KR101279174B1 - 2차 전지의 전극 구조 및 그 제조 방법 - Google Patents

2차 전지의 전극 구조 및 그 제조 방법 Download PDF

Info

Publication number
KR101279174B1
KR101279174B1 KR1020110055847A KR20110055847A KR101279174B1 KR 101279174 B1 KR101279174 B1 KR 101279174B1 KR 1020110055847 A KR1020110055847 A KR 1020110055847A KR 20110055847 A KR20110055847 A KR 20110055847A KR 101279174 B1 KR101279174 B1 KR 101279174B1
Authority
KR
South Korea
Prior art keywords
electrode
solid content
current collector
secondary battery
solvent
Prior art date
Application number
KR1020110055847A
Other languages
English (en)
Other versions
KR20110137735A (ko
Inventor
아이 우쯔미
Original Assignee
닛산 지도우샤 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 지도우샤 가부시키가이샤 filed Critical 닛산 지도우샤 가부시키가이샤
Publication of KR20110137735A publication Critical patent/KR20110137735A/ko
Application granted granted Critical
Publication of KR101279174B1 publication Critical patent/KR101279174B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/74Meshes or woven material; Expanded metal
    • H01M4/742Meshes or woven material; Expanded metal perforated material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

본 발명의 과제는, 고고형의 전극 혼련물을 도포 시공하였을 때의 전극 혼련물 집전체 표면에의 추종성을 향상시켜, 집전체와 전극 혼련물의 접착 강도를 향상시키는 것이다.
전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체로서의 집전박(40) 상에 배치하고, 그 전극 혼련물로부터 용매를 휘발시켜 상기 집전체 상에 전극층(42A, 42B)을 형성하는 2차 전지(1)의 전극 제조 방법이다. 그리고 고형분이 다른 고고형분 슬러리(21A, 21B)를 복수의 관통 구멍(41)을 구비하는 집전체의 각각의 면 상에 도포 시공한다.

Description

2차 전지의 전극 구조 및 그 제조 방법{ELECTRODE STRUCTURE OF SECONDARY BATTERY AND MANUFACTURING METHOD FOR ELECTRODE OF SECONDARY BATTERY}
본 발명은, 2차 전지의 전극 구조 및 그 제조 방법에 관한 것이다.
종래부터 2차 전지에 사용하는 전극의 제조 방법으로서, 건조 공정에서의 건조 시간을 단축하기 위해, 비교적 고(高)고형분의 전극 혼련물(슬러리)을 관통 구멍이 있는 집전체에 도포 시공하는 것이 있다(특허 문헌 1 참조).
일본 특허 출원 공개 평04-282558호 공보
그러나 고고형의 전극 혼련물(슬러리)은 집전체의 표면에의 추종성이 나쁘기 때문에, 집전체와 전극 혼련물의 접착 강도가 낮다고 하는 문제점이 있었다.
따라서 본 발명은, 상기 문제점에 비추어 이루어진 것으로, 고고형의 전극 혼련물을 도포 시공하였을 때의 전극 혼련물의 집전체 표면에의 추종성을 향상시켜, 집전체와 전극 혼련물의 접착 강도를 향상시키는 것을 목적으로 한다.
본 발명은, 전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체 상에 배치하고, 그 전극 혼련물로부터 용매를 휘발시켜 상기 집전체 상에 전극층을 형성하는 2차 전지의 전극 제조 방법이다. 그리고 고형분이 다른 고고형분의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면 상에 도포 시공하는 것을 특징으로 한다.
또한, 전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체 상에 배치하고, 그 전극 혼련물로부터 용매를 휘발시켜 상기 집전체 상에 전극층을 형성하는 2차 전지의 전극 구조이다. 그리고 고형분이 다른 고고형분의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면 상에 도포 시공하고, 고형분이 낮은 전극재 슬러리에 포함되는 용제의 확산 현상에 의해, 당해 용제에 용해된 바인더를 집전체와 양 전극층의 계면에 편석시키도록 한 것을 특징으로 한다.
따라서, 본 발명에서는, 집전체의 관통 구멍을 통해, 저(低)고형분의 전극재 슬러리로부터 고고형분의 전극재 슬러리로 모세관 현상에 의해 용매가 이동한다. 이때 용제에 용해된 바인더도 관통 구멍을 통해 이동하므로, 바인더를 집전체와 양 전극층의 계면에 편석시킬 수 있다. 이로 인해, 바인더에 의한 앵커 효과에 의해 집전체와 전극층의 접착 강도를 향상시킬 수 있다.
도 1은 리튬 이온 2차 전지의 개략도.
도 2는 본 발명의 일 실시 형태를 도시하는 2차 전지의 전극 제조 공정에 대한 설명도.
도 3은 혼련 공정의 설명도.
도 4는 사용하는 집전박을 도시하는 설명도.
도 5는 도포 시공 공정의 제1 단계를 설명하는 설명도.
도 6은 도포 시공 공정의 제2 단계를 설명하는 설명도.
도 7은 건조 공정을 설명하는 설명도.
도 8은 프레스 공정을 설명하는 설명도.
도 9는 얻어지는 전극 구조를 도시하는 설명도.
도 10은 집전박의 변형예를 도시하는 설명도.
도 11은 본 발명의 제2 실시 형태를 도시하는 2차 전지의 전극 제조 공정에 대한 설명도.
도 12는 건조ㆍ프레스 공정을 설명하는 설명도.
도 13은 얻어지는 전극 구조를 도시하는 설명도.
도 14는 종래예에 의한 전극 구조를 도시하는 설명도.
이하, 본 발명의 2차 전지의 전극 구조 및 그 제조 방법을 각 실시 형태에 기초하여 설명한다.
(제1 실시 형태)
도 1은 본 실시 형태에 의한 리튬 이온 2차 전지(1)의 개략 단면도이다. 도 1에 도시하는 바와 같이, 리튬 이온 2차 전지(1)는, 발전 요소(2)와, 발전 요소(2)를 수용하는 외장 케이스(3)를 구비한다.
발전 요소(2)는, 정극(4), 전해질층으로서의 세퍼레이터(5) 및 부극(6)을 순차 적층한 적층체로서 구성된다. 정극(4)은 판 형상의 정극 집전체(4a)의 양면에 정극층(4b)을 갖고 있고, 부극(6)은 판 형상의 부극 집전체(6a)의 양면에 부극층(6b)을 갖고 있다. 또한, 발전 요소(2)의 최외층에 배치되는 정극(4)에 있어서는, 정극 집전체(4a)의 편면에만 정극층(4b)이 형성된다.
인접하는 정극(4), 세퍼레이터(5) 및 부극(6)이 하나의 단위 전지(7)를 구성하고 있고, 리튬 이온 전지(1)는 적층된 복수의 단위 전지(7)를 각각 전기적으로 병렬 접속하여 구성된다.
외장 케이스(3)는, 알루미늄 등의 금속을 폴리프로필렌 필름 등의 절연체로 피복한 고분자-금속 복합 라미네이트 필름의 시트재로 이루어진다. 외장 케이스(3)는, 발전 요소(2)를 수납한 상태에서, 케이스 외주부가 열융착에 의해 접합된다. 이 외장 케이스(3)에는, 발전 요소(2)로부터의 전력을 외부로 취출하기 위해, 외부 단자로서의 정극 탭(8) 및 부극 탭(9)이 설치된다.
정극 탭(8)의 일단부는 외장 케이스(3)의 외측에 있고, 정극 탭(8)의 타단부는 외장 케이스(3)의 내부에서 각 정극 집전체(4a)의 집합부에 접속된다. 부극 탭(9)의 일단부는 외장 케이스(3)의 외측에 있고, 부극 탭(9)의 타단부는 외장 케이스(3)의 내부에서 각 부극 집전체(6a)의 집합부에 접속된다.
다음에, 전극[정극(4) 또는 부극(6)]의 일반적인 제조 방법에 대해 간단하게 설명한다. 일반적으로 전극은, 전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체[정극 집전체(4a) 또는 부극 집전체(6a)]에 도포 시공하는 도포 시공 공정을 구비한다. 그 후, 전극 혼련물의 용매를 휘발시켜 고형분 100%의 전극층[정극층(4b) 또는 부극층(6b)]을 형성하는 건조 공정 및 전극층을 압축하여 그 두께(부피 밀도)를 조정하는 프레스 공정을 거쳐서 제조된다.
여기서, 리튬 이온 2차 전지(1)의 제조 설비의 비용을 낮추기 위해서는, 건조 공정에 필요로 하는 시간을 짧게 하여 건조로 길이를 짧게 하는 것이 유효하다. 그리고 건조 공정에 필요로 하는 시간을 짧게 하기 위해서는, 비교적 고고형의 전극 혼련물을 집전체에 도포 시공하여 휘발시키는 용매의 절대량을 줄이는 것이 유효하다.
그러나 집전체에 도포 시공하는 전극 혼련물이 고고형으로 될수록 전극 혼련물의 점성도 높아지고, 또한 집전체와의 계면의 젖음성도 나빠지므로, 도포 시공시에 있어서의 전극 혼련물의 집전체에 대한 추종성, 나아가서는 접착성이 악화된다. 즉, 도 14에 도시하는 바와 같이, 바인더(33)를 용해한 용제(34)가 집전체측에 편석되지 않아, 전극층과 집전체의 접착 강도가 개선되지 않는다. 이로 인해, 충방전이 반복되는 2차 전지로서의 사이클 내구성이 개선되지 않는 문제를 갖게 된다. 또한, 집전체에 대한 전극 혼련물의 접착 강도가 충분하지 않은 부분(이하「접착 미완부」라 함)이 편차를 갖고 발생하는 경우가 있다.
이러한 접착 미완부가 존재하는 상태에서 건조 처리가 행해지면, 그 후에 프레스 처리를 행해도 접착 미완부의 접착 강도를 향상시키는 것은 어렵다. 이것은, 건조 처리에 의해 집전체 상에는 전극 혼련물로부터 용매를 휘발시킨 고형분 100%의 전극층이 형성되므로, 집전체와의 계면의 젖음성도 나빠, 프레스(압박)해도 전극층 자체가 압축될 뿐이며 집전체에 대한 형상 추종성이 낮기 때문이다. 그 결과, 전극층이 집전체로부터 박리되기 쉬워져, 리튬 이온 2차 전지의 전지 성능이나 내구 성능이 저하되어 버린다.
따라서 본 실시 형태에서는, 우선 고형분이 다른 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면으로부터 도포 시공하고, 그 후에 건조 및 프레스하는 구성으로 하였다. 이에 의해, 저고형분 농도의 전극층측의 바인더가 용해된 용제의 확산 현상에 의한, 집전체측 및 집전체의 관통 구멍을 통한 고고형분 농도의 전극층측으로의 이동에 의해, 각 전극층의 집전체에의 접착 강도를 높이도록 하였다. 이하, 이 본 실시 형태에 의한 2차 전지(1)의 전극 구조 및 그 제조 방법에 대해 설명한다.
도 2는 본 실시 형태에 의한 전극 제조 방법에 대해 설명하는 도면이고, 도 3 내지 도 8은 도 2에 도시하는 각 공정을 구체적으로 설명하는 설명도이다. 도 2에 도시하는 바와 같이, 본 실시 형태에서는, 혼련 공정, 도포 시공 공정, 건조 공정 및 프레스 공정을 거쳐서 전극이 제조된다.
혼련 공정에서는, 도 3에 도시하는 바와 같이, 혼련 장치(20)에 의해, 전극재를 용제(34)(NMP) 중에서 혼련하고, 소정의 전단 속도에 있어서 소정의 점도로 조정된 슬러리상의 전극 혼련물(21)(「전극재 슬러리」라고도 함)을 조제한다. 혼련 장치로서는, 유성식 믹서, 니더, 2축 혼련기 등을 사용한다. 또한, 혼련은 전극 혼련물(20)이 40 내지 60℃로 되도록 가온하여 행한다.
여기서, 본 실시 형태에서는, 제조되는 전극 혼련물(21)은, 고고형분 농도의 혼련물(21A)과, 저고형분 농도의 혼련물(21B)의 2종류의 혼련물을 얻도록 용매의 양을 조절하고 있다. 구체적으로는, 고고형분 농도의 혼련물(21A)은, 전단 속도(전단율) 200 내지 4000[l/sec]으로 전단을 가하였을 때의 혼련물의 점도가 104 내지 107[㎩ㆍs]로 되도록 용매의 양을 조절하여 조제ㆍ혼련한다. 또한, 저고형분 농도의 혼련물(21B)은, 전단 속도(전단율) 200 내지 4000[l/sec]으로 전단을 행하였을 때의 혼련물 점도가 104[㎩ㆍs] 이상이고 고고형분 농도보다도 작은 점도로 되도록 용매의 양을 조절하여 조제ㆍ혼련한다.
그런데, 전극 혼련물(21)에는, 정극 전극층(4)을 제조하는 경우에 제조되는 정극 혼련물과, 부극 전극층(6)을 제조하는 경우에 제조되는 부극 혼련물이 있다.
정극 혼련물을 제조하는 경우는, 혼련 장치(20)에 전극재로서의 정극 활물질(31), 도전 조제(32) 및 바인더(33)(결착제)가 투입되고, 이들을 용매(34) 중에서 균일하게 분산시킨다. 이 경우에, 제조된 전극 혼련물(21)이 고고형의 혼련물로 되도록 전극재와 용매의 양을 조절하고 있다. 구체적으로는, 전극재의 중량 퍼센트(wt%)가, 전극 혼련물(21)의 70[wt%] 내지 85[wt%]로 되도록 조절하고 있다. 이와 같이 함으로써, 전극층 내의 네트워크가 무너지지 않고, 바인더(33)가 용해된 용제(34)만이 집전박(40)의 관통 구멍(41)이나 홈에 집중되어, 전극층과 집전박(40)의 접착 강도를 크게 할 수 있다.
부극 혼련물을 제조하는 경우는, 혼련 장치(20)에 전극재로서의 부극 활물질(35), 도전 조제(36) 및 바인더(33)가 투입되고, 이들을 용매(34) 중에서 균일하게 분산시킨다. 이 경우에, 제조된 전극 혼련물(21)이 고고형의 혼련물로 되도록 전극재와 용매(34)의 양을 조절하고 있다. 구체적으로는, 전극재의 중량 퍼센트(wt%)가, 전극 혼련물(21)의 65[wt%] 내지 80[wt%]로 되도록 조절하고 있다. 이와 같이 함으로써, 전극층 내의 네트워크가 무너지지 않고, 바인더(33)가 용해된 용제(34)만이 집전박(40)의 관통 구멍(41)이나 홈에 집중되어, 전극층과 집전박(40)의 접착 강도를 크게 할 수 있다.
정극 활물질(31)은, 리튬 금속 산화물 등의 리튬 이온을 흡장ㆍ방출하는 물질이다. 본 실시 형태에서는, 정극 활물질로서 망간산 리튬을 사용한다. 부극 활물질(35)은, 리튬 금속 산화물이나 하드 카본, 그라파이트 등의 리튬 이온을 방출ㆍ흡장하는 물질이다. 본 실시 형태에서는, 부극 활물질로서 하드 카본을 사용한다.
도전 조제(32, 36)는 카본 재료(카본 분말이나 카본 파이버) 등의 도전성을 높이는 물질이다. 카본 분말로서는, 아세틸렌 블랙, 퍼니스 블랙 및 케첸 블랙 등의 각종 카본 블랙이나, 그라파이트 분말을 사용할 수 있다. 본 실시 형태에서는, 정극 혼련물을 제조하는 경우도 부극 혼련물을 제조하는 경우도 모두, 도전 조제로서 카본 블랙을 사용한다.
바인더(33)는 활물질 미립자끼리를 결착시키는 물질이다. 본 실시 형태에서는, 정극 혼련물을 제조하는 경우도 부극 혼련물을 제조하는 경우도 모두, 바인더(33)로서 폴리불화비닐리덴(PVDF)을 사용하지만, 이것에 한정되는 것은 아니다.
용매(34)는 전극재를 녹이는 액체이다. 본 실시 형태에서는, 정극 혼련물을 제조하는 경우도 부극 혼련물을 제조하는 경우도 모두, 용매로서 N-메틸피롤리돈(NMP)을 사용하지만, 이것에 한정되는 것은 아니다.
이상에 의해, 정극 전극층을 구성하기 위한 고고형분 농도의 정극 전극 혼련물(21A) 및 저고형분 농도의 정극 전극 혼련물(21B)과, 부극 전극층을 구성하는 고고형분 농도의 부극 전극 혼련물 및 저고형분 농도의 부극 전극 혼련물의 4종류의 혼련물을 준비할 수 있다. 또한, 정극(4) 및 부극(6)의 제조 로트에 따라서, 집전체(4a, 6a)의 양면에 도포 시공하는 고고형분 농도 및 저고형분 농도의 전극 혼련물(21A, 21B)을 제조하도록 해도 된다. 예를 들어, 정극(4)의 제조 공정에 있어서는, 정극 전극층을 구성하기 위한 고고형분 농도 및 저고형분 농도의 정극 전극 혼련물(21A, 21B)을 제조하고, 부극(6)의 제조 공정에 있어서는, 부극 전극층을 구성하기 위한 고고형분 농도 및 저고형분 농도의 부극 전극 혼련물을 제조하도록 한다.
이하의 공정에서는, 정극(4) 및 부극(6) 모두, 동일한 공정에 의해 제조할 수 있다. 이로 인해, 정극 집전체(4a)인 집전박(40)에 고고형분 농도 및 저고형분 농도의 전극 혼련물(21A, 21B)을 도포 시공하는 경우에 대해 설명하고, 부극 집전체(6a)인 집전박에 고고형분 농도 및 저고형분 농도의 전극 혼련물을 도포 시공하는 경우의 설명을 생략한다. 또한, 얻어지는 전극층에 대해서도, 부극층(6b)ㆍ정극층(4b) 중 어느 쪽에도 적용할 수 있으므로, 고고형분 농도의 혼련물(21A)에 의한 경우를「전극층(42A)」, 저고형분 농도의 혼련물(21B)에 의한 경우를「전극층(42B)」으로 한다.
도포 시공 공정에서는, 혼련 공정에서 제조된 고고형분 농도의 전극 혼련물(21A)을 압출 성형에 의해 집전체(4a)로서의 집전박(40)의 반송 방향과 평행하게 압출하여, 도 5에 도시하는 바와 같이, 집전박(40)의 한쪽 표면에 도포 시공한다. 계속해서, 집전박(40)의 다른 쪽 표면에 저고형분 농도의 전극재 슬러리(21B)를 다이 코터로, 도 6에 도시하는 바와 같이 도포 시공한다. 사용하는 집전박(40)은, 도 4에 도시하는 바와 같이, 직경 10㎛ 이상의 관통 구멍(41)을 복수(다수) 구비하고 있고, 정극(4)에 있어서는, 예를 들어 두께 10 내지 40㎛의 알루미늄(Al)박이 사용되고, 부극(6)에 있어서는, 예를 들어 두께 10 내지 40㎛의 구리(Cu)박이 사용된다. 또한, 고고형분 농도 및 저고형분 농도의 전극 혼련물(21A, 21B)의 도포 시공 성형의 목표 두께는, 예를 들어 정극 혼련물에 있어서는 두께 80 내지 180㎛로 되도록 하고, 부극 혼련물에 있어서는 두께 40 내지 100㎛로 되도록 한다.
고고형분 농도의 전극 혼련물(21A)을 압출 성형에 의해 압출하여 도포 시공하는 것은, 고고형분 농도의 전극 혼련물(21A)은 집전박(40)에 대한 형상 추종성이 낮으므로, 집전박(40)의 반송 방향과 수직으로 압출하여 도포 시공하려고 하면, 도포 시공 중에 전극 혼련물(21A)이 끊어져 버릴 우려가 있기 때문이다.
또한, 도포 시공 수순으로서, 미리 관통 구멍(41)을 형성한 집전박(40)의 한쪽 면에 고고형분 농도의 혼련물(21A)에 의한 전극재 슬러리를 압출 성형한 후, 저고형분 농도의 혼련물(21B)에 의한 전극재 슬러리를 집전박(40)의 다른 쪽 면에 도포 시공하고 있다. 이에 의해, 도 9에 도시하는 바와 같이, 집전박(40)의 관통 구멍(41)을 통해 형성되는 양 전극층(42A, 42B) 계면에 있어서, 저고형분 농도의 전극층(42B)측으로부터 고고형분 농도의 전극층(42A)측으로, 바인더(33)가 용해된 용제(34)가 확산 현상에 의해 이동하는 현상이 발생한다.
그 결과, 전극층(42A, 42B) 계면 근방의 바인더(33)의 양이 증대되고, 집전박(40)의 양면의 앵커 효과가 촉진되어, 저고형분 농도의 전극층(42B)과 집전박(40)의 결착력 및 집전박(40)과 고고형분 농도의 전극층(42A)의 결착력이 커진다. 또한, 전극층(42A, 42B) 내의 바인더(33)가 집전박(40)측에 많이 존재하는 경사 구조로 되므로, 각 전극층(42A, 42B)과 집전박(40)의 계면 접착 강도도 높아진다. 또한, 편면에의 고고형분 농도의 전극재 슬러리의 도포 시공 성형 후에, 건조 공정을 거치는 일 없이, 성형면을 뒤집거나 기울이거나 하여, 다른 한쪽 면에 저고형분 농도의 전극재 슬러리를 성형할 수 있어, 전극(4, 6)의 제조 공정을 간략화할 수 있다.
이 도포 시공 공정은, 동일 극끼리 사이에 집전박(40)을 끼우는 전극 구조, 즉, 정극 전극층ㆍ집전박(40)ㆍ정극 전극층 혹은 부극 전극층ㆍ집전박(40)ㆍ부극 전극층으로 되는 전극 구조에 대해 설명하고 있다. 그러나 다른 극끼리 사이에 집전박(40)을 끼우는 전극 구조, 즉, 정극 전극층ㆍ집전박(40)ㆍ부극 전극층으로 되는 전극 구조라도 좋다. 그 경우에 있어서는, 정극 전극층 혹은 부극 전극층 중 어느 한쪽을 고고형분 농도의 전극재 슬러리에 의한 도포 시공 성형으로 하고, 상기 어느 다른 쪽을 저고형분 농도의 전극재 슬러리에 의한 도포 시공 성형으로 한다.
건조 공정에서는, 도포 시공 공정에 있어서 도포 시공된 전극 혼련물(21A, 21B)을, 도 7에 도시하는 바와 같이, 약 100[℃]로 설정한 건조 장치(50)에 약 5분간 투입하고, 전극 혼련물(21A, 21B)로부터 용매를 완전히 휘발시켜 고형분 100%의 전극층(42A, 42B)으로 한다. 전극 혼련물(21A, 21B)로부터 용매가 완전히 휘발됨으로써, 바인더(33)의 집전박(40)측으로의 편석을 촉진시킬 수 있다. 그 결과, 전극층(42A, 42B) 계면 근방의 바인더량이 증대되어, 양면 사이의 앵커 효과가 한층 더 촉진되어, 저고형분 농도 전극층(42B)ㆍ집전박(40)ㆍ고고형분 농도 전극층(42A)의 결착력이 커진다. 또한, 전극층(42A, 42B) 내의 바인더(33)가 집전박(40)측에 많이 존재하는 경사 구조가 한층 강해지므로, 전극층(42A, 42B)과 집전박(40)의 계면 접착 강도가 높아진다.
프레스 공정에서는, 건조 공정에서 건조된 전극층(42A, 42B)을, 도 8에 도시하는 바와 같이, 프레스 장치(40)에 의해 표리 양면으로부터 압박하여, 전극층(42A, 42B)의 두께를 조정한다. 이때, 전극층(42A, 42B)의 집전박(40)측에는 바인더(33)가 편석되어 있으므로, 프레스 장치(40)에 의해 압박된 전극층(42A, 42B)은 바인더(33)를 통해 집전박(40)에 압박되어 집전박(40)의 표면에 추종하면서 압축 변형된다. 그로 인해, 이 프레스 공정에 있어서, 집전박(40)과 전극층(42A, 42B)의 접착 강도를 한층 더 향상시킬 수 있다.
그런데, 상기한 본 실시 형태에 의한 전극 제조 방법에 있어서는, 사용하는 집전박(40)에 형성하는 복수(다수)의 관통 구멍(41)으로서, 직경 10㎛ 이상을 구비하는 것에 대해 설명하였다. 이 관통 구멍(41)의 직경은, 전극재를 구성하고 있는, 정(부)극 활물질(35) 및 그것에 부수되는 도전 조제(36)의 인입은 저지하지만, 바인더(33)(결착제)의 인입은 허용하는 크기로 설정하는 것이, 전극층(42B)의 도막 품질을 유지하기 위해 중요하다.
이것을 위해서는, 관통 구멍(41)의 직경으로서, 정(부)극 활물질(35) 및 그것에 부수되는 도전 조제(36)의 체적 입도 분포 D50 입경 이하의 직경, 예를 들어 20㎛ 이하의 원통형으로 하는 것이 바람직하다. 이와 같이 설정함으로써, 용제(34) 및 그것에 용해된 바인더(33)(결착제)의 관통 구멍(41)을 통한 고고형분 농도의 전극층(42A)측에의 편석을 허용할 수 있고, 또한 정(부)극 활물질(35) 및 그것에 부수되는 도전 조제(36)의 관통 구멍(41)에의 인입을 저지할 수 있다.
또한, 집전박(40)에의 관통 구멍(41)의 배열은, 집전박(40)의 혼련물의 도포 시공 범위에 있어서, 관통 구멍(41)의 개구 표면적의 총합이 1 내지 30%로 되도록, 집전박(40) 면내에 균등 정렬로 하여 분포시키는 것이 바람직하다. 이에 의해, 용제(34) 및 그것에 용해된 바인더(33)(결착제)의 관통 구멍(41)을 통한 고고형분 농도의 전극층(42A)측에의 편석을 집전박(40)의 혼련물을 도포 시공하는 범위에 있어서 균일하게 할 수 있어, 전극층(42A)과 집전박(40)의 접착 강도를 보다 크게 할 수 있다.
또한, 관통 구멍(41)으로서, 원통형인 것 대신에, 도 10에 도시하는 바와 같이, 관통 구멍(41)의 적어도 일부를 3차원의 관통 구멍(41A)으로 구성해도 된다. 이와 같이 하면, 용제(34)에 용해된 바인더(33)(결착제)의 관통 구멍(41A)에의 결합을 한층 더 강하게 할 수 있어, 전극층(42A, 42B)의 집전박(40)에의 앵커 효과를 보다 크게 할 수 있다.
본 실시 형태에 있어서는, 이하에 기재하는 효과를 발휘할 수 있다.
(a) 전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체로서의 집전박(40) 상에 배치하고, 그 전극 혼련물로부터 용매를 휘발시켜 상기 집전체 상에 전극층(42A, 42B)을 형성하는 2차 전지(1)의 전극 제조 방법이다. 그리고 고형분이 다른 고고형분 슬러리(21A, 21B)를 복수의 관통 구멍(41)을 구비하는 집전체의 각각의 면 상에 도포 시공하는 것을 특징으로 한다. 따라서, 집전체의 관통 구멍(41)을 통해, 저고형분의 전극재 슬러리(21B)로부터 고고형분의 전극재 슬러리(21A)로 모세관 현상에 의해 용매가 확산 이동한다. 이때 용제(34)에 용해된 바인더(33)도 관통 구멍(41)을 통해 이동하므로, 바인더(33)를 집전체와 양 전극층(42A, 42B)의 계면에 편석시킬 수 있다. 이로 인해, 바인더(33)에 의한 앵커 효과에 의해 집전체와 전극층(42A, 42B)의 접착 강도를 향상시킬 수 있다. 또한, 전극층(42A, 42B) 내의 바인더(33)가 집전체측에 많이 존재하는 경사 구조로 되므로, 전극층(42A, 42B)과 집전체의 계면 접착 강도가 높아진다.
(b) 고형분이 다른 고고형분의 전극재 슬러리는, 고형분이 높은 전극재 슬러리(21A)를 복수의 관통 구멍(41)을 구비하는 집전체인 집전박(40)의 한쪽 면 상에 도포 시공하고, 그 후에, 고형분이 낮은 전극재 슬러리(21B)를 복수의 관통 구멍(41)을 구비하는 집전체의 다른 쪽 면 상에 도포 시공한다. 이로 인해, 고형분이 낮은 전극재 슬러리(21B)는 집전체의 관통 구멍(41)에 의한 요철에 추종하여 집전체에 융화되어, 고형분이 낮은 전극재 슬러리(21B)에 포함되는 용제(34)의 관통 구멍(41)을 통과한 확산 현상에 의한 침투를 용이하게 한다. 그리고 당해 용제(34)에 용해되어 있는 바인더(33)를 고형분이 높은 전극층(42A)과의 계면(집전체의 관통 구멍)에 편석시킬 수 있다.
(c) 집전체에 형성하는 복수의 관통 구멍(41)은, 전극재 슬러리의 퇴적 입도 분포 D50 입경 이하의 직경을 구비하는 원통형으로 하고 있다. 이로 인해, 집전체의 관통 구멍(41)에의 전극재[바인더(33) 이외의 고형분]의 인입을 감소시킬 수 있어, 전극층(42B)의 도막 품질이 안정적으로 향상된다.
(d) 고형분이 다른 고고형분의 전극재 슬러리(21A, 21B)를 복수의 관통 구멍(41)을 구비하는 집전체의 각각의 면 상에 도포 시공한 후, 건조됨으로써, 바인더(33)가 전극층(42A, 42B)과 집전체의 계면에 편석되기 쉽다.
(제2 실시 형태)
도 11 내지 도 13은, 본 발명을 적용한 2차 전지의 전극 구조 및 그 제조 방법의 제2 실시 형태를 나타내는 것으로, 도 11은 본 실시 형태에 의한 전극 제조 방법에 대해 설명하는 도면, 도 12는 진공하에서의 건조ㆍ프레스 공정을 도시하는 도면, 도 13은 얻어지는 전극 구조를 도시하는 도면이다. 본 실시 형태에 있어서는, 진공하에서 일정 시간 유지하여 전극층에 포함되는 기포를 탈포 처리하는 구성을 제1 실시 형태에 추가한 것이다. 또한, 제1 실시 형태와 동일 장치에는 동일한 부호를 붙이고 그 설명을 생략 내지 간략화한다.
도 11에 있어서, 본 실시 형태의 전극의 제조 방법에서는, 혼련 공정, 도포 시공 공정의 후공정에 있어서, 진공조(51) 내의 진공 분위기 중에서 건조 공정ㆍ프레스 공정을 실시하여 전극을 제조한다. 상기 혼련 공정, 도포 시공 공정은, 제1 실시 형태와 마찬가지로 실시된다.
진공 분위기 중에서의 건조 공정ㆍ프레스 공정에 있어서는, 도포 시공 공정에 있어서 도포 시공된 전극 혼련물(21A, 21B)을, 도 12에 도시하는 바와 같이, 진공조(51) 내의 진공 분위기 중에서 일정 시간 유지하여 전극 혼련물(21A, 21B)에 포함되는 기포를 탈포 처리한다. 이에 의해, 전극재 슬러리의 도포 시공(형성)시에 집전박(40)의 관통 구멍(41) 내에서 기포를 포함하여 공공(vacancy)으로 되는 경우라도, 포함되는 기포가 진공 분위기에 의해 혼련물(21A, 21B)의 표면측으로 이동되어 혼련물(21A, 21B) 표면으로부터 분위기 중으로 이탈시킬 수 있다. 그리고 공공으로 되어 있었던 영역에는, 공공 대신에 바인더(33)가 용해된 용제(34)에 의해 채워진다.
이로 인해, 바인더(33)가 용해된 용제(34)의 관통 구멍(41) 내로의 확산 및 관통 구멍(41)을 통한 고고형분 농도의 전극층(42A)과 집전박(40)의 계면에의 확산이 촉진된다. 이 결과, 용제(34)에 용해되어 있는 바인더(33)의 관통 구멍(41) 내로의 편석 및 관통 구멍(41)을 통한 고고형분 농도의 전극층(42A)과 집전박(40)의 계면에의 편석이 촉진된다. 따라서, 동시에 실행되는 건조에 의해, 전극 혼련물(21A, 21B)로부터 용매(34)를 완전히 휘발시켜 고형분 100%의 전극층(42A, 42B)으로 한 경우에, 관통 구멍(41) 내에의 편석 및 관통 구멍(41)을 통한 고고형분 농도의 전극층(42A)과 집전박(40)의 계면에의 편석된 바인더(33)가 존재하게 된다.
그 후, 건조된 전극 혼련물 전극층(42A, 42B)을, 프레스 장치(40)에 의해 표리 양면으로부터 압박하여, 전극층(42A, 42B)의 두께를 조정한다. 이 프레스에 의해, 도 13에 도시하는 바와 같이, 압박된 전극층(42A, 42B)은 바인더(33)를 통해 집전박(40)에 압박되어 집전박(40)의 표면에 추종하면서 압축 변형된다.
그로 인해, 전극층(42A, 42B) 내의 바인더(33)가 집전박(40)측에 많이 존재하는 경사 구조로 되므로, 전극층(42A, 42B)과 집전박(40)의 계면 접착 강도가 상승한다. 또한, 집전박(40)의 관통 구멍(41)에 편석된 바인더(33)에 의한 앵커 효과에 의한 접착 강도가 가산되므로, 전극층(42A, 42B)과 집전박(40)의 접착 강도를 한층 더 향상시킬 수 있다.
본 실시 형태에 있어서는, 제1 실시 형태에 있어서의 효과 (a) 내지 (d)에 가하여 이하에 기재한 효과를 발휘할 수 있다.
(e) 고형분이 다른 고고형분의 전극재 슬러리(21A, 21B)를 복수의 관통 구멍(41)을 구비하는 집전체로서의 집전박(40)의 각각의 면 상에 도포 시공한 후, 진공 분위기에 미리 설정한 시간 투입한다. 이것에 의해, 전극재 슬러리의 도포 시공(형성)시에 공공으로 되어 있는 집전박(40)의 관통 구멍(41)에 바인더(33)가 용해된 용제(34)가 이동하기 쉬워져, 전극층(42A, 42B)의 집전체에 대한 앵커 효과가 촉진된다. 또한, 전극층(42A, 42B) 내의 바인더(33)가 집전체측에 많이 존재하는 경사 구조로 할 수 있어, 전극층(42A, 42B)과 집전체의 계면 접착 강도가 향상된다.
4a : 정극 집전체(집전체)
4b : 정극층(전극층)
6a : 부극 집전체(집전체)
6b : 부극층(전극층)
21 : 전극 혼련물, 전극재 슬러리
33 : 바인더
34 : 용제
40 : 집전박(집전체)
41 : 관통 구멍
42A, 42B : 전극층

Claims (6)

  1. 전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체 상에 배치하고, 그 전극 혼련물로부터 용매를 휘발시켜 상기 집전체 상에 전극층을 형성하는 2차 전지의 전극 제조 방법이며,
    고고형분 농도의 전극재 슬러리 및 저고형분 농도의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면 상에 도포 시공하는 것을 특징으로 하는, 2차 전지의 전극 제조 방법.
  2. 제1항에 있어서, 상기 고고형분 농도의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 한쪽 면 상에 도포 시공하고,
    그 후에, 저고형분 농도의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 다른 쪽 면 상에 도포 시공하는 것을 특징으로 하는, 2차 전지의 전극 제조 방법.
  3. 제1항 또는 제2항에 있어서, 상기 집전체에 형성하는 복수의 관통 구멍은, 전극재 슬러리의 퇴적 입도 분포 D50 입경 이하의 직경을 구비하는 원통형인 것을 특징으로 하는, 2차 전지의 전극 제조 방법.
  4. 제1항 또는 제2항에 있어서, 고고형분 농도의 전극재 슬러리 및 저고형분 농도의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면 상에 도포 시공한 후, 진공 분위기에 미리 설정한 시간 투입하는 것을 특징으로 하는, 2차 전지의 전극 제조 방법.
  5. 제1항 또는 제2항에 있어서, 고고형분 농도의 전극재 슬러리 및 저고형분 농도의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면 상에 도포 시공한 후, 건조되는 것을 특징으로 하는, 2차 전지의 전극 제조 방법.
  6. 전극재와 용매를 혼련시킨 슬러리상의 전극 혼련물을 집전체 상에 배치하고, 그 전극 혼련물로부터 용매를 휘발시켜 상기 집전체 상에 전극층을 형성하는 2차 전지의 전극 구조이며,
    고고형분 농도의 전극재 슬러리 및 저고형분 농도의 전극재 슬러리를 복수의 관통 구멍을 구비하는 집전체의 각각의 면 상에 도포 시공하고, 저고형분 농도의 전극재 슬러리에 포함되는 용제가 관통 구멍을 통해 고고형분 농도의 전극재 슬러리로 확산 이동하는 것에 의해, 당해 용제에 용해한 바인더를 집전체와 양 전극층의 계면에 편석시키도록 한 것을 특징으로 하는, 2차 전지의 전극 구조.
KR1020110055847A 2010-06-17 2011-06-10 2차 전지의 전극 구조 및 그 제조 방법 KR101279174B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2010-138053 2010-06-17
JP2010138053A JP5760335B2 (ja) 2010-06-17 2010-06-17 二次電池の電極構造及びその製造方法

Publications (2)

Publication Number Publication Date
KR20110137735A KR20110137735A (ko) 2011-12-23
KR101279174B1 true KR101279174B1 (ko) 2013-06-26

Family

ID=45503910

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110055847A KR101279174B1 (ko) 2010-06-17 2011-06-10 2차 전지의 전극 구조 및 그 제조 방법

Country Status (2)

Country Link
JP (1) JP5760335B2 (ko)
KR (1) KR101279174B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101924142B1 (ko) * 2015-04-07 2018-11-30 주식회사 엘지화학 전극 및 이의 제조방법
JP2017037748A (ja) * 2015-08-07 2017-02-16 日立化成株式会社 リチウムイオン二次電池用負極及びそれを用いたリチウムイオン二次電池
KR102622500B1 (ko) * 2021-06-09 2024-01-09 비나텍주식회사 전극 제조 방법 및 이를 이용하여 제조된 전극 조립체

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250109A (ja) * 1995-03-13 1996-09-27 Nippondenso Co Ltd 二次電池
KR970018821A (ko) * 1995-09-30 1997-04-30 윤종용 전지의 전극플레이트 및 이의 제조방법
JPH11111272A (ja) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd 電池用電極の製造方法及び電池用電極
JP2005129456A (ja) * 2003-10-27 2005-05-19 Nissan Motor Co Ltd ゲル電解質バイポーラ電池とその製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055671B2 (ja) * 2003-07-31 2008-03-05 日産自動車株式会社 非水電解質電池
JP4352972B2 (ja) * 2004-04-02 2009-10-28 日産自動車株式会社 電極およびこれを用いてなる電池
JP2010109354A (ja) * 2008-09-30 2010-05-13 Nippon Zeon Co Ltd 電気化学素子用電極の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250109A (ja) * 1995-03-13 1996-09-27 Nippondenso Co Ltd 二次電池
KR970018821A (ko) * 1995-09-30 1997-04-30 윤종용 전지의 전극플레이트 및 이의 제조방법
JPH11111272A (ja) * 1997-10-01 1999-04-23 Mitsubishi Heavy Ind Ltd 電池用電極の製造方法及び電池用電極
JP2005129456A (ja) * 2003-10-27 2005-05-19 Nissan Motor Co Ltd ゲル電解質バイポーラ電池とその製造方法

Also Published As

Publication number Publication date
KR20110137735A (ko) 2011-12-23
JP5760335B2 (ja) 2015-08-05
JP2012003949A (ja) 2012-01-05

Similar Documents

Publication Publication Date Title
JP5445871B2 (ja) 電池用電極の製造方法
US8852787B2 (en) Batteries having inorganic/organic porous films
JP5842407B2 (ja) リチウムイオン二次電池の製造方法
CN102160227B (zh) 双极性二次电池、双极性二次电池的制造方法、双极性电极、双极性电极的制造方法以及电池组
KR20190127674A (ko) 전극 시트, 전고체 전지, 전극 시트의 제조 방법 및 전고체 전지의 제조 방법
DE102016100583A1 (de) Verfahren zur Herstellung einer Sekundärbatterie mit nichtwässrigen Elektrolyten und Sekundärbatterie mit nichtwässrigen Elektrolyten
CN102956916A (zh) 具有电解质-嵌入隔离颗粒的锂离子电池
CN101315993A (zh) 一种叠片式锂离子电池的制造方法
JP6026823B2 (ja) 二次電池用電極の製造方法
US20070243649A1 (en) Centrifugally Cast Electrochemical Cell Components
DE112014006933T5 (de) Beschichtung von Partikeln aus aktivem Elektrodenmaterial für Lithium-Sekundärbatterien
CN110783521B (zh) 固体电池用电极和固体电池
JP2013065478A (ja) リチウムイオン二次電池の製造方法
KR101279174B1 (ko) 2차 전지의 전극 구조 및 그 제조 방법
JP2013101867A (ja) 非水電解質二次電池、及びその製造方法
JP2000268813A (ja) 電池及びキャパシタの電極構造、並びに電極の製造方法
CN107819103B (zh) 具有提高的活性材料份额的电极
JP2013073721A (ja) 電池の製造方法
EP2487739B1 (de) Verfahren zur Herstellung einer Bipolarplatte und Bipolarplatte für eine bipolare Batterie
JP2011198559A (ja) 電極製造方法、電極製造装置、及び電極
KR101378453B1 (ko) 리튬 이차전지의 제조방법과 이에 의해 제조된 리튬 이차전지
US20220285668A1 (en) Method for producing secondary battery electrode and method for producing secondary battery
JP6264780B2 (ja) 電極製造方法および電極製造装置
EP2157642A2 (de) Verfahren zur Herstellung einer Bipolarzelle und Bipolarzelle für eine bipolare Batterie
JP2004022332A (ja) 繊維状水素吸蔵合金を用いた電極並びに繊維状水素吸蔵合金を用いた電池及び電気二重層キャパシタ

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160519

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170522

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180516

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 7