 접속하는 소오스/드레인전극(122, 123)으로 이루어져 있다.
그리고, 상기 본 발명의 실시예에 따른 산화물 박막 트랜지스터는 상기 소오스/드레인전극(122, 123)이 형성된 기판(110) 위에 형성된 보호층(115b) 및 상기 보호층(115b)에 형성된 콘택홀을 통해 상기 드레인전극(123)과 전기적으로 접속하는 화소전극(118)을 포함한다.
이때, 도면에는 도시하지 않았지만, 상기 게이트전극(121)은 소정의 게이트 라인에 연결되고 상기 소오스전극(122)의 일부는 일방향으로 연장되어 데이터라인에 연결되며, 상기 게이트라인과 데이터라인은 기판(110) 위에 종횡으로 배열되어 화소영역을 정의하게 된다.
여기서, 상기 본 발명의 실시예에 따른 산화물 박막 트랜지스터는 AxByCzO(A, B, C = Zn, Cd, Ga, In, Sn, Hf, Zr; x, y, z ≥ 0)의 조합으로 이루어진 삼성분계 또는 사성분계 산화물 반도체를 이용하여 액티브층(124)을 형성함에 따라 높은 이동도와 정전류 테스트 조건을 만족하는 한편 균일한 특성이 확보되어 액정표시장치와 유기전계발광 디스플레이를 포함하는 대면적 디스플레이에 적용 가능한 장점을 가지고 있다.
또한, 최근 투명 전자회로에 엄청난 관심과 활동이 집중되고 있는데, 상기 산화물 반도체를 액티브층으로 적용한 산화물 박막 트랜지스터는 높은 이동도를 가지는 한편 저온에서 제작이 가능함에 따라 상기 투명 전자회로에 사용될 수 있는 장점이 있다.
또한, 상기 산화물 반도체는 넓은 밴드 갭을 가질 수 있어 높은 색순도를 갖는 UV 발광 다이오드(Light Emitting Diode; LED), 백색 LED와 그밖에 다른 부품들을 제작할 수 있으며, 저온에서 공정이 가능하여 가볍고 유연한 제품을 생산할 수 있는 특징을 가지고 있다.
이와 같은 특징을 가진 상기 본 발명의 실시예에 따른 산화물 박막 트랜지스터는 상기 액티브층(124)의 채널영역 위의 상기 소오스전극(122)과 드레인전극(123) 사이에 소정의 절연물질로 이루어진 상기 에치 스타퍼(125)가 형성되어 있 는데, 상기 에치 스타퍼(125)는 후(後)공정의 플라즈마 처리에 의해 채널영역의 캐리어 농도가 변화하는 것을 방지하는 역할을 한다.
또한, 상기 상기 본 발명의 실시예에 따른 산화물 박막 트랜지스터는 산화물 반도체층을 증착한 후 바로 절연층을 증착하여 에치 스타퍼(125)를 형성함으로써 액티브층(124)과 에치 스타퍼(125)의 패터닝시 화학물질 또는 UV에 의해 액티브층(124)의 백 채널이 손상 받는 것을 방지할 수 있게 되는데, 이를 다음의 산화물 박막 트랜지스터의 제조방법을 통해 상세히 설명한다.
도 5a 내지 도 5g는 상기 도 4에 도시된 본 발명의 실시예에 따른 산화물 박막 트랜지스터의 제조공정을 순차적으로 나타내는 단면도이다.
도 5a에 도시된 바와 같이, 투명한 절연물질로 이루어진 기판(110) 위에 소정의 게이트전극(121)을 형성한다.
이때, 본 발명의 산화물 박막 트랜지스터에 적용되는 산화물 반도체는 저온 증착이 가능하여, 플라스틱 기판, 소다라임 글라스 등의 저온 공정에 적용이 가능한 기판(110)을 사용할 수 있다. 또한, 비정질 특성을 나타냄으로 인해 대면적 디스플레이용 기판(110)의 사용이 가능하다.
또한, 상기 게이트전극(121)은 제 1 도전막을 상기 기판(110) 전면에 증착한 후 포토공정을 통해 선택적으로 패터닝하여 형성하게 된다.
여기서, 상기 제 1 도전막으로 알루미늄(aluminium; Al), 알루미늄 합금(Al alloy), 텅스텐(tungsten; W), 구리(copper; Cu), 니켈(nickel; Ni), 크롬(chromium; Cr), 몰리브덴(molybdenum; Mo), 티타늄(titanium; Ti), 백 금(platinum; Pt), 탄탈(tantalum; Ta) 등과 같은 저저항 불투명 도전물질을 사용할 수 있다. 또한, 상기 제 1 도전막은 인듐-틴-옥사이드(Indium Tin Oxide; ITO), 인듐-징크-옥사이드(Indium Zinc Oxide; IZO)와 같은 투명한 도전물질을 사용할 수 있으며, 상기 도전물질이 2가지 이상 적층된 다층구조로 형성할 수도 있다.
다음으로, 도 5b에 도시된 바와 같이, 상기 게이트전극(121)이 형성된 기판(110) 전면에 차례대로 게이트절연막(115a)과 소정의 산화물 반도체로 이루어진 산화물 반도체층(120) 및 소정의 절연물질로 이루어진 절연층(115)을 형성한다.
이때, 상기 게이트절연막(115a) 및 절연층(115)으로 실리콘질화막(SiNx), 실리콘산화막(SiO2)과 같은 무기절연막 또는 하프늄(hafnium; Hf) 옥사이드, 알루미늄 옥사이드와 같은 고유전성 산화막을 사용할 수 있다.
또한, 상기 산화물 반도체층(120)은 예를 들어 AxByCzO(A, B, C = Zn, Cd, Ga, In, Sn, Hf, Zr; x, y, z ≥ 0)의 조합으로 이루어진 삼성분계 또는 사성분계 산화물 반도체로 형성할 수 있다.
그리고, 상기 게이트절연막(115a) 및 절연층(115)은 플라즈마 화학기상증착(Plasma Enhanced Chemical Vapour Deposition; PECVD)과 같은 화학기상증착방식으로 형성할 수 있으며, 스퍼터링(sputtering)과 같은 물리기상증착(Physical Vapour Deposition; PVD)방식으로 형성할 수도 있다.
다음으로, 도 5c에 도시된 바와 같이, 포토공정을 통해 상기 절연층을 선택적으로 패터닝하게 되면, 상기 기판(110)의 게이트전극(121) 상부에 상기 절연물질 로 이루어진 에치 스타퍼(125)가 형성되게 된다.
이때, 상기 절연층의 식각에는 산소 플라즈마 처리와 같은 건식식각을 이용할 수 있으며, 상기 절연층이 식각되는 동안 그 하부, 특히 에치 스타퍼(125) 하부의 산화물 반도체층(120), 즉 후술할 액티브층의 백 채널영역은 노출이 완전히 방지되어 노출에 의한 불안정성이 제거되는 동시에 에치 스타퍼(125)의 패터닝에 의한 손상을 방지할 수 있게 된다.
또한, 상기 에치 스타퍼(125)를 형성하기 위해 산소 플라즈마 처리를 통해 상기 절연층을 식각할 때 노출된 산화물 반도체층(120)은 산소 플라즈마에 의해 저항이 감소되어 상기 노출된 산화물 반도체층(120)에 후술할 소오스/드레인전극과의 콘택영역인 소오스/드레인영역을 형성하게 된다. 다만, 본 발명이 이에 한정되는 것은 아니며, 상기 에치 스타퍼(125)를 형성한 후 산소 플라즈마와 같은 표면처리 또는 열처리를 통해 노출된 산화물 반도체층(120)의 저항을 감소시켜 콘택영역인 소오스/드레인영역을 형성할 수도 있다.
이와 같이 본 발명의 실시예의 경우에는 게이트절연막(115a)과 산화물 반도체층(120) 및 절연층(115)을 연속 증착한 후, 먼저 에치 스타퍼(125)를 형성함으로써 액티브층의 백 채널영역의 노출을 완전히 방지하는 한편, 노출에 의한 불안정성을 제거하는 동시에 게이트절연막(115a)의 손실을 방지할 수 있게 된다.
다음으로, 도 5d에 도시된 바와 같이, 상기 에치 스타퍼(125)가 형성된 기판(110)에 포토공정을 통해 상기 산화물 반도체층을 선택적으로 패터닝함으로써 상기 게이트전극(121) 상부에 상기 산화물 반도체로 이루어진 액티브층(124)을 형성 한다.
이때, 상기 액티브층(124)의 백 채널영역은 이전에 형성된 에치 스타퍼(125)에 의해 노출이 방지됨에 따라 상기 액티브층(124)의 패터닝에 의한 백 채널영역의 손상을 방지할 수 있게 된다.
다음으로, 도 5e에 도시된 바와 같이, 상기 액티브층(124)과 에치 스타퍼(125)가 형성된 기판(110) 전면에 제 2 도전막을 형성한다.
이때, 상기 제 2 도전막은 소오스전극과 드레인전극을 형성하기 위해 알루미늄, 알루미늄 합금, 텅스텐, 구리, 니켈, 크롬, 몰리브덴, 티타늄, 백금, 탄탈 등과 같은 저저항 불투명 도전물질을 사용할 수 있다. 또한, 상기 제 2 도전막은 인듐-틴-옥사이드, 인듐-징크-옥사이드와 같은 투명한 도전물질을 사용할 수 있으며, 상기 도전물질이 두 가지 이상 적층된 다층구조로 형성할 수도 있다.
그리고, 포토공정을 통해 상기 제 2 도전막을 선택적으로 패터닝함으로써 상기 액티브층(124)의 소오스영역 및 드레인영역과 전기적으로 접속하는 소오스전극(122) 및 드레인전극(123)을 형성하게 된다.
이때, 상기 본 발명의 실시예의 경우에는 상기 액티브층(124)과 소오스/드레인전극(122, 123)을 2번의 마스크공정을 통해 형성한 경우를 예를 들어 설명하고 있으나, 본 발명이 이에 한정되는 것은 아니며, 상기 액티브층(124)과 소오스/드레인전극(122, 123)은 한번의 마스크공정으로 동시에 형성할 수도 있다.
다음으로, 도 5f에 도시된 바와 같이, 상기 소오스/드레인전극(122, 123)이 형성된 기판(110) 전면에 보호막(115b)을 형성한 후, 포토공정을 통해 선택적으로 제거함으로써 상기 기판(110)에 상기 드레인전극(123)의 일부를 노출시키는 콘택홀(140)을 형성한다.
그리고, 도 5g에 도시된 바와 같이, 상기 보호막(115b)이 형성된 기판(110) 전면에 제 3 도전막을 형성한 후, 포토공정을 통해 선택적으로 제거함으로써 상기 기판(110)에 상기 제 3 도전막으로 이루어지며, 상기 콘택홀(140)을 통해 드레인전극(123)과 전기적으로 접속하는 화소전극(118)을 형성한다.
이때, 상기 제 3 도전막은 상기 화소전극(118)을 구성하기 위해 인듐-틴-옥사이드 또는 인듐-징크-옥사이드와 같은 투과율이 뛰어난 투명한 도전물질을 포함한다.
도 6a 및 도 6b는 산화물 박막 트랜지스터의 트랜스퍼 특성을 나타내는 그래프로써, 상기 도 6a는 일반적인 산화물 박막 트랜지스터의 트랜스퍼 특성을 나타내고, 상기 도 6b는 본 발명의 실시예에 따른 산화물 박막 트랜지스터의 트랜스퍼 특성을 나타내고 있다.
이때, 상기 도 6a 및 도 6b는 370mm×470mm 크기의 패널에 있어 여러 위치의 박막 트랜지스터에 대한 트랜스퍼 특성을 측정한 결과를 예를 들어 나타내고 있다.
도면에 도시된 바와 같이, 일반적인 산화물 박막 트랜지스터는 본 발명의 실시예에 따른 산화물 박막 트랜지스터에 비해 트랜스퍼 곡선의 기울기(slop)가 보다 완만하고 온 전류(on current)도 낮은 한편, 패널의 위치에 따라 측정된 트랜스퍼 특성도 균일하지 않은데, 이는 액티브층과 에치 스타퍼를 형성하기 위한 포토공정에 의해 액티브층의 백 채널영역이 어느 정도 손상을 받았고 패널의 위치에 따라 상기 액티브층의 백 채널영역이 손상 받은 정도가 일정하지 않은 것을 알 수 있다.
이에 비해 본 발명의 실시예에 따른 산화물 박막 트랜지스터는 트랜스퍼 곡선의 기울기가 급하고 온 전류도 향상되어 트랜스퍼 특성이 향상되었음을 알 수 있으며, 패널 위치에 따른 상기 트랜스퍼 특성 역시 균일하게 나타나고 있어 소자 균일도가 향상되었음을 알 수 있다.
전술한 바와 같이 본 발명은 액정표시장치뿐만 아니라 박막 트랜지스터를 이용하여 제작하는 다른 표시장치, 예를 들면 구동 트랜지스터에 유기전계발광소자가 연결된 유기전계발광 디스플레이장치에도 이용될 수 있다.
또한, 본 발명은 높은 이동도를 가지는 한편 저온에서 공정이 가능한 비정질 산화물 반도체 물질을 액티브층으로 적용함에 따라 투명 전자회로나 플렉서블(flexible) 디스플레이에 사용될 수 있는 장점이 있다.
상기한 설명에 많은 사항이 구체적으로 기재되어 있으나 이것은 발명의 범위를 한정하는 것이라기보다 바람직한 실시예의 예시로서 해석되어야 한다. 따라서 발명은 설명된 실시예에 의하여 정할 것이 아니고 특허청구범위와 특허청구범위에 균등한 것에 의하여 정하여져야 한다.
도 1은 일반적인 액정표시장치를 개략적으로 나타내는 분해사시도.
도 2는 일반적인 산화물 박막 트랜지스터의 구조를 개략적으로 나타내는 단면도.
도 3a 내지 도 3f는 상기 도 2에 도시된 일반적인 산화물 박막 트랜지스터의 제조공정을 순차적으로 나타내는 단면도.
도 4는 본 발명의 실시예에 따른 산화물 박막 트랜지스터의 구조를 개략적으로 나타내는 단면도.
도 5a 내지 도 5g는 상기 도 4에 도시된 본 발명의 실시예에 따른 산화물 박막 트랜지스터의 제조공정을 순차적으로 나타내는 단면도.
도 6a 및 도 6b는 산화물 박막 트랜지스터의 트랜스퍼 특성을 나타내는 그래프.
** 도면의 주요부분에 대한 부호의 설명 **
110 : 어레이 기판 118 : 화소전극
121 : 게이트전극 122 : 소오스전극
123 : 드레인전극 124 : 액티브층
125 : 에치 스타퍼

Claims (6)

  1. 기판 위에 게이트전극을 형성하는 단계;
    상기 게이트전극이 형성된 상기 기판 위에 연속하여 게이트절연막과, 산화물 반도체층 및 절연층을 형성하는 단계;
    상기 절연층을 선택적으로 식각하여 상기 게이트전극 상부에 에치 스타퍼를 형성하되, 산소 플라즈마 처리로 상기 절연층을 식각하는 과정에서 상기 절연층이 제거되어 노출된 산화물 반도체층의 소정영역에 상기 산소 플라즈마 처리를 하여 소오스/드레인영역을 형성하는 단계;
    상기 소오스/드레인영역이 형성된 상기 산화물 반도체층을 선택적으로 식각하여 액티브층을 형성하는 단계;
    상기 액티브층이 형성된 상기 기판 위에 상기 소오스/드레인영역과 전기적으로 접속하는 소오스/드레인전극을 형성하는 단계;
    상기 소오스/드레인전극이 형성된 상기 기판 위에 보호층을 형성하는 단계;
    상기 보호층의 일부 영역을 제거하여 상기 드레인전극의 일부를 노출시키는 콘택홀을 형성하는 단계; 및
    상기 콘택홀을 통해 상기 드레인전극과 전기적으로 접속하는 화소전극을 형성하는 단계를 포함하는 산화물 박막 트랜지스터의 제조방법.
  2. 제 1 항에 있어서, 상기 산화물 반도체층은 AxByCzO(A, B, C = Zn, Cd, Ga, In, Sn, Hf, Zr; x, y, z ≥ 0)의 조합으로 이루어진 삼성분계 또는 사성분계 산화물 반도체로 이루어진 산화물 박막 트랜지스터의 제조방법.
  3. 제 2 항에 있어서, 상기 산화물 반도체층은 비정질 아연 산화물계 반도체로 형성하는 산화물 박막 트랜지스터의 제조방법.
  4. 삭제
  5. 제 1 항에 있어서, 상기 에치 스타퍼와 상기 소오스/드레인영역을 형성한 후에, 열처리를 진행하여 상기 노출된 산화물 반도체층의 저항을 더 감소시키는 단계를 추가로 포함하는 산화물 박막 트랜지스터의 제조방법.
  6. 기판 위에 게이트전극을 형성하는 단계;
    상기 게이트전극이 형성된 상기 기판 위에 연속하여 게이트절연막과, 산화물 반도체층 및 절연층을 형성하는 단계;
    상기 절연층을 선택적으로 식각하여 상기 게이트전극 상부에 에치 스타퍼를 형성하되, 산소 플라즈마 처리로 상기 절연층을 식각하는 과정에서 상기 절연층이 제거되어 노출된 산화물 반도체층의 소정영역에 상기 산소 플라즈마 처리를 하여 소오스/드레인영역을 형성하는 단계;
    열처리를 진행하여 상기 소오스/드레인영역의 저항을 더 감소시키는 단계;
    상기 소오스/드레인영역이 형성된 상기 산화물 반도체층을 선택적으로 식각하여 액티브층을 형성하는 단계; 및
    상기 액티브층이 형성된 상기 기판 위에 상기 소오스/드레인영역과 전기적으로 접속하는 소오스/드레인전극을 형성하는 단계를 포함하는 산화물 박막 트랜지스터의 제조방법.
KR1020090118064A 2009-12-01 2009-12-01 산화물 박막 트랜지스터의 제조방법 KR101605723B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090118064A KR101605723B1 (ko) 2009-12-01 2009-12-01 산화물 박막 트랜지스터의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090118064A KR101605723B1 (ko) 2009-12-01 2009-12-01 산화물 박막 트랜지스터의 제조방법

Publications (2)

Publication Number Publication Date
KR20110061419A KR20110061419A (ko) 2011-06-09
KR101605723B1 true KR101605723B1 (ko) 2016-03-24

Family

ID=44395885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090118064A KR101605723B1 (ko) 2009-12-01 2009-12-01 산화물 박막 트랜지스터의 제조방법

Country Status (1)

Country Link
KR (1) KR101605723B1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102779784A (zh) * 2012-06-15 2012-11-14 上海大学 薄膜晶体管阵列基板制造方法
KR20140043526A (ko) 2012-09-21 2014-04-10 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR102046996B1 (ko) 2012-10-16 2019-11-21 삼성디스플레이 주식회사 박막 트랜지스터 표시판
KR102131195B1 (ko) 2013-07-16 2020-07-08 삼성디스플레이 주식회사 박막 트랜지스터를 포함하는 표시 기판 및 이의 제조 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123861A (ja) * 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
KR100787455B1 (ko) * 2006-08-09 2007-12-26 삼성에스디아이 주식회사 투명 박막 트랜지스터의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123861A (ja) * 2005-09-29 2007-05-17 Semiconductor Energy Lab Co Ltd 半導体装置及びその作製方法
KR100787455B1 (ko) * 2006-08-09 2007-12-26 삼성에스디아이 주식회사 투명 박막 트랜지스터의 제조방법

Also Published As

Publication number Publication date
KR20110061419A (ko) 2011-06-09

Similar Documents

Publication Publication Date Title
KR101578694B1 (ko) 산화물 박막 트랜지스터의 제조방법
US10256344B2 (en) Oxide thin film transistor and method of fabricating the same
US8735883B2 (en) Oxide thin film transistor and method of fabricating the same
KR101218090B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101658533B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101622733B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101697586B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101463028B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101375855B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101375854B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101605723B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101622182B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101545923B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101640812B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101616368B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101875940B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101298611B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR102039424B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101375853B1 (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR20110073038A (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR20140129818A (ko) 산화물 박막 트랜지스터 및 그 제조방법
KR101487256B1 (ko) 산화물 박막 트랜지스터의 제조방법
KR101322314B1 (ko) 산화물 박막 트랜지스터의 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190215

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200219

Year of fee payment: 5