KR101261655B1 - 객체 변형 장치 및 방법 - Google Patents

객체 변형 장치 및 방법 Download PDF

Info

Publication number
KR101261655B1
KR101261655B1 KR1020077019912A KR20077019912A KR101261655B1 KR 101261655 B1 KR101261655 B1 KR 101261655B1 KR 1020077019912 A KR1020077019912 A KR 1020077019912A KR 20077019912 A KR20077019912 A KR 20077019912A KR 101261655 B1 KR101261655 B1 KR 101261655B1
Authority
KR
South Korea
Prior art keywords
delete delete
reactant
tip
probe
sample
Prior art date
Application number
KR1020077019912A
Other languages
English (en)
Other versions
KR20070115919A (ko
Inventor
배리 에프. 홉킨스
데이비드 제이. 레이
제프리 이. 레클레어
로이 화이트
Original Assignee
레이브 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36755533&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101261655(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 레이브 엘엘씨 filed Critical 레이브 엘엘씨
Publication of KR20070115919A publication Critical patent/KR20070115919A/ko
Application granted granted Critical
Publication of KR101261655B1 publication Critical patent/KR101261655B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30608Anisotropic liquid etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G5/00Alleged conversion of chemical elements by chemical reaction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/318Inorganic layers composed of nitrides
    • H01L21/3185Inorganic layers composed of nitrides of siliconnitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3213Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
    • H01L21/32133Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
    • H01L21/32134Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Drying Of Semiconductors (AREA)
  • Weting (AREA)

Abstract

방법과 장치는 특정 위치에서 표면에 반응물을 위치시킨 다음, 표면을 변형하여 재료를 제거하거나 추가하도록 장치의 에너지 소스를 반응물로 지향시키는 것을 포함한다.

Description

객체 변형 장치 및 방법{APPARATUS AND METHOD FOR MODIFYING AN OBJECT}
본 발명은 전반적으로 상대적으로 높은 체적 및 위치 정확도를 가진 재료 변형에 관한 것이다. 더 구체적으로 말해서 포토리소그래피(photolithography) 공정에 사용되는 반도체 웨이퍼 및 포토마스크 반도체 생성물 및 마이크로, 나노 구조의 변형에서와 같이 반도체 산업에서 사용되는 기판 및 아이템으로부터의 재료의 제거 및 추가에 관한 것이다. 본 발명은 나노미터 정도의 범위의 크기로, 표면 및 나노미터의 위치 정확성(X, Y, 및 Z)을 가진 표면 특징들에 대하여 기판 변형을 할 수 있다.
반도체 공정에서 사용되는 마스크 내의 결함을 정정하는 것과 더불어 반도체 산업 및 다른 산업용의 웨이퍼, 반도체 다이, 포토마스크 및 평판 디스플레이/마이크로 디스플레이 소자를 변형하고 제조할 때, 때때로 직경 또는 표면적에 대하여 비교적 깊이가 깊은 작은 구멍과 다른 형상들을 생성하는 것이 필요하다. 때때로 위치 정확성이 높은 다른 소자 특징들에 대하여 작은 구멍과 형상들을 생성하는 것도 필요하다. 구멍들과 관련하여, 형상비(aspect ratio)가 큰 구멍은 생성하기가 어렵다. 형상비란 깊이 대 폭 비를 의미하는 것을 유념하라.
형상비가 큰 구조와 관련된 난관을 극복하려는 노력은 비교적 성공적이지 못 했다. 일반적으로 이러한 해법들은, 이온 빔, 전자 빔, 또는 레이저 빔과 같은 입자 빔을 사용하여 샘플로부터 재료를 도려낸다. 예를 들어 버즐리 외의 미국특허 제6,403,388호는 이러한 목적으로 전자 빔을 사용하는 방법을 제시한다. 이러한 빔 장치는 빔 내에 가스를 도입하여 샘플 표면에 재료를 증착하기 위해서도 사용될 수 있다. 그러나 이러한 해법에는 분명한 단점이 있다.
미국특허 제6,827,979호, 미국특허 제6,635,311호 및 머킨 외의 미국특허출원 제10/261,663호, 미국특허출원 제10/449,685호, 미국특허출원 제10/442,188호, 미국특허출원 제10/465,794호, 미국특허출원 제10/301,843호, 미국특허 제10,261,663호는 주사탐침현미경(scanning probe microscope)을 사용하여 작은 크기의 객체에 재료를 추가하는 방법을 지도한다. 이러한 지도들은 추가 공정 메카니즘으로 화학적 기법을 제시한다. 이러한 지도는 전자기, 입자 빔 또는 가스 재료를 사용한 추가 재료의 활성화를 포함하지 않는다. 여기에서 출원인들에 의해 설명된 활성화 수단의 사용 및 장치는 출원인의 발명에 실질적으로 더 많은 다목적성을 일으킨다.
슈바르쯔의 미국특허 제6,737,646호와 제6,674,074호는 팁을 코팅하고 원자힘현미경(atomic force microscope)으로 이 코팅을 객체에 도포함으로써 재료를 객체에 추가하는 것을 제시한다. 발명은 더 나아가 가스를 수용하는 챔버를 지도한다. 그러나 이 발명은, 에너지 장치로써 코팅 또는 재료가 결코 활성화되지 않는 분명한 단점이 있다. 에너지 소자를 포함하면, 객체에 재료를 추가하는 시간이 상당히 감소한다.
이온 빔을 사용하여 재료의 제거를 시도하면, 이온은 샘플 또는 소자에 다양한 깊이로 들어갈 수 있다. 그 결과, 들어온 이온에 의해 소자의 특성이 변하게 되기 때문에 소자가 사용 불가능해진다. 이온 빔 내 가스의 도입도 이온 빔 챔버 내의 수용과 적절한 가스의 선택에 있어서 추가적인 문제를 제기한다.
전자 빔을 이용하는 경우, 샘플이 전하를 발생시키기 시작하면 빔의 위치 제어가 어려워진다. 이 현상은 전자 빔이 비전도성 또는 전도성이 불량한 기판 표면을 타격할 때 발생한다. 그 결과, 이 방법의 정확성은 최종 사용자에게 심각한 우려가 된다. 이러한 빔의 사용은 통제가 안 되는 피해를 일으킬 수 있고, 표적 소자를 사용불가능하게 만들 수 있다. 전자 빔 내로의 가스의 도입은 또한 전자 빔 챔버 내 수용과 적절한 가스의 선택에 있어서 문제를 제기한다.
레이저 광을 이용하는 경우, 달성가능한 초점의 크기에 의해 구멍의 크기가 제한될 수 있다. 공칭 초점보다 작은 재료 변형이 달성되는 경우에는, 제거 깊이 및 이에 따른 형상비가 제한된다. 이렇게 되면 레이저 광은, 집속된 광선의 파장 한계로 인해 제한된 응용성을 갖는 부분적인 해결책이 될 뿐이다.
아울러, 반도체의 처리와 평가에 있어서, 하위표면 특징들에 대한 물리적인 접근도 필요할 수 있다. 구멍에 인접한 소자 내 특징들에 대한 파괴나 손상을 막기 위해, 직경이 작은 구멍 또는 둥글지 않은 구멍의 작은 면적이 바람직하다. 종래 기술의 해결책은 어느 것도 상대적인 정확도와 정밀도로 이 일을 달성할 수 없다.
따라서 큰 위치 정확성과 체적 제어로써 반도체와 같은 샘플을 변형할 수 있는 기법이 필요하다. 반도체나 표적 소자를 변형하여, 최종 사용자가 필요로 하는 재료를 추가할 수 있는 것도 필요하다. 인접한 영역에 큰 영향을 미치지 않고 다양한 수준의 재료를 제거할 수 있는 것도 필요하다. 큰 형상비의 특징들과 큰 위치 정확성의 결합은 인접 영역에 대한 영향을 제한한다.
상기의 필요는 본 발명에 의해 상당히 충족되는데, 한 편으로 일부 실시예에서는, 재료가 제거 또는 추가되도록, 반도체 소자와 같은 객체가 변형되는 것을 허용하는 장치가 제공된다. 본 발명은, 반응물을 변형될 소자 위에 놓고, 반응물이 표면을 바람직하게 변형할 수 있도록, 반응물이 에너지의 한 형태를 받게 함으로써 이 일을 달성한다. 반응물은 소자의 조성에 기초하여, 원하는 작업에 대해 고유하게 선택된다. 본 발명의 다양한 실시예에서 상기 소스의 에너지의 형태는, 빛 에너지, 소리 에너지, 또는 열 형태의 에너지일 수 있다. 에너지는 또 달리 전자, 이온, 또는 다른 원자 입자와 같은 입자 빔 에너지일 수 있다. 반응물은, 가스를 반응물 주변 영역에 도입함으로써 활성화된다.
반응물은 재료를 샘플로부터 제거하는 것이 필요한지 또는 샘플에 재료를 추가해야 하는지에 따라 선택된다. 반응물의 정확한 배치는 일반적으로 주사탐침현미경을 이용하여 이루어진다. 주사탐침현미경은 탐침 상에 매우 가는 팁을 구비한 탐침 조립체를 사용하는 현미경의 한 종류이다. 탐침 조립체는 매우 정확한 위치지정 메카니즘을 이용하여 X, Y, 및 Z 방향으로 유도된다. 이러한 현미경은 일반적으로 탐침과 샘플의 표면 간의 어떤 특별한 상호 작용을 이용한다. 예를 들어 주사터널링현미경(scanning tunneling microscope)은 탐침의 팁과 샘플 사이에 작은 바이어스 전압을 인가한다. 그리고 나서 이 현미경은 팁으로 또는 팁으로부터 샘플로 흐르는 전류를 탐지한다. 또 다른 유형의 주사탐침현미경은 주사힘현미경(scanning force microscope)이다. 이 현미경은 탐침 조립체 상의 매우 날카로운 팁을 이용한다. 팁은 캔틸레버(cantilever)에 장착되어 있다. 팁에 작용하는 원자간 인력 또는 반발력에 의해 발생하는 캔틸레버의 휨이 감시된다. 다른 유형의 주사탐침현미경들은 전기 용량 또는 자기 탐지 메카니즘을 이용한다. 여기에 설명된 본 발명은 일반적으로 주사힘현미경을 제시하지만, 다른 유형의 주사탐침현미경들도 동일하게 상기의 여러 실시예에서 기능을 잘할 수 있다.
본 발명의 한 실시예에 따라, 객체를 변형하는 방법은, 반응물을 샘플 또는 객체 상에 위치시키는 것과 에너지를 반응물로 향하게 하는 것을 포함하는데, 에너지는 반응물을 활성화시켜서 샘플 또는 객체를 변형하도록 배열된다. 반응물은 샘플의 조성에 기초하여 선정 또는 선택된다. 샘플은, 재료를 제거하거나 재료를 추가함으로써 변형될 수 있다.
본 발명의 또 다른 실시예에 따라, 객체를 변형하는 장치는 객체 상에 위치하는 반응물과 객체를 변형하기 위해 반응물로 출력이 향하도록 배열된 에너지 소자를 포함한다. 이 실시예는 객체 상에 반응물을 위치시키도록 배열되는 조립체를 더 포함할 수 있다.
본 발명의 또 다른 실시예에 따라, 샘플을 변형하는 공정에 의해 제작된 제작물은 샘플 상에 반응물을 위치시키는 것과 에너지 소스를 반응물 쪽으로 지향시키는 것을 포함하는데, 반응물과 더불어 에너지는 샘플을 변형하도록 배열된다. 샘플은 재료를 제거하거나 재료를 추가함으로써 변형된다.
본 발명의 또 다른 실시예에서는, 유체 반응물의 방향을 캔틸레버와 팁 조립체 내에 형성된 채널을 통해 지향시킴으로써 유체 상태인 반응물이 샘플의 표면에 전달된다. 여기에 참조로 이용된 클레이의 미국특허 제6,337,479호와 제6,353,219호는 주사힘현미경의 캔틸레버와 팁 내의 채널을 이용한 유체 전달 시스템을 설명한다.
지금까지 본 발명의 상세설명 부분과 본 기술 분야에 대한 기여가 더 잘 이해되도록 하기 위해 본 발명의 특정 실시예들을 다소 광범위하게 개괄적으로 설명하였다. 물론 하기에 설명되고 청구 범위의 주요 내용이 될 본 발명의 추가적인 실시예들이 있다.
이러한 측면에서, 본 발명의 적어도 하나의 실시예를 상세히 설명하기 전에, 본 발명은 그 응용에 있어서 하기의 설명에 제시되거나 도면에 도시된 상세한 구성 내용 및 요소들의 배열에 제한되지 않음이 이해되어야 한다. 본 발명은 설명된 실시예들 이외의 실시예가 가능하고, 다양한 방법으로 실행 및 실습될 수 있다. 또한 여기에 이용된 어구와 용어, 및 요약문은 설명을 목적으로 한 것이며, 제한적인 것으로 여겨서는 안 된다.
이와 같이, 본 기술 분야의 숙련자들은, 본 명세서가 기초로 하는 개념이 본 발명의 여러 목적을 실행하는 다른 구조물과 방법 및 시스템 설계를 위한 기초로서 쉽게 이용됨을 이해할 것이다. 따라서 본 발명의 정신 및 범위에서 벗어나지 않는 한 청구의 범위는 이와 동등한 구성을 포함하는 것으로 여겨지는 것이 중요하다.
도 1A는 표적 소자의 표면 위로 위치한 탐침 팁 상에 일정량의 제거 반응물(subtractive reactant)을 가진 주사탐침현미경 탐침 조립체를 도시한다.
도 1B는 반응물이 표적 소자 표면의 표면에 젖은 상태인, 표적 소자 근처에서 탐침 팁 상에 일정량의 제거 반응물을 가진 주사탐침현미경 탐침 조립체를 도시한다.
도 1C는 광선이 반응물 쪽으로 지향된, 표면에 일정량의 제거 반응물을 가진 표적 소자 표면을 도시한다.
도 1D는 표면상의 제거 반응물의 활성화의 결과인 딤플(dimple)을 가진 표적 소자 표면을 도시한다. 이 활성화는 광선에 의해 일어난다.
도 2A는 표적 소자의 표면 위의 탐침 팁 상에 일정량의 추가 반응물을 가진 주사탐침현미경 탐침 조립체를 도시한다.
도 2B는 반응물이 표적 소자 표면의 표면에 젖은, 표적 소자 근처의 탐침 팁 상에 일정량의 추가 반응물을 가진 주사탐침현미경 탐침 조립체를 도시한다.
도 2C는 광선이 반응물 쪽으로 지향된, 표면에 일정량의 추가 반응물이 있는 표적 소자 표면을 도시한다.
도 2D는 표면상의 추가 반응물의 활성화의 결과인 범프(bump)를 가진, 표적 소자 표면을 도시한다. 이 활성화는 광선에 의해 일어난다.
도 3A는 반응물 풀(pool)로부터 일정량의 반응물을 끌어당기는 주사탐침현미경 탐침 조립체를 도시한다.
도 3B는 일정량의 반응물을 운반하는 탐침 팁을 도시한다.
도 4A는 제거 반응물이 사전 도포로 인해 생긴 표면 딤플 위로 반응물을 증착하는 주사탐침현미경을 도시한다.
도 4B는 에너지 빔을 반응물 쪽으로 지향시키는 전자기 소스를 도시한다.
도 4C는 반응물의 제2 또는 이어지는 증착과 식각액(etchant)에 반응하지 않는 재료의 정지층(stop layer)에 의해 발생된 공동(void)을 도시한다.
도 5A는 이전에 제거 반응물을 도포해서 생긴 표면 딤플 위로 추가 반응물을 증착하는 주사탐침현미경을 도시한다.
도 5B는 에너지 빔을 추가 반응물 쪽으로 지향시키는 전자기 소스를 도시한다.
도 5C는 재료의 정지층 상부에 추가 반응물을 도포하여 생성된, 부분적으로 채워진 공동을 도시한다.
도 5D는 추가 반응물의 도포에 의해 생성된, 채워진 공동을 도시한다.
도 6A는 다층 소자를 도시한다.
도 6B는 비전도성 잔류물로 채워진, 샘플 내 구멍의 식각 결과를 도시한다.
도 6C는 비전도성 잔류물 내 구멍의 식각 결과를 도시한다.
도 6D는 비전도성 잔류물 내의 채워진 구멍을 도시한다. 본 도면의 채움 잔류물은 전도성이 있다.
도 7은 팁과 반응물 상의 정전기 전하와 표적 소자 상의 반대 정전기 전하를 도시한다.
도 8A는 반응물로 코팅된 탐침 팁을 도시한다.
도 8B는 샘플의 표면으로 탐침 팁을 낮춘 탐침 조립체의 캔틸레버를 도시한다.
도 8C는 탐침이 표면으로부터 치워진 후 샘플의 표면에 증착된 반응물을 도시한다.
도 9A는 액체 용제에 담궈진 반응물로 코팅된 탐침 팁을 도시한다.
도 9B는 코팅된 탐침 팁이 제1 반응물 액적과 반응할 때 발생하는 제2 반응물 액적을 도시한다.
도 10A는 샘플 표면에의 유체의 전달을 위해 탐침 조립체 내에 채널을 포함하는 탐침 조립체를 가진 레이저 화학 기계가공 시스템을 도시한다.
도 10B는 채널로부터 샘플의 표면으로의 유체의 전달을 도시한다.
도 10C는 유체가 샘플의 표면에 증착된 후 이를 활성화시키는 에너지 소스를 도시한다.
도 11A는 다중의 반응물 액적을 샘플 표면상에 놓는 것을 도시한다.
도 11B는 샘플 상의 다중 반응물 액적의 활성화를 도시한다.
도 11C는 샘플 표면상의 액적들의 배치 및 활성화로 생긴 형상을 도시한다.
이제 도면을 참조하여 본 발명을 설명하는데, 전체적으로 동일한 도면 부호는 동일한 부분을 나타낸다. 본 발명에 따른 실시예는 소량의 화학 물질과 같은 액체 또는 고체 재료의 입자를 사용하는데, 이것이 객체의 표면을 변형시키는 반응물 이다. 이 액적 또는 입자는 일반적으로 작은 끝을 가진 탐침에 의해 샘플 상에 놓인다.
본 발명의 장치와 방법의 실시예가 도 1A에 도시되어 있는데, 표적 소자의 표면 위에서 탐침 팁 상에 일정량의 제거 반응물을 가진 주사탐침현미경 탐침 조립체를 도시한다. 이 도면에서 주사탐침현미경 탐침 조립체(10)는 탐침 레버(12)와 탐침 팁(14)을 포함하고 있다. 바람직한 실시예에서는, 반응물(16)을 표적 소자 표면(18)에 정밀하고 정확하게 놓기 위해 주사탐침현미경 탐침 조립체(10)가 사용된다. 이렇게 하기 위해, 반응물(16), 본 실시예에서는 삭감 또는 제거 반응물이 탐침 팁(14) 상에 배치된다. 일단 탐침 팁(14) 상에 놓이면, 반응물(16)이 부착된 탐침 팁(14)은 소자의 표면(18) 위의 바람직한 위치로 이동된 다음, 그 표면으로 이동된다.
탐침 팁(10)은 탐침현미경에 사용된 유형의 것일 수 있다. 샘플 상공과 샘플 상에 이러한 탐침을 정확하게 위치시키는 것은 탐침현미경 장치의 사용에 의해 달성될 수 있다. 이러한 방식으로, 반응물(16)은 표면 또는 표면 형상에 대하여 나노미터 범위 정도의 고정밀도로 샘플의 표적 소자 표면(18)에 놓인다. 바람직한 실시예에서 반응물(16)은 그 크기가 1 제곱 나노미터 내지 60 제곱 나노미터 정도의 범위에 있을 수 있다.
도 1B는 반응물이 표적 소자 표면(18)의 표면에 젖은, 표적 소자 근처에서 탐침 팁(14) 상에 일정량의 제거 반응물(16)을 가진 주사탐침현미경 탐침 조립체(10)를 도시한다. 본 발명의 바람직한 실시예에서는, 일반적으로 반응물(16)이 액체 형태이다. 반응물(16)이 표적 소자 표면(18) 또는 기판으로 운반되는 동안, 반응물(16)이 주사힘현미경의 탐침 팁(10)에 부착되도록 하기 위해 표면력(즉, 표면장력 및 표면부착)에 의존한다. 반응물(16)이 표면(18)에 충분히 가까워지면, 반응물(16)은 모세관 작용을 통해 표면(18)으로 이동한다. 이 경우, 팁 재료와 반응물(16)은, 팁 재료가 반응물(16)에 적어도 부분적으로 친화적인, 재료와 반응물 군으로부터 선택된다. 또한 이 경우에 팁(14)으로부터 기판으로의 반응물(16)의 전달을 용이하게 하기 위해 기판 재료가 친수성을 띌 수 있다. 이 실시예에서 팁 재료와 반응물(16)의 선택은, 팁(14)이 반응물(16)과의 화학 반응에 저항하도록 하는 것이다. 이어지는 실시예에서, 팁 재료와 반응물은, 팁(14)과 반응물(16) 사이에 순하거나 강할 수도 있는 반응이 일어나도록 선택될 것이다.
도 8과 9에 도시된 본 발명의 또 다른 실시예에서는, 탐침 팁(14)이 반응물 또는 반응물의 성분을 내포하게 된다. 이것은 사용 전에 팁(60)을 코팅함으로써 이루어진다. 이러한 경우, 가장 가능성이 있는 팁이 공정 중에 소모가능한 것이 된다. 팁(60)으로부터의 반응물의 전달은 코팅된 팁이 표면에 맞닿게 함으로써 달성되는데, 도 8B 참조, 반응물(62)(코팅의 일부)을 배치시킨다, 도 8C 참조. 전달은 코팅된 팁을 반응물의 또 다른 성분 또는 코팅의 일부를 녹이는 용제에 담금으로써 달성될 수도 있다. 이 공정은 코팅된 팁 반응물(74)의 기판 표면으로의 전달을 용이하게 할 것이다. 또 이들 실시예에서는, 전달된 재료를 바람직한 최종 형태로 변화시키기 위해 전자기(EM) 에너지가 기판에 전달된 재료로 지향된다. 이 실시예와 관련하여, 코팅을 입히는 대신 반응물 재료로부터 팁이 직접 제작될 수도 있다. 도 8과 9가 여기에 추가적으로 자세히 설명됨을 유념하라.
본 발명의 또 다른 실시예에서는, 탐침 팁(14) 및/또는 기판상에 전하를 발생시켜서도 팁으로의, 그리고 팁으로부터의 반응물(16)의 전달이 용이해진다. 이 실시예에서는 반응물(16)이 정전기력에 의해 기판으로 끌리고, 희생되는 팁의 용해 부분은 반응물과 함께 기판에 전달된다. 이어지는 단계에서 EM 에너지가 전달된 재료로 지향되고, 전달된 재료는 최종 상태로 변한다.
도 1C는 광선이 반응물 쪽으로 지향된, 표면(18) 상에 일정량의 제거 반응물을 가진 표적 소자 표면(18)을 도시한다. 바람직한 실시예에서는 이 광선이, 발산하는 전자기 빔(22)을 가진 전자기 소스(20)를 포함한다.
반응물(16)을 활성화시킴으로 인해 발생할 수 있는 부스러기들을 제거하기 위해, 샘플 표면(18) 위로 가스 전송 매체(23)가 보내어진다. 또 달리 소스(20)를 사용하거나 사용하지 않고 반응물(16)을 활성화하는데 가스 매체(23)가 사용될 수 있다.
본 발명의 바람직한 실시예에 따라, 소자 표면(18) 위에 반응물(16)을 놓은 후, 반응물(16)이 존재하는 샘플 표면으로 전자기 에너지(일반적으로 레이저로부터 유도됨)가 지향된다. 전자기 에너지의 수준은, 반응물(16) 내 화학 물질을 활성화시켜서 화학 물질이 샘플의 표면을 식각하고 대략적으로 액적 또는 입자 크기의 딤플을 남길 만큼 에너지가 충분할 정도로 설정된다. 반응물(16)과 전자기 에너지의 반복 적용에 의해, 딤플의 직경 또는 표면적의 큰 확대 없이 소정의 깊이 또는 탐지된 깊이가 도달될 때까지 딤플이 깊어질 수 있고, 따라서 형상비가 큰 구멍을 생 성할 수 있다. 반복 공정 중에, 표면 또는 표면 특징에 대해 팁을 재지정하는 것이 필요할 수 있다. 예를 들어 제거 지점의 깊이가 특정한 최종 깊이에 도달하는지 확인하는 것이 필요할 수 있다. 이러한 경우, 존재하는 반응물이 표면 위로 놓이지 않도록 위치를 확인하기 전에 팁이 청소될 수도 있다. 팁으로부터 잔존 반응물을 청소하는 한 가지 방법은 팁 재료에 실질적인 영향을 미치지 않는 반응물 용제에 팁을 담그는 것이다.
도 1D는, 광선(22)에 의해 유발된 표면상의 제거 반응물(16)의 활성화의 결과인 딤플(24)이 있는 표적 소자 표면(18)을 도시한다. 이 예에서, 사용자는 제조 공정 중에 우연히 나타나거나 발생된 재료를 제거하기를 원했다. 재료가 반도체 소자이면, 이 재료는 소자를 작동불능으로 만들 수 있는 부적절한 연결부가 될 수 있다. 여러 예에서, 반도체 소자가 다시 만들어져야 할 것이다. 그러나 본 발명을 이용하면, 반도체 소자 상의 매우 작은 또는 미세한 특징들이 고쳐질 수 있다. 여러 예에서 특징들은 너무 작아서 이들을 제거하거나 재구성할 다른 적절한 방법이 없다. 본 발명을 이용하면, 이러한 형상들은 실질적으로 더 정확하게, 짧은 시간 안에 변형될 수 있다.
도 2A는 표적 소자 표면(18)의 표면 위의, 탐침 팁(14) 상에 일정량의 추가 반응물(26)을 가진 주사탐침현미경 탐침 조립체(10)를 도시한다. 표적 소자 재료 상에 추가 재료를 생성하는 공정은 재료를 제거하는 공정과 유사하다.
추가 반응물(26)이 탐침 팁(14) 상에 있게 되면, 도 2B에 도시된 바와 같이 반응물이 표적 소자 표면의 표면에 젖은 상태에서, 주사탐침현미경 탐침 조립 체(10)가 표적 소자 표면(18) 근처에 추가 반응물(26)을 위치시킨다. 바람직한 실시예에서, 재료가 추가되는 위치는 사전에 사용자에게 알려진다. 표면에 재료를 추가하기를 원할 때, 사용자는 해결하고자 하는 문제와 관련하여 추가 반응물을 선택한다. 추가 반응물(26)을 선택할 때, 주사탐침현미경 조립체(10)는 탐침 팁(14)을 통해 용기와 같은 하나의 위치에서 이를 제거하여 표적 소자 표면(18)으로 옮긴다. 팁 재료가 부분적으로 반응물(16)과 반응을 하면, 기판으로의 반응물의 전달이 이루어지기 전에 팁도 부분적으로 반응물에 녹는다. 팁 부분, 즉 희생되는 팁은, 녹은 부분이 잔류물(28)의 생성에 기여하도록 액체 반응물에 녹을 수 있다.
도 2C는 광선의 방향이 반응물(26)에 맞추어진, 표면상에 일정량의 추가 반응물(26)을 가진 표적 소자 표면(18)을 도시한다. 일단 탐침 팁(14)이 추가 반응물(26)을 표적 소자 표면(18) 상에 위치시키면, 반응과 표적 소자(18)의 표면상에 추가 재료의 형성을 시작하는 EM 빔(18)을 받는다.
도 2D는 돌출부가 형성된 표적 소자 표면(18)을 도시한다. 잔류물(28)의 범프는, EM 빔(22)에 의해 발생된 표면상의 추가 반응물(26)의 활성화로부터 생성된다. 일단 잔류물(28)이 생성되면, 기술자는 도 1A-1D에 설명된 방법을 통해 필요한 경우 추가 잔류 물질을 생성 또는 추가하거나 잔류물(28)의 전부 또는 부분을 제거한다.
액적 또는 입자는, 전자기 에너지에 의해 활성화된 후 소자상에 잔류물(28)을 남긴다. 이 잔류물(28)은 도체 또는 절연체로서 작용한다. 소자가 포토마스크이면, 잔류물은 빛 흡수제로서 작용할 수 있다.
EM 빔(22) 소스는 일반적으로 레이저, 즉 비간섭광 소스이거나 다른 실시예에서 고주파수의 라디오파이다. 파장 범위 상에서 조절가능한 레이저 또는 전자기 소스가 특정 응용에 바람직하다. 이러한 레이저로, 샘플 상의 작은 영역의 재료를 식각 또는 제거하게 되는 상태로, 반응물을 여기하거나 재료 제거율을 증가시키게 되는 상태로 반응물을 여기시킨다.
소자로부터 제거하거나 재료를 소자에 증착하기 위해 두 가지 메카니즘이 사용된다. 첫 째는, 바람직한 실시예로서, 광열 효과(photo-thermal effect)이다. 이 메카니즘에서는 반응물이 EM 에너지에 의해 여기되어 반응물 내의 열 증가를 일으킨다. 이 열 증가는 반응물이 더 빨리 식각되게 할 수 있다. 또 달리, 광열 효과를 이용하면, 반응물은 도체, 절연체, 또는 불투명 층으로서 작용하는 고체 잔류물로 변할 수 있다. EM 에너지 수준은, 소자 재료를 녹이지 않고 반응 속도를 증가시키는 수준으로 반응물을 여기시키도록 선정된다.
반응물(16)의 조성은 선택된 위치에서 소자로부터 재료의 제거를 일으키기에 충분한 여기 상태로 들어가고 이 위치의 주변 재료에 영향을 미치지 않도록 선택될 수 있다.
반응물(26)의 조성은 또 달리 바람직한 특성을 보인 잔류물을 증착시키도록 선택되고, 소자 재료에 변화를 일으키지 않고 잔류하는 반응물(26)을 감소시키도록 여기가 선택된다.
또 다른 실시예에서는 광화학 효과를 통해, 재료를 제거하거나 증착하는 제2 메카니즘이 이루어진다. 이 메카니즘에서는 화학적 특징 또는 조성을 변화시키도록 반응물이 여기된다. 한 예에서는 에너지 소스에 의해 반응물(16)이, 소자 재료와 화학적으로 반응하는 또 다른 재료로 변할 수 있다. 또 다른 예에서는, 반응물(26)이, 예를 들어 반응물 재료의 화학적 변화를 일으키는, 반응물의 혼합물 내 촉매를 활성화시킴으로써 액체에서 고체로 형태가 변할 수 있다. 이러한 방식으로 전도성 또는 절연성 재료가 소자 재료에 추가될 수 있다. 이러한 조성 변화에는 반응물의 광전송 상의 변화(예를 들어, 투명에서 부분적 또는 완전 불투명으로)가 수반될 수도 있다. 또, EM 에너지 및/또는 파장의 수준은, 소자 재료에 직접적인 영향을 주지 않으면서 화학 반응을 감소시키는 수준으로 반응물을 여기시키도록 선택된다. EM 에너지가 빛인 경우, 조절가능한 레이저 또는 다른 소스가 이용될 수 있다. 이때 조절가능한 소스의 파장은 반응이 수용가능한 속도로 진행하도록 하는 파장으로 조절된다.
상이한 반응물을 선택하면, 주변 또는 아래쪽의 상이한 유형의 샘플 재료를 교란시키지 않고 샘플 재료가 제거될 수 있다. 추가적으로, 재료의 선택은, 층을 이룬 특정 유형의 샘플이 식각 공정을 정시시키는데 사용될 수 있는 층을 가지도록 선택된다. 그래서 표적 소자 내 소위 "식각 정지(etch stop)" 층이 공정의 일부가 될 수 있다. 이 층은, 식각 용액 또는 고체에 크게 반응하지 않고, 따라서 식각 재료가 여기 에너지와 함께 접하는 제1 층과 반응하지만 식각 정지층에 도달하면 식각 공정이 정지되거나 실질적으로 느려지는 공정을 허용하는 재료로 구성된다.
본 발명과 함께 사용될 수 있는 전형적인 재료는 다음과 같다.
팁 재료 기판 재료 반응물
규소 규소 수산화칼륨
이산화규소 석영 수산화나트륨
질화규소 질화 규소 황산
탄소 알루미늄 플루오르화 수소산
질화탄탈 알루미늄 산화물 염화 제2철
탄화 규소 지르코늄 산화물 인산
탄화 텅스텐 규화몰리브덴 질산나트륨
크롬 질산
질화탄탈 과염소산
2족 또는 3족 원소가 첨가된 규소
4족, 5족, 또는 6족 원소가 첨가된 규소
티타늄 질산암모늄세륨
구리, 철, 강 염화나트륨
게르마늄 황산칼륨
탄소 완충 플루오르화 수소산
플로오르화 수소산
질산, 및 황산의 화합물
이러한 목록은 모든 것을 포함하고 있는 것이 아니라, 팁용 원소, 산화물 및 금속, 그리고 반응물용 수산화물, 산, 및 화합물 유형을 나타낸다.
본 발명의 한 예는 규소와 같은 소자의 표면에서 재료를 제거하는 것이다. 규소의 제거를 일으키는 것으로 밝혀진 반응물은 수산화칼륨과 수산화나트륨이다. 본 발명에서는, 일정량의 반응물, 수산화칼륨이 주사탐침현미경 조립체(10)의 탐침 팁(14)에 의해 소스로부터 채취된 다음, 바람직한 위치에 놓인다. 일단 위치되면, 표면에 위치한 일정량의 수산화칼륨이 EM 에너지, 이 예에서는 대략 1.5와트의 레이저 전력을 가진, 초점이 맞추어진 아르곤 이온 레이저를 받는다. 일단 EM 에너지를 받으면, 재료의 제거는 탐침 팁(14)에 의해 수산화칼륨의 위치로 제한된다.
질산나트륨이 금속에 대해 일반적으로 효과적인 제거 반응물의 역할을 하는 것으로 밝혀졌다. 인산, 황산, 및 수산화칼륨은 스테인리스 스틸과 티타늄에 대해 효과적인 제거 반응물의 역할을 한다.
도 3A는 반응물 용기(32)에 담겨진 반응물 풀(30)로부터 일정량의 반응물을 끌어당기는 주사탐침현미경 탐침 조립체(10)를 도시한다. 도 3B는 일정량의 반응물을 운반하는 탐침 팁(14)을 도시한다. 바람직한 실시예에서는, 반응물(16)이 표적 소자 표면(18) 또는 기판으로 운반되는 동안 반응물 용기(32)의 반응물이 주사탐침현미경 조립체(10)의 탐침 팁(14)에 붙어있도록 하기 위해 표면력이 이용된다. 팁 재료와 반응물(16)은, 팁 재료가 적어도 부분적으로 반응물에 친화적인, 일단의 재료와 반응물로부터 선정된다. 추가적으로 기판 재료는 팁으로부터 기판으로의 반응물의 이동을 용이하게 하기 위해 친수성을 띌 수 있다.
팁(14)은 친수성 절연체(33)로 코팅되고 여전히 반응물(30)을 끌 수 있다. 이러한 방식으로, 팁(14)은 반응물(30)에 놓인 전하와 반대로 하전될 수 있다. 전 하의 차이가 충분히 크면, 반응물(30)은 응집력과 중력이 극복될 만큼 충분한 힘으로 팁(14)에 부착된다. 그 다음 반응물(30)은 샘플(18)로 이동된다. 절연체(33)는 반응물(30)과 팁(14) 사이의 전하의 소멸을 막는다. 팁(14)이 샘플(18)에 가까워지면, 반응물(30)과 팁(14) 사이의 전하 차이가 중화되고, 절연체(33)의 친수성은 반응물(30)을 샘플(18) 쪽으로 보낸다. 이 실시예에서 반응물(30)은 고체이거나 액체이다.
또 다른 실시예에서, 팁(14)은 반응물 또는 반응물(34)의 성분으로 코팅되거나 반응물 물질로 제작된다. 그 다음 반응물(34)은 도 8C에 도시된 것과 같이 소자 표면에 대한 팁(14)의 직접 접촉에 의해 표면(35)에 전달될 수 있다. 팁(14)도 액체 반응물의 전달에 대해 설명된 것과 유사한 방식으로 액체에 놓여 반응물 혼합을 완료하거나 반응물의 전달을 도울 수 있다. 이 실시예에서는, 도 9A에 도시된 것과 같이 팁 코팅 부분이 액체에 녹고, 결과 반응물은 반응물(34)로써 기판에 전달된다. 이 실시예에서, 반응물(34)을 효과적으로 전달하기 위해 팁은 더 자주 교체될 필요가 있다.
본 발명의 또 다른 실시예에서는, 팁으로 및 팁으로부터의 반응물(16)의 전달은 또한 팁 및/또는 기판상에 전하를 발생시킴으로써 용이해질 수 있다. 또한 이 실시예에서는 희생되는 팁 부분이 기판에 전달된다. 이어서 EM 에너지가 전달된 물질로 지향되고, 전달된 물질은 최종 상태로 변한다.
도 4A는 제거 반응물(36)을 표면 위로 증착시키는 탐침 팁(14)을 가진 주사탐침현미경 조립체(10)를 도시한다. 이 도면에서는, 반응물(34)의 사전 도포로 미 리 생성된 딤플(37) 내로 반응물(36)이 증착되고 있다. 도 4A는 상이한 재료의 다층을 포함하는 표적 소자(38)를 포함한다. 이 다층은 제1 소자층(40)과 제2 소자층(42)이다.
도 4A에 도시된 재료 내 딤플(37)은, 추가 재료의 제거를 위한 반응물 공정을 이용하기 전에 다른 방법에 의해서도 생성되었을 수 있다. 예를 들어, 소자를 생성하기 위해 이용된 공정 중에 딤플(37)이 생성되었을 수 있다. 딤플(37)은 표면에 대한 팁의 직접 접촉에 의해 주사탐침 팁(14)으로도 생성되었을 수 있다. 딤플(37)을 생성 또는 형성하는 다른 수단은 이온 빔 또는 레이저 빔의 사용을 포함한다. 소정의 딤플은, 배치 중에 반응물을 이상적인 위치로 유도하는 것을 돕는데 사용될 수 있다. 위치도 제거 또는 추가 공정 중에 반응물을 바람직한 위치로 제한하는 것을 도울 수 있다. 또한 소자는 제작 중에 이미 결정된 딤플들은 소자 내 다른 비접근 구조에 대해 높은 위치 정확성을 가질 수 있다.
도 4A의 제거 반응물(36)의 반복 도포는, 제2 소자층(42)에의 분명한 연결을 달성하기 위해서 이루어진다. 제1 소자층(40)의 두께로 인해, 이 목적을 달성하기 위해 제거 반응물(36)의 다중 도포가 필요하다.
도 1A-1D와 유사하게, 본 도면에서 딤플 생성물인 제거 반응물(36)이 표면상에 놓이면, 도 4B에 도시된 바와 같이 제1 소자층(40)의 추가 재료를 제거하기 위해 EM 에너지와 발생하는 빔(22)이 제거 반응물(36)에 집속된다.
도 4C는 제거 반응물의 반복 도포에 의해 생성된 공동(44)을 도시한다. 추가적으로 소자층 내의 상이한 재료로 인해 제2 소자층(42)은 식각액에 반응하지 않는 정지층인 것이 눈에 띈다. 다시 말해서 제1 소자층(40)에 대해 선정된 식각액은 제2 소자층(42) 상의 재료를 식각 또는 제거하는 것과 동일한 효과를 갖지 않는다.
도 5A는 반응물을 표면의 딤플(48)로 위치시키는 주사탐침현미경 조립체(10)를 도시한다. 이 실시예에서, 기술자는 제거 반응물(16)의 이전 도포로 인해 생긴 표면 상에 추가 물질을 생성하려고 한다.
도 5A는 도 4A-4C에 상술된 표적 소자(38)이다. 앞서 상술된 바와 같이 표적은 제1 소자층(40)과 제2 소자층(42)을 포함한다. 도 4A-4C에 상술된 재료를 제거하였기 때문에, 기술자는 이제 연결부를 완성하여야 한다.
도 5B는 에너지 빔(22)을 추가 반응물(50)로 지향시키는 전자기 소스를 도시한다. 추가 반응물(50)이 빔(22)을 받게 함으로써, 표적 표면에 대한 추가 반응물(50)의 더 빠른 화학 반응이 일어난다.
도 5C는 추가 반응물(50)에 대한 빔의 결과를 상세히 도시한다. 빔은 공동(54)을 부분적으로 채우는 잔류물(52)을 반응물이 생성하게 하였다. 재료층은 이제 재료의 정지층(55) 상부에 추가 반응물(50)을 도포하여 생성된다.
도 5D는 추가 반응물(50)을 도포하여 생성된 채워진 공동(54)을 도시한다. 이 구체적인 예에서, 추가 반응물(50)은 표적 소자 상의 또 다른 물체로의 연결부를 생성할 수 있다. 예를 들어 표적 소자가 반도체인 경우, 공동(54)을 추가 반응물(50)로 채우면 하나의 트랜지스터에서 또 다른 트랜지스터로의 연결부가 될 수 있다.
본 발명에서 볼 수 있듯이, 소자에 가해질 수 있는 수리 또는 변형은 무수히 많다. 도 5D에 상술된 것과 같은 그러한 연결부를 생성하는 것은 일반적으로 새로운 소자의 완전한 생성을 요구할 것이다. 본 발명을 이용하면, 업체는 여기에 제시된 기법으로 단순히 표면을 변형하여 소자를 재사용하거나 수정할 수 있다.
도 6A는 다층 소자를 도시한다. 이 도면에는 네 개의 소자층, 즉 제1 소자층(40), 제2 소자층(42), 제3 소자층(56), 및 제4 소자층(58)이 있다. 네 개의 층(40, 42, 56, 58)은 각각 이산화규소(SiO2), 규소(Si), 이산화규소(SiO2), 규소(Si)이다.
도 6B는 처음의 세 개 층(40, 42, 56) 각각을 통해 생성된 구멍(59)을 도시한다. 이 도면에서 구멍(59)은 비전도성 플러그(plug)(60)로 채워져 있다. 제1 소자층(40)을 통과하는 통로를 생성하기 위해, 주사탐침현미경 조립체(10)에 의해 층 위에 완충 플루오르화 수소산과 같은 반응물이 배치된다. 일단 배치되면, 이산화규소 재료를 식각 또는 제거하기 위해 빔(22)이 반응물에 집속된다. 완충 플루오르화 수소산 반응물이 제2 소자층(42), 규소에 반드시 효과적인 것은 아니다. 따라서 이층은 정지층으로서 작용하여 반응물이 제2 소자층(42)을 파고들거나 식각하는 것을 막는다.
제2 소자층(42)이 정지층으로서 작용하면, 소자를 통한 식각 공정을 계속하기 위해 또 다른 반응물이 선정된다. 제2 소자층(42), 즉 규소에 대한 재료의 제거가 효과적인 반응물은 수산화나트륨이다. 제1 소자층(40)과 같이, 반응물은 빔(22)을 받아 재료를 제거한다. 이 공정은 필요한 재료가 제거되어 제3 소자층(56), 즉 이산화규소에 도달할 때까지 계속된다. 제3 소자층(56)의 재료를 제거하기 위해, 제1 소자층(40)에서와 같이, 이산화규소 제거 반응물인 완충 플루오르화 수소산으로 공정이 반복된다.
모든 층에 걸쳐 필요한 재료가 일단 제거되면, 비전도성 잔류물(60)을 생성하기 위해 반응물이 추가되다. 도 6B에서는, 이어서 생성되는 전도성 플러그의 절연체를 만들기 위해 비전도성 플러그(60)가 생성된다.
도 6C는 제4 소자층(58)으로 이어지는 통로를 생성하는, 비전도성 플러그(60)가 개방된 구멍을 더 갖는 다음 단계를 도시한다. 이 도면에 도시된 바와 같이, 층(42)은 이제 층(58)으로부터 절연된다.
도 6D는 절연체(60) 내에 생성된 구멍이 전도성 잔류물(61)로 채워진 것을 도시한다. 잔류물을 생성하는 소자는 도 5A-5D와 관련하여 상술된 소자와 유사하다. 이 도면에서 연결부는 제4 소자층(58), 규소로부터 위쪽으로 제3 소자층(52)을 거쳐 제2 소자층(42)과 제1 소자층(40)을 직접 연결한다. 그 다음 잔류물(61)은 제1 소자층(40)의 상부 표면을 가로질러 위치하고, 의도된 연결부 위로 위치한다.
도 7은 반대 전하가 팁(14)과 반응물(26), 및 기판(18) 상에 배치되는 것을 도시한다. 이것이 반응물(26)을 기판(18)에 끌리도록 만든다. 팁(14)과 샘플(18) 상의 전하 배치 후, 반응물(26)을 가진 탐침(10)이 샘플(18)로 이동된다. 반응물(26)과 샘플(18) 사이의 거리가 충분히 작으면, 팁(14)에 반응물(26)을 붙드는 표면력보다 쿨롱힘이 더 커진다. 이 거리에서 반응물(26)은 팁(14)으로부터 분리되어 샘플(18)로 이동한다. 도 8A는 탐침 팁(14) 상의 반응성 코팅(62)을 도시하는 데, 탐침 조립체(10)의 일부이다. 이 도면은 샘플 표면(18)으로 이동되기 전의 탐침 조립체(10)를 도시한다.
도 8B는 반응성 코팅(62)을 가진 탐침 팁(14)을 도시한다. 추가적으로 이 도면은 팁(14)을 샘플 표면(18)으로 낮춘 캔틸레버(10)를 도시한다.
도 8C는 탐침 팁(14)이 샘플 표면(18)으로부터 올려질 때의 예를 도시한다. 도면에 도시된 바와 같이, 일단 탐침 팁(15)이 제거되면, 일정량의 코팅(63)이 표면(18)에 남는다. 이 코팅(63) 잔류물이 이어서 활성화되는 반응물이 된다.
도 9A는 소량 또는 액적 반응물(16)을 더 포함하는 코팅된 팁(14)을 도시한다. 이 실시예에서, 반응물(16)은 코팅(62)과 반응하여 도 9B에 도시된 제2 반응물(64)을 형성하였다. 이 혼합물은 반응물 소스로부터 표면으로 액적이 옮겨질 때 발생한다.
반응물을 옮기는 중에 이 제2 반응물은 대부분의 예에서 녹은 코팅(62) 부분을 함유한다. 일단 바람직한 영역으로 옮겨지면, 제2 반응물(64)은 샘플 표면(18)에 놓인다.
도 10A는 내부 채널(70)을 가진 캔틸레버(66)와 팁(68)을 포함하는 탐침 조립체(65)를 도시한다. 내부 채널(66)은 이 도면에 점선으로 도시되어 있다.
채널(70)은 도 10B에 도시된 유체 반응물(72)을 채널(70)을 통해 팁(68)에 전달하여 샘플 표면(18)으로의 유체 반응물(72)의 전달을 준비한다. 도 10C에 도시된 바와 같이, 반응물(72)이 샘플 표면(18)에 배치된 후, 레이저(20)가 유체 반응물(72) 액적을 활성화시킨다. 선택된 반응물(72)의 유형에 따라, 도 1A-1D, 및 2A- 2D에 도시되고 설명된 것과 같이 샘플(18)의 일부가 제거되거나 샘플(18) 상에 잔류물이 남게 된다.
도 11A는 기판의 평면도이다. 이 도면은 본 발명의 실시예에 따라 특정한 형상이 생성되는 방식을 도시한다. 더 구체적으로 말해서, 이 도면은 거의 정사각형 모양인 공동의 샘플 표면(18) 내 생성을 도시한다. 팁(미도시)에 의해 많은 반응물(16) 액적이 샘플(18)에 놓인다. 도 11B에 상세화된 전자기 소스(20)는 액적을 한번에 하나씩 활성화시키거나 빔(22)의 직경이 모든 액적을 포함할 만큼 충분히 크면 한꺼번에 활성활시킨다. 반응물 액적(16)이 충분한 점성을 가지면, 이들을 함께 당기기에 표면력이 불충분하여 이들이 모두 샘플(18) 상에 놓일 수 있다. 그 다음 레이저 빔(22)에 의해 액적들(16)이 모두 한꺼번에 활성화될 수 있다. 또, 반응물(16)이 점성을 가지면, 반응물(16)을 액적의 형태로 놓는 대신, 다양한 형태의 선으로 반응물(18)이 끌어 당겨질 수 있다. 빔(22)의 반복 적용과 더불어 여기에 설명된 반응물(16)의 이러한 반복 도포는, 도 11C에 상세화된 것과 같이, 임의의 깊이의 큰 형상비의 벽을 가진 공동 형상(74)을 샘플(18) 내에 생성한다.
도시된 바와 같이, 직사각형과 같이 간단한 개략적 형상들이 생성될 수 있다. 크고 작은 직사각형, 정사각형, 원, 및 직선들의 조합을 이용하여 더 복잡한 형상의 생성물도 생성될 수 있다. 복잡한 형상들도 깊이와 폭이 생성될 수 있다. 연장을 하면, 전술한 추가 반응물을 이용하여 복잡한 추가 형상의 높이와 폭이 생성될 수 있다. 또한 연장을 하면, 서로에 대하여 정밀하게 또는 샘플(18) 상의 다른 모양들에 대하여 정밀하게 배치된, 대략적으로 원형인 구멍 또는 형상들의 배열 이 생성될 수 있다. 또, 배열을 생성하는 반응물은 단 하나의 위치에서 연속적으로 활성화될 수도 있고, 또는 초점이 맞추어진 광점이 충분히 크게 만들어지는 경우 동시에 다중 위치에서 반응물이 활성화될 수 있다.
명세서로부터 본 발명의 여러 특징들과 장점들이 분명하고, 따라서 첨부된 청구항들은 본 발명의 이러한 특징들과 장점들을 모두 담으려고 하고 있는데, 이는 본 발명의 진정한 정신과 범위에 들어온다. 또한 본 기술 분야의 숙련자들에게는 여러 수정과 변형이 쉽게 일어날 수 있기 때문에, 도시되고 설명된 정확한 구성과 작동에 본 발명을 한정하는 것은 바람직하지 않으며, 이에 따라 모든 적절한 변형 및 이에 상응하는 것들이 본 발명의 범위에 들어올 수 있다.

Claims (77)

  1. 객체를 변형하기 위한 장치로서,
    상기 객체에 인접하여 위치된 탐침 팁을 갖는 이동가능한 탐침;
    상기 객체 상에 위치된 반응물; 및
    상기 객체를 변형하기 위해 상기 반응물에 그 출력을 직접적으로 안내하도록 구성된 에너지 장치로서, 상기 반응물은 정전기 작용을 통해 상기 탐침 팁 상에 놓이는 것인, 에너지 장치를 포함하는 객체 변형 장치.
  2. 청구항 1에 있어서, 상기 탐침은 상기 객체 상에 상기 반응물을 위치시키도록 구성된 조립체에 포함되는, 객체 변형 장치.
  3. 청구항 2에 있어서, 상기 조립체는 주사탐침현미경인, 객체 변형 장치.
  4. 청구항 3에 있어서, 상기 반응물은 상기 주사탐침현미경의 탐침 팁으로 위치되는, 객체 변형 장치.
  5. 청구항 4에 있어서, 상기 반응물은 친수성 작용을 통해 상기 탐침 팁에 놓이는, 객체 변형 장치.
  6. 청구항 1에 있어서, 상기 에너지 장치는 전자기 장치인, 객체 변형 장치.
  7. 청구항 1에 있어서, 상기 에너지 장치는 레이저인, 객체 변형 장치.
  8. 청구항 1에 있어서, 상기 에너지 장치는 샘플에 라디오파를 안내하도록 구성된, 객체 변형 장치.
  9. 청구항 1에 있어서, 상기 객체는 단일층 소자인, 객체 변형 장치.
  10. 청구항 1에 있어서, 상기 객체는 두 개 이상의 층으로 구성되는, 객체 변형 장치.
  11. 청구항 10에 있어서, 상기 두 개 이상의 층 중 하나는 정지층으로서 작용하도록 구성된, 객체 변형 장치.
  12. 청구항 10에 있어서, 상기 반응물은 상기 두 개 이상의 층 중 하나로부터 재료를 제거하고 상기 두 개 이상의 층 중 다른 것과 반응하지 않도록 구성된, 객체 변형 장치.
  13. 청구항 1에 있어서, 상기 객체는 반도체 소자인, 객체 변형 장치.
  14. 청구항 1에 있어서, 상기 반응물은 상기 객체로부터 재료를 제거하도록 구성되는, 객체 변형 장치.
  15. 청구항 1에 있어서, 상기 반응물은 상기 객체에 재료를 추가하도록 구성되는, 객체 변형 장치.
  16. 청구항 15에 있어서, 상기 추가된 재료는 도체인, 객체 변형 장치.
  17. 청구항 15에 있어서, 상기 추가된 재료는 절연체인, 객체 변형 장치.
  18. 청구항 15에 있어서, 상기 추가된 재료는 상기 객체의 또 다른 부분과 연결되는, 객체 변형 장치.
  19. 청구항 1에 있어서, 상기 반응물은 상기 객체에 기초하여 선택되는, 객체 변형 장치.
  20. 청구항 1에 있어서, 상기 에너지 장치는 상기 객체 상의 상기 반응물의 반응 시간을 증가시키도록 구성된, 객체 변형 장치.
  21. 청구항 1에 있어서, 탐침 조립체와 유체 전달 채널을 더 포함하는, 객체 변형 장치.
  22. 청구항 1에 있어서, 부스러기 제거 수단을 더 포함하는, 객체 변형 장치.
  23. 청구항 1에 있어서, 특정 형상의 특징들을 생성하기 위해 반응물을 다중 위치에 놓는 단계를 더 포함하는 객체 변형 장치.
  24. 삭제
  25. 삭제
  26. 삭제
  27. 삭제
  28. 삭제
  29. 삭제
  30. 삭제
  31. 삭제
  32. 삭제
  33. 삭제
  34. 삭제
  35. 삭제
  36. 삭제
  37. 삭제
  38. 삭제
  39. 삭제
  40. 삭제
  41. 삭제
  42. 삭제
  43. 삭제
  44. 삭제
  45. 삭제
  46. 삭제
  47. 삭제
  48. 삭제
  49. 삭제
  50. 삭제
  51. 삭제
  52. 삭제
  53. 삭제
  54. 삭제
  55. 삭제
  56. 삭제
  57. 삭제
  58. 삭제
  59. 삭제
  60. 삭제
  61. 삭제
  62. 삭제
  63. 삭제
  64. 삭제
  65. 삭제
  66. 삭제
  67. 삭제
  68. 삭제
  69. 삭제
  70. 삭제
  71. 삭제
  72. 삭제
  73. 삭제
  74. 삭제
  75. 삭제
  76. 삭제
  77. 삭제
KR1020077019912A 2005-02-02 2006-02-02 객체 변형 장치 및 방법 KR101261655B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/047,877 US7323699B2 (en) 2005-02-02 2005-02-02 Apparatus and method for modifying an object
US11/047,877 2005-02-02

Publications (2)

Publication Number Publication Date
KR20070115919A KR20070115919A (ko) 2007-12-06
KR101261655B1 true KR101261655B1 (ko) 2013-05-06

Family

ID=36755533

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020077019912A KR101261655B1 (ko) 2005-02-02 2006-02-02 객체 변형 장치 및 방법

Country Status (5)

Country Link
US (3) US7323699B2 (ko)
JP (1) JP2008532778A (ko)
KR (1) KR101261655B1 (ko)
DE (1) DE112006000310T5 (ko)
WO (1) WO2006083928A2 (ko)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6339217B1 (en) * 1995-07-28 2002-01-15 General Nanotechnology Llc Scanning probe microscope assembly and method for making spectrophotometric, near-field, and scanning probe measurements
US5751683A (en) * 1995-07-24 1998-05-12 General Nanotechnology, L.L.C. Nanometer scale data storage device and associated positioning system
JP4734653B2 (ja) * 2004-09-09 2011-07-27 国立大学法人北海道大学 ゲル基板材料を用いた分子測定装置および分子測定方法
US7323699B2 (en) * 2005-02-02 2008-01-29 Rave, Llc Apparatus and method for modifying an object
US7569112B2 (en) * 2007-03-16 2009-08-04 International Business Machines Corporation Scanning probe apparatus with in-situ measurement probe tip cleaning capability
WO2008137525A2 (en) * 2007-05-01 2008-11-13 Graphic Packaging International, Inc. Package for heating a food product
EP2139788A4 (en) * 2007-05-01 2011-05-04 Graphic Packaging Int Inc PACKAGING FOR HEATING A FOOD PRODUCT
JP5358572B2 (ja) * 2007-08-09 2013-12-04 レイヴ リミテッド ライアビリティ カンパニー 光学材料特性を修正するための装置及び方法
US11311917B2 (en) 2007-08-09 2022-04-26 Bruker Nano, Inc. Apparatus and method for contamination identification
US10384238B2 (en) 2007-09-17 2019-08-20 Rave Llc Debris removal in high aspect structures
US10330581B2 (en) 2007-09-17 2019-06-25 Rave Llc Debris removal from high aspect structures
US10618080B2 (en) 2007-09-17 2020-04-14 Bruker Nano, Inc. Debris removal from high aspect structures
US8287653B2 (en) * 2007-09-17 2012-10-16 Rave, Llc Debris removal in high aspect structures
WO2009061766A2 (en) * 2007-11-05 2009-05-14 Baker Hughes Incorporated Methods and apparatuses for forming cutting elements having a chamfered edge for earth-boring tools
US10016876B2 (en) 2007-11-05 2018-07-10 Baker Hughes, A Ge Company, Llc Methods of forming polycrystalline compacts and earth-boring tools including polycrystalline compacts
JP5168100B2 (ja) * 2008-11-17 2013-03-21 大日本印刷株式会社 フォトマスク等の欠陥修正方法
US8173552B2 (en) * 2009-08-04 2012-05-08 Intel Corporation Method of fabricating an identification mark utilizing a liquid film assisted by a laser
US8814033B2 (en) * 2009-11-16 2014-08-26 Graphic Packaging International, Inc. Triangular vented tray
US8394625B2 (en) * 2010-05-02 2013-03-12 Angelo Gaitas Lab-on-a-pipette
JP6312670B2 (ja) * 2012-07-23 2018-04-18 タッソ インコーポレイテッド 開放マイクロ流体チャンネルに関する方法、システムおよび装置
JP6081218B2 (ja) * 2013-02-20 2017-02-15 新日鉄住金マテリアルズ株式会社 エッチング装置およびエッチング方法
US9099481B2 (en) 2013-03-15 2015-08-04 Semiconductor Components Industries, Llc Methods of laser marking semiconductor substrates
US9499296B2 (en) 2013-07-25 2016-11-22 Graphic Packaging International, Inc. Carton for a food product
US9931714B2 (en) 2015-09-11 2018-04-03 Baker Hughes, A Ge Company, Llc Methods and systems for removing interstitial material from superabrasive materials of cutting elements using energy beams
EP3678953A4 (en) 2017-09-06 2021-06-09 Graphic Packaging International, LLC CARTON WITH AT LEAST ONE HOLDER
USD842095S1 (en) 2017-10-10 2019-03-05 Graphic Packaging International, Llc Carton
DE102018206278A1 (de) * 2018-04-24 2019-10-24 Carl Zeiss Smt Gmbh Verfahren und Vorrichtung zum Entfernen eines Partikels von einer photolithographischen Maske
EP3833608A4 (en) 2018-08-06 2022-04-27 Graphic Packaging International, LLC CONTAINER COMPRISING AT LEAST ONE COMPARTMENT
US11440697B2 (en) 2019-02-28 2022-09-13 Graphic Packaging International, Llc Carton for a food product
USD899246S1 (en) 2019-04-24 2020-10-20 Graphic Packaging International, Llc Carton
USD999055S1 (en) 2020-10-29 2023-09-19 Graphic Packaging International, Llc Carton

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395650B1 (en) 2000-10-23 2002-05-28 International Business Machines Corporation Methods for forming metal oxide layers with enhanced purity
US20050016954A1 (en) * 2003-07-25 2005-01-27 International Business Machines Corporation System and methods of altering a very small surface area

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2521543A1 (de) * 1974-05-16 1975-11-27 Crosfield Electronics Ltd Verfahren und vorrichtung zur wiedergabe von bildern
JPS5157283A (en) * 1974-11-15 1976-05-19 Nippon Electric Co Handotaikibanno bunkatsuhoho
US4379022A (en) * 1979-05-08 1983-04-05 International Business Machines Corporation Method for maskless chemical machining
US4413020A (en) * 1982-02-01 1983-11-01 Texas Instruments Incorporated Device fabrication incorporating liquid assisted laser patterning of metallization
JPS5967634A (ja) 1982-10-09 1984-04-17 Mitsubishi Electric Corp 半導体装置の加工方法
US4414059A (en) * 1982-12-09 1983-11-08 International Business Machines Corporation Far UV patterning of resist materials
US4568409A (en) * 1983-11-17 1986-02-04 Chronar Corp. Precision marking of layers
US4697041A (en) * 1985-02-15 1987-09-29 Teijin Limited Integrated solar cells
US4877481A (en) * 1987-05-28 1989-10-31 Semiconductor Energy Laboratory Co., Ltd. Patterning method by laser scribing
JP2680644B2 (ja) * 1988-01-14 1997-11-19 三洋電機株式会社 光励起エッチング方法
US4987855A (en) * 1989-11-09 1991-01-29 Santa Barbara Research Center Reactor for laser-assisted chemical vapor deposition
US5183534A (en) * 1990-03-09 1993-02-02 Amoco Corporation Wet-etch process and composition
KR950013784B1 (ko) * 1990-11-20 1995-11-16 가부시키가이샤 한도오따이 에네루기 겐큐쇼 반도체 전계효과 트랜지스터 및 그 제조방법과 박막트랜지스터
US5683547A (en) * 1990-11-21 1997-11-04 Hitachi, Ltd. Processing method and apparatus using focused energy beam
DE4126380A1 (de) * 1991-08-09 1993-02-11 Basf Ag Verfahren zur durchfuehrung ortsselektiver katalytischer reaktionen mit oder auf festkoerperoberflaechen im nanometer- und subnanometer-bereich
US5432015A (en) * 1992-05-08 1995-07-11 Westaim Technologies, Inc. Electroluminescent laminate with thick film dielectric
CA2097388A1 (en) * 1992-07-16 1994-01-17 Susan Nord Bohlke Topographical selective patterns
US5265114C1 (en) * 1992-09-10 2001-08-21 Electro Scient Ind Inc System and method for selectively laser processing a target structure of one or more materials of a multimaterial multilayer device
MX9305898A (es) * 1992-10-30 1995-01-31 Texas Instruments Inc Metodo de grabado fotoquimico anisotropico para la fabricacion decircuitos integrados.
JPH0967634A (ja) * 1993-12-28 1997-03-11 Furukawa Electric Co Ltd:The 船舶の空気配管用アルミニウム合金管
JPH07308788A (ja) * 1994-05-16 1995-11-28 Sanyo Electric Co Ltd 光加工法及び光起電力装置の製造方法
US6337479B1 (en) 1994-07-28 2002-01-08 Victor B. Kley Object inspection and/or modification system and method
US6353219B1 (en) 1994-07-28 2002-03-05 Victor B. Kley Object inspection and/or modification system and method
US5569399A (en) * 1995-01-20 1996-10-29 General Electric Company Lasing medium surface modification
EP0731490A3 (en) * 1995-03-02 1998-03-11 Ebara Corporation Ultra-fine microfabrication method using an energy beam
US5641391A (en) * 1995-05-15 1997-06-24 Hunter; Ian W. Three dimensional microfabrication by localized electrodeposition and etching
US5824374A (en) * 1996-07-22 1998-10-20 Optical Coating Laboratory, Inc. In-situ laser patterning of thin film layers during sequential depositing
WO1998042474A1 (fr) * 1997-03-21 1998-10-01 Kabushiki Kaisha Yaskawa Denki Procede et materiel de marquage
US6063695A (en) * 1998-11-16 2000-05-16 Taiwan Semiconductor Manufacturing Company Simplified process for the fabrication of deep clear laser marks using a photoresist mask
US6635311B1 (en) 1999-01-07 2003-10-21 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or products thereby
US6827979B2 (en) 1999-01-07 2004-12-07 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or produced thereby
JP2001110801A (ja) * 1999-10-05 2001-04-20 Takeshi Yao パターン形成方法、並びに電子素子、光学素子及び回路基板
US20030157254A1 (en) 2000-01-05 2003-08-21 Northwestern University Methods utilizing scanning probe microscope tips and products therefor or produced thereby
JP2001319923A (ja) * 2000-05-10 2001-11-16 Ebara Corp 基材の異方性食刻方法及び基材の食刻装置
US20040018139A1 (en) * 2000-09-25 2004-01-29 Xidex Corporation Nanotube apparatus
US6555016B2 (en) * 2000-12-28 2003-04-29 Advanced Semiconductor Engineering, Inc. Method of making multilayer substrate
US6403388B1 (en) 2001-01-05 2002-06-11 Advanced Micro Devices, Inc. Nanomachining method for integrated circuits
WO2002071412A1 (en) 2001-03-02 2002-09-12 Northwestern University Enhanced scanning probe microscope
US6737646B2 (en) 2001-06-04 2004-05-18 Northwestern University Enhanced scanning probe microscope and nanolithographic methods using the same
WO2003038033A2 (en) 2001-10-02 2003-05-08 Northwestern University Protein and peptide nanoarrays
US7102656B2 (en) 2002-05-21 2006-09-05 Northwestern University Electrostatically driven lithography
WO2004023490A2 (en) 2002-09-09 2004-03-18 General Nanotechnology Llc Fluid delivery for scanning probe microscopy
JP2005106790A (ja) * 2003-01-09 2005-04-21 Univ Kanazawa 走査型プローブ顕微鏡および分子構造変化観測方法
US7250139B2 (en) * 2003-03-19 2007-07-31 Northwestern University Nanotipped device and method
KR100520821B1 (ko) * 2003-04-02 2005-10-13 삼성전자주식회사 반도체 소자의 박막 형성방법
US7323699B2 (en) * 2005-02-02 2008-01-29 Rave, Llc Apparatus and method for modifying an object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6395650B1 (en) 2000-10-23 2002-05-28 International Business Machines Corporation Methods for forming metal oxide layers with enhanced purity
US20050016954A1 (en) * 2003-07-25 2005-01-27 International Business Machines Corporation System and methods of altering a very small surface area

Also Published As

Publication number Publication date
WO2006083928A3 (en) 2006-12-21
US20060211252A1 (en) 2006-09-21
US7495240B2 (en) 2009-02-24
WO2006083928A2 (en) 2006-08-10
US20090114850A1 (en) 2009-05-07
US7323699B2 (en) 2008-01-29
KR20070115919A (ko) 2007-12-06
DE112006000310T5 (de) 2007-12-13
JP2008532778A (ja) 2008-08-21
US20060169913A1 (en) 2006-08-03

Similar Documents

Publication Publication Date Title
KR101261655B1 (ko) 객체 변형 장치 및 방법
US7262408B2 (en) Process and apparatus for modifying a surface in a work region
JP2692781B2 (ja) パターン書き込み方法及びその装置
JP6129237B2 (ja) レーザ・アブレーション微細機械加工用の荷電粒子ビーム・マスキング
Joglekar et al. A study of the deterministic character of optical damage by femtosecond laser pulses and applications to nanomachining
KR102139391B1 (ko) 오염 제거 장치 및 방법
US20040155017A1 (en) Method for forming nanoscale features
KR20200018680A (ko) 포토리소그래피 마스크의 과잉 재료의 폐기를 위한 방법 및 장치
US6419752B1 (en) Structuring device for processing a substrate
us Sarwar et al. Batch-mode micropatterning of carbon nanotube forests using UV-LIGA assisted micro-electro-discharge machining
Hwang et al. Nanoscale laser processing and diagnostics
TWI460763B (zh) 用於修飾物件之設備及方法
JP2016130733A (ja) 顕微鏡サンプルからサンプル表面層を改変する方法
Latif Nanofabrication using focused ion beam
JP5077863B2 (ja) 低真空走査型電子顕微鏡を用いた炭素系材料の微細加工方法とその装置
Phan et al. Silicon micro-/nanomachining and applications
JP2007329043A (ja) 荷電粒子線用絞りプレート及びその作製方法
Moening Formation of nano-sharp tips and microbumps on silicon and metal films by localized single-pulse laser irradiation
JPH05283369A (ja) 微細加工装置
JP2002326199A (ja) 微小光学素子の作製方法、及び該作製方法による微小光学素子、該素子を用いた光学装置
Naik Nanowires fabricated by Focused Ion Beam
JP2002323428A (ja) 微小光学素子の作製方法、及び該作製方法による微小光学素子、該素子を用いた光学装置
Song Microfabrication of silicon tips for scanning probe microscopy
Islam____ To the Graduate Council
Rucker Characterization of Processes used in Nanofabrication of Digital Electrostatic E-Beam Array Lithography (DEAL) Devices

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee