KR101409965B1 - 다공질 불소수지 중공사 및 그 제조방법 - Google Patents
다공질 불소수지 중공사 및 그 제조방법 Download PDFInfo
- Publication number
- KR101409965B1 KR101409965B1 KR1020120065416A KR20120065416A KR101409965B1 KR 101409965 B1 KR101409965 B1 KR 101409965B1 KR 1020120065416 A KR1020120065416 A KR 1020120065416A KR 20120065416 A KR20120065416 A KR 20120065416A KR 101409965 B1 KR101409965 B1 KR 101409965B1
- Authority
- KR
- South Korea
- Prior art keywords
- hollow fiber
- fluororesin
- lubricant
- cylinder head
- porous
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/24—Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D69/00—Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
- B01D69/08—Hollow fibre membranes
- B01D69/081—Hollow fibre membranes characterised by the fibre diameter
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D1/00—Treatment of filament-forming or like material
- D01D1/02—Preparation of spinning solutions
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D10/00—Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
- D01D10/02—Heat treatment
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D10/00—Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
- D01D10/06—Washing or drying
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/02—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D01F6/08—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons
- D01F6/12—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of halogenated hydrocarbons from polymers of fluorinated hydrocarbons
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
Abstract
다공질 불소수지 중공사의 제조방법이 개시된다. 본 발명에 따르면, 불소수지 100중량부 및 윤활제 5 내지 30중량부의 혼합물을 준비하는 단계(단계 a); 상기 혼합물을 예비 성형(preforming)하여 예비 성형체를 제조하는 단계(단계 b); 맨드릴이 장착된 익스트루더에 상기 예비 성형체를 투입하고 중공사 형태로 압출 성형하되, 실린더 헤드의 경사면과 상기 익스트루더의 길이방향 중심선이 이루는 각(θ)의 2배에 해당하는 실린더헤드 경사각(2θ)을 10~120°로 하고, 상기 익스트루더의 피스톤의 압력을 650 내지 1500kg/cm2 로 하여 상기 예비 성형체를 압출하여 성형체를 제조하는 단계(단계 c); 상기 성형체를 건조하는 단계(단계 d); 및 상기 건조된 성형체를 열처리하는 단계(단계 e);를 포함하는 다공질 불소수지 중공사의 제조방법이 제공된다.
본 발명에 의하며, 별도의 발포제를 첨가하지 않고, 연신공정이 없이, 중공사의 압출성형만으로 다공질이 균일하게 형성된 불소수지 중공사를 제조할 수 있으며, 제조공정이 단순하고 공정단계가 줄어 제품의 균일성이 보장되고 공정효율이 상승하며 공정비용을 절감할 수 있다.
본 발명에 의하며, 별도의 발포제를 첨가하지 않고, 연신공정이 없이, 중공사의 압출성형만으로 다공질이 균일하게 형성된 불소수지 중공사를 제조할 수 있으며, 제조공정이 단순하고 공정단계가 줄어 제품의 균일성이 보장되고 공정효율이 상승하며 공정비용을 절감할 수 있다.
Description
본 발명은 불소수지 중공사 및 그 제조방법에 관한 것으로, 보다 상세하게는, 다공질의 불소수지 중공사 및 그 제조방법에 관한 것이다.
정보통신 분야의 발달에 따라 정보통신기기 및 정보통신기기에 적용되는 반도체 소자의 시험 및 검사장치 등의 전송 속도의 고속화와 전송 정밀도 향상이 요구되고 있다. 이에 따라, 정보통신기기 및 장치에 적용되는 케이블의 전송속도 향상과 신호 손실값을 최소화할 필요가 있다.
이와 같은 요구를 충족시킬 수 있는 케이블로서 솔리드 폴리에틸렌(Solid Poly Ethylene(PE)), 발포 폴리에틸렌(Foamed Polyethylene), 솔리드 폴리테트라플루오로에틸렌(Solid PTFE(Poly Tetra-Fluoro Ethylene)) 타입 케이블 등이 사용되고 있다.
여기서, PE, PTFE는 케이블의 절연체로서 적용되는 것이며, PE는 융점이 약 130℃인데 반해, PTFE의 융점은 327℃ 정도로 내열성과 고주파 신호전달시 안정적인 유전상수를 유지하는 특성이 있다. 한편, 솔리드 타입과 발포 타입 케이블의 차이점은 절연체 내부의 발포 여부, 즉 다공질 형성에 있다. 다시 말해, 솔리드 타입 케이블의 단면을 보면 내부도체와 절연체로만 구성되어 있지만, 발포 PTFE 타입 케이블의 코어 수직 단면을 보면 내부도체를 감싸고 있는 절연체에 발포층이 존재하는 것을 알 수 있다.
일반적으로 솔리드 PTFE 타입 케이블 절연체의 유전율은 약 2.07이며, 다공성 불소수지 타입의 케이블 절연체의 유전율은 약 1.1-1.4이다. 즉, 케이블의 절연체에 다공질이 형성되면 유전율이 낮아져 케이블 특성이 향상될 수 있다.
한편, 상기 케이블에서 내부도체를 제외한 절연체만으로 이루어진 다공질이 형성된 다공질 중공사는 수처리용 멤브레인 필터로 이용될 수 있다. 상세하게는, 환경분야, 의약 및 식품분야에서 고액 분리처리를 할 수 있는 여과장치 등에 이용될 수 있다.
PTFE 절연체에 발포층을 형성하는 방법은 통상적으로 화학적 발포제를 추가하거나 연신에 의해 다공질의 PTFE수지를 필름형태로 제작하며 이를 도선에 적층하여 케이블을 제조하는 방법이 사용되고 있다. 이와 같은 종래의 제조공정은 여러 단계의 공정들을 필요로 하고, 여러 단계의 공정을 거치면서 품질의 균일성을 보장하기 어려워 생산성이 낮아지고 제조비용이 상승하는 문제점이 있다.
본 발명의 목적은 상기 문제점을 해결하기 위한 것으로, 발포제를 첨가하지 않고 연신공정을 생략하고 불소수지와 윤활제의 혼합물만으로 압출 성형하면서 다공질 중공사를 제조할 수 있는 다공질 중공사의 제조방법 및 그에 의해 제조된 다공질 중공사를 제공하는 데 있다.
상기 목적을 달성하기 위하여 본 발명의 일측면에 따르면, 불소수지와 윤활제의 혼합물을 제조하되, 상기 윤활제의 함량은 상기 혼합물 전체중량에 대하여 5 내지 30중량% 인 혼합물을 제조하는 단계(단계 a); 상기 혼합물을 예비 성형(preforming)하여 예비 성형체를 제조하는 단계(단계 b); 맨드릴이 장착된 익스트루더에 상기 예비 성형체를 투입하고 중공사 형태로 압출 성형하되, 실린더 헤드의 경사면과 상기 익스트루더의 길이방향 중심선이 이루는 실린더 헤드 경사각(2θ)을 10~120°로 하고, 상기 익스트루더의 피스톤의 압력을 650 내지 1500kg/cm2 로 하여 상기 예비 성형체를 압출하여 성형체를 제조하는 단계(단계 c); 상기 성형체를 건조하는 단계(단계 d); 및 상기 건조된 성형체를 열처리하는 단계(단계 e);를 포함하는 다공질 불소수지 중공사의 제조방법이 제공된다.
여기서, 바람직하게는 상기 실린더 헤드 경사각(2θ)은 10 내지 60°일 수 있다.
본 발명에서 상기 불소수지는 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene), 폴리클로로트리플루오로에틸렌(PCTFE, polychlorotrifluoroethylene) 및 폴리비닐리덴디플루오라이드(PVDF, polyvinylidenedifluoride)로 이루어진 군에서 선택된 1종 이상일 수 있다.
본 발명에서 상기 윤활제는 나프탄계 윤활제(naphthenic lubricant) 또는 파라핀계 윤활제(paraffinic lubricant)일 수 있다.
본 발명에서 상기 단계 a 이후 상기 혼합물을 숙성하는 공정을 더 수행할 수있다.
여기서 상기 숙성은 20 내지 40℃의 온도에서 20 내지 28시간 동안 이루어질수 있다.
본 발명에서 상기 실린더 헤드의 온도는 30 내지 300℃일 수 있다.
또한, 상기 단계 c에서 상기 성형체는 직경이 0.6~50mm 범위가 되도록 압출 성형할 수 있다.
본 발명에서, 상기 단계 c 후에 상기 압출 성형된 성형체를 다이로 이동하며, 상기 익스트루더와 다이를 연결하는 다이랜드의 길이가 2 내지 10mm일 수 있다.
여기서 상기 다이는 상기 실린더 헤드와 동일한 온도를 유지할 수 있다.
본 발명에서 상기 단계 d는 130 내지 200℃의 온도에서 수행될 수 있다.
본 발명에서 상기 단계 d를 거친 건조된 성형체는 상기 윤활제의 함량이 0 내지 0.1중량%로 건조된 것일 수 있다.
본 발명에서 상기 단계 e는 370 내지 600℃의 온도에서 수행될 수 있다.
본 발명에 다른 측면에 따르면, 불소수지 100중량부; 및 윤활제 5 내지 30중량부;를 포함하는 조성물이고, 상기 조성물은 발포제를 포함하지 않고, 상기 조성물은 다공질 불소수지 중공사 제조에 사용하기 위한, 다공질 불소수지 중공사 제조용 조성물이 제공된다.
본 발명에서 상기 불소수지 중공사의 기공의 평균크기는 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 10 ㎛, 보다 바람직하게는 0.1 내지 5 ㎛ 이다.
본 발명에 또 다른 측면에 따르면, 본 발명의 제조방법으로 제조된 다공질 불소수지 중공사가 제공될 수 있다.
여기서 상기 다공질 불소수지 중공사는 수처리용 멤브레인 필터로 이용될 수있다.
본 발명의 또 다른 측면에 따르면, 본 발명의 제조방법으로 제조된 다공질 불소수지를 포함하는 수처리 장치가 제공된다.
본 발명의 다공질 불소수지 중공사 제조방법은 별도의 발포제를 첨가하지 않고 불소수지와 윤활유를 원료로 하여 연신공정을 생략한 익스트루더(압출기)를 통하여 다공질 불소수지 중공사를 제조할 수 있으며, 또한 연신공정을 생략한 압출성형에 의해 다공질 불소수지 중공사를 제조함으로써 제조공정이 단순하고 공정단계가 줄어 제품의 균일성이 보장되고 공정효율이 상승하며 공정비용을 절감할 수 있는 효과가 있다.
도 1은 본 발명의 다공질 불소수지 중공사 제조에 이용되는 장치의 일부를 개략적으로 나타낸 도면이다.
도 2는 본 발명의 다공질 불소수지 중공사 제조방법을 순차적으로 나타낸 공정 개략도이다.
도 3은 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사 표면의 SEM 이미지를 다양한 배율로 나타낸 것이다.
도 4는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향에 대하여 수직인 방향으로 자른 다공질 PTFE 중공사 단면의 SEM 이미지이다.
도 5의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향 SEM 이미지이다.
도 6의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향에 대하여 수직으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향에 대하여 수직으로 자른 다공질 PTFE 필름 단면의 SEM 이미지이다.
도 7의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향 SEM 이미지이다.
도 8의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향에 대하여 수직으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향에 대하여 수직으로 자른 다공질 PTFE 필름 단면의 SEM 이미지이다.
도 9는 비교예 1에 따라 제조된 솔리드 PTFE 중공사를 길이방향으로 자른 PTFE중공사 단면을 5,200배 확대한 SEM 이미지이다.
도 2는 본 발명의 다공질 불소수지 중공사 제조방법을 순차적으로 나타낸 공정 개략도이다.
도 3은 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사 표면의 SEM 이미지를 다양한 배율로 나타낸 것이다.
도 4는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향에 대하여 수직인 방향으로 자른 다공질 PTFE 중공사 단면의 SEM 이미지이다.
도 5의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향 SEM 이미지이다.
도 6의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향에 대하여 수직으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향에 대하여 수직으로 자른 다공질 PTFE 필름 단면의 SEM 이미지이다.
도 7의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향 SEM 이미지이다.
도 8의 (a)는 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사를 길이방향에 대하여 수직으로 자른 PTFE 중공사 단면의 SEM 이미지이고, (b)는 비교예 11의 다공질 PTFE 필름의 면방향에 대하여 수직으로 자른 다공질 PTFE 필름 단면의 SEM 이미지이다.
도 9는 비교예 1에 따라 제조된 솔리드 PTFE 중공사를 길이방향으로 자른 PTFE중공사 단면을 5,200배 확대한 SEM 이미지이다.
이하, 본 발명의 다공질 불소수지 중공사 제조에 이용되는 압출성형장치에 대해 개략적으로 살펴본 후, 상기 압출성형장치에 근거하여 본 발명의 다공질 중공사 제조방법에 대해 설명하고, 그 제조방법에 의해 제조된 다공질 불소수지 중공사의 구조 및 성질에 대해 살펴보도록 한다.
도 1은 본 발명에 이용되는 압출성형장치의 일부의 측단면을 나타낸 개략도이다.
도 1을 참조하면, 본 발명의 불소수지 다공질 불소수지 중공사의 제조에 이용되는 압출성형장치는 익스트루더(extruder, 100) 및 다이(die, 200)를 포함한다.
익스트루더(extruder, 100)는 예비성형(preforming)된 압출재료인 예비 성형체(performing body, 10)를 투입하여 압력에 의해 압출 성형하는 장치로서, 실린더(110), 익스트루더 램(extruder ram, 120) 및 맨드릴(mandrel, 130)을 포함한다.
실린더(110)는 압출재료를 임시 수용하며, 원하는 형태의 압출 성형물을 토출하는 부분으로서, 실린더 몸체(112), 실린더 헤드(114) 및 토출구(116)로 그 구조를 나누어 볼 수 있다.
상세하게는, 실린더 몸체(112)는 예비 성형체(10)가 가압되기 전 수용되는 부분으로, 원통형으로 이루어질 수 있다. 여기서 예비 성형체(10)는 튜브형일 수 있다.
또한, 실린더 헤드(114)는 실린더 몸체(112)의 일단과 일체로 연결되어 토출구(116)로 이어지는 부분으로, 예비 성형체(10)의 가압에 의한 압출시 통로가 되며, 말단으로 갈수록 직경이 일정하게 줄어드는 원뿔 형태를 이루며, 실린더 몸체(112)의 경계로부터 토출구(116)에 이르기까지 도시된 바와 같이 소정의 경사각(2θ)을 이루고 있다. 즉 실린더헤드 경사각(2θ)은 실린더 몸체(112) 말단과 토출구(116) 사이의 실린더 헤드(114)의 경사면과 상기 익스트루더(100)의 길이방향 중심선이 이루는 각(θ)의 2배에 해당한다.
토출구(116)는 실린더 헤드(114)의 말단부분으로 예비 성형체의 가압에 의해 압출 성형물이 토출되는 출구이다. 이때, 출구의 직경(r)은 압출 성형물의 직경과 관련되고, 일반적으로 압출 성형물의 직경보다 약간 작게 제작된다.
한편, 실린더 헤드(114) 경사각(2θ)은 실린더 헤드(114)의 길이, 실린더 몸체직경(R), 토출구(116)의 직경(r) 등의 요인에 따라 달라질 수 있으며, 압출성형의 조건, 성형재료에 따라 적절히 조절할 수 있다.
다이(200)는 익스트루더(100)의 실린더 헤드(114)의 말단부와 연결되어 토출구(116)로부터 나오는 압출 성형물을 수용하며, 특히, 다이 랜드(210) 부분은 토출구(116)와 연결되며 동일한 직경을 가지는 것이 바람직하다.
맨드릴(130)은 압출 성형물의 중공 구조를 만들기 위해 재료의 중심부분에 끼워지는 심봉으로서, 실린더(100)의 중심부에 배치되며, 압출 성형물의 성질에 따라 맨드릴(300)의 말단과 익스트루더 토출구(116)간의 간격 즉, 팁 클리어런스(d)를 조절할 수 있다. 상기 팁 클리어런스(d)는 실린더 헤드(114)의 길이, 실린더 몸체직경(R), 토출구(116)의 직경(r) 등의 요인에 따라 달라질 수 있으며, 압출성형의 조건, 성형재료에 따라 적절히 조절할 수 있다.
압출 성형시 예비 성형체(10)는 중공에 맨드릴(130)이 관통되도록 실린더 몸체(112)에 투입된다.
도 2는 본 발명의 다공질 불소수지 제조방법을 순차적으로 나타낸 흐름도이다.
이하, 도 1 및 도 2를 참조하여 본 발명의 다공질 불소수지 제조방법을 설명하도록 한다.
먼저, 불소수지와 윤활제의 혼합물을 준비한다(단계 a).
상기 불소수지는 불소를 함유하는 올레핀을 중합시킨 합성수지로서, 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene), 폴리클로로트리플루오로에틸렌(PCTFE, polychlorotrifluoroethylene), 폴리비닐리덴디플루오라이드(PVDF, polyvinylidenedifluoride) 등을 적용할 수 있다.
그 외의 다른 불소수지도 본 발명의 범주에서 벗어나지 않는 한 모두 포함될 수 있으나 폴리테트라플루오로에틸렌을 적용하는 것이 바람직하다.
상기 윤활제는 나프탄계 윤활제(naphthenic lubricant) 또는 파라핀계 윤활제(paraffinic lubricant)를 적용하는 것이 바람직하나, 여기에 한정되지는 않는다.
상기 윤활제는 압출 저항을 줄이기 위하여 사용하는 것으로서, 압출비(extrusion ratio)와 실린더 헤드(114) 경사각(2θ) 등 요인에 따라 함량을 조절할 수 있다.
상기 윤활제의 함량은 상기 불소수지 100중량부에 대하여 5 내지 30중량부로 포함시킬 수 있다. 상기 윤활제의 함량이 불소수지 100중량부에 대하여 30중량부를 초과하면 중공사 내부에 기공이 발생하기 힘들어 다공질이 형성되기 어려우며, 5중량부 미만이면, 압출저항이 지나치게 높아 중공사 내부의 조직이 불균일하게 될 수 있다.
상기 불소수지, 바람직하게는 분말형태의 불소수지와 윤활제의 혼합물이 준비되면, 이를 20 내지 40℃의 온도에서 20 ~ 28시간 동안 숙성시키는 공정을 더 수행할 수 있다. 이에 따라, 불소수지 분말에 윤활제가 더욱 균일하게 분포될 수 있다.
이후, 상기 불소수지와 윤활제 혼합물의 예비 성형체(10)를 제조한다(단계 b).
상세하게는, 상기 불소수지와 윤활제의 혼합물을 압축하여 중공이 형성된 튜브형의 형태로 제조하며, 제조방법은 압출성형으로 하는 것이 바람직하나, 본 발명의 범위가 여기에 한정되는 것은 아니다.
튜브형으로 제조된 상기 예비 성형체는 익스트루더 실린더(110) 내에 맨드릴(130이 중심에 관통되도록 장착될 수 있다. 이때, 상기 예비 성형체(10)의 직경은 실린더 몸체(112)의 내부직경보다 약간 작게 제조한다.
다음으로, 익스트루더(100)의 실린더(110)에 상기 제조된 예비 성형체(10)를 투입하고 중공사형으로 압출 성형을 수행한다(단계 c).
상세하게는, 맨드릴(300)이 예비 성형체(10)의 중공으로 관통하도록 예비 성형체(10)를 실린더 몸체(112)에 투입한 후, 익스트루더 램(120)으로 압력을 가하면 피스톤(122)이 예비 성형체(10)를 실린더 헤드(114) 방향으로 밀어내면서 토출구(116)를 통하여 재료가 중공사의 형태로 압출 성형되어 토출될 수 있다.
이때, 실린더 헤드의 경사면과 상기 익스트루더의 길이방향 중심선이 이루는 각(θ)의 2배에 해당하는 실린더헤드 경사각(2θ)을 10~120°, 바람직하게는 10 내지 60°, 더욱 바람직하게는 10 내지 30°로 조절할 수 있다.
실린더 헤드(114)의 온도는 30 내지 300℃의 범위로 유지하고, 바람직하게는 60 내지 300℃로 유지할 수 있다.
토출구(116) 직경(r)은 압출 성형될 불소수지 중공사의 직경에 따라 달라질 수 있으며, 바람직하게는 0.6 내지 50mm 범위로 조절할 수 있다. 이에 따라, 압출 성형된 성형체는 0.6 내지 50mm 의 직경을 가지는 것이 바람직하다.
한편, 중공사 형태로 압출성형하기 위하여, 맨드릴(130)은 토출구(116) 밖으로 빠져나와 다이랜드(210)로 이동하며, 다이(200)에 수용되는 것이 바람직하다. 이때, 다이랜드(210)의 길이는 2 내지 10mm, 바람직하게는 2 내지 4mm 로 조절할 수 있으며, 다이(200)의 온도는 실린더 헤드(114)의 온도와 동일한 온도 즉, 30 내지 300℃, 바람직하게는 60 내지 300℃로 유지하는 것이 좋다.
또한, 익스트루더 램(130)에 의해 예비 성형체(10)에 가해지는 피스톤(122)의 압력은 650 내지 1500kg/cm2의 범위로 가하는 것이 바람직하다.
이후, 중공사 형태로 압출 성형된 재료는 건조공정을 수행하여 윤활제를 제거한다(단계 d).
상기 건조는 윤활제의 비등점 이상의 온도에서 수행되도록 하며, 바람직하게는 105℃ 이상, 더욱 바람직하게는 130 내지 200℃에서 수행할 수 있다. 건조시간은 10 내지 100초, 바람직하게는 15 내지 45초 동안 수행하는 것이 바람직하다.
상기 건조에 의하여, 상기 압출 성형된 재료의 상기 윤활제 함량은 0.1wt%이하가 되도록 하는 것이 바람직하며, 이보다 윤활제의 함량이 높으면, 이후의 열처리 공정에서 윤활제가 기화되면서 폭발이 일어나 중공사에 균열, 깨짐 현상이 발생할 수 있다.
마지막으로, 상기 건조된 재료를 열처리하여 재결정이 이루어지도록 하여 다공질 불소수지 중공사를 제조한다(단계 e).
상기 열처리는 불소수지의 용융점 이상의 온도에서 수행하며, 바람직하게는 370 내지 600℃의 온도범위에서 수행할 수 있다.
상기 열처리에 의하여 불소수지 분말은 재결정되며, 이에 따라, 기공의 크기 및 분포가 균일한 다공질 불소수지 중공사가 제조될 수 있으며, 형성된 기공들은 오픈셀(open cell)형으로 형성된다. 다시 말해, 기공들 간에 교차가 일어나 수지의 표면으로부터 반대편 표면까지 공기나 물이 통과할 수 있는 미세통로가 형성될 수 있다.
본 발명에서 상기 불소수지 중공사의 기공의 평균크기(평균두께)는 0.05 내지 100 ㎛, 바람직하게는 0.1 내지 10 ㎛, 보다 바람직하게는 0.1 내지 5 ㎛ 이다.
본 발명은 불소수지 100중량부; 및 윤활제 5 내지 30중량부;를 포함하는 조성물이고, 상기 조성물은 발포제를 포함하지 않고, 상기 조성물은 다공질 불소수지 중공사 제조에 사용하기 위한, 다공질 불소수지 중공사 제조용 조성물을 제공한다. 종래기술은 발포제를 사용하여 다공질 수지를 제조하였으나, 본 발명은 발포제를 사용하지 않고 연신공정을 생략한 압출공정을 통하여 다공질 불소수지를 제조할 수 있다.
본 발명은 상기 제조방법에 따라 제조된 다공질 불소수지 중공사를 제공한다.
또한, 본 발명은 상기 제조방법에 따라 제조된 다공질 불소수지 중공사를 이용한 수처리용 멤브레인 필터 및 그 필터를 이용한 수처리장치를 제공한다.
상기 수처리용 멤브레인 필터는 상술한 바와 같이 물과 공기가 통과할 수 있는 미세통로가 형성되어 오염물질은 걸러지고 깨끗한 물만 반대 측 표면으로 통과시켜 물을 정화시킬 수 있다.
이하, 본 발명의 바람직한 실시예를 들어 설명하도록 한다.
[실시예]
실시예
1
PTFE 분말(듀폰사, 제품 no.640)을 준비하여 윤활제 (엑슨사, Isopar E,M)를 첨가하여 혼합물을 준비하고, 이때, PTFE 분말 100중량부와 윤활제 18중량부로 혼합하였다. 이후, 상기 혼합물을 40℃의 오븐에서 24시간 동안 숙성시킨 후, 이를 예비성형 압출기에서 온도 40℃, 압력 0.7~2.0Mpa, 선속도 50mm/min로 1차 압출시켜 직경 7cm, 중공 직경 1.5cm인 예비 성형체를 제조하였다.
제조된 예비 성형체를 익스트루더에 장착하고 실린더 헤드 경사각(2θ) 20°, 토출구 직경 5mm, 맨드릴 직경 16mm, 실린더 헤드 온도 60℃, 다이랜드 길이 2mm, 다이 온도 60℃로 조절하고, 피스톤 압력 730kg/cm2으로 압출하였다.
이에 따라 압출된 PTFE 중공사는 130℃에서 10초 동안 건조시켜 윤활제를 증발시킨 후, 370 내지 450℃의 범위에서 서서히 단계적으로 온도를 올리면서 40초 동안 열처리하였다.
실시예 1에 따라 제조된 다공질 PTFE 중공사의 표면과 단면 SEM 이미지를 도 3 내지 도 7에 각각 다양한 배율로 나타내었다.
실시예
2
실린더 헤드 경사각을 10°, 피스톤 압력을 650 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
3
실린더 헤드 경사각을 15°, 피스톤 압력을 710 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
4
실린더 헤드 경사각을 50°, 피스톤 압력을 920 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
5
실린더 헤드 경사각을 80°, 피스톤 압력을 1,190 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
6
실린더 헤드 경사각을 100°, 피스톤 압력을 1,360 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
7
실린더 헤드 경사각을 110°, 피스톤 압력을 1,440 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
8
실린더 헤드 경사각을 120°, 피스톤 압력을 1,500 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
9
윤활제를 5중량부, 피스톤 압력을 1,210 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
10
윤활제를 10중량부, 피스톤 압력을 850 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
실시예
11
윤활제를 30중량부, 피스톤 압력을 650 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
1
실린더 헤드 경사각을 5°, 피스톤 압력을 600 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
2
실린더 헤드 경사각을 7°, 피스톤 압력을 620 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
3
실린더 헤드 경사각을 125°, 피스톤 압력을 1,550 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
4
실린더 헤드 경사각을 130°, 피스톤 압력을 1,600 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
5
실린더 헤드 경사각을 140°, 피스톤 압력을 1,640 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
6
윤활제 함량을 1중량부, 피스톤 압력을 1,450 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
7
윤활제 함량을 3중량부, 피스톤 압력을 1,380 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
8
윤활제 함량을 35중량부, 피스톤 압력을 650 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
9
윤활제 함량을 45중량부, 피스톤 압력을 410 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
10
윤활제 함량을 60중량부, 피스톤 압력을 190 Kg/cm2으로 한 것을 제외하고 실시예 1과 동일한 방법으로 불소수지 중공사를 제조하였다.
비교예
11
고어사(W.L. Gore & Associates)의 PTFE 수지(Gore Valve Stempacking Modle No: DP06-25)를 본 발명의 다공질 불소수지 중공사와 비교하였다. 상기 고어사 수지는 압출성형 후 연신한 것으로서 필름형태이다.
실험예
1: 본 발명의 다공질
불소수지
중공사와
종래 다공질
불소수지의
내부 조직 비교
본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사와 고어사 제품인 비교예 11의 다공질 PTFE 수지 필름의 내부 조직구조를 비교해 보았다.
본 발명의 실시예 1에 따라 제조된 중공사의 길이방향으로 자른 PTFE 수지 부분의 단면(a)과 비교예 11의 다공질 PTFE 수지 필름의 면방향으로 자른 단면(b)에 대한 SEM 이미지(×500)를 비교하여 도 5에 나타내었다. 또한, 본 발명의 실시예 1에 따라 제조된 중공사의 길이방향에 대하여 수직으로 자른 PTFE 수지 부분의 단면(a)와 비교예 11의 다공질 PTFE 수지 필름의 면방향에 대하여 수직으로 자른 단면(b)에 대한 SEM 이미지(×500)를 비교하여 도 6에 나타내었다.
한편, 본 발명의 실시예 1에 따라 제조된 중공사의 길이방향으로 자른 PTFE 수지 부분의 단면 SEM 이미지(×5,000) (a)와 비교예 11의 다공질 PTFE 수지 필름의 면방향으로 자른 단면 SEM 이미지(×5,000) (b)를 비교하여 도 7에 나타내었다. 또한, 본 발명의 실시예 1에 따라 제조된 중공사의 길이방향에 대하여 수직으로 자른 PTFE 수지 부분의 단면 SEM 이미지(×5,000) (a)와 비교예 11의 다공질 PTFE 수지 필름의 면방향에 대하여 수직으로 자른 단면 SEM 이미지(×5,000) (b)를 비교하여 도 8에 나타내었다.
도시된 바와 같이, 본 발명의 실시예 1에 따라 제조된 다공질 PTFE 수지가 종래 고어사의 PTFE 필름 즉, 비교예 11에 따른 수지에 형성된 다공질과 비교하여 손색이 없으며, 발포제를 첨가하지 않고, PTFE 분말과 윤활제의 혼합물을 연신하는 공정을 거치지 않고도 압출하는 단순한 공정만으로 조직 내 오픈 셀 형의 다공질이 치밀하고, 균일하게 잘 형성된 불소수지 중공사를 제조할 수 있음을 확인할 수 있었다. 본 발명의 불소수지 중공사의 기공의 평균크기(평균두께)는 0.1 내지 10 ㎛로 측정되었다.
실험예
2: 공정조건에 변화에 따른
불소수지
중공사의 표면 및 내부조직의 비교
본 발명의 실시예 1에 따라 제조된 다공질 PTFE 중공사, 비교예 1의 다공질 PTFE 수지 및 비교예 1의 PTFE 중공사의 표면 및 내부의 조직구조를 비교해 보았다.
도 3 내지 도 9에 따르면, 본 발명의 실시예 1에 따라 제조된 PTFE 중공사는 발포제를 첨가하지 않은 PTFE 분말과 윤활제의 혼합물을 연신 등의 공정을 거치지 않고 압출하는 단순한 공정으로도 조직 내 다공질이 균일하게 잘 형성된 중공사를 제조할 수 있음을 확인할 수 있었다.
실시예 1 내지 11, 비교예 1 내지 5, 및 실험예 2에 따른 결과를 하기 표 1에 정리하였다.
불소수지 (중량부) |
윤활제 (중량부) |
실린더 헤드 경사각(2θ, °) | 피스톤 압력 (Kg/cm2) |
기공형성 여부 | 기공균일 정도 | |
실시예 1 | 100 | 18 | 20 | 730 | ○ | ○ |
실시예 2 | 100 | 18 | 10 | 650 | ○ | △ |
실시예 3 | 100 | 18 | 15 | 710 | ○ | ○ |
실시예 4 | 100 | 18 | 50 | 920 | ○ | ○ |
실시예 5 | 100 | 18 | 80 | 1,190 | ○ | ○ |
실시예 6 | 100 | 18 | 100 | 1,360 | ○ | ○ |
실시예 7 | 100 | 18 | 110 | 1,440 | ○ | △ |
실시예 8 | 100 | 18 | 120 | 1,500 | ○ | △ |
실시예 9 | 100 | 5 | 20 | 1,210 | ○ | ○ |
실시예 10 | 100 | 10 | 20 | 850 | ○ | ○ |
실시예 11 | 100 | 30 | 20 | 670 | ○ | ○ |
비교예 1 | 100 | 18 | 5 | 600 | × | - |
비교예 2 | 100 | 18 | 7 | 620 | × | - |
비교예 3 | 100 | 18 | 125 | 1,550 | × | - |
비교예 4 | 100 | 18 | 130 | 1,600 | × | - |
비교예 5 | 100 | 18 | 140 | 1,640 | × | - |
비교예 6 | 100 | 1 | 20 | 1,450 | × | - |
비교예 7 | 100 | 3 | 20 | 1,380 | × | - |
비교예 8 | 100 | 35 | 20 | 650 | × | - |
비교예 9 | 100 | 45 | 20 | 410 | × | - |
비교예 10 | 100 | 60 | 20 | 190 | × | - |
* 기공형성 여부: ○: 형성됨, ×: 형성 안됨
* 기공균일 정도: ○: 양호, △: 보통, ×: 불량
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않으며, 본 발명의 기술적 사상의 범위 내에서 당 분야에 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.
10: 예비 성형체 100: 익스트루더
110: 실린더 112: 실린더 몸체
114: 실린더 헤드 116: 토출구
120: 익스트루더 램 122: 피스톤
130: 맨드릴 200: 다이
210: 다이랜드
110: 실린더 112: 실린더 몸체
114: 실린더 헤드 116: 토출구
120: 익스트루더 램 122: 피스톤
130: 맨드릴 200: 다이
210: 다이랜드
Claims (17)
- 불소수지 100중량부 및 윤활제 5 내지 30중량부의 혼합물을 준비하는 단계(단계 a);
상기 혼합물을 예비 성형(preforming)하여 예비 성형체를 제조하는 단계(단계 b);
맨드릴이 장착된 익스트루더에 상기 예비 성형체를 투입하고 중공사 형태로 압출 성형하되, 실린더 헤드의 경사면과 상기 익스트루더의 길이방향 중심선이 이루는 각(θ)의 2배에 해당하는 실린더헤드 경사각(2θ)을 10 내지 120°로 하고, 상기 익스트루더의 피스톤의 압력을 650 내지 1500kg/cm2 로 하여 상기 예비 성형체를 압출하여 성형체를 제조하는 단계(단계 c);
상기 성형체를 건조하는 단계(단계 d); 및
상기 건조된 성형체를 열처리하는 단계(단계 e);를
포함하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 실린더헤드 경사각(2θ)은 10 내지 60°인 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 불소수지는 폴리테트라 플루오로에틸렌(PTFE, polytetrafluoroethylene), 폴리클로로트리플루오로에틸렌(PCTFE, polychlorotrifluoroethylene) 및 폴리비닐리덴디플루오라이드(PVDF, polyvinylidenedifluoride)로 이루어진 군에서 선택된 1종 이상인 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 윤활제는 나프탄계 윤활제(naphthenic lubricant) 또는 파라핀계 윤활제(paraffinic lubricant)인 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 단계 a 이후 상기 혼합물을 숙성하는 공정을 더 수행하는 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제5항에 있어서,
상기 숙성은 20 내지 40℃의 온도에서 20 내지 28시간 동안 수행하는 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 실린더 헤드의 온도는 30 내지 300℃인 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
단계 c에서 상기 성형체는 직경이 0.6 내지 50mm 범위가 되도록 압출 성형하는 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 단계 c 후에 상기 압출 성형된 성형체는 다이로 이동하며, 상기 익스트루더와 다이를 연결하는 다이랜드의 길이가 2 내지 10mm인 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제9항에 있어서,
상기 다이는 상기 실린더 헤드와 동일한 온도를 유지하는 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 단계 d는 130 내지 200℃의 온도에서 수행되는 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 단계 d를 거친 건조된 성형체는 상기 윤활제의 함량이 0 내지 0.1중량% 로 건조된 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 제1항에 있어서,
상기 단계 e는 370 내지 600℃의 온도에서 수행되는 것을 특징으로 하는 다공질 불소수지 중공사의 제조방법.
- 삭제
- 제1항 내지 제13항 중 어느 한 항의 제조방법으로 제조된 다공질 불소수지 중공사
- 제15항에 있어서,
상기 다공질 불소수지 중공사는 수처리용 멤브레인 필터로 이용되는 것을 특징으로 하는 다공질 불소수지 중공사.
- 제1항 내지 제13항 중 어느 한 항의 제조방법으로 제조된 다공질 불소수지 중공사를 포함하는 수처리 장치.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120065416A KR101409965B1 (ko) | 2012-06-19 | 2012-06-19 | 다공질 불소수지 중공사 및 그 제조방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120065416A KR101409965B1 (ko) | 2012-06-19 | 2012-06-19 | 다공질 불소수지 중공사 및 그 제조방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130142308A KR20130142308A (ko) | 2013-12-30 |
KR101409965B1 true KR101409965B1 (ko) | 2014-06-19 |
Family
ID=49985917
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020120065416A KR101409965B1 (ko) | 2012-06-19 | 2012-06-19 | 다공질 불소수지 중공사 및 그 제조방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101409965B1 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102022264B1 (ko) | 2018-05-28 | 2019-09-18 | 주식회사 마이크로필터 | 유기산을 이용한 중공사막 제조방법 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107349790B (zh) * | 2017-07-25 | 2023-05-23 | 珠海格力电器股份有限公司 | 滤芯、粘接端头及滤芯的制作方法 |
CN107433135B (zh) * | 2017-07-25 | 2023-05-23 | 珠海格力电器股份有限公司 | 一种滤芯的制作方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0715022B2 (ja) * | 1986-11-13 | 1995-02-22 | ダブリユ.エル.ゴア アンド アソシエイツ,インコ−ポレイテイド | ポリテトラフルオロエチレンチューブを押出しそして延伸する装置および方法、並びにこれにより製造された生成物 |
WO1996007370A1 (en) | 1994-09-02 | 1996-03-14 | W.L. Gore & Associates, Inc. | An asymmetrical porous ptfe form and method of making |
US6627277B1 (en) | 1997-08-21 | 2003-09-30 | Daikin Industries Ltd. | Polytetrafluoroethylene tubing and extruder for the production thereof |
US20050167875A1 (en) * | 2002-05-02 | 2005-08-04 | Fumihiro Hayashi | Stretched polytetrafluoroethylene moldings and process for production thereof |
-
2012
- 2012-06-19 KR KR1020120065416A patent/KR101409965B1/ko active IP Right Grant
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0715022B2 (ja) * | 1986-11-13 | 1995-02-22 | ダブリユ.エル.ゴア アンド アソシエイツ,インコ−ポレイテイド | ポリテトラフルオロエチレンチューブを押出しそして延伸する装置および方法、並びにこれにより製造された生成物 |
WO1996007370A1 (en) | 1994-09-02 | 1996-03-14 | W.L. Gore & Associates, Inc. | An asymmetrical porous ptfe form and method of making |
US6627277B1 (en) | 1997-08-21 | 2003-09-30 | Daikin Industries Ltd. | Polytetrafluoroethylene tubing and extruder for the production thereof |
US20050167875A1 (en) * | 2002-05-02 | 2005-08-04 | Fumihiro Hayashi | Stretched polytetrafluoroethylene moldings and process for production thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102022264B1 (ko) | 2018-05-28 | 2019-09-18 | 주식회사 마이크로필터 | 유기산을 이용한 중공사막 제조방법 |
Also Published As
Publication number | Publication date |
---|---|
KR20130142308A (ko) | 2013-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0433787B1 (en) | Process for producing multilayer polytetrafluoroethylene porous membrane | |
US8207447B2 (en) | PTFE porous body, PTFE mixture, method for producing PTFE porous body, and electric wire/cable using PTFE porous body | |
US20150047874A1 (en) | Conductors having polymer insulation on irregular surface | |
US20060121288A1 (en) | Fluoropolymer-coated conductor, a coaxial cable using it, and methods of producing them | |
JPH10130419A (ja) | 発泡フルオロポリマー | |
CN106170509B (zh) | 聚烯烃微多孔膜、非水电解液系二次电池用隔膜、聚烯烃微多孔膜卷绕体 | |
KR101409965B1 (ko) | 다공질 불소수지 중공사 및 그 제조방법 | |
KR102160201B1 (ko) | 불소계 수지 다공성 막 및 그 제조방법 | |
KR101599111B1 (ko) | Ptfe 중공사막 및 그 제조 방법 | |
JP4827372B2 (ja) | ポリテトラフルオロエチレン系樹脂製チューブ及びその製造方法 | |
KR101318942B1 (ko) | 다공질 불소수지를 포함하는 케이블 및 그 제조방법 | |
KR101315899B1 (ko) | 다공질 불소수지를 포함하는 복층 구조체 및 그 제조방법 | |
CN114142160B (zh) | 一种纳米陶瓷-聚丙烯复合电池隔膜及制备方法 | |
US20230383870A1 (en) | Thin-walled heat shrink tubing | |
CN115382401B (zh) | 一种高强度ptfe滤膜及其制备方法 | |
CN112876707A (zh) | 一种聚四氟乙烯薄膜及制备方法 | |
KR102102460B1 (ko) | 불소계 수지 다공성 막의 제조 방법 | |
KR20190061921A (ko) | 불소계 수지 다공성 막 및 이의 제조 방법 | |
JP4626014B2 (ja) | 高周波信号伝送用製品およびその製法 | |
JP2008226618A (ja) | 多孔質ptfe樹脂絶縁層被覆電線及びそれを用いた同軸ケーブル | |
CN117045869B (zh) | 一种用于引导骨组织再生的ptfe膜及其制备方法 | |
KR102610907B1 (ko) | 다층 구조(Multi-layer)의 불소계 수지 멤브레인 | |
CN113975976A (zh) | 用于液体过滤的纳米级多孔滤膜及其制备方法 | |
KR20140074714A (ko) | 미세기공 ptfe 분리막 및 그 제조방법 | |
JP2023007202A (ja) | ふっ素樹脂構造体の製造方法およびふっ素樹脂構造体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
FPAY | Annual fee payment |
Payment date: 20170613 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20180515 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20190612 Year of fee payment: 6 |