KR101570003B1 - 전자 부품 제조용 절단 장치 및 절단 방법 - Google Patents

전자 부품 제조용 절단 장치 및 절단 방법 Download PDF

Info

Publication number
KR101570003B1
KR101570003B1 KR1020140166225A KR20140166225A KR101570003B1 KR 101570003 B1 KR101570003 B1 KR 101570003B1 KR 1020140166225 A KR1020140166225 A KR 1020140166225A KR 20140166225 A KR20140166225 A KR 20140166225A KR 101570003 B1 KR101570003 B1 KR 101570003B1
Authority
KR
South Korea
Prior art keywords
cutting
mark
imaging
cut
coordinates
Prior art date
Application number
KR1020140166225A
Other languages
English (en)
Other versions
KR20150079402A (ko
Inventor
쇼이치 가타오카
츠요시 아마카와
히로토 모치즈키
Original Assignee
토와 가부시기가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 토와 가부시기가이샤 filed Critical 토와 가부시기가이샤
Publication of KR20150079402A publication Critical patent/KR20150079402A/ko
Application granted granted Critical
Publication of KR101570003B1 publication Critical patent/KR101570003B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/68Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for positioning, orientation or alignment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Dicing (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

(과제) 저렴하고 효율적인 전자 부품 제조용 절단 장치 및 절단 방법을 제공한다.
(해결수단) 절단 장치에, 스테이지에 고정되며 저열팽창성 재료로 이루어진 측장 기준 부재와, 측장 기준 부재에 설치된 기준 마크와, 스핀들과, 스핀들의 회전축에 고정된 회전날과, 스핀들에 고정된 카메라를 구비한다. 기준 마크를 원점으로 하는 좌표계에서의 기준 마크의 좌표는 이미 알려져 있다. 기준 마크를 촬상한 시점 및 기판의 위치 맞춤 마크를 촬상한 시점에서의 카메라의 위치에 기초하여 위치 맞춤 마크의 좌표를 산출한다. 기준 마크를 촬상한 시점 및 위치 맞춤 마크를 촬상한 시점에서의 카메라의 위치에 기초하여 위치 맞춤 마크의 좌표를 산출한다. 위치 맞춤 마크의 좌표에 기초하여, 절단하고자 하는 절단선과 회전날을 위치 맞춤한다.

Description

전자 부품 제조용 절단 장치 및 절단 방법{CUTTING APPARATUS AND CUTTING METHOD FOR MANUFACTURING ELECTRONIC COMPONENT}
본 발명은, 미리 정해진 절단선에 있어서 피절단물을 절단하여 복수의 전자 부품을 제조할 때에 사용되는, 전자 부품 제조용 절단 장치 및 절단 방법에 관한 것이다.
전자 부품을 제조할 때에, 회전날(회전 블레이드)을 사용하여 피절단물을 절단함으로써 복수의 전자 부품으로 개편화하는 것(singulation)이 널리 실시되고 있다(예컨대, 특허문헌 1 참조). 피가공물(절단 대상물)로는, 첫째, 전기적으로 기능하는 기능부로서의 회로를 만들어 넣은 반도체 웨이퍼(실리콘 웨이퍼, 화합물 반도체 웨이퍼 등)를 들 수 있다. 둘째, 복수의 능동 소자 또는 저항 소자 등의 수동 소자(기능부)를 만들어 넣은 기판(세라믹스 기판 등)을 들 수 있다. 셋째, 기판과, 기판이 갖는 복수의 영역에 각각 장착된 칩형 부품(기능부)과, 복수의 영역이 일괄적으로 덮이도록 하여 평판형으로 형성된 밀봉 수지를 갖는, 밀봉 완료 기판을 들 수 있다. 밀봉 완료 기판에 있어서는, 복수의 칩형 부품이 일괄적으로 수지 밀봉되어 있다.
밀봉 완료 기판이 갖는 기판에는, 구리나 철계 합금 등으로 이루어진 리드 프레임, 유리 에폭시 적층판, 구리 피복 폴리이미드 필름의 적층판 등을 기재(基材)로 하는 프린트 기판(프린트 배선판)이 포함된다. 또한, 기판에는, 알루미나, 탄화규소, 사파이어 등을 기재로 하는 세라믹스 기판, 구리나 알루미늄 등의 금속을 기재로 하는 금속 베이스 기판, 폴리이미드 필름 등을 기재로 하는 필름 베이스 기판 등이 포함된다. 칩형 부품에는, 각각 칩형의 반도체 집적 회로(semiconductor integrated circuit ; IC로 약칭함), 광반도체 소자, 트랜지스터, 다이오드, 저항, 콘덴서, 서미스터 등이 포함된다. 기판에서의 1개의 영역에는 1개의 칩형 부품이 장착되어 있어도 좋고, 복수개의 칩형 부품이 장착되어 있어도 좋다. 1개의 영역에 장착된 복수개의 칩형 부품은, 동종(同種)이어도 좋고 이종이어도 좋다. 밀봉 수지로는, 예컨대, 에폭시 수지, 실리콘 수지 등의 열경화성 수지가 경화하여 형성된 경화 수지가 사용된다.
종래, 기판에서의 절단 위치를 결정하기 위해 리니어 스케일이 사용된다. 리니어 스케일은, 작은 선팽창계수를 갖는 특수한 결정화 유리로 이루어지며, 예컨대, 1 ㎛의 간격으로 폭이 1 ㎛인 다수의 피검출선이 형성되어 있는 측장(測長) 기준 부재이다(예컨대, 특허문헌 1의 제4 페이지, 제1 도 참조).
이하, 피가공물인 반도체 웨이퍼(W)를 절단하는 기술에 관해 특허문헌 1의 도 1을 참조하여 설명한다. 또, 이하에서는, 특허문헌 1의 도 1과 동일 도면인 본 명세서의 도 4를 참조하여 특허문헌 1을 설명한다. 이 종래 기술에 의하면, 메인 베이스(2)의 상벽에 안내 레일(16)이 고정된다. 가동 지지 베이스(6)의 수평부(12)가 안내 레일(16)을 따라서 슬라이딩 가능하게 장착된다. 메인 베이스(2) 상에, 펄스 모터(22)와, 펄스 모터(22)의 출력축에 접속되어 수평으로 연장되는 수나사 로드(20)가 설치된다. 수나사 로드(20)에는 블록(27)이 나사 결합된다. 블록(27)의 상면이 가동 지지 베이스(6)의 수평부의 하면에 고정된다. 펄스 모터(22)가 작동하여 수나사 로드(20)가 회전하면, 블록(27)에 고정된 가동 지지 베이스(6)가 안내 레일(16)을 따라서 수평 방향(도 4에서의 좌우 방향)으로 이동한다.
메인 베이스(2)의 바닥벽 상에 리니어 스케일(30)이 배치된다. 가동 지지 베이스(6)의 수평부에는, 아래쪽으로 돌출된 수직 하강편(34)이 고정된다. 수직 하강편(34)에는, 리니어 스케일(30)의 피검출선을 검출하는 광전식 검출기(36)가 장착된다. 가동 지지 베이스(6)가 안내 레일(16)을 따라서 1 ㎛ 이동하면, 광전식 검출기(36)가, 리니어 스케일(30)이 갖는 1개의 피검출선을 검출하여 1개의 펄스 신호를 생성한다. 생성된 펄스 신호는, 가동 지지 베이스(6)의 이동 제어에 사용된다.
가동 지지 베이스(6)에는 원통형상의 지지 부재(10)가 부착된다. 지지 부재(10)의 자유단, 즉 좌단에는 베어링 부재(60)가 고정된다. 베어링 부재(60)에는 회전축(62)이 회전 가능하게 장착된다. 회전축(62)의 좌단부는 베어링 부재(60)를 넘어서 돌출되어 있고, 그 선단에는 얇은 원판형상의 절단 블레이드(68)가 고정된다. 전동 모터 등으로 이루어진 구동원(70)이 회전축(62)을 회전시킨다. 베어링 부재(60) 상에는 부착 브래킷(90)이 고정되고, 부착 브래킷(90)에 측장 기준 부재(92)가 캔틸레버 지지된다. 측장 기준 부재(92)는 리니어 스케일이라고 생각할 수 있다. 지지 부재(10)의 기단부, 즉 우단부에는 돌출편(34)이 고정되고, 돌출편(34) 상에는, 측장 기준 부재(92)의 피검출선을 검출하는 광전식 검출기(96)가 장착된다.
광전식 검출기(96)는, 측장 기준 부재(92)에 기초하여, 지지 부재(10)의 도 4에 있어서 좌우 방향의 선팽창(즉, 열팽창 또는 열수축)에 의한 길이의 변화, 즉 선팽창량을 검출한다. 광전식 검출기(96)가 생성하는 신호, 즉 지지 부재(10)의 도 4에 있어서 좌우 방향의 선팽창에 의한 길이의 변화를 나타내는 신호는, 제어 수단(86)에 공급된다. 제어 수단(86)은, 광전식 검출기(96)로부터 공급되는 신호에 따라서, 절단 블레이드(68)의 위치 부여 이동을 보상, 더욱 자세하게는 구동 수단(18)의 구동원(22)의 작동 제어를 보상한다.
특허문헌 1 : 일본 특허 공개 소화62-173147호 공보(제3∼9 페이지, 제1 도)
최근, 전자 부품의 저가격화를 목적으로 하여 1장의 기판으로 제조되는 전자 부품의 수(취할 수 있는 수)를 증대시키고자 하는 요망이 있고, 이러한 요망에 부응하기 위해, 기판은 대형화되고 전자 부품은 소형화되는 경향이 강해지고 있다. 기판의 대형화에 있어서는, 첫째, 거의 원형의 형상을 갖는 실리콘 웨이퍼에서는, 웨이퍼 직경이 5인치(약 150 mm)로부터 200 mm∼300 mm으로 추이(推移)하고 있고, 나아가 장래에는 450 mm의 직경을 갖는 실리콘 웨이퍼가 채택될 예정이다. 둘째, 밀봉 완료 기판에 사용되는 기판에서는, 60×240 mm 정도의 치수를 갖는 기판으로부터 100×300 mm의 치수를 갖는 기판으로 추이하고 있다. 나아가 장래에는, 300×300 mm, 380×380 mm의 치수를 갖는 기판으로 추이한다고 하는 예측도 있다. 밀봉 완료 기판의 경우에 있어서도, 직경 300 mm∼450 mm의 크기를 갖는 거의 원형의 기판이 사용된다고 하는 예측도 있다.
기판의 대형화와 전자 부품의 소형화에 따라 이하의 문제가 발생한다. 제1 문제는, 기판이 대형화하는 것에 기인하여 리니어 스케일을 길고 크게 할 필요가 있기 때문에, 리니어 스케일이 고가가 되는 것이다. 제2 문제는, 절단 블레이드(68)가 기판(특허문헌 1에서는 반도체 웨이퍼(W))을 연속하여 절단하는 시간이 길어지기 때문에, 구동원(70)이 지지 부재(10)를 가열함으로써 지지 부재(10)의 열팽창량이 커지는 것이다. 이것에 의해, 절단 블레이드(68)의 위치 부여 이동을 보상하기 위한 리니어 스케일(특허문헌 1에서는 측장 기준 부재(92))이 필수가 된다. 따라서, 리니어 스케일과 광전식 검출기의 조합이 2조 필요해진다. 이러한 2개의 문제는, 절단 장치의 저가격화를 방해한다.
제3 문제는, 1장의 기판당, 기판의 대형화와 전자 부품의 소형화에 따라 절단선의 길이가 증가하기 때문에, 특허문헌 1에서의 가동 지지 베이스(6)의 이동 거리가 증가하는 것이다. 이것에 의해, 특허문헌 1에서의 수나사 로드(20)의 발열량이 증가한다. 이것은, 특허문헌 1에 있어서 반도체 웨이퍼(W)가 유지되는 유지 수단(72)을 열팽창시키기 쉽게 한다. 유지 수단(72)에는 리니어 스케일과 광전식 검출기의 조합은 설치되어 있지 않다. 따라서, 열팽창에 의해 유지 수단(72)의 치수가 변동한 경우에는, 그 치수의 변동을 보정하는 것이 어려워진다.
제4 문제는, 1장의 기판당, 기판의 대형화와 취할 수 있는 수의 증가에 따라 절단선의 수가 증가하기 때문에, 절단 블레이드(68)의 위치 부여 이동을 보상하는 횟수가 증가하는 것이다. 이것은, 보상에 요하는 시간을 증가시키기 때문에, 절단 공정의 효율화를 방해한다.
전술한 문제를 감안하여, 본 발명은, 단순한 구성을 채택함으로써 저렴하고 효율적인 전자 부품 제조용 절단 장치 및 절단 방법을 제공하는 것을 목적으로 한다.
전술한 과제를 해결하기 위해, 본 발명에 따른 전자 부품 제조용 절단 장치는,
복수의 위치 맞춤 마크 및 복수의 영역을 갖는 기판과 상기 복수의 영역에 각각 설치된 기능부를 갖는 피가공물을 상기 복수의 영역의 경계선을 따라서 절단하여 복수의 전자 부품을 제조할 때에 사용되며, 상기 피가공물이 고정되는 스테이지와, 절단부와, 상기 스테이지와 상기 절단부를 상대적으로 이동시키는 구동부와, 상기 절단부가 장착되고 상기 구동부에 의해 구동되는 피구동 부재와, 상기 피가공물을 촬상하는 촬상부와, 상기 구동부에 의한 이동을 적어도 제어하는 제어부를 구비하는 전자 부품 제조용 절단 장치로서,
상기 스테이지에 대하여 일체적으로 고정되며 저열팽창성 재료로 이루어진 측장 기준 부재와,
상기 측장 기준 부재에 설치된 적어도 2개의 기준 마크
를 구비하고,
상기 촬상부는 상기 절단부에 대하여 일체적으로 고정되고,
상기 기준 마크 중 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표는 이미 알고 있고,
상기 촬상부는 상기 제1 기준 마크를 촬상하고,
상기 촬상부는 복수의 위치 맞춤 마크 중 제1 위치 맞춤 마크를 촬상하고,
상기 제어부는, 상기 제1 기준 마크를 촬상한 시점에서의 상기 촬상부의 위치와, 제1 위치 맞춤 마크를 촬상한 시점에서의 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제1 위치 맞춤 마크의 좌표를 산출하고,
상기 촬상부는 상기 제2 기준 마크를 촬상하고,
상기 촬상부는 상기 복수의 위치 맞춤 마크 중 제2 위치 맞춤 마크를 촬상하고,
상기 제어부는, 상기 제2 기준 마크를 촬상한 시점에서의 상기 촬상부의 위치와, 상기 제2 위치 맞춤 마크를 촬상한 시점에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제2 위치 맞춤 마크의 좌표를 산출하고,
상기 제어부는, 상기 제1 위치 맞춤 마크의 좌표와 상기 제2 위치 맞춤 마크의 좌표에 기초하여, 상기 복수의 영역의 경계선 중 절단하고자 하는 절단선과 상기 절단부를 위치 맞춤하는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 장치는, 전술한 절단 장치에 있어서,
상기 촬상부는, 상기 절단선에 있어서 상기 피가공물이 절단된 후에 상기 절단선에서의 절단의 품위(品位)를 검사하기 위해 촬상하는 촬상부를 겸하는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 장치는, 전술한 절단 장치에 있어서, 상기 절단부는,
스핀들과,
상기 스핀들이 갖는 회전축과,
상기 회전축에 고정된 회전날
을 갖는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 장치는, 전술한 절단 장치에 있어서,
상기 절단부는 레이저광 조사 기구를 갖는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 장치는, 전술한 절단 장치에 있어서,
저열팽창성 재료는, 유리계 재료, 세라믹스계 재료 또는 합금 중 어느 하나인 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 장치는, 전술한 절단 장치에 있어서,
상기 적어도 2개의 기준 마크는, 에칭, 기계 가공 또는 인쇄 중 어느 하나에 의해 형성된 것을 특징으로 한다.
전술한 과제를 해결하기 위해, 본 발명에 따른 전자 부품 제조용 절단 방법은, 복수의 위치 맞춤 마크 및 복수의 영역을 갖는 기판과 상기 복수의 영역에 각각 설치된 기능부를 갖는 피가공물을, 절단부를 사용하여 복수의 영역의 경계선을 따라서 절단하여 복수의 전자 부품을 제조하는 전자 부품 제조용 절단 방법으로서,
상기 피가공물이 고정되는 스테이지를 준비하는 공정과,
저열팽창성 재료로 이루어지고, 상기 스테이지에 대하여 일체적으로 고정되고, 또한 적어도 2개의 기준 마크를 갖는 측장 기준 부재를 준비하는 공정과,
상기 절단부에 대하여 일체적으로 고정된 촬상부를 준비하는 공정과,
기준 마크 중 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표를 미리 아는 공정과,
상기 스테이지에 상기 피가공물을 고정하는 공정과,
상기 촬상부를 사용하여 상기 제1 기준 마크를 촬상하는 제1 공정과,
상기 촬상부를 사용하여 상기 복수의 위치 맞춤 마크 중 제1 위치 맞춤 마크를 촬상하는 제2 공정과,
상기 제1 공정에서의 상기 촬상부의 위치와 상기 제2 공정에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제1 위치 맞춤 마크의 좌표를 산출하는 공정과,
상기 촬상부를 사용하여 제2 기준 마크를 촬상하는 제3 공정과,
상기 촬상부를 사용하여 상기 복수의 위치 맞춤 마크 중 제2 위치 맞춤 마크를 촬상하는 제4 공정과,
상기 제3 공정에서의 상기 촬상부의 위치와 상기 제4 공정에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제2 위치 맞춤 마크의 좌표를 산출하는 공정과,
상기 제1 위치 맞춤 마크의 좌표와 상기 제2 위치 맞춤 마크의 좌표에 기초하여, 상기 복수의 영역의 경계선 중 절단하고자 하는 절단선과 상기 절단부를 위치 맞춤하는 공정과,
상기 절단선에 있어서 피가공물을 절단하는 공정
을 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 방법은, 전술한 절단 방법에 있어서,
상기 피가공물을 절단하는 공정 후에, 상기 촬상부를 사용하여 상기 절단선에서의 절단의 품위를 검사하는 공정을 더 포함하는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 방법은, 전술한 절단 방법에 있어서,
절단부는, 스핀들과, 상기 스핀들이 갖는 회전축과, 상기 회전축에 고정된 회전날을 가지며,
상기 위치 맞춤하는 공정에서는, 상기 절단선과 상기 회전날을 위치 맞춤하고,
상기 절단하는 공정에서는, 상기 피가공물에 상기 회전날을 접촉시키는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 방법은, 전술한 절단 방법에 있어서,
상기 절단부는 레이저광 조사 기구를 가지며,
상기 위치 맞춤하는 공정에서는, 상기 레이저광 조사 기구가 조사하는 레이저광과 상기 절단선을 위치 맞춤하고,
상기 절단하는 공정에서는, 상기 피가공물에 레이저광을 조사하는 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 방법은, 전술한 절단 방법에 있어서,
상기 저열팽창성 재료는 유리계 재료, 세라믹스계 재료 또는 합금 중 어느 하나인 것을 특징으로 한다.
또한, 본 발명에 따른 전자 부품 제조용 절단 방법은, 전술한 절단 방법에 있어서,
상기 측장 기준 부재를 준비하는 공정 전에, 에칭, 기계 가공 또는 인쇄 중 어느 하나에 의해 상기 적어도 2개의 기준 마크를 형성하는 공정을
더 포함하는 것을 특징으로 한다.
본 발명에 의하면, 스테이지에 고정되고 저열팽창성 재료로 이루어진 측장 기준 부재와, 측장 기준 부재에 설치된 적어도 2개의 기준 마크를 구비한다. 기준 마크 중 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표는 이미 알려져 있다. 제1 기준 마크를 촬상한 시점에서의 촬상부의 위치와, 기판이 갖는 제1 위치 맞춤 마크를 촬상한 시점에서의 촬상부의 위치에 기초하여, 좌표계에서의 제1 위치 맞춤 마크의 좌표를 산출한다. 제2 기준 마크를 촬상한 시점에서의 촬상부의 위치와 기판이 갖는 제2 위치 맞춤 마크를 촬상한 시점에서의 촬상부의 위치에 기초하여, 좌표계에서의 제2 위치 맞춤 마크의 좌표를 산출한다. 제1 위치 맞춤 마크의 좌표와 제2 위치 맞춤 마크의 좌표에 기초하여, 복수의 경계선 중 절단하고자 하는 절단선과 회전날을 위치 맞춤한다. 이 구성에 의하면, 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표는 열팽창의 영향을 받기 어렵다. 따라서, 이 좌표계에서의 제1 위치 맞춤 마크의 좌표와 제2 위치 맞춤 마크의 좌표를 정밀하게 결정할 수 있다. 기판이 각각 갖는 제1 위치 맞춤 마크의 좌표와 제2 위치 맞춤 마크의 좌표에 기초하여, 절단선과 회전날을 위치 맞춤한다. 이러한 것에 의해, 리니어 스케일을 사용하지 않고, 제1 위치 맞춤 마크와 제2 위치 맞춤 마크 사이의 거리를 정밀하게 측정할 수 있고, 게다가 피가공물을 정밀하게 절단할 수 있다.
본 발명에 의하면, 스테이지에 고정되고 저열팽창성 재료로 이루어진 측장 기준 부재와, 측장 기준 부재에 설치된 적어도 2개의 기준 마크를 사용한다. 이것에 의해, 스테이지가 가열되어 열팽창한 경우에 있어서도, 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표는 열팽창의 영향을 받기 어렵다. 따라서, 스테이지를 열팽창시킨 영향을 받아 피가공물을 절단하는 정밀도가 저하되는 것을 억제할 수 있다.
본 발명에 의하면, 절단부에 대하여 일체적으로 고정된 촬상부를 사용하여, 각 기준 마크와 각 위치 맞춤 마크를 촬상하고, 각각 촬상했을 때의 촬상부의 위치에 기초하여, 제1 위치 맞춤 마크의 좌표와 제2 위치 맞춤 마크의 좌표를 산출한다. 이에 따라, 각 절단선마다 절단 블레이드의 위치 부여 이동을 보상할 필요가 없어진다. 따라서, 절단 공정을 효율화할 수 있다.
도 1은 본 발명에 따른 절단 장치의 주요부를 나타내는 평면도이다.
도 2의 (1), (2)는, 본 발명의 실시예 1에 있어서 측장 기준 부재에 기준 마크를 형성하는 제1 양태를 나타내는 정면도 및 평면도이고, 도 2의 (3)∼(5)는, 제2∼제4 양태를 각각 나타내는 정면도이다.
도 3은 본 발명의 실시예 1에 있어서 기판이 갖는 위치 맞춤 마크와 측장 기준 부재의 관계의 변형예를 나타내고, 도 3의 (1)는 장방형의 기판을, 도 3의 (2)은 원형의 실리콘 웨이퍼를 각각 대상으로 하는 평면도이다.
도 4는 종래예의 주요부를 나타내는 정면도이다.
본 발명에 따른 전자 부품 제조용 절단 장치는, 스테이지에 고정되고 저열팽창성 재료로 이루어진 측장 기준 부재와, 측장 기준 부재에 설치된 적어도 2개의 기준 마크를 구비한다. 기준 마크 중 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표는 이미 알려져 있다. 제1 기준 마크를 촬상한 시점에서의 촬상부의 위치와, 기판이 갖는 제1 위치 맞춤 마크를 촬상한 시점에서의 촬상부의 위치에 기초하여, 좌표계에서의 제1 위치 맞춤 마크의 좌표를 산출한다. 제2 기준 마크를 촬상한 시점에서의 촬상부의 위치와, 기판이 갖는 제2 위치 맞춤 마크를 촬상한 시점에서의 촬상부의 위치에 기초하여, 좌표계에서의 제2 위치 맞춤 마크의 좌표를 산출한다. 제1 위치 맞춤 마크의 좌표와 제2 위치 맞춤 마크의 좌표에 기초하여, 복수의 경계선 중 절단하고자 하는 절단선과 회전날을 위치 맞춤한다.
[실시예 1]
도 1을 참조하여, 본 발명의 실시예 1에 따른 전자 부품 제조용 절단 장치를 설명한다. 본 출원 서류에서의 모든 도면에 관해, 알기 쉽게 하기 위해 적절하게 생략 또는 과장하여, 모식적으로 그려져 있다. 동일한 구성 요소에는 동일한 부호를 붙이고, 설명을 적절하게 생략한다.
도 1에 나타낸 바와 같이, 전자 부품 제조용 절단 장치(1)는, 스테이지(2)와, 스테이지(2)를 θ방향으로 회전시키는 회전 기구(3)를 갖는다. 절단 장치(1)의 베이스(도시 없음)에는 서보 모터(4)가 고정된다. 서보 모터(4)의 회전축에는 볼나사(5)가 고정된다. 볼나사(5)는 서보 모터(4)에 의해 구동되는 피구동 부재이다. 볼나사(5)에는 관통 암나사 구멍을 갖는 슬라이더(6)가 나사 연결된다. 슬라이더(6)는 회전 기구(3)의 본체에 고정된다. 이러한 구성에 의해, 스테이지(2)는, 도 1에 나타낸 θ방향으로 회전하고, Y방향을 따라서 이동한다.
절단 장치(1)의 베이스(도시 없음)에는 서보 모터(7)가 고정된다. 서보 모터(7)의 회전축에는 볼나사(8)가 고정된다. 볼나사(8)는 서보 모터(7)에 의해 구동되는 피구동 부재이다. 볼나사(8)에는 관통 암나사 구멍을 갖는 슬라이더(9)가 나사 연결된다. 슬라이더(9)에는 스핀들(10)이 고정된다. 따라서, 스핀들(10)은 슬라이더(9)를 통해 볼나사(8)에 고정된다.
스핀들(10)의 회전축(11)에는 얇은 원형의 회전날(12)이 고정된다. 스핀들(10)과 회전축(11)과 회전날(12)은, 절단 장치(1)가 갖는 절단부에 포함된다. 절단 장치(1)에는, 이 절단부를 Z방향으로 이동시키는 구동 기구(도시 없음)가 설치된다. 제어부(CTL)는, 적어도, 회전날(12)의 회전 방향 및 회전수와, 스테이지(2)와 스핀들(10)의 상대적인 이동 방향 및 이동 속도를 제어하는 제어 수단이다.
스핀들(10)의 본체에는 촬상부인 카메라(13)가 고정된다. 카메라(13)는 스핀들(10)에 대하여 일체적으로 고정된다. 이러한 구성에 의해, 스핀들(10)과 회전축(11)과 회전날(12)과 스핀들(10)에 대하여 일체적으로 고정된 카메라(13)는 한 묶음이 되어, 도 1에 나타낸 X방향을 따라서 이동한다. 즉, 절단부와 카메라(13)가 일체화된 구성 요소가 X방향을 따라서 이동한다.
또, 카메라(13)가 갖는 시야의 중심과 회전날의 두께의 중심 사이에서의 X방향을 따르는 거리(LA)와, 그 시야의 중심과 회전축(11)의 중심 사이에서의 Y방향을 따르는 거리(LB)는, 모두 가능한 한 작은 것이 바람직하다. 게다가, 카메라(13)가, 피가공물이 절단된 후에 그 절단된 부분(절단홈)에서의 절단의 품위를 검사하기 위해 촬상하는 카메라(소위, 커프 체크(kerf check) 카메라)를 겸할 수 있다.
본 출원 서류에 있어서는, 「A에 대하여 일체적으로 고정된 B」 등의 문구는, 복수의 구성 요소(이 경우에는 A 및 B)가 한 묶음이 되어 그 한 묶음이 이동할 수 있는 것을 의미한다. 「일체적으로 고정된」 등의 문구는, 한 묶음이 되어 이동할 수 있는 복수의 구성 요소를 서로 분리할 수 있는 경우를 포함한다. 게다가, 「A와 B가 일체화된 C」 등의 표현은, C에 A 및 B 이외의 구성 요소가 포함되는 것을 배제하지 않는다.
스테이지(2)의 상면에는 지그(도시 없음)를 고정할 수 있다. 지그 또는 스테이지(2)의 상면에, 피가공물인 밀봉 완료 기판(14)이 일시적으로 고정된다. 밀봉 완료 기판(14)을 일시적으로 고정하기 위해서는, 예컨대, 흡착 지그, 클램프 지그, 스테이지(2)의 상면에 접착된 점착 테이프 등이 사용된다. 밀봉 완료 기판(14)은 기판(15)을 갖는다. 기판(15)은 복수의 영역(16)을 갖는다. 복수의 영역(16)의 각각에서의 한쪽 면에는 1개 또는 복수개의 칩형 부품(도시 없음)이 장착된다. 기판(15)에 있어서 칩형 부품이 장착된 한쪽 면에는, 칩형 부품을 보호하는 것을 목적으로, 경화 수지로 이루어진 밀봉 수지(도시 없음)가 형성된다. 기판(15)에서의 적어도 다른쪽 면(도시되어 있는 면)에는, 복수개의(도 1에서는 4개의) 위치 맞춤 마크(A1, A2, A3, A4)가 형성되어 있다. 위치 맞춤 마크(A1)와 위치 맞춤 마크(A2) 사이의 거리(X방향을 따르는 거리)가, 알고자 하는 거리인 피산출 거리(LX)이다.
스테이지(2)에는, 저열팽창성 재료에 의해 구성된 측장 기준 부재(17)가 일체적으로 고정된다. 도 1에 나타낸 바와 같이 가로로 긴 형상을 갖는 밀봉 완료 기판(14)을 절단하는 경우에는, 스테이지(2)는 가로로 긴 형상을 갖는다. 밀봉 완료 기판(14)과 스테이지(2)의 형상은, 모두 통상은 가로로 긴 장방형이다. 이 경우에는, 스테이지(2)가 갖는 가로로 긴 부분에, 나사 고정 등의 방법에 의해 측장 기준 부재(17)를 고정한다.
볼나사(5)로부터 스테이지(2)에 열전도하는 것에 기인하는 스테이지(2)의 열팽창의 영향을 저감시킬 필요가 있는 경우에는, 다음과 같이 하여 스테이지(2)에 측장 기준 부재(17)를 고정하는 것이 바람직하다. 그것은, 측장 기준 부재(17)에 있어서, 볼나사(5)에 가까운 쪽(도 1의 좌측)을 스테이지(2)에 견고하게 고정하고, 볼나사(5)로부터 먼 쪽(도 1의 우측)을 도면의 X방향을 따라서 미소하게 이동할 수 있도록 하여 고정하는 것이다. 이와 같이 구성함으로써, 스테이지(2)가 열팽창하여 신장되었다 하더라도, 측장 기준 부재(17)는 그 신장의 영향을 받기 어렵다.
측장 기준 부재(17)에 있어서, 기판(15)의 위치 맞춤 마크(A1, A2)의 부근에는 각각 제1 기준 마크(M1)와 제2 기준 마크(M2)가 형성되어 있다. 형성된 기준 마크(M1)와 기준 마크(M2) 사이의 거리(X방향을 따르는 거리)인 기준 거리(LS)는, 미리 고정밀도로 측정되어 있고, 이미 알고 있다.
본 실시예에 있어서는, 첫째, 기준 마크(M1)와 위치 맞춤 마크(A1)를 가능한 한 가깝게 설치하는 것이 바람직하다. 둘째, 기준 마크(M2)와 위치 맞춤 마크(A2)를 가능한 한 가깝게 설치하는 것이 바람직하다. 바꿔 말하면, 기준 마크(M1)와 위치 맞춤 마크(A1) 사이의 X방향을 따르는 거리인 피측정 거리(L1)와, 기준 마크(M2)와 위치 맞춤 마크(A2) 사이의 X방향을 따르는 거리인 피측정 거리(L2)는, 가능한 한 작은 것이 바람직하다. 이러한 것에 의해, 알고자 하는 거리인 피산출 거리(LX)와 피측정 거리(L1, L2) 사이에는, L1<<LX 및 L2<<LX라는 관계가 성립한다.
도 1을 참조하여, 본 실시예에 있어서 피산출 거리(LX)(X방향을 따르는 거리)를 측정하는 방법을 설명한다. 우선, 카메라(13)를 사용하여, 기준 마크(M1)와 위치 맞춤 마크(A1)를 순차적으로 촬영한다.
다음으로, 기준 마크(M1)와 위치 맞춤 마크(A1)를 각각 촬영한 시점에서의 카메라(13)의 위치에 기초하여, 기준 마크(M1)의 위치를 기준으로 한 위치 맞춤 마크(A1)의 위치를 산출한다. 여기까지의 공정에 의해, 기준 마크(M1)와 위치 맞춤 마크(A1) 사이의 X방향을 따르는 거리인 피측정 거리(L1)를 얻을 수 있다. L1<<LX라는 관계가 성립하기 때문에, 피측정 거리(L1)를 정밀하게 얻을 수 있다. 바꿔 말하면, 기준 마크(M1)의 위치를 기준으로 한 좌표계에 있어서, 위치 맞춤 마크(A1)의 X좌표를 정밀하게 산출할 수 있다.
다음으로, 여기까지의 공정과 동일하게 하여, 기준 마크(M2)의 위치를 기준으로 한 위치 맞춤 마크(A2)의 위치를 산출한다. 이것에 의해, 기준 마크(M2)와 위치 맞춤 마크(A2) 사이의 X방향을 따르는 거리인 피측정 거리(L2)를 얻을 수 있다. L2<<LX라는 관계가 성립하기 때문에, 피측정 거리(L2)를 정밀하게 얻을 수 있다.
다음으로, 도 1에서 분명한 바와 같이, LX=LS-L1-L2라는 관계를 이용한다. 구체적으로는, 각각 얻어진 피측정 거리(L1) 및 피측정 거리(L2)와 이미 알려진 기준 거리(LS)를 사용하여, 식 : LX=LS-L1-L2에 기초하여 피산출 거리(LX)를 산출한다. 기준 거리(LS)는 미리 정밀하게 알려져 있다. 게다가, L1, L2<<LX라는 관계에 기초하여, 피측정 거리(L1, L2)가 정밀하게 얻어진다. 따라서, 피산출 거리(LX)를 정밀하게 산출할 수 있다. 바꿔 말하면, 기준 마크(M1)의 위치를 기준으로 한 좌표계에 있어서, 위치 맞춤 마크(A2)의 X좌표를 정밀하게 산출할 수 있다.
다음으로, 각각 설계치이며 이미 알려져 있는, 위치 맞춤 마크(A1)와 최좌단의 절단선 사이의 거리, 위치 맞춤 마크(A2)와 최우단의 절단선 사이의 거리, 및, X방향을 따르는 영역(16)의 수 N(도 1에서는 N=8)을, 제어부(CTL)로부터 호출한다. 이들 거리 및 영역(16)의 수 N을 사용하여, 스테이지(2)에 일시적으로 고정된 밀봉 완료 기판(14)에서의 각 절단선의 X방향을 따르는 위치(X좌표)를 얻을 수 있다.
다음으로, X방향을 따르는 각 절단선(16) 중 1개의 절단선(16)에 대하여 회전날(12)을 정밀하게 위치 맞춤한다. 그 후에, 회전날(12)의 하측에서의 둘레 단부에 절삭수를 공급하면서 스테이지(2)를 +Y방향으로 이동시킨다. 이것에 의해, 회전날(12)을 사용하여, 그 절단선(16)에 있어서 밀봉 완료 기판(14)을 완전히 절단한다(풀컷트함).
여기까지의 설명에 있어서는, X방향을 따르는 거리 및 각 절단선의 위치에 관해 설명했다. 동일하게 하여, 위치 맞춤 마크(A1)와 위치 맞춤 마크(A2) 사이의 Y방향을 따르는 피산출 거리(도시 없음)를 정밀하게 얻을 수 있다. 여기까지의 공정에 의해, 기준 마크(M1)를 기준으로 한 좌표계에 있어서, 제1 위치 맞춤 마크(A1)의 좌표 및 제2 위치 맞춤 마크(A2)의 좌표(모두 XY 좌표)와, X방향과 Y방향을 따르는 각 절단선의 위치를 정밀하게 얻을 수 있다. 따라서, 각 절단선에 대하여 회전날(12)을 정밀하게 위치 맞춤할 수 있다.
여기까지의 공정에서의 각각의 계산, 얻어진 피측정 거리(L1, L2)의 기억 등을, 제어부(CTL)를 사용하여 행할 수 있다.
본 실시예에 의하면, 스핀들(10)에 대하여 일체적으로 고정된 카메라(13)를 사용하여 각 기준 마크(M1, M2)와 각 위치 맞춤 마크(A1, A2)를 촬상하고, 각각 촬상했을 때의 카메라(13)의 위치에 기초하여, 제1 위치 맞춤 마크(A1)의 좌표와 제2 위치 맞춤 마크(A2)의 좌표를 산출한다. 이것에 의해, 첫째, 스핀들(10)이 장착된 볼나사(8)가 서보 모터(7)에 의해 구동됨으로써 발열하여 열팽창한 경우에 있어서, 볼나사(8)가 열팽창한 영향을 받아 각 위치 맞춤 마크(A1, A2)와 회전날(12) 사이의 거리가 변동하는 것이 억제된다.
둘째, 볼나사(8)가 발열하여 그 열의 영향을 받아 스핀들(10)이 열팽창한 경우에 있어서, 카메라(13)를 사용하여 절단홈의 위치를 측정함으로써 열팽창의 영향을 보정할 수 있다.
이러한 것에 의해, 리니어 스케일과 광전식 검출기의 조합을 사용하지 않고, 볼나사(8)가 열팽창한 영향과 스핀들(10)이 열팽창한 영향을 받아 밀봉 완료 기판(14)을 절단하는 정밀도가 저하되는 것을 억제할 수 있다. 따라서, 밀봉 완료 기판(14)을 절단하는 정밀도가 저하되는 것을 억제하면서, 절단 장치의 저가격화를 도모할 수 있다.
본 실시예에 의하면, 스테이지(2)에 대하여, 저열팽창성 재료(18)에 의해 구성된 측장 기준 부재(17)가 일체적으로 고정된다. 이것에 의해, 스테이지가 가열되어 열팽창한 경우에 있어서도, 기준 마크(M1)를 원점으로 한 좌표계에서의 기준 마크(M2)의 좌표는 열팽창의 영향을 받기 어렵다. 따라서, 스테이지(2)가 열팽창한 영향을 받아 피가공물을 절단하는 정밀도가 저하되는 것을 억제할 수 있다.
본 실시예에 의하면, 다수의 절단선을 갖는 밀봉 완료 기판(14)을 절단하는 경우에, 소수의 위치 맞춤 마크인 위치 맞춤 마크(A1)의 좌표와 위치 맞춤 마크(A2)의 좌표를 산출한다. 이에 따라, 회전날(12)의 이동을 보상하는 횟수가 증가하는 것이 억제된다. 따라서, 절단 공정의 효율화를 도모할 수 있다.
본 실시예에 의하면, 카메라(13)는, 절단선(16)에 있어서 밀봉 완료 기판(14)이 절단된 후에, 절단홈이 형성된 그 절단선(16)에서의 절단의 품위를 검사하기 위한 카메라를 겸한다. 따라서, 절단선(16)과 회전날(12)을 위치 맞춤하기 위한 새로운 카메라를 설치하지 않고, 밀봉 완료 기판(14)을 정밀하게 절단할 수 있다.
또, 도 1에는, 스테이지(2)가 갖는 2개의 긴 변 중 하나(도 1에서의 하측의 변)에 측장 기준 부재(17)가 일체적으로 고정되는 예를 나타냈다. 이것 대신에, 도 1에서의 상측의 변에 측장 기준 부재(17)가 일체적으로 고정되는 구성을 채택해도 좋다. 스테이지(2)가 갖는 2개의 긴 변의 쌍방에 측장 기준 부재(17)가 일체적으로 고정되는 구성을 채택해도 좋다.
도 2를 참조하여, 측장 기준 부재(17)에 관해 설명한다. 측장 기준 부재(17)의 본체는 저열팽창성 재료(18)에 의해 구성된다. 저열팽창성 재료는, 유리계 재료, 세라믹스계 재료 또는 합금 중 어느 하나이다. 유리계 재료로는, 예컨대 클리어세람 Z(클리어세람(CLEARCERAM)은 등록상표), 제로듀어(ZERODUR(등록상표))를 들 수 있다. 세라믹스계 재료로는, 예컨대 코디라이트, 네크세라(NEXCERA(등록상표))를 들 수 있다. 합금으로는, 예컨대 인바(철 및 니켈을 베이스로 하는 합금으로서 Fe-Ni 36%인 것), 수퍼인바, 노비나이트(등록상표)를 들 수 있다.
도 2를 참조하여, 측장 기준 부재(17)에 기준 마크(M1, M2, …)를 형성하는 4개의 양태를 설명한다. 도 2의 (1), (2)에는, 4개의 양태 중 제1 양태가 도시된다. 우선, 각각 기준 마크(도시 없음)가 미리 형성된 얇은 원판형의 기준판(19)을 4개 준비한다. 각 기준판(19)에는, 에칭 등의 방법에 의해, 예컨대 "+"의 형상으로 이루어진 기준 마크가 미리 형성되어 있다.
직방체형(입방체형을 포함)의 형상을 갖는 기체(20)를 4개 준비한다. 각 기체(20)에 있어서는, 평평한 바닥면을 갖는 오목부(21)가 미리 형성되어 있다. 오목부(21)의 바닥면에 기준판(19)을 접착한다. 각 기체(20)의 상면에, 오목부(21)를 전부 덮도록 하여, 예컨대 사파이어 유리로 이루어진 박판형의 보호 유리(22)를 접착한다. 여기까지의 공정에 의해 4개의 기준 부재(23)가 완성된다.
다음으로, 저열팽창성 재료(18)의 상면에 4개의 기준 부재(23)를 각각 고정한다. 예컨대, 저열팽창성 재료(18)의 하면으로부터, 각각 나사(도시 없음)를 사용하여 4개의 기준 부재(23)를 고정한다.
다음으로, 정밀한 측정 시스템(예컨대, 주식회사 니콘 제조인 CNC 화상 측정 시스템 NEXIV 등)을 사용하여, 형성된 기준 마크(M1)와 기준 마크(M2) 사이의 기준 거리(LS)(도 2의 (2) 참조)를 정밀하게 측정한다. 측장 기준 부재(17)는 저열팽창성 재료에 의해 구성되어 있기 때문에, 주변 온도 또는 스테이지(2)의 온도가 변동한 경우에 있어서도 기준 거리(LS)의 길이의 변동은 매우 작다. 여기까지의 공정에 의해, 기준 거리(LS)의 값이 이미 알려진 측장 기준 부재(17)가 완성된다.
다음으로, 나사 고정 등의 방법에 의해, 스테이지(2)에 측장 기준 부재(17)를 고정한다(도 1 참조). 볼나사(5)의 발열에 기인하는 스테이지(2)의 열팽창의 영향을 저감시킬 필요가 있는 경우에는, 다음 2개의 방식을 병용하여 스테이지(2)에 측장 기준 부재(17)를 고정하는 것이 바람직하다. 그것은, 첫째, 측장 기준 부재(17)에서의 볼나사(5)에 가까운 쪽(도 1의 좌측)에 있어서, 측장 기준 부재(17)를 스테이지(2)에 견고하게 고정하는 것이다. 둘째, 측장 기준 부재(17)에서의 볼나사(5)로부터 먼 쪽(도 1의 우측)에 있어서, 측장 기준 부재(17)를 도면의 X방향을 따라서 미소하게 이동할 수 있도록 하여 고정하는 것이다.
도 2의 (3)에는, 측장 기준 부재(17)에 기준 마크(M1, M2)를 형성하는 4개의 양태 중 제2 양태가 도시된다. 측장 기준 부재(17)의 본체인 저열팽창성 재료(18)의 상면에는, 평평한 바닥면을 갖는 오목부(21)가 미리 형성되어 있다. 오목부(21)의 바닥면에 기준판(19)을 접착한다. 저열팽창성 재료(18)의 상면에, 각 오목부(21)를 전부 덮도록 하여 박판형의 보호 유리(22)를 접착한다.
도 2의 (4)에는, 측장 기준 부재(17)에 기준 마크(M1, M2)를 형성하는 4개의 양태 중 제3 양태가 도시된다. 저열팽창성 재료(18)의 상면에, 에칭, 기계 가공 등의 방법을 사용하여 기준 마크(M1, M2, …)를 직접 형성한다. 저열팽창성 재료(18)의 상면에, 기준 마크(M1, M2, …)를 전부 덮도록 하여 박판형의 보호 유리(22)를 접착한다. 기계 가공으로는 진동 절삭 가공 등을 사용할 수 있다.
도 2의 (5)에는, 측장 기준 부재(17)에 기준 마크(M1, M2)를 형성하는 4개의 양태 중 제4 양태가 도시된다. 에칭, 인쇄 등의 방법을 사용하여, 투광성을 갖는 필름(24)에 기준 마크(M1, M2, …)를 직접 형성한다. 기준 마크(M1, M2, …)가 직접 형성된 필름(24)을, 저열팽창성 재료(18)의 상면에 접착한다.
도 3을 참조하여, 피절단물(14)과 기준 마크(M1, M2, …)의 관계 중, 도 1에 나타낸 관계와는 상이한 변형예를 설명한다. 도 3의 (1)에 나타낸 바와 같이, 피가공물인 밀봉 완료 기판(14)이 갖는 기판(15)은, 좌단에서의 위치 맞춤 마크(A1, A3)와, 우단에서의 위치 맞춤 마크(A2, A4)를 갖는다. 게다가, 기판(15)은, 중앙에서의 위치 맞춤 마크(A5, A6)를 갖는다. 기판(15)은 복수의 영역(16)을 가지며, 각 영역(16)은 X방향(도 3에서의 좌우 방향)과 Y방향(도 3에서의 상하 방향)을 각각 따르는 복수의 절단선(25)에 의해 구획된다.
측장 기준 부재(17)에 있어서, 기판(15)의 중앙에서의 위치 맞춤 마크(A5, A6)의 부근에는 기준 마크(M5, M6)가 형성되어 있다. 기준 마크(M1∼M5) 사이, 기준 마크(M2∼M5) 사이, 기준 마크(M3∼M6) 사이 및 기준 마크(M4∼M6) 사이의 거리는, 모두 기준 거리이며 미리 고정밀도로 측정되어 있고 이미 알려져 있다.
본 변형예는, 도 1에 나타내는 피절단물(14)이 가로로 길고, 또한 X방향을 따르는 치수가 큰 경우에 유효하다. 예컨대, 기준 마크(M1∼M5) 사이의 기준 거리와, 기준 마크(M2∼M5) 사이의 기준 거리에 기초하여, 위치 맞춤 마크(A1, A2, A5)의 좌표를 얻을 수 있다. 이것에 의해, 위치 맞춤 마크(A1, A5) 사이의 각 절단선의 위치와, 위치 맞춤 마크(A2, A5) 사이의 각 절단선의 위치를, 모두 정밀하게 얻을 수 있다.
도 3의 (2)는, 거의 원형의 형상을 갖는 실리콘 웨이퍼(26)를 피절단부로 하는 예를 나타낸다. 실리콘 웨이퍼(26)에는, 결정 방향의 기준이 되는 노치(27)가 형성되어 있다. 실리콘 웨이퍼(26)에는, 결정 방향에 대하여 관련된 위치 맞춤 마크(A1∼A4)가 형성된다. 실리콘 웨이퍼(26)가 일시적으로 고정되는 스테이지(28)에는, 측장 기준 부재(29)가 고정된다. 측장 기준 부재(29)에서의 위치 맞춤 마크(A1∼A4)의 부근에는, 기준 마크(M1∼M4)가 형성된다. 이 구성에 의하면, 도 1에 나타낸 구성의 경우와 동일한 효과를 얻을 수 있다.
도 3의 (2)에 있어서, 피절단물로서, 실리콘 웨이퍼(26) 대신에, 실리콘 웨이퍼(26)에 돌기형 전극(bump)과 밀봉 수지가 형성된 밀봉 완료 기판을 사용할 수 있다. 게다가, 실리콘 웨이퍼(26)와 동일한 형상을 갖는 프린트 기판 등을 갖는 밀봉 완료 기판을 사용할 수 있다. 이 밀봉 완료 기판에 있어서는, 프린트 기판 등은 복수의 영역을 가지며, 각 영역에 칩형 부품이 장착되고, 이들 칩형 부품이 경화 수지에 의해 일괄적으로 수지 밀봉되어 있다. 이 경우에 있어서, 프린트 기판 등의 형상은 정방형 또는 정방형에 가까운 장방형이어도 좋다.
(실시예 2)
이하, 절단부가 레이저 조사 기구인 경우에서의 실시예를 설명한다. 본 실시예에 있어서는, 가공부로서 레이저광 조사 기구를 사용한다. 가공부로서 레이저광 조사 기구를 사용하는 경우에 있어서도, 피가공물의 반송계에서의 볼나사 등의 열팽창에 기인하는 치수 변동이 발생할 가능성이 있다. 따라서, 피가공물의 반송계에서의 치수 변동이 발생한 경우에 있어서 실시예 1과 동일한 효과를 얻을 수 있다.
여기까지 설명한 효과에 더하여, 본 발명에 의하면 이하의 효과를 얻을 수 있다. 그것은, 회전날(12)의 둘레 단부가 수용되는 홈이 스테이지(2)의 상면에 형성되어 있는 경우를 대상으로 하는 효과이다. 구체적으로는, 기판(15)의 치수의 불균일, 기판(15)의 치수의 변동, 또는 스테이지(2) 상에 밀봉 완료 기판(14)을 배치할 때의 위치 어긋남 중 적어도 어느 하나에 기인하는 회전날(12)의 파손 및 스테이지(2)의 상면에서의 손상의 발생을 방지한다고 하는 효과이다.
이 효과를 구체적으로 설명한다. 기판(15)의 대형화에 따라, 첫째, 기판(15) 자체의 치수의 불균일이 커진다. 둘째, 수지 밀봉 공정 등에 있어서 기판(15)이 가열되는 것에 의한 열팽창에 기인하는 밀봉 완료 기판(14)의 치수의 변동(치수의 증대)이 커진다. 셋째, 절단 공정에 있어서, 절삭수에 의해 냉각된 스테이지(2)에 장시간 고정됨으로써, 열수축에 기인하는 밀봉 완료 기판(14)의 치수의 변동(치수의 감소)이 커진다. 이러한 것에 기인하여, 회전날(12)의 둘레 단부가 수용되는 홈이 스테이지(2)의 상면에 형성되어 있는 경우에, 회전날(12)의 둘레 단부가 스테이지(2)의 상면에서의 홈 이외의 부분에 접촉하는 경우가 있다. 이 접촉은, 회전날(12)의 둘레 단부의 파손 및 스테이지의 상면에서의 손상의 발생을 야기한다.
본 실시예에 의하면, 밀봉 완료 기판(14)이 갖는 기판(15)에서의, 피측정 거리(L1, L2)를 정밀하게 측장할 수 있기 때문에, 위치 맞춤 마크(A1, A2) 사이의 피산출 거리(LX)를 정밀하게 산출할 수 있다. 제어부(CTL)가 피측정 거리(L1, L2)를 측장하고, 또한 피산출 거리(LX)를 산출하여, 이들 거리 중 어느 하나가 허용 범위밖이라고 판단한 경우에는, 예컨대 제어부(CTL)는 이하와 같이 동작한다.
제어부(CTL)는, 스테이지(2)에 대한 밀봉 완료 기판(14)의 고정을 해제한 후에, 스테이지(2) 상에 밀봉 완료 기판(14)을 배치하고, 다시 일시적으로 고정한다. 제어부(CTL)는, 피측정 거리(L1, L2)를 다시 측장하고, 피산출 거리(LX)를 다시 산출하여, 이들 거리가 허용 범위 내에 있는지의 여부를 다시 판단한다. 이들 거리가 허용 범위 내에 있다고 제어부(CTL)가 판단한 경우에는, 처음에 허용 범위밖이라고 판단한 원인은, 스테이지(2) 상에 밀봉 완료 기판(14)을 배치할 때의 위치 어긋남이라고 추측할 수 있다. 따라서, 제어부(CTL)는 그 밀봉 완료 기판(14)에 대한 처리를 속행한다.
제어부(CTL)가, 2회째의 판단에 있어서도, 피측정 거리(L1, L2)와 피산출 거리(LX) 중 어느 하나가 허용 범위밖이라고 판단한 경우에는, 그 밀봉 완료 기판(14)을 절단 장치(1)로부터 제거한다. 이 경우에는, 절단 장치(1)와는 별도의 절단 장치를 사용하여 그 밀봉 완료 기판(14)을 절단한다. 이 절단 장치에 있어서는, 점착 테이프를 사용하여 밀봉 완료 기판(14)을 스테이지에 일시적으로 고정한다. 이것에 의해, 피측정 거리(L1, L2)와 피산출 거리(LX) 중 어느 하나가 허용 범위밖인 경우라 하더라도, 회전날의 둘레 단부는 점착 테이프를 절단하는 것에 그친다. 따라서, 회전날의 둘레 단부의 파손 및 스테이지 표면에서의 손상의 발생을 방지할 수 있다.
또한, 여기까지 설명한 각 실시예에 있어서, 도 1에는, 밀봉 완료 기판(14)에 있어서 밀봉 수지가 형성된 면(한쪽 면)이 스테이지(2)의 상면에 고정되는 예가 도시된다. 이것으로 한정되지 않고, 밀봉 수지가 형성되지 않는 면(다른쪽 면)을 스테이지(2)의 상면에 고정해도 좋다. 바꿔 말하면, 기판(15)이 갖는 위치 맞춤 마크(A1, A2, A3, A4)를 위쪽으로부터 카메라(13)가 촬상할 수 있는 상태이면 된다.
각 실시예에 있어서는, 소위 풀컷트에 관해 설명했다. 이것으로 한정되지 않고, 소위 하프컷에 대해 본 발명을 적용할 수도 있다.
각 실시예에 있어서는, 스핀들(10) 및 스테이지(2)를 이동시키기 위한 구동원으로서 각각 서보 모터(4, 7)를 사용했다. 서보 모터(4, 7) 대신에 스텝핑 모터를 사용해도 좋다.
본 발명은, 전술한 실시예에 한정되지 않고, 본 발명의 취지를 일탈하지 않는 범위 내에서, 필요에 따라서 임의로 그리고 적절하게 조합, 변경 또는 선택하여 채택할 수 있는 것이다.
1 : 절단 장치 2, 28 : 스테이지
3 : 회전 기구 4, 7 : 서보 모터(구동부)
5, 8 : 볼나사(피구동 부재) 6, 9 : 슬라이더
10 : 스핀들(절단부) 11 : 회전축(절단부)
12 : 회전날(절단부) 13 : 카메라(촬상부)
14 : 밀봉 완료 기판(피절단물) 15 : 기판
16 : 영역 17, 29 : 측장 기준 부재
18 : 저열팽창성 재료 19 : 기준판
20 : 기체 21 : 오목부
22 : 보호 유리 23 : 기준 부재
24 : 필름 25 : 절단선
26 : 실리콘 웨이퍼(피절단물) 27 : 노치
A1 : 위치 맞춤 마크(제1 위치 맞춤 마크)
A2 : 위치 맞춤 마크(제2 위치 맞춤 마크)
A3∼A6 : 위치 맞춤 마크 CTL : 제어부
L1 : 피측정 거리 L2 : 피측정 거리
LS : 기준 거리 LX : 피산출 거리
M1 : 기준 마크(제1 기준 마크) M2 : 기준 마크(제2 기준 마크)
M3∼M6 : 기준 마크

Claims (12)

  1. 복수의 위치 맞춤 마크 및 복수의 영역을 갖는 기판과 상기 복수의 영역에 각각 설치된 기능부를 갖는 피가공물을 상기 복수의 영역의 경계선을 따라서 절단하여 복수의 전자 부품을 제조할 때에 사용되며, 상기 피가공물이 고정되는 스테이지와, 절단부와, 상기 스테이지와 상기 절단부를 상대적으로 이동시키는 구동부와, 상기 절단부가 장착되고 상기 구동부에 의해 구동되는 피구동 부재와, 상기 피가공물을 촬상하는 촬상부와, 상기 구동부에 의한 이동을 적어도 제어하는 제어부를 구비하는 전자 부품 제조용 절단 장치로서,
    상기 스테이지에 대하여 일체적으로 고정되며 저열팽창성 재료로 이루어진 측장(測長) 기준 부재와,
    상기 측장 기준 부재에 설치된 적어도 2개의 기준 마크
    를 구비하고,
    상기 촬상부는 상기 절단부에 대하여 일체적으로 고정되고,
    상기 기준 마크 중 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표는 이미 알고 있고,
    상기 촬상부는 상기 제1 기준 마크를 촬상하고,
    상기 촬상부는 상기 복수의 위치 맞춤 마크 중 제1 위치 맞춤 마크를 촬상하고,
    상기 제어부는, 상기 제1 기준 마크를 촬상한 시점에서의 상기 촬상부의 위치와, 상기 제1 위치 맞춤 마크를 촬상한 시점에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제1 위치 맞춤 마크의 좌표를 산출하고,
    상기 촬상부는 상기 제2 기준 마크를 촬상하고,
    상기 촬상부는 상기 복수의 위치 맞춤 마크 중 제2 위치 맞춤 마크를 촬상하고,
    상기 제어부는, 상기 제2 기준 마크를 촬상한 시점에서의 상기 촬상부의 위치와, 상기 제2 위치 맞춤 마크를 촬상한 시점에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제2 위치 맞춤 마크의 좌표를 산출하고,
    상기 제어부는, 상기 제1 위치 맞춤 마크의 좌표와 상기 제2 위치 맞춤 마크의 좌표에 기초하여, 상기 복수의 영역의 경계선 중 절단하고자 하는 절단선과 상기 절단부를 위치 맞춤하는 것을 특징으로 하는 전자 부품 제조용 절단 장치.
  2. 제1항에 있어서, 상기 촬상부는, 상기 절단선에 있어서 상기 피가공물이 절단된 후에 상기 절단선에서의 절단의 품위(品位)를 검사하기 위해 촬상하는 촬상부를 겸하는 것을 특징으로 하는 전자 부품 제조용 절단 장치.
  3. 제2항에 있어서, 상기 절단부는,
    스핀들과,
    상기 스핀들이 갖는 회전축과,
    상기 회전축에 고정된 회전날
    을 갖는 것을 특징으로 하는 전자 부품 제조용 절단 장치.
  4. 제2항에 있어서, 상기 절단부는 레이저광 조사 기구를 갖는 것을 특징으로 하는 전자 부품 제조용 절단 장치.
  5. 제2항에 있어서, 상기 저열팽창성 재료는 유리계 재료, 세라믹스계 재료 또는 합금 중 어느 하나인 것을 특징으로 하는 전자 부품 제조용 절단 장치.
  6. 제2항에 있어서, 상기 적어도 2개의 기준 마크는, 에칭, 기계 가공 또는 인쇄 중 어느 하나에 의해 형성된 것을 특징으로 하는 전자 부품 제조용 절단 장치.
  7. 복수의 위치 맞춤 마크 및 복수의 영역을 갖는 기판과 상기 복수의 영역에 각각 설치된 기능부를 갖는 피가공물을, 절단부를 사용하여 상기 복수의 영역의 경계선을 따라서 절단하여 복수의 전자 부품을 제조하는 전자 부품 제조용 절단 방법으로서,
    상기 피가공물이 고정되는 스테이지를 준비하는 공정과,
    저열팽창성 재료로 이루어지고, 상기 스테이지에 대하여 일체적으로 고정되고, 적어도 2개의 기준 마크를 갖는 측장 기준 부재를 준비하는 공정과,
    상기 절단부에 대하여 일체적으로 고정된 촬상부를 준비하는 공정과,
    상기 기준 마크 중 제1 기준 마크를 원점으로 한 좌표계에서의 제2 기준 마크의 좌표를 미리 아는 공정과,
    상기 스테이지에 상기 피가공물을 고정하는 공정과,
    상기 촬상부를 사용하여 상기 제1 기준 마크를 촬상하는 제1 공정과,
    상기 촬상부를 사용하여 상기 복수의 위치 맞춤 마크 중 제1 위치 맞춤 마크를 촬상하는 제2 공정과,
    상기 제1 공정에서의 상기 촬상부의 위치와 상기 제2 공정에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제1 위치 맞춤 마크의 좌표를 산출하는 공정과,
    상기 촬상부를 사용하여 상기 제2 기준 마크를 촬상하는 제3 공정과,
    상기 촬상부를 사용하여 상기 복수의 위치 맞춤 마크 중 제2 위치 맞춤 마크를 촬상하는 제4 공정과,
    상기 제3 공정에서의 상기 촬상부의 위치와 상기 제4 공정에서의 상기 촬상부의 위치에 기초하여, 상기 좌표계에서의 상기 제2 위치 맞춤 마크의 좌표를 산출하는 공정과,
    상기 제1 위치 맞춤 마크의 좌표와 상기 제2 위치 맞춤 마크의 좌표에 기초하여, 상기 복수의 영역의 경계선 중 절단하고자 하는 절단선과 상기 절단부를 위치 맞춤하는 공정과,
    상기 절단선에 있어서 상기 피가공물을 절단하는 공정
    을 포함하는 것을 특징으로 하는 전자 부품 제조용 절단 방법.
  8. 제7항에 있어서, 상기 피가공물을 절단하는 공정 후에, 상기 촬상부를 사용하여 상기 절단선에서의 절단의 품위를 검사하는 공정을 더 포함하는 것을 특징으로 하는 전자 부품 제조용 절단 방법.
  9. 제8항에 있어서, 상기 절단부는, 스핀들과, 상기 스핀들이 갖는 회전축과, 상기 회전축에 고정된 회전날을 가지며,
    상기 위치 맞춤하는 공정에서는, 상기 절단선과 상기 회전날을 위치 맞춤하고,
    상기 절단하는 공정에서는, 상기 피가공물에 상기 회전날을 접촉시키는 것을 특징으로 하는 전자 부품 제조용 절단 방법.
  10. 제8항에 있어서, 상기 절단부는 레이저광 조사 기구를 가지며,
    상기 위치 맞춤하는 공정에서는, 상기 레이저광 조사 기구가 조사하는 레이저광과 상기 절단선을 위치 맞춤하고,
    상기 절단하는 공정에서는 상기 피가공물에 상기 레이저광을 조사하는 것을 특징으로 하는 전자 부품 제조용 절단 방법.
  11. 제8항에 있어서, 상기 저열팽창성 재료는 유리계 재료, 세라믹스계 재료 또는 합금 중 어느 하나인 것을 특징으로 하는 전자 부품 제조용 절단 방법.
  12. 제8항에 있어서, 상기 측장 기준 부재를 준비하는 공정 전에, 에칭, 기계 가공 또는 인쇄 중 어느 하나에 의해 상기 적어도 2개의 기준 마크를 형성하는 공정을 더 포함하는 것을 특징으로 하는 전자 부품 제조용 절단 방법.
KR1020140166225A 2013-12-28 2014-11-26 전자 부품 제조용 절단 장치 및 절단 방법 KR101570003B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013273689A JP6143668B2 (ja) 2013-12-28 2013-12-28 電子部品製造用の切断装置及び切断方法
JPJP-P-2013-273689 2013-12-28

Publications (2)

Publication Number Publication Date
KR20150079402A KR20150079402A (ko) 2015-07-08
KR101570003B1 true KR101570003B1 (ko) 2015-11-17

Family

ID=53591786

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140166225A KR101570003B1 (ko) 2013-12-28 2014-11-26 전자 부품 제조용 절단 장치 및 절단 방법

Country Status (4)

Country Link
JP (1) JP6143668B2 (ko)
KR (1) KR101570003B1 (ko)
CN (1) CN104752298B (ko)
TW (1) TWI559390B (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6212507B2 (ja) * 2015-02-05 2017-10-11 Towa株式会社 切断装置及び切断方法
JP6946983B2 (ja) * 2017-11-30 2021-10-13 株式会社リコー 位置検出装置、画像読取装置、画像形成装置、プログラムおよび位置検出方法
JP7022624B2 (ja) * 2018-03-13 2022-02-18 株式会社ディスコ 位置付け方法
JP7201908B2 (ja) 2019-02-05 2023-01-11 株式会社東京精密 加工装置
JP7530763B2 (ja) * 2020-08-06 2024-08-08 Towa株式会社 切断装置、及び、切断品の製造方法
JP7564747B2 (ja) 2021-03-29 2024-10-09 Towa株式会社 加工装置、及び加工品の製造方法
CN114841925B (zh) * 2022-04-12 2024-07-12 深圳市凯码时代科技有限公司 一种测试设备对位计算方法、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048203A (ja) 1998-08-03 2000-02-18 Disco Abrasive Syst Ltd 加工結果の認識方法
KR100593135B1 (ko) 2003-05-09 2006-06-26 토와 가부시기가이샤 기판 절단 방법 및 기판 절단 장치
JP2007208031A (ja) 2006-02-02 2007-08-16 Nikon Corp ウェハホルダ及び半導体装置の製造方法
JP2010087193A (ja) 2008-09-30 2010-04-15 Towa Corp 電子部品製造用の切削装置及び切削方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62173147A (ja) * 1986-01-24 1987-07-30 Disco Abrasive Sys Ltd 温度変化に起因する誤差が低減された精密装置
JPH01276005A (ja) * 1988-04-28 1989-11-06 Kokusai Gijutsu Kaihatsu Kk 測長器及び標的
JP2512692Y2 (ja) * 1992-02-05 1996-10-02 株式会社椿本チエイン キャリヤの定盤式寸法検査装置
JP3180579B2 (ja) * 1994-10-25 2001-06-25 株式会社東京精密 ダイシング装置の切削位置補正方法及びその装置
US6476415B1 (en) * 2000-07-20 2002-11-05 Three-Five Systems, Inc. Wafer scale processing
JP4796271B2 (ja) * 2003-07-10 2011-10-19 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2005353723A (ja) * 2004-06-09 2005-12-22 Apic Yamada Corp 切断装置、及び切断方法
JP4522234B2 (ja) * 2004-11-17 2010-08-11 株式会社ディスコ パネルの切削方法
US9010225B2 (en) * 2007-12-21 2015-04-21 Tokyo Seimitsu Co., Ltd. Dicing apparatus and dicing method
JP5363746B2 (ja) * 2008-02-29 2013-12-11 Towa株式会社 切断装置及び切断方法
JP2009218397A (ja) * 2008-03-11 2009-09-24 Towa Corp 基板の切断方法及び装置
JP5156459B2 (ja) * 2008-04-09 2013-03-06 Towa株式会社 基板の切断方法及び装置
JP4780356B1 (ja) * 2010-04-20 2011-09-28 Tdk株式会社 ワーク加工装置及び方法
TW201200983A (en) * 2010-06-17 2012-01-01 All Ring Tech Co Ltd Method for searching images in electronic component cutting machine
JP5730048B2 (ja) * 2011-02-04 2015-06-03 株式会社ディスコ 加工装置
JP5904721B2 (ja) * 2011-06-10 2016-04-20 株式会社ディスコ 分割予定ライン検出方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048203A (ja) 1998-08-03 2000-02-18 Disco Abrasive Syst Ltd 加工結果の認識方法
KR100593135B1 (ko) 2003-05-09 2006-06-26 토와 가부시기가이샤 기판 절단 방법 및 기판 절단 장치
JP2007208031A (ja) 2006-02-02 2007-08-16 Nikon Corp ウェハホルダ及び半導体装置の製造方法
JP2010087193A (ja) 2008-09-30 2010-04-15 Towa Corp 電子部品製造用の切削装置及び切削方法

Also Published As

Publication number Publication date
TW201526096A (zh) 2015-07-01
CN104752298A (zh) 2015-07-01
KR20150079402A (ko) 2015-07-08
JP6143668B2 (ja) 2017-06-07
JP2015128122A (ja) 2015-07-09
CN104752298B (zh) 2017-10-24
TWI559390B (zh) 2016-11-21

Similar Documents

Publication Publication Date Title
KR101570003B1 (ko) 전자 부품 제조용 절단 장치 및 절단 방법
KR101868781B1 (ko) 비수용 칩을 기판에 설비하기 위한 방법 및 배치 기계
TWI755526B (zh) 用於將部件安裝在基板上的設備和方法
CN102629566B (zh) 加工装置
TWI444631B (zh) A detection device, a detection method and a recording medium
JP6224348B2 (ja) 判定装置、表面実装機
JP2016032075A (ja) ウェーハの加工方法
US6915565B2 (en) Method of detecting position of rotation axis of suction nozzle
CN107768242B (zh) 被加工物的切削方法
JP2010050418A (ja) 電子部品実装装置の制御方法
JP2019121796A (ja) 部品をキャリア上に段階的に装着するために装着可能なマーカー部品の使用
CN108198776B (zh) 具有移动载体容纳装置的移动装置的装配机
CN105870038B (zh) 给载体装配无外壳芯片的装配机和方法
KR102645229B1 (ko) 검사 지그 및 검사 방법
WO2019198513A1 (ja) レーザー加工装置、レーザー加工システム、およびレーザー加工方法
JP2011151117A (ja) 加工装置
JP5391007B2 (ja) 電子部品の実装装置及び実装方法
WO2001091534A1 (fr) Dispositif de montage de puces et procede d&#39;alignement associe
EP0989601B1 (en) Method of and apparatus for bonding component
CN113811178B (zh) 一种用于向元件载体装配电子元件的装配机及其方法
TWI794682B (zh) 具有晶片固持器運動台的晶片鍵合頭設備
JP2015112671A (ja) 加工装置
JP2005159110A (ja) 部品実装方法及び装置
JP5896752B2 (ja) 半導体パッケージ及びその製造方法
US20130292454A1 (en) Apparatus and method for determining an alignment of a bondhead of a die bonder relative to a workchuck

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant