KR101445389B1 - 합금 초미립자 및 그 제조방법 - Google Patents

합금 초미립자 및 그 제조방법 Download PDF

Info

Publication number
KR101445389B1
KR101445389B1 KR1020070111007A KR20070111007A KR101445389B1 KR 101445389 B1 KR101445389 B1 KR 101445389B1 KR 1020070111007 A KR1020070111007 A KR 1020070111007A KR 20070111007 A KR20070111007 A KR 20070111007A KR 101445389 B1 KR101445389 B1 KR 101445389B1
Authority
KR
South Korea
Prior art keywords
metal
alloy
gas
main metal
particles
Prior art date
Application number
KR1020070111007A
Other languages
English (en)
Other versions
KR20080040593A (ko
Inventor
게이타로 나카무라
다카시 후지이
Original Assignee
가부시키가이샤 닛신 세이훈 구루프혼샤
닛신 엔지니어링 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 닛신 세이훈 구루프혼샤, 닛신 엔지니어링 가부시키가이샤 filed Critical 가부시키가이샤 닛신 세이훈 구루프혼샤
Publication of KR20080040593A publication Critical patent/KR20080040593A/ko
Application granted granted Critical
Publication of KR101445389B1 publication Critical patent/KR101445389B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Abstract

입자 표면이 실질적으로 금속인 합금 초미립자이면서, 융착성이 없고, 산화에 대한 억제도가 높은 합금 초미립자, 및 그 제조방법을 제공하는 것이다.
주된 금속과, 이 주된 금속과 고용 가능한 1종 이상의 종된 금속을 포함한 합금으로 이루어지는 합금 초미립자로서, 1종 이상의 종된 금속의 함유량이, 1질량%∼25질량%의 범위이며, 주된 금속에 고용된 1종 이상의 종된 금속은, 주된 금속을 포함한 합금 초미립자의 융착 및 산화의 적어도 한쪽을 방지하는 기능을 발휘하는 것에 의해, 상기 과제를 해결한다. 또한, 감압하에서, 주된 금속과 1종 이상의 종된 금속을 포함한 초미립자 제조용 재료를 열플라즈마염내에 도입하고, 기상 상태의 혼합물로 하여, 이 기상 상태의 혼합물을 급냉하기에 충분한 공급량으로, 냉각용 기체를 열플라즈마염의 종단부를 향해서 도입하여, 상기 합금 초미립자를 생성함으로써, 상기 과제를 해결한다.

Description

합금 초미립자 및 그 제조방법{ULTRAFINE ALLOY PARTICLES, AND PROCESS FOR PRODUCING THE SAME}
본 발명은, 융착을 예방하는 동시에, 산화를 억제하는 것이 가능한 금속 합금 초미립자 및 그 제조방법에 관한 것이며, 보다 상세하게는, 열플라즈마법을 이용하여, 주된 금속 A와, 이 주된 금속, 예를 들면 금속 A와 고용 가능한 1종 이상의 종된 금속, 예를 들면 주된 금속 A와 고용 가능한 복수의 금속 B, C, …의 적어도 1종의 금속을 포함한 합금 초미립자, 및 이 합금 초미립자를 제조하는 것이 가능한 합금 초미립자의 제조방법에 관한 것이다.
산화물 미립자, 질화물 미립자, 탄화물 미립자 등의 미립자는, 반도체기판, 프린트기판, 각종 전기절연부품 등의 전기절연재료나, 다이스, 베어링 등의 고경도·고정밀도의 기계 공작 재료, 입계(粒界) 콘덴서, 습도 센서 등의 기능성 재료, 정밀 소결 성형 재료 등의 소결체의 제조나, 엔진 밸브 등과 같은 고온 내마모성이 요구되는 재료 등의 용사(溶射) 부품 제조, 또는, 연료 전지의 전극이나 전해질 재료 및 각종 촉매 등의 분야에서 이용되고 있다. 이러한 미립자를 이용하는 것에 의해, 소결체나 용사 부품 등에 있어서의 이종 세라믹스끼리나 이종 금속끼리의 접 합 강도나 치밀성, 혹은 기능성을 향상시키고 있다.
이러한 미립자를 제조하는 방법의 하나로, 기상법이 있다. 기상법에는, 각종의 가스 등을 고온에서 화학반응시키는 화학적 방법과, 전자나 레이저 등의 빔을 조사하여 물질을 분해·증발시켜, 미립자화 시키는 물리적 방법이 있다.
상기 기상법중의 하나로서 열플라즈마법이 있다. 열플라즈마법은, 열플라즈마내에서 원재료를 순간적으로 증발시킨 후, 급냉 응고시켜, 미립자를 제조하는 방법이며, 또한, 깨끗하고 생산성이 높고, 고온에서 열용량이 크기 때문에 고융점 재료에도 대응할 수 있고, 다른 기상법에 비해 복합화가 비교적 용이하다고 하는 많은 이점을 가진다. 이 때문에, 열플라즈마법은, 미립자를 제조하는 방법으로서 적극적으로 이용되고 있다.
특허 문헌 1에는, 분말상태로 된 원재료를 열플라즈마 염(炎)내에 도입하는 종래 기술에 관한 것으로, 금속 미립자와 피복층의 양 분말 재료를 복합화하여, 원재료 혼합물을 불활성 또는 환원성 분위기의 열플라즈마(열플라즈마염)내에 공급하여 원재료를 증발시켜 기상 상태의 혼합물로 한 후, 이 혼합물을 급냉하여, 산화물 금속 피복 미립자를 제조하는 방법이 개시되어 있다. 특허 문헌 1에 개시된 산화물 금속 피복 미립자는, 그 심(芯)입자의 평균 입자지름이, 0.01㎛∼1㎛, 산화물 피복층의 평균 두께가, 1nm∼10nm이므로, 그 사이즈는, 개략 0.011㎛∼1.01㎛이다. 또한, 이 산화물 금속 피복 미립자는, 입자 표면이 산화물로 피복되어 있어, 표면 활성은 높지 않고, 안정성이 있는 미립자이다.
그런데, 근래, 상술한 바와 같은 각종 미립자에 대해서는, 그 재질에 상관없 이, 보다 작은 사이즈의 것이 요구되는 상황이 되고 있다.
이것은, 미립자가 이용되는 대상물 그 자체가 작은 사이즈화하는 것에 기인하고 있지만, 여기서 문제가 되는 것은, 미립자의 사이즈가 작아짐에 따라서 표면 활성이 높아지고, 이 높은 표면 활성은, 반대로 미립자의 안정성을 저하시킨다고 하는 점이다.
예를 들면, 철이나 구리 등의 금속을 미립자화했을 경우, 그 입자지름이 수㎛오더이면, 서서히 산화하는 것에 의해 표면에 산화 피막을 형성하는 것은 잘 알려져 있지만, 이것이 수nm∼수십nm오더(소위 나노 입자, 이하, 종래의 감각에 기초한 미립자와 구별하기 위해서, 초미립자라고 한다)가 되면, 산화가 급격하게 일어나 위험하기조차 한 상태가 된다.
또한, 특히, 금이나 은 등의 저융점 금속을 미립자화했을 경우, 수nm 오더가 되면 융점이 급격하게 저하하는 것이 알려져 있지만, 이보다 큰 사이즈의 수십 nm오더에서도 입자끼리가 용이하게 융착하고, 각각이 독립한 초미립자를 얻을 수 없는 상태가 되는 것도 알려져 있다.
따라서, 이러한 초미립자를 안정적으로, 또한, 효율적으로 제조하는 방법을 확립하는 것이 필요하다.
이것에 관해서는, 예를 들면, 특허 문헌 2에 기재되어 있는 기술이 참고가 된다.
특허 문헌 2에 기재되어 있는 기술은, 반응성 가스의 존재하에서의 진공 증착에 의해, 초미분체(코어가 되는 것)의 표면에 균일한 두께(수원자층~수십원자층 정도와 같은 초박층)의 탄소 원자층을 형성한 「탄소 초박막을 피복한 초미분체」이다.
[특허문헌 1] 일본 특개 2000-219901호 공보
[특허문헌 2] 일본 특공평 5-43791호 공보
상술의 특허 문헌 2에 기재된 「탄소 초박막을 피복한 초미분체」의 제조방법은, 미리 형성되어 있는 입자지름 수십 nm(구체적인 예는, 30nm(300Å))의 니켈초미분체 등의 초미분체를 증착 분위기내에 위치시키고, 이 초미분체의 표면에, 분위기내에 존재하는 반응성 가스의 분해에 의해 발생하는 원자상태의 탄소(탄소 원자)를 균일하게(층형상으로), 두께 수nm(구체적인 예는, 2nm(20Å))로 부착시킨다고 하는 것이다.
한편, 근래, 반도체 장치 등의 발전에 따라 반도체 기판이나 프린트 기판상에 와이어(배선)를 형성할(그릴) 목적으로 도전성을 가진 초미립자(실질적으로는, 금속의 초미립자)가 요구되고 있다.
그러나, 특허 문헌 2에 기재된 「탄소 초박막을 피복한 초미분체」는, 상술한 바와 같이, 입자지름이 수십 nm정도 초미분체로 되어 있지만, 여기에 개시된 초미분체는, 표면에 탄소 박막(그라파이트화한 탄소 원자의 초박막 피막)을 피복한 것이기 때문에, 상술한 바와 같은 반도체 기판이나 프린트 기판상에의 배선 형성을 위해서는, 가열하여 탄소 박막을 제외한, 즉 탄소 원자를 날릴 필요가 있다. 이를 위해서는, 가열 온도를 높게 할 필요가 있지만, 반도체 기판이나 프린트 기판의 가열 온도에는 한계가 있기 때문에, 반도체 기판이나 프린트 기판상으로의 배선 형성을 위한 초미분체로서 이용할 수 없다고 하는 문제가 있었다.
즉, 특허 문헌 2에 개시된 「탄소 초박막을 피복한 초미분체」에서는, 입자 표면이 실질적으로 금속의(즉, 입자 표면도 도전성을 가진다) 초미립자인 것이 요구되는 상기 목적에는 대응할 수 없다고 하는 문제가 있었다.
본 발명은 상기 사정에 비추어 이루어진 것으로, 그 목적으로 하는 바는, 상기 종래 기술에 기초한 문제점을 해소한, 입자 표면이 실질적으로 금속인 합금 초미립자이면서, 융착성이 없고, 산화에 대한 억제도가 높은 합금 초미립자 및 그 제조방법을 제공하는 것에 있다.
보다 상세하게는, 본 발명은, 상술한 바와 같은 비융착성과 높은 산화 억제성을 구비한, 주된 금속에 대해서 보조적 성분(즉, 종된 금속)을 포함한 합금으로 이루어지는 합금 초미립자 및 그 제조방법을 제공하는 것을 목적으로 하고 있다.
본 발명자들은, 이러한 높은 표면 활성과 신기능성이 기대되는 합금 초미립자 및 이러한 합금 초미립자를 안정적이고 효율적으로 제조하는 방법을 확립하는 것이 필요하게 되어 있는 점을 감안하여, 상기 목적을 달성하기 위해서, 예의 연구를 거듭한 결과, 합금을 형성하는 것이 가능한 합금 초미립자 제조용 재료를 열플라즈마염내에 도입하여 기상 상태의 혼합물로 하고, 이 기상 상태의 혼합물을 급냉하기에 충분한 공급량으로 열플라즈마염의 종단부에 냉각용 기체를 도입함으로써, 비융착성과 높은 산화 억제도를 구비한 합금으로 이루어진 합금 초미립자를 제조할 수 있는 것을 발견하여, 본 발명에 이른 것이다.
즉, 본 발명의 제1 형태는, 주된 금속과, 이 주된 금속과 고용 가능한 1종 이상의 종된 금속을 포함한 합금으로 이루어진 합금 초미립자로서, 상기 1종 이상 의 종된 금속의 함유량이, 1질량%∼25질량%의 범위이고, 상기 주된 금속에 고용된 상기 1종 이상의 종된 금속은, 상기 주된 금속을 포함한 합금 초미립자의 융착 및 산화의 적어도 한쪽을 방지하는 기능을 발휘하는 것인 것을 특징으로 하는 합금 초미립자를 제공하는 것이다.
여기서, 상기 주된 금속 및 상기 1종 이상의 종된 금속과의 각 금속의 융점 중 최고의 융점 온도에 있어서, 상기 주된 금속이 나타내는 증기압과, 상기 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비가, 1:104∼1:10-4(10-4:1∼104:1)의 범위내인 것이 바람직하다.
또한, 상기 주된 금속이, 은이며, 상기 1종 이상의 종된 금속이, 팔라듐, 주석, 니켈, 구리, 금 및 백금으로 이루어진 군으로부터 선택되는 것인 것이 바람직하다.
또한, 상기 주된 금속이, 구리이며, 상기 1종 이상의 종된 금속이, 니켈인 것이 바람직하다.
또한, 상기 주된 금속이, 철, 코발트 및 니켈로 이루어진 군으로부터 선택되는 1종이고, 상기 1종 이상의 종된 금속이, 알루미늄인 것이 바람직하다.
한편, 본 발명의 제2 형태는, 감압하에서, 주된 금속과, 이 주된 금속과 고용 가능한 1종 이상의 종된 금속을 포함하고, 상기 1종 이상의 종된 금속의 함유량이 1량%∼25질량%의 범위인 초미립자 제조용 재료를 열플라즈마염내에 도입하여, 기상 상태의 혼합물로 하고, 이 기상 상태의 혼합물을 급냉하기에 충분한 공급량으 로, 냉각용 기체를 상기 열플라즈마염의 종단부를 향해서 도입하여, 상기 주된 금속과 상기 1종 이상의 종된 금속을 포함한 합금으로 이루어지고, 융착 및 산화의 적어도 한쪽을 방지하는 기능을 구비한 합금 초미립자를 생성하는 것을 특징으로 하는 합금 초미립자의 제조방법을 제공하는 것이다.
여기서, 상기 주된 금속 및 상기 1종 이상의 종된 금속의 각 금속의 융점 중 최고의 융점 온도에 있어서, 상기 주된 금속이 나타내는 증기압과, 상기 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비가, 1:104∼1:10-4(10-4:1∼104:1)의 범위내인 것이 바람직하다.
또한, 상기 주된 금속이, 은이며, 상기 1종 이상의 종된 금속이, 팔라듐, 주석, 니켈, 구리, 금 및 백금으로 이루어진 군으로부터 선택되는 것인 것이 바람직하다.
또한, 상기 주된 금속이, 구리이며, 상기 1종 이상의 종된 금속이, 니켈인 것이 바람직하다.
또한, 상기 주된 금속이, 철, 코발트 및 니켈로 이루어진 군으로부터 선택되는 1종이고, 상기 1종 이상의 종된 금속이, 알루미늄인 것이 바람직하다.
여기서, 본 발명에 있어서 대상으로 하는 합금 초미립자의 사이즈로서는, 초미립자, 이른바 나노 입자로 칭해지는, 수nm∼수십nm오더의 입자 지름을 가진 사이즈를 들 수 있다.
한편, 본 발명에 따른 합금 초미립자, 및 그 제조방법에 있어서, 상기 기상 상태의 혼합물을 급냉하기에 충분한 상기 냉각용 기체의 공급량이란, 이하와 같은 것이다. 즉, 상기 기상 상태의 혼합물을 급냉하기 위해서 형성되는 공간을 냉각실(챔버)이라고 부르지만, 거기에 도입되는 기체의 냉각실 내에 있어서의 평균 유속(챔버내 유속)을, 0.001∼60m/sec로 하는 것이 바람직하고, 0.01∼10m/sec로 하는 것이 보다 바람직하다.
또한, 상기 기체의 상기 냉각실 내로의 도입 방향으로서는, 상기 냉각실내에 있어서, 열플라즈마염의 꼬리 부분(종단부)에 대해서, 수직 위쪽을 0°로 했을 경우의 각도 α가 90°<α<240°(보다 바람직하게는 100°<α<180°)의 범위, 기체 사출구로부터 본 열플라즈마염의 방향을 0°로 했을 경우의 각도 β가 ―90°<β<90°(보다 바람직하게는 -45°<β<45°)의 범위인 것이 좋다.
본 발명에 의하면, 비융착성과 높은 산화 억제도를 구비한, 보조적 성분을 포함한 합금으로 이루어지는 합금 초미립자, 및 그 제조방법을 제공할 수 있다고 하는 현저한 효과를 발휘한다.
보다 구체적으로는, 본 발명에 의하면, 감압하에서, 주된 금속과, 이 주된 금속, 예를 들면 금속 A와 고용 가능한 1종 이상의 종된 금속, 예를 들면 주된 금속 A와 고용 가능한 복수의 금속 B, C, …의 적어도 1종의 금속을 포함하고, 상기 1종 이상의 종된 금속의 함유량이 1질량%∼25질량%의 범위인 합금 초미립자 제조용 재료를 열플라즈마염내에 도입하여, 기상 상태의 혼합물로 하고, 이 기상 상태의 혼합물을 급냉하기에 충분한 공급량으로, 냉각용 기체를 상기 열플라즈마염의 종단 부(꼬리 부분)를 향해서 도입하여, 상기 주된 금속과 상기 1종 이상의 종된 금속을 포함한 합금으로 이루어지는 합금 초미립자를 생성하도록 한 것에 의해, 비융착성과 높은 산화 억제도를 구비한 합금으로 이루어지는 합금 초미립자를 제조하는 것이 가능하게 된다고 하는 현저한 효과를 발휘한다.
이하, 도면에 나타내는 바람직한 실시형태에 기초하여, 본 발명에 따른 합금 초미립자 및 그 제조방법을 상세하게 설명한다.
도 1은, 본 발명의 일실시형태에 따른 합금 초미립자의 제조방법을 실시하기 위한 합금 초미립자 제조장치(10)의 전체 구성을 나타내는 모식도이다. 또한, 도 2는, 도 1중에 나타낸 플라즈마 토치(12) 부근의 부분 확대도이고, 도 3은, 도 1중에 나타낸 재료 공급 장치(14)의 확대도, 또한, 도 4는, 도 1중에 나타낸 챔버(16)의 천판(天板)(17), 및 이 천판(17)에 구비된 기체 사출구(28a) 및 기체 사출구(28b) 부근을 확대한 단면도이다.
도 1에 나타내는 합금 초미립자 제조장치(10)는, 본 발명에 따른 합금 초미립자를 제조하기 위한 장치로서, 열플라즈마염을 발생시키는 플라즈마 토치(12)와, 합금 초미립자 제조용 재료(분말 재료)를 플라즈마 토치(12)내에 공급하는 재료 공급 장치(14)와, 합금 초미립자(18)를 생성시키기 위한 냉각실로서의 기능을 가진 챔버(16)와, 생성된 합금 초미립자(18)를 회수하는 회수부(20)와, 냉각용의 기체를 챔버(16)내에 도입하여, 열플라즈마염(24)을 향해서 사출하는 기체 도입 장치(28)를 가진다.
도 2에 나타내는 플라즈마 토치(12)는, 석영관(12a)과, 그 바깥측을 둘러싸는 고주파 발진용 코일(12b)로 구성되어 있다. 플라즈마 토치(12)의 상부에는, 합금 초미립자 제조용 재료와 캐리어 가스를 플라즈마 토치(12)내에 도입하기 위한 후술하는 도입관(14a)이 그 중앙부에 설치되어 있으며, 플라즈마 가스 도입구(12c)가 그 주변부(동일 원둘레상)에 형성되어 있다.
플라즈마 가스는, 플라즈마 가스 공급원(22)으로부터 플라즈마가스 도입구(12c)로 이송된다. 플라즈마 가스로서는, 예를 들면, 아르곤, 질소, 수소 등을 들 수 있다. 플라즈마가스 공급원(22)에는, 예를 들면, 2종류의 플라즈마 가스가 준비되어 있다. 플라즈마 가스는, 플라즈마 가스 공급원(22)으로부터 링형상의 플라즈마 가스 도입구(12c)를 통하여, 화살표 P로 나타낸 바와 같이 플라즈마 토치(12)내에 이송된다. 그리고, 고주파 발진용 코일(12b)에 고주파 전류가 공급되어, 열플라즈마염(24)이 발생한다.
한편, 석영관(12a)의 바깥측은, 동심원형상으로 형성된 관(도시되어 있지 않음)으로 둘러싸여 있으며, 이 관과 석영관(12a)의 사이에 냉각수를 순환시켜 석영관(12a)를 수냉하여, 플라즈마 토치(12)내에서 발생한 열플라즈마염(24)에 의해 석영관(12a)이 너무 고온이 되는 것을 방지하고 있다.
재료 공급 장치(14)는, 도 3에 그 확대도를 나타낸 바와 같이, 주로, 2종류 이상의 금속재료가 소정의 비율로 혼합된 상태의 분말 재료를 저장하는 저장조(142)와, 상기 혼합 상태의 분말 재료를 정량 반송하는 스크류 피더(160)와, 스크류 피더(160)로 반송된 분말 재료가 최종적으로 산포되기 전에, 이것을 일차 입 자 상태로 분산시키는 분산부(170)로 구성되어 있다.
저장조(142)에는, 도시되어 있지 않지만, 배기용 배관 및 급기용 배관이 설치된다. 또한, 저장조(142)는 오일 시일 등으로 밀봉된 압력 용기이며, 내부의 분위기를 제어할 수 있도록 구성되어 있다. 또한, 저장조(142)의 상부에는 분말 재료를 도입하는 도입구(도시되지 않음)가 설치되어 있으며, 분말 재료(144)가 도입구에서 저장조(142) 내부에 투입되어 저장된다.
한편, 여기서는, 저장조(142)에 저장되는 분말 재료를, 2종류 이상의 금속재료가 소정의 비율로 혼합된 상태로 도입하는 경우를 예로 들었지만, 이것은 일례이며, 2종류 이상의 금속재료를 개별의 저장실(도시되지 않음)에 저장해 두고, 저장조(142)내로 도입하는 시점에서, 소정의 비율로 혼합하도록 해도 좋은 것은 물론이다.
저장조(142)의 내부에는, 저장된 분말 재료(144)의 응집을 방지하기 위해서, 교반축(146)과 거기에 접속된 교반 날개(148)가 설치된다. 교반축(146)은, 오일 시일(150a)과 베어링(152a)에 의해서, 저장조(142)내에서 회전 가능하게 배설되어 있다. 또한, 저장조(142) 외부에 있는 교반축(146)의 단부는, 모터(154a)에 접속되어 있으며, 도시하지 않은 제어장치에 의해서 그 회전이 제어된다.
저장조(142)의 하부에는, 스크류 피더(160)가 설치되고, 분말 재료(144)의 정량적인 반송을 가능하게 한다. 스크류 피더(160)는, 스크류(162)와 스크류(162)의 축(164)과, 케이싱(166)과, 스크류(162)의 회전동력원인 모터(154b)를 가진다. 스크류(162) 및 축(164)은, 저장조(142)내의 하부를 횡단하여 설치되어 있다. 축(164)은, 오일 시일(150b)과 베어링(152b)에 의해서 저장조(142)내에서 회전 가능하도록 배치되어 있다.
또한, 저장조(142) 외부에 있는 축(164)의 단부는, 모터(154b)에 접속되어 있고, 도시하지 않는 제어장치에 의해서 그 회전이 제어된다. 또한, 저장조(142)의 하부의 개구부와, 후술하는 분산부(170)를 접속하고, 스크류(162)를 싸는 통형상 통로인 케이싱(166)이 설치된다. 케이싱(166)은, 후술하는 분산부(170)의 내부 중간까지 연이어 설치되어 있다.
도 3에 나타낸 바와 같이, 분산부(170)는, 케이싱(166)의 일부에 외부 삽입 고정된 외관(172)과, 축(164)의 선단부에 심어져 설치된 회전 브러시(176)를 가지며, 스크류 피더(160)에 의해서 정량 반송된 분말 재료(144)를 일차 분산시킬 수 있다.
외관(172)의 외부 삽입 고정된 단부와 반대의 단부는, 그 형상이 원추 사다리꼴 형상이며, 그 내부에도 원추 사다리꼴 형상의 공간인 분체 분산실(174)을 가진다. 또한, 그 단부에는 분산부(170)에서 분산된 분말 재료를 반송하는 반송관(182)이 접속된다.
케이싱(166)의 선단이 개구하고, 그 개구부를 넘어 외관(172) 내부의 분체 분산실(174)까지 축(164)이 연장하여 설치되고, 축(164)의 선단에는 회전 브러시(176)가 설치된다. 외관(172)의 측면에는 캐리어 가스 공급구(178)가 설치되어 있으며, 또한, 케이싱(166)의 외벽과 외관(172)의 내벽에 의해서 형성되는 공간은, 도입된 캐리어 가스가 통과하는 캐리어 가스 통로(180)로서의 기능을 가진다.
회전 브러시(176)는, 나일론 등의 비교적 유연한 재질, 혹은 강선 등의 경질인 재질로 이루어지는 침(針)형상 부재로, 케이싱(166)의 선단부 근방의 내부로부터 분체 분산실(174)의 내부까지, 축(164)의 지름 바깥쪽으로 연장하여 밀집하여 심어 설치되는 것에 의해서 형성된다. 이 때의 상기 침형상 부재의 길이는, 케이싱(166)내의 둘레벽에 침형상 부재의 선단부가 맞닿는 정도의 길이이다.
분산부(170)에서는, 분산·반송용의 기체가, 캐리어 가스 공급원(15)으로부터 캐리어 가스 공급구(178), 캐리어 가스 통로(180)를 통과하여 회전 브러시(176)의 지름 방향 바깥측으로부터 회전 브러시(176)에 분출되어, 정량적으로 반송되는 분말 재료(144)가, 회전 브러시(176)의 침형상 부재 사이를 통과함으로써 일차 입자로 분산된다.
여기서, 분체 분산실(174)의 원추 사다리꼴의 모선(母線)과 축(164)이 이루는 각도는, 30°정도의 각도를 이루도록 설치되어 있다. 또한, 분체 분산실(174)의 용적은 작은 편이 바람직하고, 용적이 크면 회전 브러시(176)로 분산된 분말 재료(144)가 반송관(182)에 들어가기 전에 분산실의 내벽에 부착하여, 이것이 재비산하기 때문에 공급되는 분산 분체의 농도가 일정하지 않게 된다고 하는 문제를 일으킨다.
반송관(182)은, 그 일단은 외관(172)과 접속되고, 타단은 플라즈마 토치(12)에 접속된다. 또한, 반송관(182)은, 그 관지름의 10배 이상의 관길이을 가지며, 적어도 도중에 분산 분체를 포함한 기류가 유속 20m/sec 이상이 되는 관지름 부분을 마련하는 것이 바람직하다. 이에 따라 분산부(170)에서 일차 입자 상태로 분산 된 분말 재료(144)의 응집을 방지하고, 상기의 분산 상태를 유지한 채로, 분말 재료(144)를 플라즈마 토치(12) 내부에 산포할 수 있다.
압출 압력이 가해진 캐리어 가스가, 캐리어 가스 공급원(15)으로부터 분말 재료(144)와 함께, 도 2중에 화살표 G로 나타낸 바와 같이 도입관(14a)을 통하여 플라즈마 토치(12)내의 열플라즈마염(24)내에 공급된다. 도입관(14a)은, 분말 재료를 플라즈마 토치내의 열플라즈마염(24)내로 분무하기 위한 노즐 기구를 가지고 있으며, 이것에 의해, 분말 재료(144)를 플라즈마 토치(12)내의 열플라즈마염(24) 중에 분무한다. 캐리어 가스에는, 아르곤, 질소, 수소 등이 단독 또는 적절히 조합해서 이용된다.
한편, 도 1에 나타낸 바와 같이, 챔버(16)가, 플라즈마 토치(12)의 아래쪽에 인접하여 설치되어 있다. 플라즈마 토치(12)내의 열플라즈마염(24)내에 분무된 분말 재료(144)는, 증발하여 기상 상태의 혼합물이 되고, 그 직후에 상기 기상 상태의 혼합물이 챔버(16) 내에서 급냉되어, 합금 초미립자(18)가 생성한다. 즉, 챔버(16)는, 냉각실로서의 기능과 반응실로서의 기능을 가진다.
그런데, 본 발명에 따른 합금 초미립자의 제조방법에 이용하는 합금 초미립자 제조장치는, 상기 기상 상태의 혼합물을 급냉하는 것을 주된 목적으로 하는 기체 도입 장치를 구비한 것을 특징으로 하고 있다. 이하, 이 기체 도입 장치에 대하여 설명한다.
도 1 및 도 4에 나타내는 기체 도입 장치(28)는, 챔버(16)내에 도입되는 기체에 압출 압력을 가하는 콤프레셔(28c)와, 챔버(16)내에 도입되는 상기 기체의 공 급원(28d)과, 이들과 챔버(16)의 천판(17)을 접속하는 관(28e)으로 구성되어 있다.
여기서는, 일례로서 기체 공급원(28d)에는, 냉각용 가스로서의 아르곤이 저장되어 있다. 한편, 냉각용 가스로서는, 아르곤 외에, 예를 들면 질소, 수소, 산소, 공기, 이산화탄소, 수증기 및 이들 혼합 가스를 들 수 있다.
또한, 기체 도입 장치(28)는, 상기 천판(17)내에, 열플라즈마염(24)의 꼬리 부분을 향하여, 상술한 바와 같은 소정의 각도로 기체(여기에서는, 일례로서 냉각용 가스로서의 아르곤)를 사출하는 기체 사출구(28a)와, 챔버(16)내의, 생성한 합금 초미립자(18)가 챔버(16) 내부에 부착하는 것을 방지할 목적으로, 챔버(16) 안쪽벽을 따라서, 위쪽에서 하부를 향하여 상기 기체(아르곤)를 사출하는 기체 사출구(28b)를 구비하고 있다.
여기서, 열플라즈마염의 꼬리 부분이란, 플라즈마가스 도입구(12c)와 반대측의 열플라즈마염의 끝단, 즉, 열플라즈마염의 종단부이다.
도 4에 나타낸 바와 같이, 기체 사출구(28a)와 (28b)는, 챔버(16)의 천판(17)에 형성되어 있다. 천판(17)은, 원추 사다리꼴 형상으로 위쪽의 일부가 원기둥인 내측부 천판 부품(17a)과, 원추 사다리꼴 형상의 구멍을 가진 하부 천판 부품(17b)과, 내측부 천판 부품(17a)을 수직으로 이동시키는 이동 기구를 가진 상부 외측부 천판 부품(17c)을 가진다.
여기서, 내측부 천판 부품(17a)과 상부 외측부 천판 부품(17c)이 접하는 부분(내측부 천판 부품(17a)에서는 상부의 원기둥 부분)에는 나사가 형성되어 있으며, 내측부 천판 부품(17a)을 회전시킴으로써 수직 방향으로 위치를 바꿀 수 있어, 내측부 천판 부품(17a)은, 하부 천판 부품(17b)과의 거리를 조절할 수 있다. 또한, 내측부 천판 부품(17a)의 원추 부분의 구배와, 하부 천판 부품(17b)이 가진 구멍의 원추 부분의 구배는 동일하며, 서로 조합되는 구조가 되어 있다.
또한, 기체 사출구(28a)란, 내측부 천판 부품(17a)과 하부 천판 부품(17b)이 형성한 틈, 즉, 슬릿을 말하고, 상술한 바와 같이 하여 그 폭을 조절할 수 있으며, 천판과 동심인 원둘레형상으로 형성되어 있다. 여기서, 기체 사출구(28a)는, 열플라즈마염(24)의 꼬리 부분을 향하여 기체(여기서는, 아르곤)를 사출할 수 있는 형상이면 좋고, 상술한 바와 같은 슬릿 형상으로 한정되는 것이 아니라, 예를 들면, 원둘레상에 다수의 구멍을 배치한 것이라도 좋다.
상부 외측부 천판 부품(17c)의 내부에는, 관(28e)을 통하여 보내지는 기체(아르곤)가 통과하기 위한 통기로(17d)가 설치되어 있다. 관(28e)을 통하여 보내지는 기체(아르곤)의 일부는, 통기로(17d)를 통과하고, 상술한 내측부 천판 부품(17a)과 하부 천판 부품(17b)이 형성하는 슬릿인 기체 사출구(28a)로 보내진다. 또한, 다른 일부는, 통기로(17d)를 통과하고, 마찬가지로 슬릿인 기체 사출구(28b)로 보내진다.
그리고, 기체 사출구(28a)에 보내지는 상술의 기체(아르곤)는, 도 4중의 화살표 S로 나타내는 방향으로부터, 통기로(17d)를 통과하여, 도 1 및 도 4중의 화살표 Q로 나타내는 방향, 즉, 열플라즈마염의 꼬리 부분(종단부)을 향하여, 상술한 바와 같이, 소정의 공급량 및 소정의 각도로 사출된다. 또한, 기체 사출구(28b)로 보내지는 기체(아르곤)는, 마찬가지로 도 4중의 화살표 S로 나타내는 방향으로부 터, 통기로(17d)를 통과하며(도중에 분기되고), 도 1 및 도 4중의 화살표 R로 나타내는 방향으로 사출되어, 생성한 합금 초미립자(18)가 챔버(16) 내벽면에 부착하는 것을 방지하도록 공급된다.
여기서, 상기 기체(아르곤)의 소정의 공급량에 대하여 설명한다. 상술한 바와 같이, 상기 기상 상태의 혼합물을 급냉하기에 충분한 공급량으로서, 예를 들면 상기 기상 상태의 혼합물을 급냉하기에 필요한 공간을 형성하는 챔버(16)에 있어서, 거기에 도입되는 기체의 챔버(16)내에 있어서의 평균 유속(챔버내 유속)이, 0.001∼60m/sec가 되도록 공급하는 것이 바람직하고, 0.01∼10m/sec가 되도록 공급하는 것이 보다 바람직하다. 이러한 평균 유속 범위는, 열플라즈마염(24)내에 분무된 분말 재료 등이 증발한, 기상 상태의 혼합물을 급냉하여 합금 초미립자를 생성시키고, 생성한 합금 초미립자끼리의 충돌에 의한 응집을 방지하기에 충분한 기체의 공급량이다.
한편, 이 공급량은, 기상 상태의 혼합물을 급냉하여 응고시키기에 충분한 양이며, 또한, 생성한 직후의 합금 초미립자끼리가 충돌함으로써 응집하여 응고하지 않도록 기상 상태의 혼합물을 희석하기에 충분한 양일 필요가 있고, 챔버(16)의 형상이나 크기에 따라 그 값을 적절히 정하는 것이 좋다.
다만, 이 공급량은, 열플라즈마염의 안정을 방해하는 경우가 없도록 제어되는 것이 바람직하다.
다음에, 도 5를 이용하여, 기체 사출구(28a)가 슬릿 형상인 경우에 있어서의, 상기 소정의 각도에 대하여 설명한다. 도 5(a)에, 챔버(16)의 천판(17)의 중 심축을 통과하는 수직 방향의 단면도를, 또한, 도 5(b)에, 천판(17)을 아래쪽으로부터 본 도면을 나타낸다. 한편, 도 5(b)에는, 도 5(a)에 나타낸 단면에 대해서 수직인 방향이 나타나고 있다. 여기서, 도 5(a) 및 (b) 중에 나타내는 점 X는, 통기로(17d)를 통하여 기체 공급원(28d)(도 1 참조)로부터 보내진 기체가, 기체 사출구(28a)로부터 챔버(16) 내부로 사출되는 사출점이다. 실제로는, 기체 사출구(28a)가 원둘레형상의 슬릿이기 때문에, 사출시의 기체는 띠형상의 기류를 형성하고 있다. 따라서, 점 X는, 가상적인 사출점이다.
도 5(a)에 나타낸 바와 같이, 통기로(17d)의 개구부의 중심을 원점으로 하여, 수직 위쪽을 0°로 하고, 지면에서 반시계 방향으로 양의 방향을 취하며, 화살표 Q로 나타내는 방향으로 기체 사출구(28a)로부터 사출되는 기체의 각도를 각도 α로 표시한다. 이 각도 α는, 상술한, 열플라즈마염의 머리 부분(시단부)으로부터 꼬리 부분(종단부)으로의 방향(통상은 연직 방향)이 이루는 각도이다.
또한, 도 5(b)에 나타낸 바와 같이, 상기 가상적인 사출점 X를 원점으로 하여, 열플라즈마염(24)의 중심으로 향하는 방향을 0°로 하고, 지면에서 반시계 방향을 양의 방향으로 하여 열플라즈마염(24)의 머리 부분(시단부)으로부터 꼬리 부분(종단부)으로의 방향에 대해서 수직인 면방향에 있어서의, 화살표 Q로 나타나는 방향으로 기체 사출구(28a)로부터 사출되는 기체의 각도를 각도 β로 표시한다. 이 각도 β는, 상술한, 열플라즈마염의 머리 부분(시단부)으로부터 꼬리 부분(종단부)으로의 방향에 대해서 직교하는 면내(통상적으로는 수평면내)에서, 열플라즈마염의 중심부에 대한 각도이다.
상술한 각도 α(통상적으로는 연직 방향의 각도) 및 각도 β(통상적으로는 수평 방향의 각도)를 이용하면, 상기 소정의 각도, 즉, 상기 기체의 상기 챔버내로의 도입 방향은, 상기 챔버(16)내에 있어서, 열플라즈마염(24)의 꼬리 부분(종단부)에 대해서, 각도 α가 90°<α<240° (보다 바람직하게는 100°<α<180°의 범위, 가장 바람직하게는α=135°), 각도 β가 -90°<β<90°(보다 바람직하게는 -45°<β<45°의 범위, 가장 바람직하게는 β=0°)인 것이 좋다.
상술한 바와 같이, 열플라즈마염(24)을 향하여 소정의 공급량 및 소정의 각도로 사출된 기체에 의해, 상기 기상 상태의 혼합물이 급냉되어, 합금 초미립자(18)가 생성한다. 상술한 소정의 각도로 챔버(16)내에 사출된 기체는, 챔버(16)내에 발생하는 난류 등의 영향에 의해 반드시 그 사출된 각도로 열플라즈마염(24)의 꼬리 부분에 도달하는 것은 아니지만, 기상 상태의 혼합물의 냉각을 효과적으로 실시하고, 또한, 열플라즈마염(24)을 안정시켜 효율적으로 합금 초미립자 제조장치(10)를 동작시키기 위해서는, 상기 각도로 결정하는 것이 바람직하다. 한편, 상기 각도는, 장치의 치수, 열플라즈마염의 크기 등의 조건을 고려하여, 실험적으로 결정하면 좋다.
한편, 기체 사출구(28b)는, 하부 천판 부품(17b)내에 형성된 슬릿이다. 기체 사출구(28b)는, 생성한 합금 초미립자(18)가 챔버(16) 내벽에 부착하는 것을 방지하기 위해서, 상기 기체를 챔버(16)내에 도입하는 것이다.
기체 사출구(28b)는, 천판(17)과 동심인, 원둘레형상으로 형성된 슬릿이다. 다만, 상기의 목적을 충분히 달성하는 형상이면, 슬릿일 필요는 없다.
여기서, 기체 공급원(28d)으로부터 관(28e)을 통하여 천판(17)(상세하게는, 하부 천판 부품(17b)) 내에 도입된 기체는, 통기로(17d)를 통하여 기체 사출구(28b)로부터 챔버(16)의 안쪽벽을 따라서 위쪽에서 하부를 향하여, 도 1 및 도 4에 나타내는 화살표 R의 방향으로 사출된다.
이 작용은, 상기 합금 초미립자가 회수되는 과정(공정)에 있어서, 상기 합금 초미립자가 챔버(16)의 안쪽벽에 부착하는 것을 방지하는 효과를 가져온다. 기체 사출구(28b)로부터 사출되는 기체의 양은, 그 목적을 달성하기에 충분한 양이면 불필요하게 대량이 아니어도 되고, 합금 초미립자가 챔버(16)의 안쪽벽에 부착하는 것을 방지하기에 충분한 양이면 된다.
한편, 도 1에 나타낸 챔버(16)의 측벽에 설치되어 있는 압력계(16p)는, 챔버(16)내의 압력을 감시하기 위한 것으로, 주로, 상술한 바와 같이 챔버(16)내에 공급되는 가스량의 변동 등을 검지하여, 계내의 압력을 제어하기 위해서도 이용된다.
도 1에 나타낸 바와 같이, 챔버(16)의 측방에는, 생성한 합금 초미립자(18)를 회수하는 회수부(20)가 설치되어 있다. 회수부(20)는 회수실(20a)과, 회수실(20a)내에 설치된 필터(20b)와, 회수실(20a) 상부에 설치된 관(20c)을 통하여 접속된 진공 펌프(도시되어 있지 않음)를 구비한다. 생성한 합금 초미립자는, 상기 진공 펌프로 흡인되는 것에 의해, 회수실(20a)내로 끌여들여져 필터(20b)의 표면에서 멈춘 상태가 되어 회수된다.
다음에, 상술한 합금 초미립자 제조장치(10)의 작용을 설명하면서, 이 합금 초미립자 제조장치(10)를 이용하여, 본 발명의 일실시형태에 따른 합금 초미립자의 제조방법, 및 이 제조방법에 의해 생성되는 합금 초미립자에 대해 설명한다.
본 실시형태에 따른 합금 초미립자의 제조방법에서는, 먼저, 합금 초미립자를 형성하기 위한 재료인 분말 재료(여기서는, 합금을 생성하는 것이 가능한 2종류 이상의 금속을 포함하는 것으로 한다)를 소정의 비율로 재료 공급 장치(14)에 투입한다.
또한, 여기서, 사용하는 분말 재료의 입자지름은, 예를 들면, 10㎛이하인 것이 바람직하다.
여기서 적합하게 이용되는 합금을 형성해야 할 분말 재료로서는, 열플라즈마염에 의해 증발시켜지는 주된 금속(주성분) 및 1종 이상의 종된 금속(1종 이상의 보조적 성분)으로 이루어지는 2종류 이상의 금속을 포함하는 것인 것이 필요한 동시에, 이들 2종류 이상의 금속이 고용 가능한 것, 및, 이들 금속이 소정 비율로 혼합되어 있는 것이 필요하고, 이들 금속의 증기압비가 소정의 범위내에 있는 것이 바람직하다.
구체적으로는, 본 발명에 이용되는 초미립자 제조용 분말 재료는, 본 발명의 합금 초미립자를 형성하는 주된 금속과 이 주된 금속과 고용 가능한 1종 이상의 종된 금속의 2종류 이상의 금속을 포함하고, 분말 재료중의 1종 이상의 종된 금속의 함유량이, 1질량%∼25질량%의 범위일 필요가 있고, 종된 금속은, 주된 금속과 합금 초미립자를 형성했을 때에, 합금 초미립자에 융착 및 산화의 적어도 한쪽을 방지하는 기능을 부여하여, 발휘시키는 것일 필요가 있다.
즉, 본 발명에 있어서는, 종된 금속(보조적 성분)은, 주된 금속에 고용 가능할 필요가 있고, 합금 초미립자에 융착 및 산화의 적어도 한쪽을 방지하는 기능을 부여하는 것이 필요하지만, 이들 요건을 만족하면, 합금 초미립자를 형성하는 금속재료의 종류에 대해서는 특별히 한정은 없고, 사용 목적에 따라, 적절히 선택할 수 있다.
또한, 본 발명에 있어서, 주된 금속 및 1종 이상의 종된 금속의 2종 이상의 금속은, 각 금속의 융점 중 최고의 융점 온도에 있어서, 주된 금속이 나타내는 증기압과, 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비가, 1:104 ∼ 1:10-4(10-4:1∼104:1)의 범위내인 것이 바람직하다.
또한, 여기서 말하는(이종 금속간의) 증기압비에 대해서는, 예를 들면, 융점이 다른 2종류의 금속(주된 금속 및 종된 금속) 중의 높은 쪽(일반적으로는, 복수의 종류의 금속 중 최고)의 융점에서 그들 증기압, 즉 주된 금속 및 종된 금속의 증기압을 비교하는 것이 중요하다.
한편, 여기서, 증기압을, 예를 들면, 2종류의 금속 중의 높은 쪽(일반적으로는, 복수의 종류의 금속 중 최고)의 융점에서 비교하고 있는 것은, 이 온도 이상에서는 모든 금속이 액체 혹은 기체 상태에 있고, 합금을 형성할 수 있는 액상 혹은 기상 반응이 일어날 가능성이 큰 데 비하여, 이 온도보다 낮은 온도에서는, 적어도 1 종류의 금속은 고화하여, 합금을 형성하는 것이 불가능하게 되므로, 합금이 형성되는 온도 영역에서의 증기압을 비교하여, 합금이 형성되기 쉽다는 지표로 하기 위 해서이다.
본 발명에 있어서, 2종류 이상의 금속의 각 금속의 융점 중 최고의 융점 온도에 있어서, 주된 금속이 나타내는 증기압과, 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비를, 바람직한 범위로서 1:104∼1:10-4(10-4:1∼104:1)의 범위내로 한정하는 이유는, 이 범위를 벗어난 경우에는, 합금을 형성하기 어렵게 되기 때문이며, 특히 증기압비에 차가 너무 크면, 증기압이 낮은 금속이 먼저 석출, 고화하여, 증기압이 높은 금속과는 합금이 되지 않고 별개의 입자가 되기 때문이다.
본 발명에 이용되는 합금 초미립자 제조용 분말 재료로서는, 바람직하게는, 이하의 것이 좋다. 즉, 2종류 이상의 경우이면, 주된 금속의 1종을 금속 A, 다른 종된 금속을, 복수의 금속 B, C, …의 적어도 1종으로 하면, 이하와 같이 표현된다.
주된 금속(A)이, 은인 경우, 종된 금속(복수의 금속 B, C, …의 적어도 1종)이, 팔라듐, 주석, 구리, 니켈, 금, 백금으로 이루어진 군으로부터 선택되는 1종인 것이 바람직하다.
주된 금속이, 구리인 경우, 종된 금속이, 니켈인 것이 바람직하다.
주된 금속이, 철, 코발트, 니켈로 이루어진 군으로부터 선택되는 1종이고, 종된 금속이, 알루미늄인 것이 바람직하다.
여기서, 주된 금속과 종된 금속이, 이상과 같은 조합이면, 본 발명의 주된 금속과 종된 금속의 요구되는 특성을 만족하기 때문이다.
또한, 상술한 바와 같이, 주된 금속과 종된 금속과의 혼합 분말 재료중의 종된 금속의 혼합 비율은, 1질량%∼25질량%로 할 필요가 있고, 바람직하게는, 2질량%∼20질량%로 하는 것이 좋다.
그 이유는, 혼합 분말 재료중의 종된 금속의 혼합 비율이, 1질량% 미만이면, 종된 금속에 의해서 합금 초미립자에 융착 방지 기능이나 산화 방지 기능을 충분히 부여할 수 없게 되기 때문이고, 25질량%을 넘으면, 주된 금속의 특성이 저하하여, 합금 초미립자에 요구되는 본래의 특성이나 기능을 달성할 수 없게 되기 때문이다.
다음에, 캐리어 가스를 이용하여 합금 초미립자 제조용 재료를 기체 반송하고, 플라즈마 토치(12)내에 도입하기 위한 도입관(14a)을 통하여 열플라즈마염(24)내에 도입하여 증발시켜, 기상 상태의 혼합물로 한다. 즉, 열플라즈마염(24)내에 도입된 분말 재료는, 플라즈마 토치(12)내에 공급됨으로써, 플라즈마 토치(12)내에 발생하고 있는 열플라즈마염(24)내에 도입되어 증발하는 결과, 기상 상태의 혼합물이 된다.
한편, 상기 분말 재료가 열플라즈마염(24)내에서 기상 상태가 될 필요가 있기 때문에, 열플라즈마염(24)의 온도는, 분말 재료의 비점보다 높은 것이 필요하다. 한편, 열플라즈마염(24)의 온도가 높을수록, 용이하게 원재료가 기상 상태가 되므로 바람직하지만, 특별히 온도는 한정되지 않고, 원재료에 따라 온도를 적절히 선택해도 좋다. 예를 들면, 열플라즈마염(24)의 온도를 6000℃로 할 수도 있고, 이론상으로는, 10000℃ 정도에 도달하는 것으로 생각할 수 있다.
또한, 플라즈마 토치(12)내에 있어서의 압력 분위기는, 대기압 이하인 것이 바람직하다. 여기서, 대기압 이하의 분위기에 대해서는, 특별히 한정되지 않지만, 예를 들면 0.5∼100kPa로 하는 것을 생각할 수 있다.
다음에, 열플라즈마염(24)내에서 분말 재료가 증발하여 기상 상태가 된 혼합물을, 챔버(16)내에서 급냉함으로써, 합금 초미립자(18)가 생성한다. 상세하게는, 열플라즈마(24)중에서 기상 상태가 된 혼합물이, 기체 사출구(28a)를 통하여 소정의 각도 및 공급량으로 열플라즈마염을 향하여 화살표 Q로 나타나는 방향으로 사출되는 기체에 의해서 급냉되어, 합금 초미립자(18)가 생성된다.
일반적으로, 상술한 바와 같은 생성 직후의 합금 초미립자끼리가 충돌하여, 응집체를 형성함으로써 입자지름의 불균일이 발생한다. 이에 대해, 본 발명에 따른 합금 초미립자의 제조방법에 있어서는, 기체 사출구(28a)를 통하여 소정의 각도 및 공급량으로 열플라즈마염의 꼬리 부분(종단부)을 향하여 화살표 Q로 나타나는 방향으로 사출되는 기체가 합금 초미립자(18)를 희석하는 것에 의해, 합금 초미립자끼리가 충돌하여 응집하는 것을 방지한다.
또한, 상술의 기체 사출구(28a)를 통하여 소정의 각도 및 공급량으로 열플라즈마염의 꼬리 부분(종단부)을 향하여 화살표 Q로 나타나는 방향으로 사출되는 기체는, 챔버(16)내의 온도를 급격하게 저하시키지만, 이 때에, 기상 상태의 혼합물이 되어 있던, 합금을 생성하는 것이 가능한 2종류 이상의 금속의 증기로부터, 상기 2종류 이상의 금속의 고용체인 합금 초미립자가 생성된다.
즉, 기체 사출구(28a)로부터 사출된 기체가, 상기 기상 상태의 혼합물을 급냉하여 합금 초미립자를 생성하고, 또한, 생성한 합금 초미립자의 응집을 방지하는 것에 의해, 입자 지름의 미세화, 및 입자 지름의 균일화 및 입자끼리의 응집·융착 및 산화를 방지하도록 작용하고 있으며, 이것은 본 발명의 큰 특징이다.
그런데, 기체 사출구(28a)로부터 사출되는 기체는, 열플라즈마염(24)의 안정성에 많은 악영향을 끼친다. 그러나, 장치 전체를 연속적으로 운전하기 위해서는, 열플라즈마염을 안정시킬 필요가 있다. 이 때문에, 본 실시형태에 따른 합금 초미립자 제조장치(10)에 있어서의 기체 사출구(28a)는, 원둘레형상으로 형성된 슬릿이 되어 있으며, 그 슬릿폭을 조절함으로써 기체의 공급량 및 사출 속도를 조절할 수 있고, 중심 방향으로 균일한 기체를 사출할 수 있으므로, 열플라즈마염을 안정시키는데 바람직한 형상을 가진다고 할 수 있다. 또한, 이 조절은, 사출되는 기체의 공급량을 바꾸는 것도 행할 수 있다.
한편, 일부의 도입 기체는, 기체 사출구(28b)를 통하여 챔버(16)의 안쪽벽을 따라서 위쪽으로부터 하부를 향하여, 도 1, 도 4에 나타내는 화살표 R의 방향으로 사출된다. 이에 따라서, 합금 초미립자의 회수의 과정에 있어서, 합금 초미립자(18)가 챔버(16)의 내벽에 부착하는 것을 방지하여, 생성한 합금 초미립자의 수율을 향상시킬 수 있다. 최종적으로, 챔버(16)내에서 생성한 합금 초미립자는, 관(20c)에 접속된 진공 펌프(도시되지 않음)에 의해 흡인되고, 회수부(20)의 필터(20b)로 회수된다.
여기서, 캐리어 가스 또는 분무 가스로서는, 일반적으로는, 공기, 산소, 질소, 아르곤 또는 수소 등의 사용을 생각할 수 있지만, 생성하는 합금 초미립자가 금속 합금 초미립자의 경우에는, 캐리어 가스 또는 분무 가스로서 아르곤을 이용하 는 것이 좋다.
본 실시형태에 따른 제조방법에 의해 제조되는 합금 초미립자는, 합금 초미립자 제조용 분말 재료와 동일한 성분으로 이루어지고, 동일한 조성으로 이루어지는 합금 초미립자이며, 즉, 합금 초미립자 제조용 분말 재료에 포함되는 주된 금속과, 이 주된 금속과 고용 가능한 1종 이상의 종된 금속을 포함한 합금으로 이루어지고, 이 1종 이상의 종된 금속의 함유량이, 1질량%∼25질량%의 범위인 합금 초미립자이다.
여기서, 상술한 바와 같이, 주된 금속에 고용된 1종 이상의 종된 금속은, 주된 금속을 포함한 합금 초미립자의 융착 방지 기능 및 산화 방지 기능의 적어도 한쪽을 발휘하는 것이다.
따라서, 합금 초미립자중의 종된 금속의 함유량도, 1질량%∼25질량%로 할 필요가 있고, 바람직하게는, 2질량%∼20질량%로 하는 것이 좋다.
그 이유는, 합금 초미립자중의 종된 금속의 함유량이, 1질량% 미만이면, 종된 금속에 의한 합금 초미립자로의 융착 방지 기능이나 산화 방지 기능의 부여가 불충분하게 되기 때문이고, 25질량%을 넘으면, 주된 금속의 특성이 저하하여, 합금 초미립자에 요구되는 특성이나 기능을 발휘할 수 없게 되기 때문이다.
또한, 본 발명에 있어서, 주된 금속 및 1종 이상의 종된 금속의 각 금속의 융점 중 최고의 융점 온도에 있어서, 주된 금속이 나타내는 증기압과 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비가, 1:104∼1:10-4(10-4:1∼104:1)의 범 위내인 것이 바람직한 것은 물론이고, 그 한정 이유는, 상술한 바와 같다.
본 실시형태에 따른 제조방법에 의해 제조되는 합금 초미립자는, 그 입도 분포폭이 좁은, 즉, 균일한 입자지름을 가지며, 거칠고 큰 입자의 혼입이 적고, 구체적으로는, 그 평균 입자지름이 1∼100nm인 것이다. 즉, 본 발명에 있어서 대상으로 하는 합금 초미립자의 사이즈로서는, 초미립자, 이른바 나노 입자라고 칭해지는, 수nm∼수십nm 오더의 입자 지름을 가지는 초미립자 사이즈를 들 수 있다.
본 실시형태에 따른 합금 초미립자의 제조방법에서는, 상술한 바와 같은 조건에 맞춘 범위에서, 비융착성과 높은 산화 억제도를 구비한, 보조적 성분을 포함한 합금으로 이루어지는 합금 초미립자를 형성할 수 있다.
상술한 바와 같이, 본 실시형태의 합금 초미립자 제조방법에 의해 생성하는 합금 초미립자는, 그 입자지름이 상술한 바와 같이 작기 때문에, 그 표면 활성이 극히 커지지만, 상술한 사출되는 기체에 의해, 합금 초미립자끼리가, 충돌하여 응집하는 것을 방지할 수 있다. 즉, 본 발명에 따른 합금 초미립자의 제조방법은, 기상 상태의 혼합물을 급냉하고, 응집·융착 및 산화하기 어려운 합금 초미립자를 생성함으로써, 당초의 목적인, 비융착성과 높은 산화 억제도를 구비한 합금 초미립자를 제조할 수 있는 것이다.
또한, 본 실시형태에 따른 합금 초미립자의 제조방법에서는, 플라즈마가스, 캐리어 가스, 냉각용 가스, 회수부에 구비된 진공 펌프의 배기 동작 등에 의해 챔버(16)내에 만들어지는 기류에 의해서, 열플라즈마염으로부터 기상 상태의 혼합물을 충분히 멀어진 장소로 유도함으로써 실현되는 냉각뿐만 아니라, 열플라즈마염의 꼬리 부분(종단부)을 향해서 사출되는 기체에 의해, 기상 상태의 혼합물을 급냉할 수 있다고 하는 작용도 가지고 있다.
[실시예]
이하에, 본 발명에 따른 합금 초미립자 및 그 제조방법을 실시예에 기초하여 구체적으로 설명한다.
(실시예 1)
먼저, 은과 팔라듐의 합금으로 이루어지는 합금 초미립자를 제조하여, 입자끼리의 응집·융착을 방지한 실시예를 나타낸다.
합금 초미립자 제조용 재료의 원료로서 평균 입자지름 4.5㎛의 은 분말, 및 평균 입자지름 5㎛의 팔라듐 분말을 이용했다. 여기서, 은과 팔라듐의 혼합 질량비(혼합 비율)는, 87:13으로 했다.
은과 팔라듐의 융점에 관해서는, 팔라듐의 융점이 1540℃로서, 은의 융점보다 높은 것이 알려져 있다. 이 온도(팔라듐의 융점인 1540℃)에 있어서의 증기압은, 은이 7.14×10-2Pa, 팔라듐이 6.28×10-5Pa이며, 증기압비로서는, 1:8.80×10-4(0.880×10-3)(=1137:1)이 되어, 약 3자리수의 차가 된다.
여기서는, 캐리어 가스로서는, 아르곤을 이용했다.
또한, 플라즈마 토치(12)의 고주파 발진용 코일(12b)에는, 약 4MHz, 약 80kV A의 고주파 전압을 인가하고, 플라즈마 가스 공급원(22)으로부터는, 플라즈마 가스로서 아르곤 80리터/min, 수소 5리터/min의 혼합 가스를 도입하여, 플라즈마 토 치(12)내에 아르곤·수소열플라즈마염을 발생시켰다. 한편, 여기서는, 반응 온도가 약 8000℃가 되도록 제어하고, 재료 공급 장치(14)의 캐리어 가스 공급원(15)으로부터는, 10리터/min의 캐리어 가스를 공급했다.
은 분말 및 팔라듐 분말의 혼합물을, 캐리어 가스인 아르곤과 함께 플라즈마 토치(12)내의 열플라즈마염(24)내에 도입했다.
기체 도입 장치(28)에 의해서, 챔버(16)내에 도입되는 기체로서는, 기체 사출구(28a)로부터 사출되는 가스에는 아르곤 150리터/min를 이용하고, 또한, 기체 사출구(28b)로부터 사출되는 가스에는 아르곤 50리터/min를 사용했다. 이 때의 챔버내 유속은, 0.25m/sec였다. 한편, 챔버(16)내의 압력은, 50kPa로 했다.
상기와 같은 제조 조건으로 은과 팔라듐의 합금으로 이루어지는 합금 초미립자를 생성했다. 생성된 은과 팔라듐의 합금으로 이루어지는 합금 초미립자의 비표면적(1그램당의 표면적)으로부터 환산한 입자 지름은, 30nm였다. 도 6에, 입자의 전자현미경 사진을 나타낸다. 도 6은 주사형 전자현미경에 의한 사진으로, 이 합금 초미립자의 표면을 관찰한 바로는, 입자끼리의 융착은 거의 발생하고 있지 않았다.
한편, 본 실시예에서 생성된 합금 초미립자의 수율은, 투입한 분말 재료 100g당 회수된 상기 합금 초미립자의 양이 35g인 것으로부터, 35%였다.
(실시예 2)
다음에, 철과 알루미늄의 합금으로 이루어지는 합금 초미립자를 제조하고, 입자끼리의 응집·융착을 방지한 실시예를 나타낸다.
원료로서 평균 입자지름 3∼5㎛의 철분말, 및 평균 입자지름 5㎛의 알루미늄 분말을 이용했다. 여기서, 철과 알루미늄의 혼합 질량비(혼합 비율)는, 98:2로 했다.
철과 알루미늄의 융점에 관해서는, 철의 융점이 1550℃로서, 알루미늄의 융점보다 높은 것이 알려져 있다. 이 온도(철의 융점인 1550℃)에 있어서의 증기압은, 철이 2.67×10-4Pa, 알루미늄이 1.37×10-6Pa이며, 증기압비로서는, 1:5.13×10-3(=195:1) 되어, 약 2.5자리수의 차이가 된다.
여기서, 캐리어 가스로서는, 실시예 1과 마찬가지로 하여, 아르곤을 이용했다.
또한, 플라즈마 토치(12)에 인가한 고주파 전압, 플라즈마가스의 공급량 등은, 실시예 1과 동일하게 하여, 플라즈마 토치(12)내에 아르곤·수소열플라즈마염을 발생시켰다. 한편, 반응 온도도 약 8000℃가 되도록 제어하고, 재료 공급 장치(14)의 캐리어 가스 공급원(15)으로부터의 캐리어 가스 공급량도, 10리터/min로 했다.
철분말 및 알루미늄 분말의 혼합물을, 캐리어 가스인 아르곤과 함께 플라즈마 토치(12)내의 열플라즈마염(24)내에 도입했다.
기체 도입 장치(28)에 의해서, 챔버(16)내에 도입되는 기체로서는, 기체 사출구(28a)로부터 사출되는 가스로는 아르곤 150리터/min를 사용하고, 또한, 기체 사출구(28b)로부터 사출되는 가스로는 아르곤 50리터/min를 사용했다. 이 때의 챔 버내 유속은, 0.25m/sec였다. 한편, 챔버(16)내의 압력은, 35kPa로 했다.
상기와 같은 제조 조건으로, 철과 알루미늄의 합금으로 이루어지는 합금 초미립자를 생성했다. 생성된 철과 알루미늄의 합금으로 이루어지는 합금 초미립자의 비표면적으로부터 환산한 입자 지름은, 25nm였다. 도 7에, 입자의 주사형 전자현미경 사진을 나타낸다.
또한, 이 철과 알루미늄의 합금으로 이루어지는 합금 초미립자는, 3주간 대기중에 방치한 것이라도, 산화는 거의 발생하지 않았다. 즉, 이 합금 초미립자는, 표면 활성이 높지 않고, 안정성이 높은 초미립자(소위 나노 입자)였다. 또한, 도 7에 나타내는 주사형 전자현미경에 의한 사진에 의한 관찰에서는, 입자끼리의 융착은 그다지 보이지 않았다.
한편, 생성된 상기 합금 초미립자의 수율은, 투입한 분말 재료 100g당에 회수된 상기 합금 초미립자의 양이 38g인 것으로부터, 38%였다.
(비교예 1)
다음에, 비교예로서 주석과 비스머스의 합금 초미립자의 제조를 시도했지만, 합금화하지 못하고, 입자끼리의 응집·융착을 방지할 수 없었던 예를 나타낸다.
원료로서, 평균 입자지름 10㎛의 주석 분말, 및 평균 입자지름 10㎛의 비스머스 분말을 이용했다. 여기서, 주석과 비스머스의 혼합 질량비는, 50:50으로 했다.
주석과 비스머스의 융점에 관해서는, 비스머스의 융점이 271℃로서, 주석의 융점보다 높은 것이 알려져 있다. 이 온도(비스머스의 융점인 271℃)에 있어서의 증기압은, 주석이 1.16×10-25Pa , 비스머스가 8.93×10-13Pa이며, 증기압비로서는, 1:7.70×1012(0.770×1013)(=1.299×10-13:1)이 되어, 약 13자리수의 차이가 된다.
여기서도, 캐리어 가스로서는, 실시예 1과 마찬가지로, 아르곤을 이용했다.
또한, 플라즈마 토치(12)에 인가한 고주파 전압, 플라즈마 가스의 공급량 등은, 실시예 1∼실시예 2와 동일하게 하여, 플라즈마 토치(12)내에 아르곤·수소열플라즈마염을 발생시켰다. 한편, 반응 온도도 약 8000℃가 되도록 제어하고, 재료 공급 장치(14)의 캐리어 가스 공급원(15)으로부터의 캐리어 가스 공급량도, 10리터/min로 했다.
주석 분말 및 비스머스 분말의 혼합물을, 캐리어 가스인 아르곤과 함께 플라즈마 토치(12)내의 열플라즈마염(24)내에 도입했다.
기체 도입 장치(28)에 의해서, 챔버(16)내에 도입되는 기체로서는, 기체 사출구(28a)로부터 사출되는 가스로는 아르곤 150리터/min를 사용하고, 또한, 기체 사출구(28b)로부터 사출되는 가스로는 아르곤 50리터/min를 사용했다. 이 때의 챔버내 유속은, 0.25m/sec였다. 한편, 챔버(16)내의 압력은, 50kPa로 했다.
상기와 같은 제조 조건으로, 주석과 비스머스로 이루어지는 초미립자를 생성했다. 생성된 초미립자를 주사형 전자현미경으로 관찰하면, 입자끼리의 융착이 발생하고, 각각이 독립한 초미립자를 얻는 것이 불가능했다. 또한, 입자의 성장도 발생하기 때문에, 100nm 이상의 거칠고 큰 입자도 확인할 수 있었다.
도 8에, 미립자의 전자현미경 사진을 나타낸다. 도 9는, 얻어진 초미립자를 X선회절로 측정한 결과이다. 세로축에는 강도, 가로축에는 2θ각을 나타내고 있다.
도 9에 나타낸 바와 같이, X선회절 패턴에는 주석 및 비스머스 각각의 피크가 단독으로 나타나 있으며, 합금에 기인하는 피크는 나타나지 않은 것으로부터, 얻어진 초미립자는, 합금 나노 입자, 즉 본 발명의 합금 초미립자는 아닌 것을 확인할 수 있다.
(실시예 3∼12)
표 1에 나타내는 실시예 3∼12의 주된 금속(주금속이라고 한다) 및 종된 금속(종금속이라고 한다)의 여러 가지의 조합의 원료 분말을 이용하여 실시예 1과 동일한 제조 조건으로 동일하게 하여, 주금속 및 종금속으로 이루어지는 합금 초미립자를 제조했다. 여기서, 실시예 3∼12에서 각각 이용된 주금속 및 종금속의 원료 분말의 평균 입자지름, 증기압비(주금속/종금속) 및 혼합 질량비는, 표 1에 나타내는 것이었다.
제조된 실시예 3∼12의 각 합금 초미립자의 입자 지름을 실시예 1과 동일하게 하여 구했다.
그 결과를 표 1에 나타낸다.
[표 1]
Figure 112007078716932-pat00001
이렇게 해서, 제조된 실시예 3∼12의 각 합금 초미립자는, 주사형 전자현미경에 의한 사진에서의 합금 초미립자의 표면 관찰에 의하면, 모두, 입자끼리의 융착은 거의 보이지 않고, 또한, 표면 활성이 높지 않고, 급격한 표면 산화가 생기는 경우도 없고, 안정성이 높은 초미립자(소위 나노 입자)였다.
상술의 설명으로부터, 본 발명의 효과는 명백하다.
즉, 실시예 1∼실시예 12에서는, 2종류 이상의 금속의 주금속과 종금속의 혼합 질량비가, 본 발명의 한정 범위를 만족하는 것이며, 또한, 실시예 1∼실시예 11에서는, 2종류의 금속의 주금속에 대한 종금속의 증기압비, 실시예 12에서는, 3종류의 금속의 주금속 Fe에 대한 종금속 Co, Al의 각각의 증기압비가, 소정의 범위(10-4:1~104:1(1:104∼1:10-4))에 있고, 바람직한 합금 초미립자가 형성되고 있지만, 비교예 1에서는, 2종류의 금속의 혼합 질량비 및 증기압비가, 본 발명의 한정 범위를 크게 일탈하고 있으며, 본 발명의 합금 미립자는 거의 형성되어 있지 않은 것을 알 수 있다.
이상으로부터, 본 발명의 특징인 혼합 질량비 및 증기압비에 의한 규정이 유효한 것이 나타나 있다.
한편, 상기 실시형태 및 실시예는, 모두 본 발명의 일례를 나타낸 것으로서, 본 발명은 이들에 한정되는 것이 아니고, 본 발명의 취지를 일탈하지 않는 범위내에서, 여러 가지 변경이나 개량을 실시해도 되는 것은 물론이다.
한편, 본 발명에 따른 합금 초미립자의 제조방법에 따라 제조되는 합금 초미립자는, 재료의 조합이나 제조 조건에 따라서는, 반드시, 사용한 모든 재료가 목적으로 하는 합금 초미립자가 되지 않고, 재료로 한 금속 단체의 초미립자가 약간 포함되는 경우도 있지만, 이러한 단체 초미립자가 약간 포함되어 있는 경우에도, 실용상 문제가 없는 경우도 많아, 본 발명의 목적을 달성하고, 본 발명의 효과를 가질 수 있는 양이라면, 본 발명의 의의를 저하시키는 것은 아니며, 본 발명에 포함될 수 있다.
[도 1] 본 발명에 따른 합금 초미립자의 제조방법을 실시하기 위한 합금 초미립자 제조장치의 일실시 형태의 전체 구성을 나타내는 단면 모식도이다.
[도 2] 도 1에 나타내는 합금 초미립자 제조장치의 플라즈마 토치 부근을 확대하여 나타내는 단면도이다.
[도 3] 도 1에 나타내는 합금 초미립자 제조장치의 분말재료 공급장치의 개략 구성을 나타내는 단면도이다.
[도 4] 도 1에 나타내는 합금 초미립자 제조장치의 챔버의 천판 및 이 천판에 구비된 기체 사출구 부근을 확대하여 나타내는 단면도이다.
[도 5] 사출되는 기체의 각도를 나타내는 설명도이고, (a)는, 도 4에 나타내는 챔버의 천판의 중심축을 통과하는 수직 방향의 단면도, (b)는, 천판을 하부에서 본 하면도이다.
[도 6] 실시예 1에 따른 합금 초미립자의 전자현미경 사진이다(배율 5만배).
[도 7] 실시예 2에 따른 합금 초미립자의 전자현미경 사진이다(배율 5만배).
[도 8] 비교예 1에 따른 금속 초미립자의 전자현미경 사진이다(배율 5만배).
[도 9] 비교예 1에 따른 금속 초미립자의 X선 회절 측정 결과이다.
[부호의 설명]
10 : (합금 초미립자) 제조장치 12 : 플라즈마 토치
12a : 석영관 12b : 고주파 발진용 코일
12c : 플라즈마 가스 도입구 14 : 재료 공급 장치
14a : 도입관 15 : 캐리어 가스 공급원
16 : 챔버 16p : 압력계
17 : 천판(天板) 17a : 내측부 천판 부품
17b : 하부 천판 부품 17c : 상부 외측부 천판 부품
17d : 통기로 18 : 합금 초미립자
20 : 회수부 20a : 회수실
20b : 필터 20c : 관
22 : 플라즈마가스 공급원 24 : 열플라즈마염
26 : 관 28 : 기체 도입 장치
28a, 28b : 기체 사출구 28c : 콤프레셔
28d : 기체 공급원 28e : 관
142 : 저장조 144 : 분말 재료
146 : 교반축 148 : 교반날개
150a, 150b : 오일 시일 152a, 152b : 베어링
154a, 154b : 모터 160 : 스크류 피더
162 : 스크류 164 : 축
166 : 케이싱 170 : 분산부
172 : 외관 174 : 분체(粉體) 분산실
176 : 회전 브러시 178 : 캐리어 가스 공급구
180 : 캐리어 가스 통로 182 : 반송관

Claims (10)

  1. 주된 금속과,
    이 주된 금속과 고용 가능한 1종 이상의 종된 금속을 포함한 합금으로 이루어지고, 상기 주된 금속과 상기 1종 이상의 종된 금속과의 금속고용체인 합금 초미립자로서,
    상기 1종 이상의 종된 금속의 함유량이, 1질량%∼25질량%의 범위이며,
    상기 주된 금속에 고용된 상기 1종 이상의 종된 금속은, 상기 주된 금속을 포함한 합금 초미립자의 융착 및 산화의 적어도 한쪽을 방지하는 기능을 발휘하는 것이고,
    상기 주된 금속이, 은이며, 상기 1종 이상의 종된 금속이, 주석, 니켈, 구리, 금 및 백금으로 이루어진 군으로부터 선택되는 것이거나, 혹은
    상기 주된 금속이, 철, 코발트 및 니켈로 이루어진 군으로부터 선택되는 1종이고, 상기 1종 이상의 종된 금속이, 알루미늄인 것을 특징으로 하는 합금 초미립자.
  2. 제 1 항에 있어서, 상기 주된 금속 및 상기 1종 이상의 종된 금속의 각 금속의 융점 중 최고의 융점 온도에 있어서, 상기 주된 금속이 나타내는 증기압과, 상기 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비가, 1:104∼1:10-4의 범위내인 합금 초미립자.
  3. 감압하에서, 주된 금속과, 이 주된 금속과 고용 가능한 1종 이상의 종된 금속을 포함하고,
    상기 주된 금속이, 은이며, 상기 1종 이상의 종된 금속이, 주석, 니켈, 구리, 금 및 백금으로 이루어진 군으로부터 선택되는 것이거나, 혹은
    상기 주된 금속이, 철, 코발트 및 니켈로 이루어진 군으로부터 선택되는 1종이고, 상기 1종 이상의 종된 금속이, 알루미늄이며,
    상기 1종 이상의 종된 금속의 함유량이 1질량%∼25질량%의 범위인 초미립자 제조용 재료를 열플라즈마염내에 도입하여,
    기상 상태의 혼합물로 하고,
    이 기상 상태의 혼합물을 급냉하기에 충분한 공급량으로, 냉각용 기체를 상기 열플라즈마염의 종단부를 향해서 도입하여,
    상기 주된 금속과 상기 1종 이상의 종된 금속을 포함한 합금으로 이루어지며, 상기 주된 금속과 상기 1종 이상의 종된 금속과의 금속고용체이고, 융착 및 산화의 적어도 한쪽을 방지하는 기능을 구비한 합금 초미립자를 생성하는 것을 특징으로 하는 합금 초미립자의 제조방법.
  4. 제 3 항에 있어서, 상기 주된 금속 및 상기 1종 이상의 종된 금속의 각 금속의 융점 중 최고의 융점 온도에서, 상기 주된 금속이 나타내는 증기압과, 상기 1종 이상의 종된 금속의 각 금속이 나타내는 증기압의 비가, 1:104∼1:10-4의 범위내인 합금 초미립자의 제조방법.
  5. 삭제
  6. 삭제
  7. 삭제
  8. 삭제
  9. 삭제
  10. 삭제
KR1020070111007A 2006-11-02 2007-11-01 합금 초미립자 및 그 제조방법 KR101445389B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2006-00299398 2006-11-02
JP2006299398 2006-11-02

Publications (2)

Publication Number Publication Date
KR20080040593A KR20080040593A (ko) 2008-05-08
KR101445389B1 true KR101445389B1 (ko) 2014-09-26

Family

ID=39358585

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070111007A KR101445389B1 (ko) 2006-11-02 2007-11-01 합금 초미립자 및 그 제조방법

Country Status (4)

Country Link
US (2) US7981190B2 (ko)
JP (1) JP5052291B2 (ko)
KR (1) KR101445389B1 (ko)
TW (1) TWI474882B (ko)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080277092A1 (en) 2005-04-19 2008-11-13 Layman Frederick P Water cooling system and heat transfer system
US20100314788A1 (en) * 2006-08-18 2010-12-16 Cheng-Hung Hung Production of Ultrafine Particles in a Plasma System Having Controlled Pressure Zones
JP4304221B2 (ja) * 2007-07-23 2009-07-29 大陽日酸株式会社 金属超微粉の製造方法
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
KR101640498B1 (ko) 2009-05-22 2016-07-19 삼성전자주식회사 가변 특성비를 이용하는 혈압 추정 장치 및 방법
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US9119309B1 (en) 2009-12-15 2015-08-25 SDCmaterials, Inc. In situ oxide removal, dispersal and drying
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
KR101158188B1 (ko) * 2010-02-01 2012-06-19 삼성전기주식회사 나노 입자 합성 장치 및 이를 이용한 나노 입자 합성 방법
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
RU2014110365A (ru) 2011-08-19 2015-09-27 ЭсДиСиМАТИРИАЛЗ, ИНК. Подложки с покрытием для использования в катализе, каталитические конвертеры и способы покрытия подложек композициями покрытия из оксида
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
DE102013201104A1 (de) 2013-01-24 2014-07-24 H.C. Starck Gmbh Verfahren zur Herstellung von Chromnitrid-haltigen Spritzpulvern
US9142350B2 (en) * 2013-03-13 2015-09-22 GM Global Technology Operations LLC Synthesis of ordered L10-type FeNi nanoparticles
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CN106061600A (zh) 2013-10-22 2016-10-26 Sdc材料公司 用于重型柴油机的催化剂设计
KR20160074574A (ko) 2013-10-22 2016-06-28 에스디씨머티리얼스, 인코포레이티드 희박 NOx 트랩의 조성물
WO2015122251A1 (ja) 2014-02-14 2015-08-20 三井金属鉱業株式会社 銅粉
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
US11198179B2 (en) 2015-07-17 2021-12-14 Ap&C Advanced Powders & Coating Inc. Plasma atomization metal powder manufacturing processes and system therefor
CA3020720C (en) 2016-04-11 2020-12-01 Ap&C Advanced Powders & Coatings Inc. Reactive metal powders in-flight heat treatment processes
TWI618589B (zh) * 2016-12-23 2018-03-21 悅城科技股份有限公司 製造材料粉末的方法及裝置
KR102514943B1 (ko) * 2018-01-26 2023-03-27 닛신 엔지니어링 가부시키가이샤 미립자의 제조 방법
CN110153434A (zh) * 2019-06-26 2019-08-23 苏州猛犸新材料科技有限公司 一种超细Ni-Ti-Y多元复合金属纳米粉的快速制备方法
CN110834090A (zh) * 2019-12-13 2020-02-25 黑龙江省科学院高技术研究院 一种金属粉末整形细化及净化装置和方法
CN112024903B (zh) * 2020-11-09 2021-03-19 西安赛隆金属材料有限责任公司 一种金属粉末制造设备及其方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306510A (ja) * 1988-06-02 1989-12-11 Nisshin Flour Milling Co Ltd 超微粒子粉末の製造方法の改良
JPH08246010A (ja) * 1995-03-10 1996-09-24 Namitsukusu Kk 金属粉末の製造方法
JP2000219901A (ja) 1999-01-29 2000-08-08 Nisshin Flour Milling Co Ltd 酸化物被覆金属微粒子およびその製造方法
JP2002348603A (ja) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd 金属粉末の製造方法、金属粉末、導電性ペーストおよび積層セラミック電子部品

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4335080A (en) * 1977-08-01 1982-06-15 Thermo Electron Corporation Apparatus for producing selective particle sized oxide
JPS59208006A (ja) * 1983-05-10 1984-11-26 Toyota Motor Corp 合金微粉末の製造方法
JPS63221842A (ja) * 1987-03-11 1988-09-14 Nippon Steel Corp 金属粉体、金属化合物粉体およびセラミツクス粉体の製造方法および装置
US5221322A (en) * 1988-12-29 1993-06-22 Tdk Corporation Method of making ferromagnetic ultrafine particles
JPH02205603A (ja) * 1989-01-31 1990-08-15 Idemitsu Petrochem Co Ltd 超微粒子の製造方法、磁性超微粒子及び磁性材料
JP2853046B2 (ja) * 1989-06-21 1999-02-03 日新製鋼株式会社 超微粉製造装置
JPH03269291A (ja) * 1990-03-19 1991-11-29 Mitsubishi Electric Corp プラズマ核融合装置用ヘリカルコイル容器
JPH0543791A (ja) 1991-08-13 1993-02-23 Dainippon Printing Co Ltd プラスチツク製凧
JPH05105921A (ja) 1991-10-17 1993-04-27 Asahi Chem Ind Co Ltd 高温プラズマ法による導電性粉末の製造法
JP3100084B2 (ja) * 1991-11-25 2000-10-16 日清製粉株式会社 超微粒子の製造装置
US5460701A (en) * 1993-07-27 1995-10-24 Nanophase Technologies Corporation Method of making nanostructured materials
US6379419B1 (en) * 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
US20030102207A1 (en) * 2001-11-30 2003-06-05 L. W. Wu Method for producing nano powder
JP4735939B2 (ja) * 2004-12-27 2011-07-27 住友電気工業株式会社 合金微粒子の製造方法とそれによって製造される合金微粒子および金属コロイド溶液
JP4632301B2 (ja) * 2005-02-17 2011-02-16 日本ペイント株式会社 無電解メッキ用触媒及び無電解メッキ方法
JP4836837B2 (ja) * 2007-03-12 2011-12-14 株式会社東芝 コアシェル型磁性ナノ粒子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306510A (ja) * 1988-06-02 1989-12-11 Nisshin Flour Milling Co Ltd 超微粒子粉末の製造方法の改良
JPH08246010A (ja) * 1995-03-10 1996-09-24 Namitsukusu Kk 金属粉末の製造方法
JP2000219901A (ja) 1999-01-29 2000-08-08 Nisshin Flour Milling Co Ltd 酸化物被覆金属微粒子およびその製造方法
JP2002348603A (ja) * 2001-05-24 2002-12-04 Murata Mfg Co Ltd 金属粉末の製造方法、金属粉末、導電性ペーストおよび積層セラミック電子部品

Also Published As

Publication number Publication date
US20110252923A1 (en) 2011-10-20
JP5052291B2 (ja) 2012-10-17
TW200829351A (en) 2008-07-16
US20080105083A1 (en) 2008-05-08
KR20080040593A (ko) 2008-05-08
TWI474882B (zh) 2015-03-01
US8491696B2 (en) 2013-07-23
JP2008138284A (ja) 2008-06-19
US7981190B2 (en) 2011-07-19

Similar Documents

Publication Publication Date Title
KR101445389B1 (ko) 합금 초미립자 및 그 제조방법
JP4963586B2 (ja) 超微粒子の製造方法
TWI402117B (zh) 超微粒子的製造方法
JP4988164B2 (ja) 微粒子の製造方法と装置
US7828999B2 (en) Process and apparatus for producing fine particles
RU2489232C1 (ru) Способ получения наноразмерного порошка металла
JP2003522299A (ja) 微細粉末を製造するためのプラズマアーク反応器
JP2007029859A (ja) 微粒子の製造方法および装置
JP6282648B2 (ja) 亜酸化銅微粒子の製造方法
JP2018035388A (ja) 銀粉末製造方法及び銀粉末製造装置
JP5094668B2 (ja) Ni−W系合金微粒子の製造方法並びにNi−W合金微粒子の製造方法
JP2006102737A (ja) 微粒子の製造方法
Stein et al. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis
KR100821450B1 (ko) 니켈분말의 제조방법
US20050150759A1 (en) Powder and coating formation method and apparatus
TW201736274A (zh) 無特定比例之氧化鈦微粒子之製造方法
WO2019146414A1 (ja) 銅微粒子
WO2021100320A1 (ja) 微粒子
JP2006169559A (ja) 銅合金微粒子とその製造方法
Cho et al. Synthesis of nickel and copper nanopowders by plasma arc evaporation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170818

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180903

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190829

Year of fee payment: 6