KR101149131B1 - 3차원 영상을 표시하기 위한 3차원 영상 표시장치 - Google Patents
3차원 영상을 표시하기 위한 3차원 영상 표시장치 Download PDFInfo
- Publication number
- KR101149131B1 KR101149131B1 KR1020097019279A KR20097019279A KR101149131B1 KR 101149131 B1 KR101149131 B1 KR 101149131B1 KR 1020097019279 A KR1020097019279 A KR 1020097019279A KR 20097019279 A KR20097019279 A KR 20097019279A KR 101149131 B1 KR101149131 B1 KR 101149131B1
- Authority
- KR
- South Korea
- Prior art keywords
- row
- opening
- image display
- length
- display device
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1343—Electrodes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B30/00—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
- G02B30/20—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
- G02B30/26—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
- G02B30/27—Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/133509—Filters, e.g. light shielding masks
- G02F1/133512—Light shielding layers, e.g. black matrix
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/305—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using lenticular lenses, e.g. arrangements of cylindrical lenses
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/302—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
- H04N13/317—Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using slanted parallax optics
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/324—Colour aspects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N13/00—Stereoscopic video systems; Multi-view video systems; Details thereof
- H04N13/30—Image reproducers
- H04N13/349—Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
- G02F2201/52—RGB geometrical arrangements
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Engineering & Computer Science (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Physics (AREA)
- Liquid Crystal (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
- Stereoscopic And Panoramic Photography (AREA)
- Apparatus For Radiation Diagnosis (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
3차원 영상 표시장치에 있어서는, 평면 화상을 표시하는 표시부에는 색성분을 가지는 서브화소(10)가 종방향 및 횡방향으로 매트릭스 모양으로 배열되고, 표시부에 대향해서 광선 제어소자가 설치되어 있다. 광선 제어소자에는, 수직 방향(제2의 방향)으로 연장되는 직선 모양의 광학적 개구부(1)가 횡방향으로 배열되어 있다. 수평 방향(제1의 방향)으로 인접하는 복수의 서브화소(10)의 개구부(1)의 제2의 방향에 따른 개구길이의 합계값은 단일의 행에서는 변동되고, 복수 행의 합에서 일정으로 된다. 또, 서브화소(10)의 배열은, 모자이크 배열 혹은 횡스트라이프 배열의 컬러 배열로 된다.
Description
본 발명은, 3차원 영상을 표시하기 위한 3차원 영상 표시장치에 관한 것이다.
동영상 표시가 가능한 3차원 영상 표시장치, 소위 3차원 디스플레이로서는, 여러 가지의 방식이 알려져 있다. 최근, 특히 플랫 패널 타입이고 또한 전용의 안경 등을 필요로 하지 않는 방식이 강력하게 요망되고 있다. 이 전용의 안경을 필요로 하지 않는 타입의 3차원 영상 표시장치로는, 홀로그래피(holography)의 원리를 이용하는 방식의 영상 표시장치가 있다. 이 홀로그래피의 원리를 이용하는 방식은, 3차원의 풀 컬러 동영상을 표시하는 것이 어렵다고 여겨지고 있다. 이 홀로그래피의 원리를 이용하는 방식에 대해, 직시(直視)형 혹은 투영(投影)형의 액정표시장치 또는 플라스마 표시장치 등과 같이 화소 위치가 고정되어 있는 표시 패널(표시장치)의 직전에 광선 제어소자가 설치되고, 표시 패널로부터의 광선이 제어되어 관찰자로 향하여지는 방식이 있다. 이 방식에 의하면, 비교적 용이하게 3차원 의 풀 컬러 동영상을 표시할 수 있다.
광선 제어소자는, 일반적으로는 패럴렉스 배리어(parallax barrier: 시차 배리어)라고도 불리우고, 광선 제어소자 상의 동일 위치를 관찰해도 관찰하는 각도에 따라 다른 영상이 보이도록 광선이 제어되고 있다. 구체적으로는, 좌우 시차(수평 시차)만을 부여하는 경우에는, 광선 제어소자로서 슬릿 혹은 렌티큘러 시트(실린드리컬 렌즈 어레이)가 이용되고, 상하 시차(수직 시차)도 포함하는 경우에는, 광선 제어소자로서 핀홀 어레이(pinhole array) 혹은 렌즈 어레이가 이용된다.
시차 배리어를 이용하는 방식에도, 더욱이 2안식, 다안식, 초다안식(다안식의 초다안 조건), 인테그랄 이미징(integral imaging; 이하, II라고도 한다)식으로 분류된다. 2안식은 양안(兩眼: 양눈) 시차에 기초해서 입체시(立體視: holoscopic vision)가 실현되지만, 다안식 이후의 3차원 영상은 정도의 차이는 있지만 운동 시차를 수반하기 때문에, 2안식의 입체 영상과 구별해서 3차원 영상이라 불린다. 이러한 3차원 영상을 표시하기 위한 기본적인 원리는, 100년 정도 전에 발명되어 3차원 사진에 응용되는 인테그랄 포토그래피(integral photography: IP)의 원리와 실질적으로 동일하다.
이들 방식 중, II방식은 시점 위치의 자유도가 높고, 쉽게 입체시가 가능하다고 하는 특징이 있다. 수평 시차만이 가능하고 수직 시차를 없앤 1차원 II방식에서는, SID04 Digest 1438 (2004)에 기재되어 있는 바와 같이 해상도가 높은 표시장치도 비교적 용이하게 실현할 수 있다. 이에 대해, 2안 방식 혹은 다안 방식에서는, 입체시가 가능한 시점 위치를 한정함으로써, 1차원 II식에 비해 해상도를 높 이기 쉽고, 시점 위치로부터 취득한 화상만으로 3차원 화상을 생성할 수 있기 때문에, 영상을 작성하기 위한 부하도 낮아진다. 그 대신에, 시야(visual field)가 한정되어 있기 때문에, 시역이 좁아 보기 어렵다는 문제가 있다.
이러한 슬릿 혹은 렌티큘러 시트를 이용한 직시형 나안(裸眼: 맨눈)의 3차원 표시장치에 있어서는, 광선 제어소자의 개구부의 수평 방향(제1의 방향)의 주기적인 구조와, 평면 표시장치에 매트릭스 모양으로 설치된 화소를 이격시키는 비표시부, 또는 화소의 컬러 배열의 수평 방향(제1의 방향)의 주기적인 구조가 광학적으로 간섭하는 것에 의한 무아레 혹은 색무아레가 발생하기 쉽다는 문제가 있다. 그 대책으로서, 광선 제어소자의 주기성을 경사지게 하는, 즉 렌즈를 비스듬하게 기울이는 방법이 알려져 있다. 그렇지만, 이 방법에서는, 3차원 영상 표시 시에 수직?수평 방향으로 연장되는 직선이 들쭉날쭉하게 표시됨으로써, 특히 문자 표시 품위가 낮다고 하는 문제가 있다. 수직 방향(제2의 방향)으로 렌즈 특성이 제공되지 않고, 주기성이 수평 방향에 한정된 수직 렌즈에서는, 문자 표시 품위는 문제로 되지 않지만, 색무아레를 소거하기 위해서는 평면 표시장치의 컬러 배열을 모자이크 배열 혹은 횡스트라이프 배열로 할 필요가 있다. 더욱이, 매트릭스 모양으로 설치된 화소를 이격시키는 비표시부와의 간섭에 의한 무아레를 소거하기 위해서는, JPA No. 2005-86414(일본 특허공개)에 개시되어 있는 바와 같이 평면 표시장치와 렌티큘러 시트 사이에 확산 필름을 추가하는 등에 의해, 수평 방향으로 인접한 서브화소로부터의 광선을 융합해서 수평 방향의 주기성을 없애 무아레를 소거하고 있다. 그러나, 확산 필름을 추가하면, 외광이 산란되어 점등된 환경의 콘트라스트(명 콘 트라스트)가 저하하는 문제가 있다.
수평 방향으로 인접한 서브화소로부터의 광선을 적당히 융합시키는 확산 필름 이외 방법으로서, JP3027506에 개시되어 있는 바와 같이 서브화소의 배열을 델타 배열(delta arrangement)로 하는 방법, 혹은 WO97/02709에 개시되어 있는 바와 같이 수평 방향에 있어서 인접하는 화소가 서로 수평 방향의 좌표 상에서 겹치도록 평행사변형 모양으로 서브화소의 개구부를 정하는 방법, JP3525995에 개시되어 있는 바와 같이 서브화소의 수직 방향(제2의 방향)에 따른 개구길이의 합계값을 수평 방향으로 변동시키지 않는 방법이 알려져 있다. 그렇지만, JP3027506에 따른 설계에서는, 수직 방향으로 연속한 게이트선을 설치할 필요가 있기 때문에, 개구율(numerical aperture)은 50% 이하로 되는 문제가 있다. 또, WO97/02709에 개시되어 있는 바와 같이, 개구 형상을 평행사변형 모양으로 하면서, 서브화소를 수직, 수평 방향으로 중심을 어긋나게 하지 않고 배치하면, 통상 수직 방향으로 연속해서 설치되는 신호선의 설치가 곤란하게 되는 문제가 있다.
더욱이, JP3525995에 나타낸 단순한 개구 형상을 실현하기 위해서는, LCD의 서브화소(10)마다 국재(局在)해서 설치되는 TFT(Thin Film Transistor) 혹은 Cs선 등의 차광성의 소자에 더해서, 차광부(3)를 추가적으로 설치할 필요가 생긴다.
상술한 바와 같이, 주기성이 제1의 방향(수평 방향)으로 한정된 광선 제어소자와, 매트릭스 모양으로 화소가 설치된 평면 표시장치를 조합한 종래의 3차원 영상 표시장치에 있어서는, 광선 제어자와 평면 표시장치와의 제1의 방향의 주기성이 서로 간섭해서 휘도 얼룩(무아레)이 발생한다. 무아레를 소거하는 방법으로서, 제 2의 방향(수직 방향)의 개구길이를 일정(constant)으로 하고, 제2의 방향의 개구길이가 제1의 방향으로 변동하지 않는, 즉 제2의 방향의 개구길이의 주기성을 없애는 방법이 있다. TFT 혹은 Cs선, 액정의 배향 불량의 차폐로 하는 제1의 방향에서의 좌표가 국재화하고 있는 소자 혹은 구조를 설치하면서 이 조건을 만족시키려고 하면, 본래 필요한 차광부에 더해서, 제2의 방향의 개구길이가 제1의 방향에 있어서 일정으로 되도록 본래 불필요한 더미의 차광부를 설치하는 것으로 되어, 개구율이 저하한다고 하는 문제가 있다.
본 발명은, 상기 사정을 고려해서 이루어진 것으로, 그 목적은 주기성이 제1의 방향으로 한정된 광선 제어소자와 평면 표시장치를 조합시킨 3차원 영상 표시장치에 있어서, 평면 표시장치의 서브화소의 제2의 방향의 개구길이를 제1의 방향으로 변동하지 않도록 해서 제1의 방향의 주기성을 없애고, 광선 제어자와의 간섭을 없앰으로써 무아레를 소거하면서 개구율의 저하도 억제한 3차원 영상 표시장치를 제공하는 것에 있다.
본 발명에 의하면, 행 및 열방향으로 배열되는 서브화소의 매트릭스 어레이를 포함하되 평면 화상을 표시하도록 구성된 표시부로서, 당해 각 서브화소가 개구부와 이 개구부를 둘러싸는 차광부를 갖고, 서브화소의 개구부도 행 및 열방향을 따라 매트릭스 모양으로 배열되며, 각 개구부가 행방향의 행좌표에 의존해서 변화되는 열방향에 따른 길이를 갖고, 개구부의 배열이 행방향을 따라 n행째 및 (n+1)행째 개구부를 포함하며, n행째 개구부가 개구부의 길이를 정의하는 제1의 길이 곡선과 행좌표 상에서의 n행째 개구부의 길이의 합을 갖고, (n+1)행째 개구부가 개구부의 길이를 정의하는 제2의 길이 곡선과 행좌표 상에서의 (n+1)행째 개구부의 길이의 합을 가지며, 제1 및 제2의 길이 곡선은 일정하지 않고 제1 및 제2의 길이 곡선의 합성이 일정으로 되도록 하는 상보적인 변화를 갖도록 각각 행좌표에 따라 변화되는 표시부와,
상기 표시부에 대향해서 설치되고, 상기 열방향으로 직선 모양으로 연장되어 상기 행방향으로 배열되어 있는 다수의 광학적 개구부를 갖춘 광선 제어소자를 구비하는 것을 특징으로 하는 3차원 영상 표시장치가 제공된다.
도 1은 본 발명의 일실시예에 따른 3차원 영상 표시장치를 구성하는 평면 화상을 표시하는 표시부의 일부분을 확대해서 나타낸 확대도이다.
도 2의 (a)는 도 1에 나타낸 평면 화상 표시부에서의 제2의 방향(수직 방향)에 따른 서브화소의 개구길이가 제1의 방향(수평 방향)의 좌표에 대해 의존성을 가진다는 취지를 나타낸 그래프이다.
도 2의 (b)는 도 1에 나타낸 평면 화상 표시부에서의 제2의 방향(수직 방향)에 따른 서브화소의 개구길이가 제1의 방향(수평 방향)의 좌표에 대해 의존성을 가진다는 취지를 나타낸 그래프이다.
도 2의 (c)는 도 1에 나타낸 평면 화상 표시부에서의 서브화소(10)의 제1배열마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 3은 비교예에 따른 3차원 영상 표시장치를 구성하는 평면 화상 표시부의 일부분의 확대도이다.
도 4의 (a)는 도 3에 나타낸 평면 화상 표시부에서의 제2의 방향(수직 방향)에 따른 서브화소의 개구길이의 제1의 좌표 의존성을 나타낸 그래프이다.
도 4의 (b)는 도 3에 나타낸 평면 화상 표시부에서의 서브화소의 제1배열마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 4의 (c)는 도 3에 나타낸 평면 화상 표시부에서의 서브화소의 제1배열마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 5는 본 발명의 다른 실시예에 따른 3차원 영상 표시장치를 구성하는 평면 화상을 표시하는 표시부의 일부분을 확대해서 나타낸 확대도이다.
도 6의 (a)는 도 5에 나타낸 표시부에서의 서브화소의 제1배열(N행째 및 (N+1)행째)마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 6의 (b)는 도 5에 나타낸 표시부에서의 서브화소의 제1배열(N행째 및 (N+1)행째)마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 7은 본 발명의 다른 실시예에 따른 3차원 영상 표시장치를 구성하는 평면 화상 표시부의 일부분을 확대해서 나타낸 확대도이다.
도 8은 도 7에 나타낸 표시부에서의 개구 형상과 초점 위치와의 관계를 나타낸 설명도이다.
도 9는 도 7에 나타낸 표시부에서의 표시되는 화상과 개구 형상에 기인하는 휘도차를 설명하기 위한 설명도이다.
도 10은 3차원 영상 표시장치에서의 시점을 기준으로 한 관시각도와 렌즈-화 소간 거리와의 관계를 나타낸 설명도이다.
도 11은 도 10에 나타낸 표시장치에 있어서 디포커스의 관계에 있는 렌즈와 서브화소 형상 사이의 정성적인 관계를 나타낸 설명도이다.
도 12는 시차수 9 및 디포커스 수평폭이 서브화소폭의 40~60%인 렌티큘러 렌즈를 매개로 서브화소폭의 1/2의 파장의 수직 개구길이 변동을 관찰한 경우에 얻을 수 있는 고조파 감쇠 곡선(MTF)을 나타낸 그래프이다.
도 13은 본 발명의 더욱 다른 실시예에 따른 3차원 영상 표시장치를 구성하는 평면 화상을 표시하는 표시부의 일부분을 확대해서 나타낸 확대도이다.
도 14는 도 5에 나타낸 표시부에서의 서브화소의 제1배열마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 15의 (a)는 개구율의 저하가 억제되는 효과를 설명하기 위한 그래프로, 도 1에 나타낸 N행째의 제1배열의 개구 형상에서의 제2의 방향(수직 방향)의 차광 길이의 변동을 나타낸다.
도 15의 (b)는 개구율의 저하가 억제되는 효과를 설명하기 위한 그래프로, 도 1에 나타낸 (N+1)행째의 제1배열의 개구 형상에서의 제2의 방향(수직 방향)의 차광 길이의 변동을 나타낸다.
도 15의 (c)는 도 15의 (a)에 있어서 더미 차광부(3)의 설치에 의해 제2의 방향(수직 방향)의 차광 길이의 변동을 억제한 결과, 개구율이 저하하는 것을 나타낸다.
도 15의 (d)는 도 15의 (b)에 있어서 더미 차광부(3)의 설치에 의해 제2의 방향(수직 방향)의 차광 길이의 변동이 억제된 결과, 개구율이 저하되는 것을 나타낸다.
도 16은 비교예로서 종배선이 제2의 방향(수직 방향)으로 일치되어 있는 평면 화상 표시부의 일부분을 확대해서 나타낸 확대도이다.
도 17은 도 16에 나타낸 표시부에서의 서브화소의 제1배열마다의 차광 길이의 변동의 상태를 나타낸 그래프이다.
도 18은 본 발명의 3차원 영상 표시장치의 전체 구성을 개략적으로 나타낸 사시도이다.
도 19a는 도 18에 나타낸 3차원 영상 표시장치에 이용되는 광선 제어소자를 개략적으로 나타낸 사시도이다.
도 19b는 도 18에 나타낸 3차원 영상 표시장치에 이용되는 광선 제어소자를 개략적으로 나타낸 사시도이다.
도 20의 (a)는 도 18에 나타낸 3차원 영상 표시장치의 전체 구성을 개략적으로 나타낸 전개도이다.
도 20의 (b)는 도 18에 나타낸 3차원 영상 표시장치의 전체 구성을 개략적으로 나타낸 전개도이다.
도 20의 (c)는 도 18에 나타낸 3차원 영상 표시장치의 전체 구성을 개략적으로 나타낸 전개도이다.
도 21은 도 18에 나타낸 3차원 영상 표시장치의 일부의 구성을 개략적으로 나타낸 사시도이다.
이하, 필요에 따라 도면을 참조하면서, 본 발명의 일실시예에 따른 3차원 영상 표시장치를 상세히 설명한다.
도 1은 본 발명의 일실시예에 따른 3차원 영상 표시장치에서의 평면 화상을 표시하는 표시부의 일부분을 확대해서 개략적으로 나타낸 확대도이다.
이 표시부는, 수평 및 수직 방향에 따라 매트릭스 모양으로 배열된 서브화소(10)으로 구성되고, 이 서브화소(10)의 전면에 컬러 필터 세그먼트(color filter segment; 12)가 설치되어 있다. 또, 서브화소(10)는, 차광부(3, 6) 및 이 차광부(3, 6)에 의해 구획된 회소(繪素)로 구성되고, 구획된 회소 및 이 서브화소(10)에 대응하는 컬러 필터 세그먼트(12)에 의해 개구부(1)가 정해진다. 백 라이트(도시하지 않음)로부터 사출된 백색광선이 이 개구부(1)로부터 컬러 필터 세그먼트(12)를 경유함으로써, RGB 색의 어느 쪽인가로 정해진 광선이 표시부의 전방으로 조사되고, 서브화소(10)의 개구부(1)를 통과하는 광선의 광강도 및 색에 따라 화상이 표시부에 표시된다.
서브화소(10)의 개구부(1)는, 도 1에 나타낸 바와 같이 일례로서 일부가 차광부(5, 3B)에서 결손한 거의 평행사변형으로 형성된다. 서브화소(10) 상에는 도 1에 나타낸 바와 같이 컬러 배열된 컬러 필터 세그먼트(12)가 배열되어 있다. 도 1에서의 수평 방향은 제1의 방향에 상당하고, 수직 방향이 제2의 방향에 상당하고 있다. 도 1에서는, 3행×4열의 서브화소(10)로 구성되는 영역이 도시되어 있고, 설명의 편의를 위해 보조선(2)이 정방형으로서 그려져 있다. 또, 도 1에 있어서, 음영부분(shaded part)으로 그려진 부분이 개구부(1)에 상당하고, 탈색한 부분(void part)이 블랙 매트릭스에 상당하고 있다. 여기서, 동일한 음영 패턴은, 동일한 색 길이를 가지는 컬러 필터 세그먼트로 구성되는 개구부(1)에 상당하고 있다.
일반적인 화소 배열에서는, 종배선(신호선 배선)은 제2의 방향(수직 방향)으로 연속해서 직선 모양으로 설치되지만, 도 1에 나타낸 화소 배열에서는, 종배선에 상당하는 차광부(3)가 기울어져 있다. 이와 같이 차광부(3)를 기울임으로써, 도 2의 (a) 및 (b)의 각각에 나타낸 바와 같이 제2의 방향(수직 방향)에 따른 개구부(1)의 개구길이를 제1의 방향(수평 방향)에 따라 거의 일정으로 할 수 있다. 그리고, 동일 형상 및 동일 사이즈의 개구부(1)가 차광부(3)를 매개로 동일한 피치로 제1의 방향(수평 방향)에 따라 배열되어 있다. 여기서, 개구율(numerical aperture)은 1개의 서브화소(10)를 정하는 차광부(3, 3B, 5, 6)를 가산한 면적(S1) 및 개구부(1)의 면적(S2)의 합(S1+S2)에 대한 개구부(1)의 면적(S2)의 면적의 비로서 정의된다. 차광부(3, 6)는, 인접하는 서브화소(10)의 개구부(1)에도 기여함으로써, 어느 개구부(1)를 둘러싸는 차광부(3, 6)의 면적의 일정 비율이 차광부의 면적(S1)에 상당하고, 나머지의 차광부(3, 6)는 개구부(1)에 좌우, 상하로 인접하는 다른 서브화소의 차광부의 면적(S1)에 상당하고 있다. 그리고, 개구부(1)의 제2의 방향(수직 방향)에 따른 길이를 제1의 방향(수평 방향)에 따라 서브화소(10)의 폭에 걸쳐서 적산한 결과가 당해 개구부(1)의 면적(S2)에 상당하고 있고, 차광 부(3, 3B, 5, 6)의 제2의 방향(수직 방향)에 따른 길이를 제1의 방향(수평 방향)에 따라 서브화소(10)의 폭에 걸쳐서 적산한 결과가 당해 차광부(3)의 면적(S1)에 상당하고 있다.
도 1에 나타낸 배치에서는, 차광부(3)의 기울기의 방향은 짝수행 및 홀수행에서 동일하다. 그렇지만, 짝수행과 홀수행이라고 하는 것은 서로 반대로 정해져 있다. 따라서, 차광부(3)는 도 1에 나타낸 바와 같이 개구부(1)를 행마다 구획하는 차광부(3)에 상당하는 횡배선(6)에 의해 굴곡되고, 제2의 방향(수직 방향)에 있어서 차광부(3)에 상당하는 종배선(11)이 전체적으로 사행되도록 거의 제2의 방향(수직 방향)으로 연속해서 연장되어 있다. 도 1에서는, 설명을 간소화하기 위해서 종배선(11)의 기울기의 방향이 행마다 역으로 되는 예를 나타내고 있다. 그러나, 서브화소(10)의 개구 면적 중심이 제1의 방향, 제2의 방향으로 정렬하고 있으면, 동일 행 내에서 종배선(11)이 홀수회 절곡되어도 좋다. 예를 들면, 종배선(11)이 1회 절곡되는 경우는, 서브화소(10)의 하나의 형상이 거의 "도그레그 형상(doglegged shape: L자형)"으로 되도록 형성되어도 좋다.
도 1에 나타낸 표시부에서는, 도 2의 (a)~(c)에 나타낸 바와 같이 제2의 방향(수직 방향)에 따라 N행째의 제1배열의 서브화소(10)에 인접한 (N+1)행째의 서브화소(10)의 개구길이가 N행째의 제1배열의 서브화소(10)의 개구길이의 변동을 소거하고, 제2의 방향에 따라 서로 인접하는 2행의 제1배열의 개구길이의 합이 일정으로 되도록 정해져 있다.
도 1에 나타낸 표시부 및 도 2의 (a)~(c)에 나타낸 개구길이의 제1방향에 따른 변동을 소거할 수 있는 효과를 설명하기 위해, 도 3 및 도 4의 (a)~(c)를 참조해서 설명한다. 도 3은 비교예로서의 표시부의 개구 형상을 나타내고, 도 4의 (a)~(c)는 도 3에 나타낸 표시부의 개구 형상에서의 개구길이 및 차광 길이의 분포를 나타내고 있다.
도 1에 나타낸 바와 같이, 서브화소(10)는 거의 평행사변형의 형상을 가지고 있다. 마찬가지로, 비교예에 따른 도 3에 나타낸 표시부에 있어서도, 서브화소(10)는 거의 평행사변형의 형상을 가지고 있다. 거의 평행사변형의 형상을 가지는 서브화소(10)에 있어서, 제1배열의 제2의 방향(수직 방향)에 따른 개구길이를 완전하게 일정으로 하기 위해서는, 제1의 방향(수평 방향)으로 연장되는 횡배선(6)과 거의 제2의 방향(수직 방향)으로 연장되는 종배선(11)의 교차부(4A)에 차광부(3A)를 설치할 필요가 있다. 여기서, 차광부(3A)의 면적은, 교차부(4A)의 면적과 동등하게 정해져 있다. 이 차광부(3A)를 설치함으로써, 제1배열에 속하는 서브화소(10)의 제2의 방향(수직 방향)에 따른 개구길이의 합계는 제1배열만으로 일정으로 된다.
도 4의 (a)에는, 제2의 방향(수직 방향)에 따른 각 서브화소(10)의 개구길이의 변동이 종축에, 제1의 방향(수평 방향)의 좌표가 횡축에 나타낸 그래프가 나타내어져 있다. 또, 도 4의 (b) 및 (c)의 각각에는, 1행당의 차광 길이의 합이 나타내어져 있다. N행째의 서브화소(10)도 (N+1)행째의 서브화소(10)도 차광 길이가 일정함이 이해된다. 여기서, 차광 길이는 제2의 방향(수직 방향)에 따른 서브화소(10)의 제2의 방향(수직 방향)의 높이(길이)로부터 개구길이를 마이너스한 값으 로 정의된다. (즉, 차광 길이 = (서브화소(10)의 제2의 방향(수직 방향)의 높이) - 서브화소(10)의 제2의 방향(수직 방향)의 개구길이)).
즉, N행째의 서브화소(10)는 어느 개구 형상을 갖고, 이 개구 형상의 제2의 방향(수직 방향)에 따른 개구길이는 도 4의 (a)에 나타낸 바와 같이 서브화소(10)의 개구부(1)의 제2의 방향(수직 방향)에 따른 높이에 상당하고 있다. 즉, 개구부(1)가 거의 평행사변형이기 때문에, 평행사변형의 1변에 상당하는 제1의 방향(수평 방향)의 좌표의 증가와 함께 높이가 증가된다. 도 3에 나타낸 표시부에는 차광부(3A)가 설치되어 있기 때문에, 제2의 방향(수직 방향)에 따른 개구길이는 이 차광부(3A)와 평행사변형의 경사변 사이에서 거의 일정한 높이로 된다. 계속해서, 차광부(3A)의 천정의 변과 평행사변형의 천정의 변 사이에서 거의 일정한 높이로 되고, 그 후 제1의 방향(수평 방향)의 좌표의 증가와 함께 높이가 감소된다. 인접하는 서브화소(10)에 있어서도, 제2의 방향(수직 방향)에 따른 개구길이는 도 4의 (a)에 나타낸 바와 같이 변동된다. 바꾸어 말하면, N행째의 제1배열에 속하는 서브화소의 제2의 방향(수직 방향)에 따른 차광 길이의 합계값이 도 4의 (b)에 나타낸 바와 같이 거의 일정으로 되도록 차광부(3A)가 설치된다. 마찬가지로, (N+1)행째의 제1배열에 속하는 서브화소의 제2의 방향(수직 방향)에 따른 차광 길이의 합계값도 도 4의 (c)에 나타낸 바와 같이 거의 일정으로 되도록 차광부(3A)가 설치된다.
한편, TFT 소자 혹은 스루홀(through hole: 관통 구멍), 셀 갭을 유지하기 위한 스페이서에 기인하는 액정의 배향 혼란을 은폐하기 위한 구조 등, 제1의 방 향(수평 방향)으로 국재화한 차광부(3)가 도 3에 나타낸 바와 같이 이 배선의 교차부(4A)의 면적과 동등한 것으로는 한정되지 않는다. 전술한 바와 같이, 차광부(3A)가 교차부(4A)의 면적보다 넓어도 좁아도, 제2의 방향(수직 방향)에 따른 서브화소(10)의 개구길이는 제1의 방향(수평 방향)으로 배열된 1행에서 일정으로는 되지 않는다. 이 비교예에 대해 도 1에 나타낸 표시부에서는, 제2의 방향(수직 방향)에 따라 N행째에 인접한 (N+1)행째의 개구길이가 제2의 방향(수직 방향)에 따른 N행째의 서브화소(10)의 개구길이의 변동을 소거하고, 제2의 방향의 개구길이의 2행의 합이 일정으로 된다. 예를 들면, 비교예로서의 도 3과의 비교로부터 명확해진 바와 같이, 도 1에 나타낸 바와 같이 N행째의 제1배열에 차광부(5)가 설치되고, 이 차광부(5)를 설치함에 따라, 횡배선(게이트선인 경우가 많음; 6)을 대칭축으로 해서 (N+1)행째의 제1배열의 영역(7)이 차광부(3B)의 영역으로부터 개구부(1)의 영역으로 변경되어 있다. 이 개구부의 영역(7)은, 차광부(5)와 거의 같은 면적을 갖고 있다. 한편, (N+1)행째의 제1배열에 차광부(8)를 설치함에 따라, N행째의 제1배열의 영역(9)이 차광부(3B)로부터 개구부(1)로 변경되어 있다. 차광부(8)의 면적도 또한 영역(9)의 면적과 동등하게 정해져 있다.
도 2의 (a) 및 (b)의 각각에는, 각 서브화소의 제2의 방향(수직 방향)에 따른 개구길이가 종축에, 제1의 방향(수평 방향)의 좌표가 횡축에 취해진 그래프가 나타내어져 있다. 도 2의 (a) 및 (b)의 각각은, 평면 표시부에서 상하로 서로 인접하는 2행(N행 및 (N+1)행)의 제1배열에서의 개구길이를 나타내고 있다. 도 2의 (a) 및 (b)의 각각에서의 음영 패턴은, 도 1과 마찬가지로 개구부(1)의 색성분을 의미하고 있다. 도 2의 (c)는 제1배열당의 차광 길이의 합을 나타내고 있다. 합계로 차광 길이(= 개구길이)가 일정으로 되는지 어떤지를 알기 쉽게 하기 위해, N행째와 (N+1)행째의 제1배열의 차광 길이의 축을 반전시키고 있다. 도 1에 나타낸 바와 같이 개구부(1)를 설계함으로써, 제N행째의 제1배열의 차광 길이(= (서브화소(10)의 제2의 방향(수직 방향)의 높이) - 개구길이)의 변동을 보충하도록, 제(N+1)행째의 제1배열의 차광 길이를 변동시킬 수 있다. 즉, 제2의 방향(수직 방향)의 개구길이는 제1배열만으로 변동하고 있지만, 복수 행의 제1배열의 서브화소(10)의 제2의 방향(수직 방향)의 개구길이의 합으로 일정으로 된다. 더욱이, 도 2의 (a)에 나타낸 바와 같이, 각 서브화소(10)의 개구부(1)의 면적도 일정으로 되어 있다.
보다 상세히 설명하면, N행째의 제1배열의 어떤 서브화소(10)는 어느 개구 형상을 갖고, 이 개구 형상의 제2의 방향(수직 방향)에 따른 개구길이는 도 2의 (a)에 나타낸 바와 같이 서브화소(10)의 개구부(1)의 제2의 방향(수직 방향)에 따른 높이에 상당하고 있다. 즉, N행째의 개구부(1)는 거의 평행사변형이기 때문에, 평행사변형의 1변에 상당하는 제1의 방향(수평 방향)의 좌표의 증가와 함께 높이(개구길이)가 증가되어 평행사변형의 밑변과 1개의 경사변에 설치된 차광부(5)와의 사이에서 높이가 제1의 피크에 도달하고, 그 후 감소된다. 제1의 방향(수평 방향)의 좌표의 증가와 함께 다시 높이가 증가되어 제2의 피크에 도달하고, 그 후 감소된다.
이에 대해, (N+1)행째의 제1배열의 개구부(1)에서는, 평행사변형의 1변에 상당하는 제1의 방향(수평 방향)의 좌표의 증가와 함께 높이(개구길이)가 증가되어 평행사변형의 밑변과 차광부(3B) 사이에서 높이가 제2의 피크에 도달하고, 그 후 감소된다. 제1의 방향(수평 방향)의 좌표의 증가와 함께 다시 높이가 증가되어 제2의 피크보다 낮은 제1의 피크에 도달하고, 그 후 감소된다.
이 경우, N행째의 제1배열의 이 제2의 방향(수직 방향)에 따른 차광 길이는, 도 2의 (c)에 나타낸 바와 같이 일정으로 되지 않고, 제1 및 제2피크에 기인하는 피크가 나타난다. 마찬가지로, (N+1)행째의 제1배열의 제2의 방향(수직 방향)에 따른 차광 길이도 도 4의 (b)에 나타낸 바와 같이 일정으로 되지 않고, 제1 및 제2피크에 기인하는 피크가 나타난다.
도 2의 (a) 및 (b)의 비교로부터 명확해진 바와 같이, N행째의 제1피크는 (N+1)행째의 제1 및 제2피크 사이에 발생하는 움푹한 곳(dip)을 보충하고, (N+1)행째의 제1피크는 N행째의 제1 및 제2피크 사이에 발생하는 움푹한 곳을 보충하는 바와 같은 상보적인 관계에 있다. 또, N행째의 제1배열의 도 2의 (c)에 나타낸 제2의 방향(수직 방향)에 따른 차광 길이와 (N+1)행째의 제1배열의 제2의 방향(수직 방향)에 따른 차광 길이가 서로 상보적인 관계에 있고, N행째 및 (N+1)행째의 제1배열의 제2의 방향(수직 방향)에 따른 개구길이의 합계값이 일정으로 된다.
도 1에 나타낸 표시부에 의하면, 도 2의 (a) 및 (b)에 나타낸 바와 같이 제N행째 및 제(N+1)행째의 개구길이는 서로 상보적인 관계로 할 수 있고, 마찬가지로 도 2의 (c)에 나타낸 바와 같이 제N행째 및 제(N+1)행째의 제1배열의 차광 길이도 서로 상보적인 관계로 정할 수 있다.
도 1을 참조해서 설명한 차광부(5, 8)의 설치 방법은 실제의 화소 설계와는다르지만, 실제의 개구부의 형상을 설계할 때의 개념을 설명하기 위해 도시되어 있다는 점에 주의해야 한다. 실제의 설계에 있어서는, 서브화소(10) 내에서 편재할 TFT 소자 등에 기인하는 차광부(3)의 제1의 방향(수평 방향)의 좌표를 어긋나게 해서, 인접하는 2행 또는 그 이상의 복수 행에서 소거되도록 설계하게 된다. 또, 도 1에 나타낸 표시부에서는, 컬러 필터 배열로서 모자이크 배열을 채용하여 색무아레의 발생을 억제하고 있다.
도 7은 본 발명의 더욱 다른 실시예에 따른 3차원 영상 표시장치의 평면 화상 표시부의 일부분을 확대해서 나타내고 있다. 도 7에 나타낸 바와 같이, 이 실시예에 따른 개구부의 형상은 도 1에 나타낸 서브화소의 개구부의 형상과 동일하고, 컬러 배열이 횡스트라이프 컬러 배열로 되어 있는 점에서 도 1의 구조와 다르다. 횡스트라이프 컬러 배열을 이용해도, 3차원 표시 시에 색무아레를 방지할 수 있다.
도 5에는, 실제의 구조와 유사한 도면을 나타내고 있다. 개구율을 저하시키는 주된 구조로는, 배선(101~103)과 구조(111)가 있다. 개구율을 저하시키는 구조에는, 이외의 미소한 구조도 있지만, 도 5에서는 간략화하고 있다. 배선(101)은, 1행마다 지그재그로 절곡되고, 배선(101)과 배선(102)의 교차부의 제1의 방향의 좌표 및 구조(111)는 기준선(2)을 참조하면 명확히 알 수 있는 바와 같이 제1의 방향으로 어긋나서 설치되어 있다. 이러한 배치에 의해, 도 6에 나타낸 바와 같이 N행의 제1배열과 (N+1)행의 제1배열의 차광 길이의 변화를 인접하는 2행 사이에서 소거할 수 있다. 여기서, 도 5에 나타낸 배치에 있어서는, 구조(111)와 배선(103) 사이는 절연을 위해 이간되어 있다. 이 구조(111)와 배선(103) 사이의 개구부에는, 인접하는 행에, 개구길이를 소거하기 위한 차광 길이를 실현하는 구조가 없다. 이것은, 이 개구부가 미소하고, 제2의 방향의 개구길이(Ta)와 비교해서 그 개구길이(Tb)가 작기 때문이다. 개구길이(Tb)를 어느 정도로 억제해야 할 것인가를 다음에 설명한다. 구조(111)와 배선(103) 사이의 개구부는, 그 비율을 낮게 억제함으로써, 서로 인접하는 2행에서 개구길이를 일정하게 하는 설계의 방해로는 되지 않는다.
일례로서 도 11에 나타낸 바와 같은 광선 제어자로서 렌티큘러 시트를 이용하는 경우에 대해 설명한다. 렌티큘러 시트(20)가 이용되는 경우, 디스플레이(10)의 전면에 걸쳐서 시점(44)을 기준으로 한 수평 관시각(觀視角)의 변화에 따라 도 10에 나타낸 바와 같이 렌즈 정점으로부터 디스플레이(10)의 화소부까지의 거리가 변화한다는 사실을 고려해서, 전면에서 거의 균일한 디포커스량으로 되도록 설계된다. 구체적으로는, 도 11에 나타낸 바와 같이 렌즈 정점과 디스플레이 화소부와의 갭을 촛점거리(f)보다 약간 짧게 설계함으로써, 즉 디포커스 수평폭이 서브화소폭의 50% 전후로 되도록 함으로써, 디스플레이 정면에서는 촛점거리보다 짧은 것에 의한 디포커스(g<f), 디스플레이 주변에서는 촛점거리보다 긴 것(f<g') 혹은 여러 가지 수차 및 상면 만곡에 기인하는 디포커스가 발생하고, 관시각의 변동에 영향을 받지 않아 그 디포커스량을 거의 일정하게 할 수 있다. 바꾸어 말하면, 여러 가지 디포커스 요인을 고려해서 디스플레이 전면에 걸쳐서 디포커스량을 일정하게 하려고 한 경우의 수평 디포커스폭은 적어도 서브화소의 수평폭의 50% 정도로 된다. 한편, 예를 들면 도 6의 (b)에 나타낸 바와 같이 2행의 서브화소의 제2의 방향의 개구길이의 합의 변동의 주기가 서브화소폭과 동등하다고 하면, 이 수직 개구길이 변동에 수반하는 휘도 변화의 콘트라스트는 수평 디포커스폭이 화소폭(Xo)과 일치하는 렌티큘러 시트를 경유해서 관찰함으로써 이론적으로는 제로로 된다.
그 이유를 MTF 이론을 이용해서 설명한다. 수직 개구길이 변동이라고 하는 짧은 주기(파장(λ))의 웨이브(wave: 파)을 디포커스한 렌즈로 샘플링함으로써, 그 휘도 변화가 올바르게 재생되지 않게 된다. 휘도 변동의 콘트라스트 저하는, 디포커스의 폭에 의존한다. 예를 들면, 최소 수평 디포커스폭이 서브화소의 수평폭(Xo) 정도인 경우에는, 렌즈를 통한 도 6의 (b)의 수직 개구길이의 변동(λ = Xo)을 보면 어느 위치에서 보아도 정확히 1주기로 되어, 렌즈를 통해 관찰되는 콘트라스트는 제로로 되어 버린다. 이것을 도 12의 MTF 곡선을 이용하여 설명한다. 서브화소폭(Xo)의 파장(λ = Xo)의 수직 개구길이 변동의 웨이브는, 9시차 렌즈(Pe(수평폭) = 9Xo)로 샘플링하는 경우에, Pe/λ(도 12의 횡축) = 9 Xo/Xo = 9에 상당한다. 렌즈의 수평 디포커스폭 = Xo의 경우의 MTF 곡선은 Pe/λ = 9로 인해 제로로 되어 있다. 즉, 콘트라스트가 제로로 되는 것을 나타내고 있다. 제조 오차로 인해 디포커스량이 0.8 Xo~1.2 Xo로 변동했다고 해도, 기본 파장(λ)이 렌즈의 수평폭(Pe)의 1/9 이하인 수직 개구길이 변동의 휘도차는, 본래의 콘트라스트의 20% 정도로 억제된다고 예측된다. 여기에서는, 9시차 렌즈(Pe(수평폭) = 9Xo)로 샘플링하는 경우를 일례로서 소개했다. 디포커스의 폭을, 수직 개구길이 변동의 기본 파장(λ)과 동등하거나 또는 그 정수배로 설정하고, 또한 그 디포커스폭의 제조 오차를 고려하면, 시차수와는 독립적으로 렌즈를 통해 관찰된 수직 개구길이 변동의 콘트라스트는 본래의 콘트라스트의 20%로 된다. 따라서, 인간의 시인 한계를 콘트라스트비 0.5%, 인내 한계를 2%로 하면, 그 5배인 2.5~10%의 휘도 변동이 허용되게 된다. 즉, 복수 행에서 개구길이를 가산한 결과의 수직 개구길이 변동은 10% 이하로 억제하면 좋다.
다음에, 서로 인접하는 2행의 제1배열에서 제2의 방향의 차광 길이의 변동을 일정화하는 상술한 구조에는 킬러 패턴(killer pattern)이 존재한다. 예를 들면, 단색 표시 혹은 1행 간격의 백색 표시라고 하는 킬러 패턴에 있어서는, 상하로 인접한 행(N행, (N+1)행)의 제1배열에서 소거하는 효과가 없어진다. 우선, 단색 표시의 경우는, 도 9에 나타낸 바와 같이 제1배열에 있어서 3행 간격으로 점등됨으로써, 도 9에 나타낸 바와 같이 제2의 방향의 개구길이의 합은 6행에서 일정으로 되게 된다. 예를 들면, 서브화소의 높이(제1배열의 높이)가 150μm라고 하면, 그 6배인 약 1mm에서 휘도가 일정으로 되는 것을 의미하고, 외견상의 해상도가 저하된다. 또, 도 9에 나타낸 바와 같이, 제1배열에 있어서 3행을 점등, 다음의 3행을 비점등으로 하는 표시를 실시한 경우도, 상하로 인접하는 2행의 제1배열에서 개구길이가 일정으로 되는 효과가 소실된다. 제2의 방향으로 인접하는 3행은, 일반적으로는 RGB를 담당함으로써, 도 9의 표시는 1행 간격의 백색점등과 다름없다. 이 1행 걸러의 백색점등이 무아레가 발생할 가능성이 있는 킬러 패턴으로 된다. 구체적으로는, 위치(FP1)에 초점이 있는 경우와 위치(FP2)에 초점이 있는 경우, 개구길 이의 합은 각각 285 및 270으로 되고, 개구길이의 차가 최장 개구길이를 100으로 했을 때의 15%라고 가정하면, 개구길이의 합이 서로 다른 285와 270으로 되게 된다. 단색 표시 시의 해상도 감소(도 9)에 대해서는, 해상도의 문제이므로, 관찰 거리 등에도 의존하고, 반드시 문제로 되는 것으로는 한정되지 않는다. 후자의 문제에 대해서는, 예를 들면 3행의 제1배열에서 개구길이의 합이 일정으로 되도록 설계함으로써 회피하는 것이 가능하다. 그럼에도 불구하고, 복수의 제1배열에서 제2의 방향의 개구길이의 합계를 일정으로 함으로써 무아레를 소실하는 경우에는, 도 9와 같은 킬러 패턴의 존재를 고려하면, 제1배열 단체에서의 개구길이의 변동을 어느 정도 억제하는 것은 효과적이다. 개구길이의 변동에 의한 휘도 변화가 시인 한계 이하로 되는 조건으로부터 허용되는 변동량은 아래와 같이 요구된다.
킬러 패턴에서의 휘도차의 콘트라스트는, 최대율 개구길이를 100, 최저 개구길이를 x로 한 경우에(도 9는 x = 85에 상당), 기출의 디포커스에서 수직 개구길이 변동의 콘트라스트를 시인 한계 이하로 할 수 있는 수직 개구길이의 허용량인 10% 이하를 고려하면, (2×100+x):(2×x+100) = 100:90을 만족하면 좋은 점으로부터 x = 72, 즉 단일의 제1배열의 수직 개구길이의 차는 복수의 제1배열의 개구길이의 합에 의해 소거되는 것을 전제로 한 다음, 28%(= 100-72) 이하로 할 필요가 있다.
이상을 정리하면, 단일의 제1배열의 수직 개구길이 변동은 28% 이하, 복수의 제1배열의 수직 개구길이의 합의 변동은 10% 이하로 되도록 설계함으로써, 렌즈의 디포커스 효과와 조합함으로써 무아레의 콘트라스트를 시인 한계 이하로 할 수 있 다. 덧붙여서, 제1배열의 제2의 방향의 개구길이의 합을 3행에서 일정하게 하는 경우는, 1행 걸러 백색점등은 킬러 패턴으로 되지 않는다. 즉, 제2의 방향으로 RGB가 반복해서 배열된 컬러 필터 배열의 경우에, 제2의 방향으로 인접한 6행의 제1배열에 있어서 수직 개구길이를 어떤 제1의 방향의 좌표로 자른 경우에, (x+a), (x), (x-a), (x+a), (x), (x-a)(x: 기본 수직 개구길이, a: 변동분)로 되도록 비율을 결정하면 좋다. 더욱이, (x+a), (x), (x-a), (x-a), (x), (x+a)(x: 기본 수직 개구길이, a: 변동분)으로 하면, 단색 표시도 킬러 패턴으로 되지 않는다. 이 이상 장주기에서 수직 개구율 길이의 합을 일정하게 하려고 하면, 복수 제1배열에서 수직 개구길이를 일정하게 하는 효과가 엷어진다(떨어져 있기 때문에 해상도에 따라서는 행마다 휘도가 다른 것이 시인되기 쉬워진다).
도 13은 이 발명의 다른 실시예에 따른 3차원 영상 표시장치의 평면 화상 표시부의 일부분을 확대해서 개략적으로 나타낸 확대도이다. 도 13에 나타낸 바와 같이, 이 표시부에 있어서는 거의 평행사변형의 개구부(1) 형상을 채용하고 있다. 또, 컬러 배열은 모자이크를 채용하고 있다. 이 배열에 있어서는, 제1배열 각각의 제2의 방향(수직 방향)의 개구길이는 일정은 아니지만, 개구부 영역(7)과 차광부(5)가 설치되어 상하 2행의 제1배열의 합이 일정으로 된다. 또, N행째와 (N+1)행째의 제1배열의 개구 형상은 다르지만, 개구 면적은 동일하다. 도 14는, 제2의 방향(수직 방향)의 차광 길이가 N행째와 (N+1)행째의 제1배열에서 서로 소거되도록 변동하고 있는 상태를 나타내고 있다. 도 13은 모자이크 배열을 나타내고 있지만, 도 1과 도 4의 관계와 마찬가지로 횡스트라이프의 컬러 배열도 채용 가능하다.
도 15의 (a)로부터 (c)를 참조해서, 본 발명을 채용함으로써 개구율이 증가하는 효과에 대해 설명한다. 도 15의 (a), (b)에서는, 도 2의 (c)에 나타낸 차광 길이의 도면을 점유율을 알 수 있도록 다시 도시하고 있다. 도 15의 (a)에 나타낸 N행째의 제1배열 및 (N+1)행째의 제1배열의 어느 하나에 대해서도, 그 평균 개구길이는 65.7%였다. 한편, 제1배열의 1행에서 차광부(3)가 일정으로 되도록 개구 형상을 제어해서 휘도 변동을 억제하면, 도 15의 (c), (d)에 나타낸 바와 같이 N행째의 제1배열이나 (N+1)행째의 제1배열이나 개구길이는 57.7%로 되어, 이 제안의 실시예인 도 1과 비교해서 3D 디스플레이의 휘도는 88%로 저하된다.
도 16 및 도 17은 종배선을 수직으로 한 경우의 휘도 변동에 대해 도시하고 있다. 종배선을 광선 제어소자인 렌즈의 능선 방향인 제2의 방향(수직 방향)과 일치시켜 설치하려고 하면, 도 17에 나타낸 바와 같이 제2의 방향(수직 방향)의 개구길이의 변동을 억제할 수 없게 된다.
도 18은 3차원 영상 표시장치의 전체를 개략적으로 나타내고 있다. 도 18에 나타낸 평면 화상 표시부(10)는, 전술한 바와 같은 개구부(1)의 형상을 갖는 서브화소(10)가 매트릭스 모양으로 배열된 모자이크 컬러 필터 배열의 고정세 액정 패널 모듈이다. 평면 화상 표시부(10)는, 서브화소(10)의 개구부(1)의 형상 및 컬러 배열이 전술한 조건을 만족하는 것이면, 플라스마 표시 패널, 유기 EL표시 패널, 전계 방출형 표시 패널 등이어도 좋은 바, 종류는 상관없다. 광선 제어소자(20)는, 평면 화상 표시부에 대향하여 설치된다. 상정되는 관찰자 위치는 44의 근방이며, 수평 화각(41), 수직 화각(42)의 범위에서 광선 제어소자(20)의 전면 및 배면 의 근방에 3차원 영상을 관찰할 수 있다.
도 19a는 도 18에 나타낸 광선 제어소자로서의 렌티큘러 시트(334)의 사시도이고, 도 19b는 도 18에 나타낸 광선 제어소자로서의 슬릿 어레이(333)의 사시도이다. 수평 피치(Pe)는 평면 화상 표시부의 화소 행방향과 일치하는 방향의 피치이다.
도 20의 (a)로부터 (c)는 도 18에 나타낸 3차원 영상 표시장치의 표시부를 기준으로 해서 수직면 내 및 수평면 내에서의 광선 재생 범위를 개략적으로 나타낸 전개도이다. 도 20의 (a)에는, 평면 화상 표시부(10) 및 광선 제어소자(20)의 정면도가 나타내어져 있다. 3차원 영상 표시장치의 영상 배치를 나타내는 평면도는 도 20의 (b)에 나타내어져 있다. 3차원 영상 표시장치의 측면도는 도 20의 (c)에 나타내어져 있다.
도 18 및 도 19에 나타낸 바와 같이, 3차원 영상 표시장치는 액정 표시 패널 등의 평면 화상 표시부(10) 및 광학적 개구를 가지는 광선 제어소자(20)를 갖추고 있다.
도 20에 있어서, 광선 제어소자(20)와 시거리면(43) 사이의 시거리(L), 광선 제어소자 수평 피치(Pe), 광선 제어소자와 화소면과의 갭(g)이 정해지면, 요소 영상 수평 피치(P)는 시거리면(43) 상의 시점으로부터 애퍼처(aperture; 또는 렌즈 주점(主点)) 중심을 표시 소자 상에 투영한 간격에 의해 결정된다. 부호 46은 시점 위치와 각 애퍼처 중심을 연결하는 선을 나타내고, 시역폭(W)은 표시장치의 표시면 상에서 요소 영상끼리가 서로 겹치지 않는다고 하는 조건으로부터 결정된다. 평행 광선의 조(組)를 가지는 조건의 1차원 II방식의 경우는, 요소 영상의 수평 피치의 평균값이 화소 수평 피치의 정수배보다 조금 크고 또한 광선 제어소자의 수평 피치가 화소 수평 피치의 정수배와 동등하다. 다안 방식의 경우는, 요소 영상의 수평 피치가 화소 수평 피치의 정수배와 동등하고 또한 광선 제어소자의 수평 피치가 화소 수평 피치의 정수배보다 약간 작다.
도 21은 본 발명에 따른 3차원 영상 표시장치의 일부분의 구성을 개략적으로 나타낸 사시도이다. 도 21은 액정 패널 등의 평면 상의 평면 화상 표시부의 전면에, 실린드리컬 렌즈 어레이(렌티큘러 시트; 201)가 배치되어 있는 경우를 나타내고 있다. 도 21에 나타낸 바와 같이, 표시장치의 표시면에는 종횡비가 3:1인 서브화소(31)가 횡방향 및 종방향으로 각각 직선 모양으로 매트릭스 모양으로 배치되고, 각 화소(31)는 행방향 및 열방향으로 적(R), 녹(G), 청(B)이 교대로 배열되도록 배열되어 있다. 이 색배열은, 일반적으로 모자이크 배열이라 부른다. 서브화소(31)의 개구부(1)의 형상은, 도 1, 도 7 혹은 도 13에 나타낸 형상이다. 9열 3행의 서브화소(10, 31)가 3차원 표시 화소(32; 흑색틀로 나타내어져 있음)를 구성한다. 이러한 표시부의 구조에서는, 3차원 표시 시에 화소가 27개의 서브화소로 이루어짐으로써, 수평 방향으로 9시차를 부여하는 3차원 영상 표시가 가능하게 된다.
이상의 방법에 의해, 광선 제어소자를 수직으로 설치한 3차원 영상 표시장치에 있어서, 표시 방해로 되는 무아레가 발생하지 않고 또한 휘도 저하가 억제되어, 종합적인 3차원 영상의 화질이 향상된다.
한편, 본 발명은 상기 실시예 그대로 한정되는 것이 아니라, 실시 단계에서는 그 요지를 일탈하지 않는 범위에서 구성요소를 변형해서 구체화할 수 있다.
또, 상기 실시예에 개시되어 있는 복수의 구성요소의 적당한 조합에 의해 여러 가지의 발명을 형성할 수 있다. 예를 들면, 실시예에 나타낸 전 구성요소로부터 몇 개의 구성요소를 삭제해도 좋다. 더욱이, 다른 실시예에 걸치는 구성요소를 적당히 조합시켜도 좋다.
본 발명에 의하면, 주기성이 제1의 방향(수평 방향)으로 한정된 광선 제어소자와, 제1 및 제2의 방향(수직 및 수평 방향)으로 매트릭스 모양으로 화소가 설치된 평면 표시장치를 조합한 3차원 영상 표시장치에 있어서, 무아레 소거책으로서 더미의 차광부를 설치할 필요가 없고, 또 더미의 차광부를 설치했다고 해도 보다 적은 면적의 더미의 차광부로 무아레를 소거할 수 있으며, 개구율 저하에 따른 휘도 저하를 방지할 수 있다.
추가적인 이점 및 변형이 이 기술분야에서 통상의 지식을 가진 자에게 쉽게 일어날 것이다. 따라서, 그 광범위한 태양에 있어서 본 발명은 여기에 나타내어지고 설명되는 특성 설명 및 대표 실시예에 한정되는 것은 아니다. 따라서, 첨부된 청구의 범위 및 그들의 등가물에 의해 규정되는 것과 같은 발명의 정신 및 범위를 일탈하는 일없이 각종의 변형이 행해질 수도 있다.
Claims (12)
- 행 및 열방향으로 배열되는 서브화소의 매트릭스 어레이를 포함하되 평면 화상을 표시하도록 구성된 표시부로서, 당해 각 서브화소가 개구부와 이 개구부를 둘러싸는 차광부를 갖고, 서브화소의 개구부도 행 및 열방향을 따라 매트릭스 모양으로 배열되며, 각 개구부가 행방향의 행좌표에 의존해서 변화되는 열방향에 따른 길이를 갖고, 개구부의 배열이 행방향을 따라 n행째 및 (n+1)행째 개구부를 포함하며, n행째 개구부가 개구부의 길이를 정의하는 제1의 길이 곡선과 행좌표 상에서의 n행째 개구부의 길이의 합을 갖고, (n+1)행째 개구부가 개구부의 길이를 정의하는 제2의 길이 곡선과 행좌표 상에서의 (n+1)행째 개구부의 길이의 합을 가지며, 제1 및 제2의 길이 곡선은 일정하지 않고 제1 및 제2의 길이 곡선의 합성이 일정으로 되도록 하는 상보적인 변화를 갖도록 각각 행좌표에 따라 변화되는 표시부와;상기 표시부에 대향해서 설치되고, 상기 열방향으로 직선 모양으로 연장되어 상기 행방향으로 배열되어 있는 다수의 광학적 개구부를 갖춘 광선 제어소자를 구비하는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 제1 및 제2의 길이 곡선의 합성이 10% 이하의 범위에서 변동하는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 제1 및 제2의 길이 곡선이 그 합의 28%의 변동 범위 내에서 변화되는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 모든 서브화소가 동일한 개구율을 갖는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 행방향을 따라 배열되는 상기 n행째 및 (n+1)행째 개구부가 열방향에 있어서 서로 인접되는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 서브화소가 같은 색을 갖고, 열방향을 따라 배열되는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 서브화소의 컬러 배열이 모자이크 배열인 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 서브화소의 컬러 배열이 횡스트라이프 배열인 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 각 서브화소는 개구부를 정하는 차광부를 포함하고, 당해 차광부가 열방향의 배선을 포함하며, 당해 열방향의 배선이 상기 서브화소의 배열에서 절곡되어 상기 열방향으로 지그재그로 연장되는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 각 서브화소는 평행사변형의 형상을 갖고, 짝수번째의 상기 서브화소의 행 어레이와 홀수번째의 상기 서브화소의 행 어레이에서 상기 서브화소의 기울기가 역의 관계로 되도록 상기 서브화소가 배치되는 것을 특징으로 하는 3차원 영상 표시장치.
- 청구항 1에 있어서, 상기 각 서브화소가 도그레그 형상을 갖는 것을 특징으로 하는 3차원 영상 표시장치.
- 삭제
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2007-089530 | 2007-03-29 | ||
JP2007089530A JP4834592B2 (ja) | 2007-03-29 | 2007-03-29 | 三次元映像表示装置 |
PCT/JP2008/055185 WO2008126654A1 (en) | 2007-03-29 | 2008-03-14 | Three-dimensional image display apparatus for displaying three- dimensional image |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090112762A KR20090112762A (ko) | 2009-10-28 |
KR101149131B1 true KR101149131B1 (ko) | 2012-05-29 |
Family
ID=39645306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020097019279A KR101149131B1 (ko) | 2007-03-29 | 2008-03-14 | 3차원 영상을 표시하기 위한 3차원 영상 표시장치 |
Country Status (8)
Country | Link |
---|---|
US (1) | US8766882B2 (ko) |
EP (1) | EP2130384B1 (ko) |
JP (1) | JP4834592B2 (ko) |
KR (1) | KR101149131B1 (ko) |
CN (1) | CN101653012B (ko) |
AT (1) | ATE507679T1 (ko) |
DE (1) | DE602008006535D1 (ko) |
WO (1) | WO2008126654A1 (ko) |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010097025A (ja) * | 2008-10-17 | 2010-04-30 | Seiko Epson Corp | 電気光学装置及び電子機器 |
US8797231B2 (en) * | 2009-04-15 | 2014-08-05 | Nlt Technologies, Ltd. | Display controller, display device, image processing method, and image processing program for a multiple viewpoint display |
US7978407B1 (en) | 2009-06-27 | 2011-07-12 | Holovisions LLC | Holovision (TM) 3D imaging with rotating light-emitting members |
JP5320469B2 (ja) | 2009-09-16 | 2013-10-23 | 株式会社東芝 | 立体画像表示装置 |
GB2477294B (en) * | 2010-01-27 | 2015-05-06 | Au Optronics Corp | Autostereoscopic display apparatus |
JP5286302B2 (ja) | 2010-02-04 | 2013-09-11 | 株式会社東芝 | 立体画像表示装置 |
US8587498B2 (en) * | 2010-03-01 | 2013-11-19 | Holovisions LLC | 3D image display with binocular disparity and motion parallax |
KR101783975B1 (ko) * | 2010-07-14 | 2017-10-11 | 삼성디스플레이 주식회사 | 입체 영상 표시 장치 |
JP5796761B2 (ja) | 2010-09-15 | 2015-10-21 | Nltテクノロジー株式会社 | 画像表示装置及び表示パネル |
US9218115B2 (en) | 2010-12-02 | 2015-12-22 | Lg Electronics Inc. | Input device and image display apparatus including the same |
JP5449238B2 (ja) * | 2011-03-10 | 2014-03-19 | 株式会社ジャパンディスプレイ | 三次元映像表示装置 |
JP2012194274A (ja) * | 2011-03-15 | 2012-10-11 | Japan Display West Co Ltd | 表示装置 |
JP5900818B2 (ja) | 2011-03-29 | 2016-04-06 | Nltテクノロジー株式会社 | 液晶表示装置 |
JP5935238B2 (ja) * | 2011-04-20 | 2016-06-15 | Nltテクノロジー株式会社 | 画像表示装置並びにこれを備える端末装置 |
TWI488485B (zh) * | 2011-05-03 | 2015-06-11 | Au Optronics Corp | 三維影像的合成方法與應用此方法的三維影像的合成電路 |
US9363504B2 (en) * | 2011-06-23 | 2016-06-07 | Lg Electronics Inc. | Apparatus and method for displaying 3-dimensional image |
JP5662290B2 (ja) | 2011-09-29 | 2015-01-28 | 株式会社ジャパンディスプレイ | 表示装置 |
JP2013088685A (ja) * | 2011-10-20 | 2013-05-13 | Japan Display West Co Ltd | 表示装置 |
JP5639983B2 (ja) * | 2011-10-25 | 2014-12-10 | 株式会社ジャパンディスプレイ | 3次元画像表示装置 |
JP2013101171A (ja) * | 2011-11-07 | 2013-05-23 | Sony Corp | 表示装置および電子機器 |
JP5806150B2 (ja) * | 2012-03-13 | 2015-11-10 | 株式会社ジャパンディスプレイ | 表示装置 |
JP5806156B2 (ja) * | 2012-03-23 | 2015-11-10 | 株式会社ジャパンディスプレイ | 表示装置、電子装置 |
JP5532075B2 (ja) | 2012-04-18 | 2014-06-25 | 凸版印刷株式会社 | 液晶表示装置 |
WO2013157341A1 (ja) | 2012-04-18 | 2013-10-24 | 凸版印刷株式会社 | 液晶表示装置 |
JP6010375B2 (ja) * | 2012-07-24 | 2016-10-19 | 株式会社ジャパンディスプレイ | 表示装置 |
JP6213812B2 (ja) | 2012-07-31 | 2017-10-18 | Tianma Japan株式会社 | 立体画像表示装置及び立体画像処理方法 |
KR20140041102A (ko) * | 2012-09-27 | 2014-04-04 | 삼성디스플레이 주식회사 | 표시 패널 및 이를 포함하는 표시 장치 |
JP6061266B2 (ja) | 2012-10-19 | 2017-01-18 | Nltテクノロジー株式会社 | 液晶表示装置 |
JP6292464B2 (ja) * | 2013-06-20 | 2018-03-14 | Tianma Japan株式会社 | 表示装置 |
KR102136275B1 (ko) * | 2013-07-22 | 2020-07-22 | 삼성디스플레이 주식회사 | 유기 발광 소자 및 이의 제조 방법 |
KR102153605B1 (ko) | 2013-11-27 | 2020-09-09 | 삼성디스플레이 주식회사 | 입체 영상 표시 장치 |
CN103680325A (zh) * | 2013-12-17 | 2014-03-26 | 京东方科技集团股份有限公司 | 显示基板、显示面板和立体显示装置 |
CN104079848A (zh) * | 2014-07-02 | 2014-10-01 | 中国科学院长春光学精密机械与物理研究所 | 一种数字域L型像元的binning方法 |
DE102014014239B4 (de) * | 2014-09-25 | 2024-04-11 | Wieland-Werke Ag | Elektrisches Verbindungselement |
CN105791657B (zh) * | 2014-12-19 | 2019-06-21 | 宁波舜宇光电信息有限公司 | 一种影像模组调焦方法 |
US11074876B2 (en) | 2014-12-22 | 2021-07-27 | Tianma Microelectronics Co., Ltd. | Stereoscopic display device |
US10606091B2 (en) | 2014-12-22 | 2020-03-31 | Tianma Microelectronics Co., Ltd. | Stereoscopic display device |
CN104614909B (zh) | 2015-02-06 | 2017-07-21 | 京东方科技集团股份有限公司 | 显示面板以及显示装置 |
CN104658433B (zh) | 2015-03-18 | 2017-09-22 | 京东方科技集团股份有限公司 | 一种像素排列结构、显示装置及显示方法 |
CN105629489B (zh) * | 2016-03-15 | 2018-01-02 | 上海天马微电子有限公司 | 3d显示屏及3d显示装置 |
KR102522397B1 (ko) * | 2016-11-29 | 2023-04-17 | 엘지디스플레이 주식회사 | 무안경 방식의 입체영상 표시장치 |
US11022728B2 (en) * | 2017-03-30 | 2021-06-01 | Sharp Kabushiki Kaisha | Display device |
US11963425B1 (en) | 2018-07-10 | 2024-04-16 | Apple Inc. | Electronic devices having displays with curved surfaces |
KR20210144938A (ko) | 2019-04-29 | 2021-11-30 | 레이아 인코포레이티드 | 시프트된 컬러 서브 픽셀들을 갖는 멀티뷰 디스플레이 및 방법 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10186294A (ja) * | 1996-09-30 | 1998-07-14 | Sharp Corp | 空間光変調器および方向性ディスプレイ |
KR20050025935A (ko) * | 2003-09-08 | 2005-03-14 | 가부시끼가이샤 도시바 | 입체표시장치 및 화상표시방법 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0327506A (ja) | 1989-06-26 | 1991-02-05 | Mitsubishi Electric Corp | 変圧器監視装置 |
GB2278223A (en) | 1993-05-21 | 1994-11-23 | Sharp Kk | Spatial light modulator and directional display |
US6243055B1 (en) * | 1994-10-25 | 2001-06-05 | James L. Fergason | Optical display system and method with optical shifting of pixel position including conversion of pixel layout to form delta to stripe pattern by time base multiplexing |
GB9513658D0 (en) | 1995-07-05 | 1995-09-06 | Philips Electronics Uk Ltd | Autostereoscopic display apparatus |
US6064424A (en) * | 1996-02-23 | 2000-05-16 | U.S. Philips Corporation | Autostereoscopic display apparatus |
GB9715397D0 (en) * | 1997-07-23 | 1997-09-24 | Philips Electronics Nv | Lenticular screen adaptor |
JP4371012B2 (ja) * | 2003-12-25 | 2009-11-25 | 日本電気株式会社 | 画像表示装置、携帯端末装置、表示パネル及びレンズ |
JP4271155B2 (ja) * | 2004-02-10 | 2009-06-03 | 株式会社東芝 | 三次元画像表示装置 |
JP3885077B2 (ja) * | 2004-03-26 | 2007-02-21 | 独立行政法人科学技術振興機構 | 三次元ディスプレイ |
ATE488098T1 (de) * | 2005-09-16 | 2010-11-15 | Koninkl Philips Electronics Nv | Autostereoskopische anzeigevorrichtung und filter dafür |
JP4197716B2 (ja) * | 2006-10-03 | 2008-12-17 | 株式会社東芝 | 立体映像表示装置 |
-
2007
- 2007-03-29 JP JP2007089530A patent/JP4834592B2/ja not_active Expired - Fee Related
-
2008
- 2008-03-14 EP EP08722553A patent/EP2130384B1/en not_active Not-in-force
- 2008-03-14 CN CN2008800085233A patent/CN101653012B/zh not_active Expired - Fee Related
- 2008-03-14 WO PCT/JP2008/055185 patent/WO2008126654A1/en active Application Filing
- 2008-03-14 AT AT08722553T patent/ATE507679T1/de not_active IP Right Cessation
- 2008-03-14 DE DE602008006535T patent/DE602008006535D1/de active Active
- 2008-03-14 KR KR1020097019279A patent/KR101149131B1/ko not_active IP Right Cessation
- 2008-08-29 US US12/201,549 patent/US8766882B2/en not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10186294A (ja) * | 1996-09-30 | 1998-07-14 | Sharp Corp | 空間光変調器および方向性ディスプレイ |
KR20050025935A (ko) * | 2003-09-08 | 2005-03-14 | 가부시끼가이샤 도시바 | 입체표시장치 및 화상표시방법 |
Also Published As
Publication number | Publication date |
---|---|
ATE507679T1 (de) | 2011-05-15 |
JP2008249887A (ja) | 2008-10-16 |
EP2130384A1 (en) | 2009-12-09 |
US20090002262A1 (en) | 2009-01-01 |
DE602008006535D1 (de) | 2011-06-09 |
CN101653012A (zh) | 2010-02-17 |
US8766882B2 (en) | 2014-07-01 |
EP2130384B1 (en) | 2011-04-27 |
JP4834592B2 (ja) | 2011-12-14 |
KR20090112762A (ko) | 2009-10-28 |
WO2008126654A1 (en) | 2008-10-23 |
CN101653012B (zh) | 2011-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101149131B1 (ko) | 3차원 영상을 표시하기 위한 3차원 영상 표시장치 | |
US8063931B2 (en) | Stereoscopic display apparatus | |
US7969463B2 (en) | Three-dimensional display | |
US8339705B2 (en) | Optical sheet for three-dimensional image and three-dimensional image display device using the same | |
US7532225B2 (en) | Three-dimensional image display device | |
KR100880819B1 (ko) | 자동입체 표시장치의 픽셀 배열 | |
KR101344547B1 (ko) | 3차원 영상 표시 장치 | |
US20060170616A1 (en) | 3D image reproduction apparatus | |
JP2009080144A (ja) | 立体映像表示装置および立体映像表示方法 | |
JP5286302B2 (ja) | 立体画像表示装置 | |
WO2011033618A1 (ja) | 立体画像表示装置 | |
US20120033058A1 (en) | Stereoscopic Video Display Apparatus and Display Method | |
KR101489990B1 (ko) | 삼차원 영상 표시 장치 | |
US8537205B2 (en) | Stereoscopic video display apparatus and display method | |
JP4402578B2 (ja) | 三次元ディスプレイ | |
JP2006106607A (ja) | 画像表示装置 | |
US20120033055A1 (en) | Stereoscopic Video Display Apparatus and Display Method | |
JP2013121041A (ja) | 立体映像表示装置および立体映像表示方法 | |
JP2005284044A (ja) | 立体画像表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
B701 | Decision to grant | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20150417 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |