KR100994692B1 - 고체 촬상 소자 및 전자 정보 기기 - Google Patents
고체 촬상 소자 및 전자 정보 기기 Download PDFInfo
- Publication number
- KR100994692B1 KR100994692B1 KR1020080074587A KR20080074587A KR100994692B1 KR 100994692 B1 KR100994692 B1 KR 100994692B1 KR 1020080074587 A KR1020080074587 A KR 1020080074587A KR 20080074587 A KR20080074587 A KR 20080074587A KR 100994692 B1 KR100994692 B1 KR 100994692B1
- Authority
- KR
- South Korea
- Prior art keywords
- signal
- floating diffusion
- light receiving
- pixel
- solid
- Prior art date
Links
- 239000007787 solid Substances 0.000 title 1
- 238000009792 diffusion process Methods 0.000 claims abstract description 210
- 238000003384 imaging method Methods 0.000 claims abstract description 99
- 229910052751 metal Inorganic materials 0.000 claims abstract description 96
- 239000002184 metal Substances 0.000 claims abstract description 96
- 230000003287 optical effect Effects 0.000 claims abstract description 20
- 238000012546 transfer Methods 0.000 claims description 77
- 238000006243 chemical reaction Methods 0.000 claims description 47
- 230000004913 activation Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 17
- 230000003321 amplification Effects 0.000 claims description 11
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 11
- 239000011159 matrix material Substances 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims 1
- 230000035945 sensitivity Effects 0.000 description 29
- 238000010586 diagram Methods 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000003071 parasitic effect Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 7
- 238000004891 communication Methods 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 102100030796 E3 ubiquitin-protein ligase rififylin Human genes 0.000 description 2
- 101710128004 E3 ubiquitin-protein ligase rififylin Proteins 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000013144 data compression Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Images
Classifications
-
- H01L27/14643—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/75—Circuitry for providing, modifying or processing image signals from the pixel array
-
- H01L27/14603—
-
- H01L27/14641—
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/76—Addressed sensors, e.g. MOS or CMOS sensors
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Transforming Light Signals Into Electric Signals (AREA)
Abstract
2화소 공유 구조를 가진 고체 촬상 소자가 제공된다. 플로팅 디퓨전의 전위를 소정 전위로 리셋하는 리셋부와, 플로팅 디퓨전의 전압에 따라 신호를 증폭하여 신호를 판독하는 신호 증폭부가 개별적으로 배치된다. 리셋부의 활성 영역은 플로팅 디퓨전의 활성 영역으로서의 기능하도록 구성된다. 플로팅 디퓨전으로부터 신호 증폭부의 제어 전극까지 연장된 배선은 최단 길이를 가진 직선상의 레이아웃을 가진 메탈 배선의 제 1 층으로 되도록 형성된다. 수광부의 중심은 화소의 중심으로 배향되고, 화소의 중심은 광학적 등간격으로 배치된다.
고체 촬상 소자, 고체 촬상 장치, 전자 정보 기기
Description
본 발명은 피사체로부터의 화상광을 광전 변환해서 촬상하는 반도체 소자로 구성된 복수 화소 공유 구조의 고체 촬상 소자 및 이 복수 화소 공유 구조의 고체 촬상 소자를 화상 입력 디바이스로서 촬상부에 사용한, 예를 들면 디지털 비디오 카메라 및 디지털 스틸 카메라 등의 디지털 카메라나, 화상 입력 카메라, 스캐너, 팩시밀리, 카메라 장착 휴대 전화 장치 등의 전자 정보 기기에 관한 것이다.
상술한 종래의 고체 촬상 소자로서, MOS(Metal Oxide Semiconductor) 트랜지스터를 채용한 MOS형 이미지 센서가 널리 이용되고 있다. 이 MOS형 이미지 센서는 CCD(Charge Coupled Device)형 이미지 센서에 비해 높은 구동 전압을 필요로 하지 않고, 주변 회로와의 일체화도 가능하기 때문에 소형화에 유리하다.
MOS형 이미지 센서는 피사체광을 광전 변환하는 복수의 수광부로서 기능하는 각 포토다이오드의 각각에 대응하도록 증폭 회로 등을 가지는 신호 판독 회로가 설치되어 있다. 이 신호 판독 회로의 영역을 더욱 축소해서 화소부에 차지하는 수광부의 면적을 더욱 크게 하기 위해서 촬상 영역 전체의 트랜지스터의 수를 절감하기 위해 복수의 수광부에서 신호 판독 회로를 공유하는 복수 화소 공유 구조의 MOS형 이미지 센서가 알려져 있다. 이 복수 화소 공유 구조 중 종래의 4화소 공유 구조의 MOS형 이미지 센서에 대해서 도 9∼도 13을 이용해서 상세히 설명한다.
도 9는 참조문헌 1에 기재되어 있는 종래의 MOS형 이미지 센서의 화소 구성예를 개략적으로 나타낸 평면도이다.
도 9에 있어서, 종래의 MOS형 이미지 센서의 화소부(130)에는 복수의 수광부(131)가 행렬 방향으로 매트릭스상으로 배열되어 있고, 수광부(131)에 의해 피사체광을 광전 변환해서 전송 트랜지스터(132)에 의해 전압 변환부로서 기능하는 플로팅 디퓨전(FD)으로 변환된 전하를 전송해서 전압 변환하고, 이 변환 전압에 따라서 변환된 전압을 트랜지스터 영역(133)의 증폭 트랜지스터에 의해 증폭해서 신호선에 각 화소마다의 촬상 화소 신호로서 출력하게 되어 있다. 이 경우에, 행방향으로 배열된 일열의 복수의 수광부(131)마다 각 플로팅 디퓨전(FD)에 각각, 각 신호 전하가 각 수광부(131)로부터 각각 판독된다.
2화소씩 경사 방향의 화소[수광부(131)]를 플로팅 디퓨전(FD)에 의해 접속하고, 그것들의 상하의 2개의 플로팅 디퓨전(FD)을 열방향(종방향)의 배선(134)으로 접속한다. 결과적으로, 트랜지스터 영역(133)을 4개의 화소[수광부(131)]에서 공용하는 4화소 공유 구조로 되어 있다. 도 9에서는 4화소 공유 구조의 공유 단위를 점선이 둘러싸고 있다.
도 10은 참조문헌 2에 기재되어 있는 종래의 MOS형 이미지 센서의 단위 화소부의 회로도이다.
도 10에 있어서, 종래의 MOS형 이미지 센서에는 4개의 포토다이오드(101∼104)에 대하여 1개의 신호 판독 회로(105)가 공통으로 설치되어 있다. 이 판독 회로(105)는 증폭 트랜지스터(105a)와, 선택 트랜지스터(105b)와, 리셋 트랜지스터(105c)를 구비하고 있고, 4개의 포토다이오드(101∼104)로부터의 각 신호 전하를 각각 플로팅 디퓨전(FD)에 화소의 행마다 순차 전송해서 전하 전압 변환하고, 플로팅 디퓨전(FD)의 신호 전압에 따라서 각각 선택 트랜지스터(105b)에 의해 화소 선택된 증폭 트랜지스터(105a)에 의해 증폭해서 신호선(106)에 의해 각 화소마다의 촬상 화소 신호로서 순차 판독된 후에, 리셋 트랜지스터(105c)에 의해 플로팅 디퓨전(FD)의 전위가 전원 전압(Vdd) 등의 소정 전위로 리셋되고, 이것을 표시 화면의 화소의 행마다 순차 반복해서 4개의 포토다이오드(101∼104)로부터의 신호 전하에 대응한 각 화소마다의 촬상 화소 신호를 순차 판독하게 되어 있다.
포토다이오드(101∼104)는 각각 입사광을 그 광량에 따른 전하량의 신호 전하로 광전 변환한다. 포토다이오드(101∼104)와 플로팅 디퓨전(FD)의 사이에는 각각 전송 게이트(111∼114)가 설치되어 있다.
각 전송 게이트(111∼114)와 관련해서는 각각 전하 전송 제어선을 통해서 전송 게이트(111)에 전송 신호가 공급되어서 포토다이오드(101)에 의해 광전 변환된 신호 전하가 플로팅 디퓨전(FD)으로 전송된다.
플로팅 디퓨전(FD)에는 증폭 트랜지스터(105a)의 게이트가 메탈 배선에 의해 접속되어 있고, 전원선(107)과 신호선(106) 사이에 선택 트랜지스터(105b) 및 증폭 트랜지스터(105a)가 직렬 접속되어 있다. 증폭 트랜지스터(105a)는 소스 폴로워형 의 증폭기 구성으로 되어 있다. 또한, 전원선(107)은 리셋 트랜지스터(105c)를 통해 플로팅 디퓨전(FD)에 접속되어 있고, 플로팅 디퓨전(FD)의 전위는 신호 전하 판독전에 정기적으로 전원 전압(Vdd) 등의 소정 전위로 리셋된다.
도 11은 종래 MOS형 이미지 센서의 화소부에 있어서의 게이트 전극층 형성까지의 레이아웃 도면이다.
도 11에 있어서, 촬상 영역내에 2차원상으로 형성된 복수의 포토다이오드 중 종방향으로 나열된 4개의 포토다이오드(101∼104)가 1개의 신호 판독 회로(105)를 공유하고 있다. 4개의 포토다이오드(101∼104)는 동일열에는 존재하지 않고, 경사 방향으로 인접한 2개의 포토다이오드(101, 102)는 서로 다른 열에 배치되어 있다. 경사 방향으로 인접한 2개의 포토다이오드(103, 104)도 서로 다른 열에 배치되어 있다.
포토다이오드(101)와, 그 경사 방향으로 인접한 포토다이오드(102)의 사이에 플로팅 디퓨전(FD1)이 배치되어 있다. 이 플로팅 디퓨전(FD1)과 포토다이오드(101)의 사이에는 전송 게이트(111)가 배치되어 있다. 이 플로팅 디퓨전(FD1)과 포토다이오드(102)의 사이에는 전송 게이트(112)가 배치되어 있다.
또한, 마찬가지로 우상으로부터 좌하의 경사 방향으로 서로 인접한 포토다이오드(103)와 포토다이오드(104)의 사이에 이 플로팅 디퓨전(FD2)이 배치되어 있다. 플로팅 디퓨전(FD2)과 포토다이오드(103)의 사이에는 전송 게이트(113)가 배치되어 있다. 이 플로팅 디퓨전(FD2)과 포토다이오드(104)의 사이에는 전송 게이트(114)가 배치되어 있다.
요컨대, 도 10의 플로팅 디퓨전(FD)은 포토다이오드(101, 102)에 의해 공유되는 플로팅 디퓨전(FD1)과, 포토다이오드(103, 104)에 의해 공유되는 플로팅 디퓨전(FD2)을 구비하고 있다. 이들 플로팅 디퓨전(FD1)과 플로팅 디퓨전(FD2)은 다음 공정에서 서로 메탈 배선에 의해 접속된다.
2개의 포토다이오드간의 영역에, 예를 들면 도 11 중의 2행째와 3행째의 포토다이오드간의 영역에 신호 판독 회로(105)가 배치된다.
이 신호 판독 회로(105)를 구성하는 증폭 트랜지스터(105a), 선택 트랜지스터(105b) 및 리셋 트랜지스터(105c)는 좌우 일렬로 나열되어 배치되어 있고, 이것들은 1개의 활성 영역(R)을 공유하고 있다. 리셋 트랜지스터(105c)의 드레인과 선택 트랜지스터(105b)의 드레인은 공통화되고, 선택 트랜지스터(105b)의 소스와 증폭 트랜지스터(105a)의 드레인도 공통화되어 있다.
도 11의 레이아웃의 상층에 제 1 콘택트(C1)를 통해 제 1 금속 배선(M1)이 배치된다. 이것을 도 12에 도시하고 있다.
도 12는 도 10의 종래 MOS형 이미지 센서의 화소부에 있어서의 제 1 금속 배선(M1)의 층 형성까지의 레이아웃 도면이다.
도 12에 있어서, 신호선(106)이 제 1 금속 배선(M1)에 의해 형성되어 있다. 우상의 포토다이오드(101)와 좌하의 포토다이오드(102) 사이, 우상의 포토다이오드(103)와 좌하의 포토다이오드(104) 사이의 각 영역에 열방향(종방향)으로 신호선(106)이 배치되어 있다. 이 신호선(106)은 플로팅 디퓨전(FD1, FD2)에 접속하는 제 1 콘택트(C1)를 회피하도록 굴곡되어 형성되어 있다. 신호선(106)은 제 1 콘택 트(C1)를 통해 증폭 트랜지스터(105a)의 소스에 접속되어 있다.
상하의 위치에 배치된 2개의 플로팅 디퓨전(FD1, FD2)과, 리셋 트랜지스터(105c)의 소스와, 증폭 트랜지스터(105a)의 게이트가 각각의 제 1 콘택트(C1)에 의해 제 1 금속 배선(M1)으로서의 열방향(종방향)의 FD 배선(108)에 접속되어 있다. 포토다이오드(102)를 중심으로 하여 경사 우상측의 플로팅 디퓨전(FD1)과, 그 좌하측의 리셋 트랜지스터(105c)의 소스는 포토다이오드(102)의 대각 방향에 있기 때문에 이것들을 접속하는 제 1 금속 배선(M1)은 포토다이오드(102)상에 겹쳐서 배치된다. 이 경우에는 광이 배선층과 반대측으로부터 입사하기 때문에 제 1 금속 배선(M1)을 포토다이오드(102)상을 가로질러서 겹치도록 배치해도 좋다.
전송 게이트(111∼114)상, 선택 트랜지스터(105b) 및 리셋 트랜지스터(105c)의 각 게이트상, 및 선택 트랜지스터(105b)의 드레인상에는 제 1 콘택트(C1)를 통해 제 1 금속 배선(M1)이 형성되어 있다. 이것들의 제 1 금속 배선(M1)은 더욱 상층의 제 2 금속 배선(M2)과의 콘택트를 이루기 위해 중간 연결층으로서 형성되어 있다.
도 12에 도시된 레이아웃의 상층에는 제 2 콘택트(C2)를 통해 제 2 금속 배선(M2)이 배치된다. 이것을 도 13에 도시하고 있다.
도 13은 도 10의 종래 MOS형 이미지 센서의 화소부에 있어서의 제 2 금속 배선(M2)의 층을 포함한 레이아웃 도면이다.
도 13에 있어서, 제 2 금속 배선(M2)에 의해 전원선(107) 및 화소 선택용의 전하 전송 제어선(121∼124)이 형성되어 있다. 각 포토다이오드의 행간의 신호 판 독 회로(105)상에는 전원선(107)이 행방향(횡방향)으로 배치되어 있다. 이 전원선(107)은 제 2 콘택트(C2)를 통해서 선택 트랜지스터(105b) 및 리셋 트랜지스터(105c)의 드레인[선택 트랜지스터(105b) 및 리셋 트랜지스터(105c) 사이의 공통인 드레인]에 접속되어 있다.
전하 전송 제어선(121, 122)은 포토다이오드(101 및 102)의 행간에 있어서 행방향으로 배치되어 있다. 전하 전송 제어선(121)은 제 2 콘택트(C2)를 통해 전송 게이트(111)에 접속되어 있다. 전하 전송 제어선(122)은 다른 제 2 콘택트(C2)를 통해 전송 게이트(112)에 접속되어 있다.
또한, 전하 전송 제어선(123, 124)은 포토다이오드(103 및 104)의 행간에 있어서 행방향으로 배치되어 있다. 전하 전송 제어선(123)은 제 2 콘택트(C2)를 통해 전송 게이트(113)에 접속되어 있다. 전하 전송 제어선(124)은 다른 제 2 콘택트(C2)를 통해 전송 게이트(114)에 접속되어 있다.
포토다이오드의 행간에 있어서 전원선(107)의 상하로 인접해서 2개의 제 2 금속 배선(M2)이 행방향(횡방향)으로 배치되어 있지만, 그 상측 한쪽의 제 2 금속 배선(M2)은 행방향으로 인접하는 복수의 리셋 트랜지스터(105c)의 게이트에 제 2 콘택트(C2)를 통해 접속되어 있다. 하측 다른쪽의 제 2 금속 배선(M2)은 행방향으로 인접하는 복수의 선택 트랜지스터(105b)의 게이트에 제 2 콘택트(C2)를 통해 접속되어 있다.
상기한 바와 같이, 상기 종래의 4화소 공유 구조의 고체 촬상 소자는 화소 면적이 미소화하더라도 포토다이오드 면적을 충분히 확보할 수 있어 화소 중심을 광학적 등간격으로 배치하는 것을 가능하게 하고 있다.
[참조문헌 1] 일본 특허 공개 2006-54276호 공보
[참조문헌 2] 일본 특허 공개 2007-115994호 공보
그러나, 상기 종래의 4화소 공유 구조의 고체 촬상 소자에서는 플로팅 디퓨전(FD) 활성 영역 면적이 4화소분 만큼 그 평면으로 볼 때 면적이 커져서 FD 용량(CFD)이 증대하고, 또한 이 플로팅 디퓨전(FD)과 리셋 트랜지스터의 확산 영역 및 소스 폴로워(SF) 트랜지스터(증폭 트랜지스터)의 게이트를 접속하는 메탈 배선 길이[참조문헌 2에서는 FD 배선(108)의 길이]가 2화소만큼 떨어진 2개의 플로팅 디퓨전(FD)을 연결시킴으로써 그 길이가 길어져서 FD 메탈 배선이 다른 배선이나 층의 사이에서 가지는 기생 용량(parasitic capacity)도 증대한다. 플로팅 디퓨전(FD)의 FD 용량(CFD)이나, 이것에 접속되는 FD 메탈 배선이 가지는 배선 기생 용량(배선 용량)(Cd)는 전하 전압의 변환 게인(η)에 영향을 주고, 1 전자당 몇볼트로 변환될지를 나타내는 전압 변환식, 변환 게인(η)=q/(CFD+Cd)에 의해 FD 용량(CFD) 및 기생 용량(Cd)이 커지면 플로팅 디퓨전(FD)에 있어서의 전하 전압의 변환 게인(η)이 떨어지고, 감도가 작아진다고 하는 문제를 가지고 있다. 요컨대, 포토다이오드로부터 플로팅 디퓨전(FD)으로 신호 전하를 전송해서 받아들여도 플로팅 디퓨전(FD)에 있어서 전하 전압 변환된 전압에 의해 효율적으로 신호 증폭해서 신호선으로 신호 출력할 수 없는 결과로 된다. 이에 따라, 이 고체 촬상 소자의 감도 및 해상도도 저하된다.
본 발명은 상기 종래의 문제를 해결하기 위한 것이며, 복수 화소 공유 구조의 고체 촬상 소자에 있어서, 포토다이오드 면적 및 트랜지스터 배치 영역을 포함 하는 화소 면적을 미소화해도 포토다이오드 면적을 더욱 확보할 수 있고, 또한 FD 용량을 개선해서 고감도 및 고해상도를 제공하며, 또한 경사 입사광에 기인하는 셰이딩(shading)이 발생하지 않는 고체 촬상 소자, 및 이 고체 촬상 소자를 화상 입력 디바이스로서 촬상부에 사용한 전자 정보 기기를 제공하는 것을 목적으로 한다.
본 발명에 의한 고체 촬상 소자는 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 판독을 행하는 2화소 공유 구조의 고체 촬상 소자로서: 상기 플로팅 디퓨전의 전위를 소정 전위로 리셋하기 위한 리셋 수단과 상기 플로팅 디퓨전의 전압에 따라서 신호 증폭해서 신호 판독을 행하는 신호 증폭 수단을 분리 배치하고, 상기 리셋 수단 및 신호 증폭 수단은 상기 신호 판독 회로를 구성하고, 상기 리셋 수단의 활성화 영역을 상기 플로팅 디퓨전의 활성화 영역으로서 기능하도록 구성하고, 상기 플로팅 디퓨전으로부터 상기 신호 증폭 수단의 제어 전극에 이르는 배선을 직선상의 최단 거리 레이아웃을 갖는 금속 배선의 제 1 층으로 형성하고, 상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것이며, 이에 따라 상기 목적이 달성된다.
본 발명의 고체 촬상 소자는 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환 하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 판독을 행하는 2화소 공유 구조의 고체 촬상 소자로서: 상기 신호 판독 회로를 구성하고, 상기 플로팅 디퓨전의 전위를 소정 전위로 리셋하기 위한 리셋 수단과 상기 플로팅 디퓨전의 전압에 따라서 신호 증폭해서 신호 판독을 행하는 신호 증폭 수단을 분리 배치하고, 상기 리셋 수단 및 신호 증폭 수단은 상기 신호 판독 회로를 구성하고, 상기 리셋 수단의 한쪽 활성화 영역을 상기 플로팅 디퓨전의 활성화 영역으로서 기능하도록 구성하고, 상기 플로팅 디퓨전으로부터 상기 신호 증폭 수단의 제어 전극에 이르는 배선을 직선상의 최단 거리 레이아웃으로 형성하고, 상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것이며, 이에 따라 상기 목적이 달성된다.
본 발명의 고체 촬상 소자는 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 증폭해서 신호 판독을 행하는 2화소 공유 구조의 고체 촬상 소자로서: 상기 플로팅 디퓨전으로부터 신호 증폭 수단의 제어 전극에 이르는 배선을 금속 배선의 제 1 층으로 형성하고, 상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것이며, 이에 따라 상기 목적이 달성된다.
본 발명의 고체 촬상 소자는 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 플로팅 디퓨전 용량을 더욱 작게 하기 위해서 두개의 수광부 마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 판독을 행하는 고체 촬상 소자로서: 상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것이며, 이에 따라 상기 목적이 달성된다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 플로팅 디퓨전은 상기 두개의 수광부 사이에 대향하는 변의 양단부 중 어느 하나가 한쪽의 대향 단부 사이에 설치되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 플로팅 디퓨전과 상기 두개의 수광부 사이에는 전하 전송 수단이 설치되어 있고, 상기 전하 전송 수단의 제어 전극은 상기 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 4모서리부 중 하나의 모서리부상을 커버링하는 평면으로 볼 때 거의 삼각형상으로 형성되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서, 상기 두개의 수광부 사이를 폭으로 하는 벨트 형상 길이 방향을 따라 이 사이의 간격을 좁게 하기 위해 상기 전하 전송 수단의 제어 전극과 상기 리셋 수단이 한쪽 방향으로 설치되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서, 상기 두개의 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 서로 대향하는 모서리부 사이에 상기 플로팅 디퓨전이 설치되어 있고, 상기 플로팅 디퓨전과 상기 두개의 수광부 사 이에 전하 전송 수단이 설치되어 있고, 상기 전하 전송 수단의 활성 영역이 상기 플로팅 디퓨전의 활성 영역으로서 기능하도록 형성되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서, 매트릭스상으로 행렬 방향으로 설치된 복수의 수광부 중 두개의 수광부가 평면으로 볼 때 열방향으로 인접해서 제공되어 단위 화소부를 형성하고 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 단위 화소부의 행간에 상기 신호 판독 회로를 구성하는 신호 증폭 수단이 설치되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 신호 증폭 수단은 증폭 트랜지스터로 구성되고, 상기 증폭 트랜지스터의 신호 출력측의 한쪽 구동 영역이 상기 두개의 수광부의 상기 행간측의 모서리부와 이것에 종방향의 한쪽 또는 다른쪽으로 대향해서 인접한 다른 두개의 수광부의 모서리부 사이의 영역에 형성되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 증폭 트랜지스터의 신호 출력측의 게이트가 상기 두개의 수광부의 상기 행간측의 모서리부에 횡방향으로 대향해서 인접한 다른 두개의 수광부의 모서리부와 이것에 종방향의 한쪽 또는 다른쪽으로 대향해서 인접한 또 다른 두개의 수광부의 모서리부 사이를 포함하는 행간 영역에 형성되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서, 신호선은 상기 증폭 트랜지스터의 신호 출력측의 한쪽 구동 영역에 콘택트를 통해 접속되고, 상기 두개의 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 종방향의 변을 따라 거 의 직선상으로 배치되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서, 상기 플로팅 디퓨전으로부터 상기 신호 판독 회로의 신호 증폭 수단의 제어 전극에 이르는 배선이 상기 증폭 트랜지스터의 신호 출력측의 게이트와 상기 플로팅 디퓨전에 각 콘택트를 각각 통해 접속고, 상기 두개의 수광부에 횡방향으로 대향해서 인접한 다른 두개의 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 종방향의 변을 따라 거의 직선상으로 배치되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 리셋 수단의 다른쪽 활성화 영역과, 상기 신호 증폭 수단의 다른쪽 구동 영역에 직렬 접속되는 화소 선택 수단의 다른쪽 구동 영역은 각 콘택트를 통해 금속 배선 제 1 층의 전원선에 의해 접속되어 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서, 상기 두개의 수광부는 종방향으로 배치되고, 표시 화면상에 행렬 방향으로 설치된 복수의 수광부 중 행마다 순차적으로 상기 화소 선택 수단에 의해 선택되고, 상기 신호 증폭 수단에 의해 신호 증폭되어서 신호 판독된다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 화소 중심의 등간격의 배치는 상기 수광부 및 상기 신호 판독 회로의 일부로서의 트랜지스터 배치 영역을 포함하는 화소 중심의 배열 피치가 행방향 및 열방향에서 동일하다.
또한, 바람직하게는 본 발명의 고체 촬상 소자에 있어서의 상기 플로팅 디퓨전의 활성 영역과, 상기 각 전하 전송 수단의 활성 영역과, 상기 리셋 수단의 활성 영역을 플로팅 디퓨전 면적이 레이아웃상에서 최소가 되도록 서로 근접시켜 공통화하고 있다.
또한, 바람직하게는 본 발명의 고체 촬상 소자는 MOS형 고체 촬상 소자이다.
본 발명에 의한 전자 정보 기기는 본 발명에 의한 상기 고체 촬상 소자를 화상 입력 디바이스로서 촬상부에 사용한 것이며, 이에 따라 상기 목적이 달성된다.
상기 구성에 의해 이하 본 발명의 작용을 설명한다.
본 발명에 의하면, 수광부로서 기능하는 포토다이오드의 중심과 화소 중심을 일치시켜서 그 화소 중심을 광학적 등간격으로 배치한다. 이에 따라, 경사 방향의 입사광에 기인하는 셰이딩을 방지하는 것이 가능하게 된다.
이 상태에서 2화소 공유 구조의 고체 촬상 소자가 제공된다. 플로팅 디퓨전(FD)의 면적이 작을수록 FD 용량이 작고, 플로팅 디퓨전(FD)에 연결되는 FD 배선이 짧을수록 FD 메탈 배선의 기생 용량(배선 용량)이 작아져서 전압 변환 게인(η)이 커지고, 감도가 증대해서 고해상도가 된다. 즉, 2화소 공유 구조로 플로팅 디퓨전(FD)과 리셋 확산 영역을 근방에 위치시켜서 공유화하고, 또한 제 1 층째의 제 1 금속 배선(M1)[또는, 제 2 층째의 제 2 금속 배선(M2)]으로 플로팅 디퓨전(FD)과 신호 증폭 수단의 제어 전극 사이를 접속하는 FD 배선을 거의 직선상의 최단 레이아웃으로 함으로써 FD 용량(CFD)이나 FD 배선에 의한 배선 용량(Cd) 등, 플로팅 디퓨전(FD)에 관한 용량(C)을 대폭 저감하는 것이 가능하게 되고, 전압 변환 게인(η)을 대폭 향상시킨 결과 고체 촬상 소자에 고감도와 고해상도를 제공할 수 있 다.
또한, 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키고, 또한, 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 신호 증폭 수단의 제어 전극에 이르는 FD 배선을 제 1 금속 배선(M1)으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 그 화소 중심을 광학적 등간격으로 배치한다. 플로팅 디퓨전(FD)에 관한 용량(C)의 저감 효과는 더욱 작지만, 2화소 공유 구조에 의한 FD 용량(CFD)이나 FD 드론 배선(FD drawn wiring)에 의한 배선 용량(Cd) 등, 플로팅 디퓨전(FD)에 관한 용량(C)을 저감할 수 있고, 전압 변환 게인(η)을 향상시킬 수 있고, 그 결과로서 고체 촬상 소자에 양호한 감도 및 양호한 해상도를 제공할 수 있다. 또한, 2화소 공유 구조만이라도 플로팅 디퓨전(FD)에 관한 용량(C)을 저감하는 효과가 있다.
상기한 바와 같이, 본 발명에 의하면, 포토다이오드의 중심과 화소 중심을 일치시키고 그 화소 중심을 광학적 등간격으로 배치함으로써 경사 방향의 입사광에 기인하는 셰이딩을 방지할 수 있다. 이 상태에서 2화소 공유 구조로 플로팅 디퓨전(FD)과 리셋 확산 영역을 함께 결합하여 공통화하고, 제 1 층째의 제 1 금속 배선[또는 제 2 층째의 제 2 금속 배선(M2)]에 의해 플로팅 디퓨전(FD)과 증폭 트랜지스터의 게이트 사이의 드론 배선을 최단 레이아웃으로 함으로써 FD 용량(CFD)이나 FD 드론 배선에 의한 배선 용량(Cd) 등, 플로팅 디퓨전(FD)에 관한 용량(C)을 대폭 저감할 수 있고, 전압 변환 게인(η)을 대폭 향상시킬 수 있고, 그 결과로서 고체 촬상 소자를 위해 고감도 및 고해상도를 제공할 수 있다. 또한, S/N비도 개선시킬 수 있다.
또한, 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키고, 또한 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 신호 증폭 수단의 제어 전극에 이르는 FD 배선을 제 1 금속 배선(M1)으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시키고, 그 화소 중심을 광학적 등간격으로 배치한다. 플로팅 디퓨전(FD) 에 관한 용량(C)의 저감 효과는 더욱 작지만, 2화소 공유 구조에 의한 FD 용량(CFD)이나 FD 드론 배선에 의한 배선 용량(Cd) 등 플로팅 디퓨전(FD)에 관한 용량(C)을 저감할 수 있고, 전압 변환 게인(η)을 향상시킬 수 있고, 그 결과로서 고체 촬상 소자에 양호한 감도 및 양호한 해상도를 제공할 수 있다. 또한, S/N비도 개선시킬 수 있다.
본 발명의 장점은 첨부 도면을 참조한 이하의 상세한 설명을 통해 당업자에게 자명하게 될 것이다.
이하, 본 발명에 의한 2화소 공유 구조의 고체 촬상 소자의 제 1 실시형태∼제 3 실시형태를 MOS형 이미지 센서에 적용했을 경우 및 이 고체 촬상 소자의 제 1 실시형태∼제 3 실시형태를 화상 입력 디바이스로서 촬상부에 사용하고, 제품으로서의 카메라 장착 휴대 전화 장치 등의 전자 정보 기기에 적용했을 경우에 대해서 도면을 참조하면서 설명한다.
(제 1 실시형태)
도 1은 본 발명의 제 1 실시형태와 관련한 2화소 공유 구조의 고체 촬상 소자에 있어서의 플로팅 디퓨전부의 요부 구성예를 개략적으로 나타낸 평면도이다.
도 1에 있어서, 종래의 2화소 공유 구조의 고체 촬상 소자는 제 1 수광부로서 기능하는 포토다이오드로부터 신호 전하를 판독하는 전송 트랜지스터(2)의 활성 영역(2a)과, 제 2 수광부로서 기능하는 포토다이오드로부터 신호 전하를 판독하는 전송 트랜지스터(3)의 활성 영역(3a)과, 리셋 트랜지스터(4)의 활성 영역(4a)을 갖고, 각 활성 영역(2a∼4a)에 대하여 각 콘택트(C1)를 통해 제 1 금속 배선(M1)의 상층과 연결해서 플로팅 디퓨전(FD)을 구성하고 있다. 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자의 단위 화소부(10)에서는 상기 종래의 제 1 금속 배선(M1)의 상층을 필요로 하지 않고, 전송 트랜지스터(2)의 활성 영역(2a)과, 전송 트랜지스터(3)의 활성 영역(3a)과, 리셋 트랜지스터(4)의 활성 영역(4a)을 근방에 배치하고 이것들을 일체화하여 플로팅 디퓨전(FD)으로 구성하고 있다. 이와 같이, 상하(종방향)의 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키거나 그 이하로 할 수 있다. 또한, 리셋 트랜지스터(4)의 확산 영역(4a)을 플로팅 디퓨전(FD)의 활성 영역과 겸해서 근방 위치에 배열함으로써 플로팅 디퓨전(FD)의 활성 영역 면적을 더욱 저감할 수 있다. 또한, 2화소 공유의 두개의 수광부(제 1 수광부와 제 2 수광부)는 종방향으로 배치되고, 표시 화면상에 행렬 방향으로 복수 설치된 수광부 중 행마다 순차적으로 복수의 수광부의 행으로부터 신호 판독된다.
종래, 리셋 트랜지스터(4)를 단위 화소부(10)의 내부에 설치하려고 하면 단위 화소부(10)의 내부에 새로운 스페이스가 필요하기 때문에 신호 판독용의 각 트랜지스터의 배치 영역을 단위 화소부(10)의 외부에 일괄해서 형성하고 있었지만, 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자에서는 화소 면적이 미소화하더라도 포토다이오드 면적을 충분히 확보하고, 또한 포토다이오드 및 신호 판독 회로의 트랜지스터의 배치 영역을 포함하는 화소 중심을 광학적으로 상하(열방향 또는 종방향) 및 좌우(행방향 또는 횡방향)로 등간격으로 배치하기 때문에 단위 화소부(10)의 내부에 있어서도 상하의 각 포토다이오드의 행간을 균등하게 비우고, 그 행간의 플로팅 디퓨전(FD)의 근방 위치에 리셋 트랜지스터(4)를 배치함으로써 플로팅 디퓨전(FD)의 활성 영역 면적을 대폭 저감할 수 있다. 또한, 플로팅 디퓨전(FD)의 활성 영역과, 전송 트랜지스터(2)의 활성 영역(2a)과, 전송 트랜지스터(3)의 활성 영역(3a)과, 리셋 트랜지스터(4)의 활성 영역(4a)을 FD 면적이 최소가 되도록 위치 맞춤 및 공통화해서 오버래핑시키고 있지만 플로팅 디퓨전(FD)의 활성 영역의 농도와 다른 각 활성 영역(2a∼4a)의 농도는 일치하고 있다.
포토다이오드 및 트랜지스터의 배치 영역을 포함하는 화소 중심을 광학적으로 좌우 및 상하 등간격으로 배치하는 것은 포토다이오드의 중심(직사각형의 대각선의 교점)과 화소 중심(2화소 공유의 경우, 두개의 포토다이오드와 신호 판독 회로를 포함하는 2개의 직사각형의 각 대각선의 교점)을 일치시키고, 화소 중심을 시프팅시키면 포토다이오드에 대응해서 상방에 형성되는 각 마이크로 렌즈의 중심 위치도 시프팅시킬 필요가 있고, 각 마이크로 렌즈간에 간극이 발생하여 보다 마이크 로 렌즈를 큰 렌즈로 할 수 없고, 보다 넓은 영역의 광을 집광할 수 없고, 광의 로스(loss)가 발생해서 포토다이오드에 있어서의 수광 감도가 저하한다. 또한, 화소 중심을 시프팅시키면 경사 방향에 있는, 예를 들면 녹색의 Gb과 Gr에 대응하는 각 포토다이오드와 이것에 대응하는 각 마이크로 렌즈의 배치 발란스가 좋지 않고, 각 마이크로 렌즈의 배열 피치가 불균등하게 되면 경사 방향으로부터 입사하여 마이크로렌즈에 의해 집광된 광이 하나의 포토다이오드에 도달하지 않고 다른 포토다이오드를 판독할 수 있다. 포토다이오드에 따라 마이크로렌즈로부터 집광된 광이 도달하거나 도달하지 않을 수 있다. 그러나, 화소 중심이 등간격이면 마이크로 렌즈로부터 집광된 광이 포토다이오드에 따라 도달하거나 도달하지 않을 수 있다. 그 대신에 집광된 광이 코스를 벗어나면 모든 포토다이오드에서 집광된 광이 코스를 벗어나고, 이에 따라 포토다이오드로의 집광도가 일정해지고, 수광 변동이 제거된다. 화소 중심이 시프팅되면 경사 방향으로부터의 광이 일정하게 집광되지 않고 수광 변동을 일으키는 셰이딩이 발생한다. 화소 중심이 등간격으로 배열되면 이러한 문제를 방지할 수 있다.
또한, 상세히 후술하지만, 화소 중심을 광학적으로 등간격(포토다이오드의 배열 피치가 좌우 및 상하로 동일)으로 배치하기 위하여 리셋 트랜지스터(4)가 설치된 행간과, 선택 트랜지스터(5) 및 증폭 트랜지스터(6)가 설치된 행간은 동일 폭(동일 간극)으로 되어 있다. 여기서는 포토다이오드 중심의 배열 피치가 좌우 및 상하 방향으로 동일하지만, 포토다이오드의 평면으로 볼 때의 외형은 직사각형으로 하고, 상하의 행간 폭보다도 좌우의 열 사이의 폭(동일 간극)을 트랜지스터의 배치 영역을 포함하지 않는 폭만큼 좁게 해서 포토다이오드 면적을 크게 하고 있다.
본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 플로팅 디퓨전(FD) 및 리셋 트랜지스터의 배치에 대해서 더욱 검증한다.
예를 들면, 상하 한쌍의 포토다이오드 행간의 좌우 방향의 변의 중간 위치에 플로팅 디퓨전(FD)이 종방향으로 배치되고, 리셋 트랜지스터의 소스가 플로팅 디퓨전(FD)과 일체가 되어 있고, 도 2로 후술하는 선택 트랜지스터 및 증폭 트랜지스터를 활성 영역과 함께 상하 한쌍의 포토다이오드의 행간에 설치하고 있는 경우에 대해서 설명한다.
플로팅 디퓨전(FD) 및 리셋 트랜지스터를 상하 한쌍의 포토다이오드의 행간의 좌측에 설치한 경우, 선택 트랜지스터 및 증폭 트랜지스터는 그 우측에 설치할 필요가 있지만, 이것은 횡방향으로 피팅(fitting)하기 어렵다. 선택 트랜지스터 및 증폭 트랜지스터를 종방향으로 배치할 경우, 포토다이오드는 그 만큼 부분적으로 커팅되어 면적적으로도 작아져서 직사각형으로는 안된다. 또한, 플로팅 디퓨전(FD)이 각 포토다이오드의 각 대향변의 횡방향 중앙 부분에 있으면 전송 트랜지스터의 게이트 영역만큼 행간에 상하로 큰 폭이 필요하다. 리셋 트랜지스터만이 그 행간에 있는 경우에 비해 게이트 영역도 추가되므로 포토다이오드의 행간이 확장된다. 이에 따라, 화소 중심에 대하여 포토다이오드의 중심이 시프팅되고, 포토다이오드의 배열 피치도 등간격이 안되고, 화소 중심으로 마이크로 렌즈를 조정하면 포토다이오드의 중심으로 마이크로 렌즈로부터의 집광이 맞춰지지 않고 코스를 벗어나 셰이딩이 발생한다.
따라서, 본 발명의 제 1 실시형태에 의하면, 플로팅 디퓨전(FD)의 위치는 포토다이오드의 대향변의 좌우 어느 한쪽의 단부(또는 양단부 중 어느 한쪽의 단부)에 위치하고 있고, 이때, 전송 트랜지스터의 게이트를 포토다이오드의 모서리 부분상에 삼각형으로 형성하고, 그 포토다이오드의 행간에 게이트가 다소 돌출되지만 그 게이트와 리셋 트랜지스터를 좌우로 나열하여 설치함으로써 포토다이오드의 행간을 보다 좁게 할 수 있다. 또한, 선택 트랜지스터 및 증폭 트랜지스터에 대해서는 단위 화소부(10)와 그 하측에 인접한 단위 화소부(10)의 행간에 설치하면 좋다. 요컨대, 플로팅 디퓨전(FD)을 각 포토다이오드의 좌단부 또는 우단부에 설치하고, 선택 트랜지스터 및 증폭 트랜지스터를 각 단위 화소부(10)의 행간에 설치함으로써 각 포토다이오드의 중심과 대응하는 화소 중심을 일치시킬 수 있음과 아울러 각 포토다이오드의 중심을 마이크로 렌즈의 중심과 일치시켜서 그 렌즈 중심을 등간격으로 배치할 수 있어 셰이딩의 발생도 없어진다.
또한, 종래는 리셋 트랜지스터(4), 선택 트랜지스터(5) 및 증폭 트랜지스터(6)를 1개의 활성 영역에서 일괄해서 설치하고 있었지만, 본 발명의 제 1 실시형태에 의하면, 리셋 트랜지스터(4)를 선택 트랜지스터(5) 및 증폭 트랜지스터(6)로부터 분리하고 있다. 여기서는 리셋 트랜지스터(4)의 다른쪽 활성화 영역으로서 기능하는 드레인과, 증폭 트랜지스터(6)에 직렬 접속되는 선택 트랜지스터(5)가 각 콘택트를 각각 통해 금속 배선(M1)의 1층의 전원선(8)에 의해 접속되어 있다. 전원선(8)을 분리한 리셋 트랜지스터(4)의 드레인과 선택 트랜지스터(5)의 드레인의 사이에 새롭게 형성할 필요가 있지만, 리셋 트랜지스터(4)를 플로팅 디퓨전(FD)의 근 방 위치에 준비함으로써 전술한 바와 같이 플로팅 디퓨전(FD)에 관한 용량 저감 효과가 있다.
도 2는 도 1의 2화소 공유 구조의 고체 촬상 소자에 있어서의 단위 화소부의 회로도이다.
도 2에 있어서, 2화소 공유 구조의 고체 촬상 소자(1)에 있어서의 단위 화소부(10)에는 2개의 포토다이오드(12, 13), 각 포토다이오드에 대응해서 신호 전하를 판독하기 위한 2개의 전송 트랜지스터(2, 3), 및 상기 두 전송 트랜지스터(2, 3)당 1개의 신호 판독 회로(11)를 포함한다.
이 판독 회로(11)는 라인마다(행마다)에 복수의 화소를 선택해서 신호를 출력시키기 위한 화소 선택 수단으로서의 선택 트랜지스터(5)와, 이것에 직렬 접속되어 선택 화소의 플로팅 디퓨전(FD)의 신호 전하 전압에 따라서 신호를 증폭하는 신호 증폭 수단으로서의 증폭 트랜지스터(6)와, 증폭 트랜지스터(6)로부터의 신호 출력후에 플로팅 디퓨전(FD)의 전위를 소정 전위로 리셋하는 리셋 수단으로서의 리셋 트랜지스터(4)를 구비하고 있다. 상하 2개의 포토다이오드(12, 13)로부터의 신호 전하가 플로팅 디퓨전(FD)에 화소의 행마다 순차 전송되어서 전하/전압 변환된다. 그 변환된 신호 전압이 각각 선택 트랜지스터(5)에 의해 화소가 선택된 증폭 트랜지스터(6)에 의해 증폭되어서 신호선(7)에 의해 각 화소마다의 촬상 화소 신호로서 순차 판독된다. 그후에, 리셋 트랜지스터(4)에 의해 플로팅 디퓨전(FD)이 전원 전압(Vdd)의 소정 전위로 리셋되고, 이것을 표시 화면의 복수 화소의 행마다 순차 반복해서 각 포토다이오드(12, 13)로부터의 신호 전하에 대응한 각 화소마다의 촬상 화소 신호를 신호선(7)에 순차 판독하게 되어 있다.
포토다이오드(12, 13)는 입사광을 그 광량에 따른 신호 전하로 광전 변환한다. 포토다이오드(12, 13)와 플로팅 디퓨전(FD)의 사이에는 전송 트랜지스터(2, 3)가 각각 설치되어 있다.
전송 트랜지스터(2, 3)의 각 게이트에는 각각 전하 전송용의 전하 전송 제어선(22, 32)을 각각 통하여 전하 전송 제어 신호(TX1, TX2)가 각각 공급되어서 포토다이오드(12, 13)에서 각각 광전 변환된 신호 전하가 플로팅 디퓨전(FD)에 화소행마다 순차 전송된다.
플로팅 디퓨전(FD)에는 증폭 트랜지스터(6)의 게이트가 접속되어 있고, 전원선(8)과 신호선(7) 사이에 선택 트랜지스터(5) 및 증폭 트랜지스터(6)가 직렬 접속되어 있다. 증폭 트랜지스터(6)는 소스 폴로워형의 증폭기 구성으로 되어 있다. 또한, 전원선(8)은 리셋 트랜지스터(4)를 통해 플로팅 디퓨전(FD)에 전기적으로 접속되어 있고, 리셋 트랜지스터(4)에 의해 플로팅 디퓨전(FD)의 전위는 신호선(7)으로의 신호 판독후이며 플로팅 디퓨전(FD)으로의 신호 전하의 판독전에 정기적으로 전원 전압(Vdd) 등의 소정 전위로 리셋된다.
도 3은 도 2의 2화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 게이트 전극층 형성까지의 레이아웃 도면이다.
도 3에 있어서, 촬상 영역내에 2차원 매트릭스상으로 형성된 평면으로 볼 때 직사각형(또는 정사각형)의 복수의 포토다이오드 중 종방향으로 나열된 2개의 포토다이오드(12, 13)가 l개의 신호 판독 회로(11)를 공유로 하고 있다. 상하 2개의 포 토다이오드(12, 13)는 동일열에 상하로 인접해서 배치되어 있다.
포토다이오드(12)와 그 종방향 하부에 인접한 포토다이오드(13)의 행간의 우단부에 소정폭으로 포토다이오드(12, 13)를 연결시키도록 플로팅 디퓨전(FD)이 배치되어 있다. 이 플로팅 디퓨전(FD)과 포토다이오드(12)의 사이의 우하 모서리부에는 전송 트랜지스터(2)의 게이트(21)가 배치되어 있다. 플로팅 디퓨전(FD)과 포토다이오드(13) 사이의 우상 모서리부에는 전송 트랜지스터(3)의 게이트(31)가 배치되어 있다.
또한, 2개의 포토다이오드(12, 13)를 포함하는 점선으로 둘러싼 단위 화소부(10)로서, 각 단위 화소부(10) 사이의 영역, 예를 들면 도 2 중의 2행째와 3행째의 포토다이오드(13, 12) 사이의 영역에 리셋 트랜지스터(4)를 제외한 신호 판독 회로(11)의 일부분[선택 트랜지스터(5)와 증폭 트랜지스터(6)]이 배치되어 있다.
이 신호 판독 회로(11)를 구성하는 선택 트랜지스터(5)[게이트(51)] 및 증폭 트랜지스터(6)[게이트(61)]가 좌우로 일렬로 나열되어 배치되어 있고, 이것들은 1개의 활성 영역(R)을 공유하고 있다. 선택 트랜지스터(5)의 소스와 증폭 트랜지스터(6)의 드레인은 공통화되어 있다.
한편, 신호 판독 회로(11)의 리셋 트랜지스터(4)(게이트(41))에 대해서는, 도 1을 참조하여 전술한 바와 같이, 2개의 포토다이오드(12, 13) 행간의 플로팅 디퓨전(FD)의 근방 위치에 리셋 트랜지스터(4)가 설치되어 있다. 요컨대, 전술한 바와 같이, 리셋 트랜지스터(4)의 활성 영역(4a)은 전송 트랜지스터(2)의 활성 영역(2a) 및 전송 트랜지스터(3)의 활성 영역(3a)과 함께 일체화되어 플로팅 디퓨 전(FD)의 활성 영역을 형성한다. 이와 같이, 리셋 트랜지스터 활성 영역(4a)을 FD 활성 영역과 일체화함으로써 FD 활성 영역의 면적을 대폭 저감하고 있다. 이에 따라, FD 용량(CFD)을 대폭 개선해서 플로팅 디퓨전(FD)에서의 전압 변환 효율(변환 게인)을 향상시킴으로써 고감도이며 고해상도의 고체 촬상 소자(1)를 얻는다.
도 3의 레이아웃 상층에 제 1 콘택트(C1)를 통해 제 1 금속 배선(M1)이 배치된다. 이것을 도 4에 도시하고 있다.
도 4는 도 2의 2화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 1 금속 배선(M1)의 층 형성까지의 레이아웃 도면이다.
도 4에 있어서, 신호선(7)이 알루미늄 등의 금속에 의해 제 1 금속 배선(M1)으로서 형성된다. 상하 한쌍의 포토다이오드(12, 13)와 좌우로 인접한 상하 한쌍의 포토다이오드(12, 13) 사이의 영역(좌우의 열간 영역)에 열방향(종방향)으로 신호선(7)이 배치되어 있다. 이 신호선(7)은 플로팅 디퓨전(FD)에 접속하는 제 1 콘택트(C1)[증폭 트랜지스터(6)의 게이트(61)와의 접속용 FD 배선(9)]를 회피하도록 굴곡 또는 만곡해서 형성되어 있다. 신호선(7)은 다른 제 1 콘택트(C1)를 통해 증폭 트랜지스터(6)의 소스에 접속되어 있다.
열방향의 FD 배선(9)은 리셋 트랜지스터(4)의 소스와 일체화된 플로팅 디퓨전(FD)과, 증폭 트랜지스터(6)의 게이트(61)가 각각 제 1 콘택트(C1)를 통해 제 1 금속 배선(M1)에 의해 접속되어 있다. 이 FD 배선(9)은 증폭 트랜지스터(6)의 게이트(61)와 플로팅 디퓨전(FD) 사이를 포토다이오드의 상하 방향의 우측변을 따라 거 의 직선상의 최단 거리로 배치되어 있다. 이와 같이, FD 배선(9)을 1화소 길이(종래는 2화소 길이)의 직선상의 최단 거리 레이아웃으로 함으로써 FD 활성 영역에 접속되는 메탈 배선의 길이(면적)를 종래에 비해 반감하고 있다. 이에 따라, FD 배선(9)의 다른 배선이나 층과의 배선 기생 용량(배선 용량)(Cd)을 대폭 개선해서 플로팅 디퓨전(FD)에서의 전압 변환 효율(변환 게인)을 향상시켜, 더욱 고감도이며 고해상도의 고체 촬상 소자(1)를 얻을 수 있다.
요컨대, 증폭 트랜지스터(6)의 게이트(61)를 횡으로 인접한 단위 화소부(10)의 포토다이오드(13)의 좌하 모서리 부분에 인접하도록 형성하고 있고, 그 포토다이오드(13)의 좌상 모서리 부분에 인접하도록 리셋 트랜지스터(4)의 소스를 형성하고 있다. 이에 따라, 그 소스와 일체화된 플로팅 디퓨전(FD)과 증폭 트랜지스터(6)의 게이트(61)를 직선상으로 상하로부터 FD 배선(9)에 의해 연결할 수 있고, FD 배선(9)은 1화소 길이의 최단 거리가 된다. FD 배선(9)은 포토다이오드(13)의 좌측 상, 하변을 따라 직선상이지만, 실제는 플로팅 디퓨전(FD)의 그 중앙부측(여기서는, 평면으로 볼 때 좌측)으로 접근한다. 또한, 배선 용량(Cd)을 적게 하기 위해서 FD 배선(9)을 모두 직선상으로 할 수도 있고, 증폭 트랜지스터(6)의 게이트(61)의 위치를 다소 우측에 배치해도 좋다.
이러한 플로팅 디퓨전(FD)과 증폭 트랜지스터(6)의 게이트(61)를 접속하는 FD 배선(9)[플로팅 디퓨전(FD)과의 증폭 트랜지스터 게이트 접속 배선]은 배선 용량(Cd)을 가능한 한 절감하기 위해서 제 1 금속 배선(M1)에 의해 형성하고 있다. 종래에는 이 FD 배선을 제 2 금속 배선(M2)의 상층에 의해 형성하고 있었지만, 제 2 금속 배선(M2)과 제 1 금속 배선(M1)의 연결부로서 작용하는 중간층(콘택트 C1과 C2 사이의 층)에 대하여도 기생 용량이 발생한다. 본 발명의 제 1 실시형태에 의하면, FD 배선(9)의 배선 용량(Cd)을 가능한 한 절감하기 위해서 FD 배선(9)을 제 2 금속 배선(M2)으로 하지 않고, 제 1 금속 배선(M1)의 하층에 의해 형성하고 있다. 이에 따라, 전압 변환 효율(변환 게인)을 향상시킬 수 있고, 더욱 고감도이며 고해상도의 고체 촬상 소자(1)를 얻을 수 있다.
전송 트랜지스터(2, 3)의 각 게이트(21, 31)상, 리셋 트랜지스터(4)의 게이트상, 선택 트랜지스터(5)의 게이트상, 및 선택 트랜지스터(5)의 드레인상에는 각각 제 1 콘택트(C1)를 각각 통해 제 1 금속 배선(M1)이 형성되어 있다. 제 1 금속 배선(M1)은 전술한 연결부의 중간층이며, 제 2 금속 배선(M2)의 상층과의 콘택트를 이루기 위해 형성되어 있다.
도 4에 도시된 레이아웃의 상층에는 제 2 콘택트(C2)를 통해 제 2 금속 배선(M2)이 배치된다. 이것을 도 5에 도시하고 있다.
도 5는 도 2의 2화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 2 금속 배선(M2)의 층을 포함시킨 레이아웃 도면이다.
도 5에 있어서, 제 2 금속 배선(M2)에 의해 전원선(82), 전하 전송 제어선(22, 32), 리셋 신호선(42) 및 화소 선택선(52)이 형성되어 있다. 단위 화소부(10)를 구성하는 포토다이오드(12 및 13)와, 그 아래에 인접한 다른 단위 화소부(10)를 구성하는 포토다이오드(12 및 13)의 행간의 신호 판독 회로(11)의 일부상에는 전원선(82)이 행방향(횡방향)으로 배치되어 있다. 이 전원선(82)은 제 2 콘택 트(C2)를 통해서 선택 트랜지스터(5)의 드레인에 접속되고, 더욱 전원선(8)을 통해 리셋 트랜지스터(4)의 드레인에 접속되어서 리셋 트랜지스터(4) 및 선택 트랜지스터(5)의 각 드레인에 전원 전압(Vdd)을 공급한다. 또한, 상하로 인접한 단위 화소부(10)의 포토다이오드(13, 12) 행간의 신호 판독 회로(11)의 일부상에 전원선(82)에 평행하게 화소 선택선(52)이 행방향(횡방향)으로 배치되어 있다. 이 화소 선택선(52)은 제 2 콘택트(C2)를 통해서 선택 트랜지스터(5)의 게이트에 접속되고, 선택 트랜지스터(5)의 게이트에 화소 선택 신호(Sel)를 공급한다.
전하 전송 제어선(22, 32)은 단위 화소부(10)를 구성하는 포토다이오드(12 및 13)의 행간상에 있어서 행방향으로 배치되어 있다. 전하 전송 제어선(22)은 제 2 콘택트(C2)를 통해 전송 트랜지스터(2)의 게이트(21)에 접속되어 전송 트랜지스터(2)의 게이트(21)에 전하 전송 제어 신호(TX1)를 공급한다. 또한, 전하 전송 제어선(32)은 제 2 콘택트(C2)를 통해 전송 트랜지스터(3)의 게이트(31)에 접속되어 전송 트랜지스터(3)의 게이트(31)에 전하 전송 제어 신호(TX2)를 공급한다.
리셋 신호선(42)은 단위 화소부(10)를 구성하는 포토다이오드(12 및 13)의 행간상에 있고, 전하 전송선(22, 32)과 평행하게 전하 전송선(22, 32) 사이에 배치되어 있다. 이 리셋 신호선(42)은 제 2 콘택트(C2)를 통해 리셋 트랜지스터(4)의 게이트(41)에 접속되어 리셋 트랜지스터(4)의 게이트(41)에 리셋 신호(RST)를 공급한다.
여기서, 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자(1)와 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 출력 변환 게인(η)을 비교한다.
플로팅 디퓨전(FD)의 FD 용량(CFD)과, 플로팅 디퓨전(FD)에 접속되는 FD 메탈 배선에 의한 기생 용량(배선 용량)(Cd) 등의 플로팅 디퓨전(FD)에 관한 용량(C)은 전하/전압의 변환 게인(η)에 영향을 주고, 전술한 1전자당 몇볼트로 변환될지를 나타내는 전압 변환식, 변환 게인(η)=q/C이 유지되고, 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자(1)의 효과로서 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 경우에 비해 출력 변환 게인(η)이 약 2.5배 가까이가 되어서 대폭 개선되어 감도 및 해상도를 향상시킬 수 있다.
참고예로서의 4화소 공유 구조의 고체 촬상 소자의 경우에 비해 FD 용량(CFD)는(참고예의 경우를 1로 함), 예를 들면 PN 접합 용량인 FD 용량(CFD)은 0.54이며, Fring 용량은, 예를 들면 도 6에 도시된 바와 같이, 전송 트랜지스터(2)의 게이트(21)와 플로팅 디퓨전(FD) 사이의 용량이며, 게이트(21)와 플로팅 디퓨전(FD)이 어느 정도의 폭으로 접하고 있는지에 따라 결정되는 용량(2화소 공유의 경우는 4화소 공유의 경우의 약 반의 용량값)은 0.41이며, 배선 용량(Cd)은 상기 FD 배선(9)이 가지는 기생 용량으로 O.25이며, SF 게이트 용량은 증폭 트랜지스터(6)의 게이트(61)가 가지는 용량으로 1.0이다. 2화소 공유 구조의 고체 촬상 소자(1)에서의 변환 게인(η)(μV/e)이 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 경우에 비해 약 2.5배 가까이 되고 있다.
여기서, 본 발명의 제 1 실시형태의 효과로서, 감도나 화질에 영향을 주는 S/N비에 대해서도 검증한다.
도 14는 도 3의 2화소 공유 구조의 고체 촬상 소자의 감도와, 상기 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 감도를 막대 그래프로 개략적으로 나타낸 도면이다.
도 14에 도시된 바와 같이, 상기 변환 게인(η)의 단위가 μV/e이었던 것에 대해서 감도의 단위는 mV/(Luxㆍsec)이다. 이 감도(mV/(Luxㆍsec)는 증폭 트랜지스터(6)의 게이트(61)에 접속되는 플로팅 디퓨전(FD)에 있어서의 전하 전압의 변환 게인(η)뿐만 아니라 광이 수광부에 얼마나 집광되었는지에 따라 크게 변화한다. 도 3의 2화소 공유 구조의 고체 촬상 소자에 있어서의 감도와, 상기 참고예로서의 4화소 공유 구조의 고체 촬상 소자에 의한 감도를 비교하면 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 레이아웃의 감도가 4화소 공유 구조의 레이아웃의 감도에 비해 3.5배를 상회하고 있다. 이것은 본 발명의 제 1 실시형태의 레이아웃에 의해 배선폭을 작게 하거나, 수광부상의 배선 배치를 될 수 있는 한 회피하거나, 메탈 배선이 짧아지고, 변환 게인(η)(μV/e)의 향상과 함께 수광부에 대한 개구율이 향상이 크게 영향을 주고 있다.
도 15는 도 3의 2화소 공유 구조의 고체 촬상 소자에 있어서의 S/N비와, 상기 참고예로서의 4화소 공유 구조의 고체 촬상 소자에 의한 S/N비를 그래프를 사용하여 개략적으로 나타낸 도면이다.
요컨대, 저조도시에 어느 정도의 S/N비(단위 노이즈당 신호의 크기)일지가 고체 촬상 소자의 경우에 중요해서, 도 15에 도시된 바와 같이, 저조도의, 예를 들 면 10(Lux)을 예로 들면, 그때의 S/N비는 참고예의 4화소 공유 구조의 레이아웃에서는 O.3 정도인 것에 대해서 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 레이아웃에서는 0.8 정도이고, 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 레이아웃이 참고예의 4화소 공유 구조의 레이아웃에 비해 2.5배를 상회하고 있다. S/N비는 표시 화면의 화질에 영향을 주고, 전술한 바와 같이, 전하/전압의 변환 게인(η)(μV/e)과 감도(mV/(Luxㆍsec)가 대폭 향상되고, 그 결과로서 S/N비가 대폭 향상되고 있다.
이 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 레이아웃에 대해서는 도 7 및 도 8을 이용해서 간단히 설명한다.
도 7은 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자와 플로팅 디퓨전(FD)에 관한 용량(C)을 비교하기 위한 상기 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 1 금속 배선(M1)의 층 형성까지의 레이아웃 도면이다.
도 7에 있어서, 종방향으로 인접한 4개의 수광부로서의, 예를 들면 포토다이오드(R), 포토다이오드(Gb), 포토다이오드(R) 및 포토다이오드(Gb)가 하나의 신호 판독 회로를 공유하는 4화소 공유 구조이다. 신호 판독 회로를 구성하는 선택 트랜지스터(Sel), 증폭 트랜지스터(SF) 및 리셋 트랜지스터(RST) 중 선택 트랜지스터(Sel) 및 증폭 트랜지스터(SF)는 리셋 트랜지스터(RST)와 상하로 분리되어 있고, 상측의 2개의 포토다이오드(R) 및 포토다이오드(Gb)의 행간에 선택 트랜지스터(Sel) 및 증폭 트랜지스터(SF)가 설치되고, 또한, 하측의 2개의 포토다이오드(R) 및 포토다이오드(Gb)의 행간에는 리셋 트랜지스터(RST)가 설치되어 있다. 상측의 2개의 포토다이오드의 행간에 설치된 제 1 금속 배선(M1)이 신호 판독 회로를 구성하는 선택 트랜지스터(Sel)의 게이트에 콘택트를 통해 접속되어 있다. 또한, 하측의 2개의 포토다이오드의 행간에 설치된 제 1 금속 배선(M1')은 신호 판독 회로를 구성하는 리셋 트랜지스터(RST)의 게이트에 콘택트를 통해 접속되어 있다.
도 8은 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자와 플로팅 디퓨전(FD)에 관한 용량(C)을 비교하기 위한 상기 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 2 금속 배선(M2)의 층을 포함시킨 레이아웃 도면이다.
도 8에 있어서, 4화소 공유 구조의 4개의 포토다이오드와, 그 횡방향으로 인접한 4화소 공유 구조의 4개의 포토다이오드의 종방향 열에 있어서 신호선(7)이 증폭 트랜지스터(SF)의 출력측 구동 영역에 콘택트를 통해 접속되어 있고, 제 1 금속 배선(M1) 상층의 제 2 금속 배선(M2)으로서 신호선(7)이 형성되어 있다. 또한, 제 2 금속 배선(M2)으로서 FD 배선(9)이 상측 2개의 포토다이오드간의 플로팅 디퓨전(FD)과, 하측 2개의 포토다이오드간의 플로팅 디퓨전(FD)을 각 콘택트를 통해 접속되어 있음과 아울러 이들 플로팅 디퓨전(FD) 이외에 증폭 트랜지스터(SF)의 게이트와 다른 콘택트를 통해 접속되어 있다.
이상과 같이, 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자(1)에 의하면, 피사체로부터의 화상광을 광전 변환해서 촬상하는 두개의 포토다이오드(12, 13)가 하나의 신호 판독 회로(11)를 공유하고, 두개의 포토다이오 드(12, 13)로부터 공통의 플로팅 디퓨전(FD)으로 신호 전하를 판독하여 전압 변환하고, 이 변환 전압에 따라서 신호 판독 회로(11)에 의해 신호 판독을 행하는 것이며, 신호 판독 회로(11)를 구성함과 아울러 플로팅 디퓨전(FD)의 전위를 리셋하기 위한 리셋 트랜지스터(4)와 플로팅 디퓨전(FD)의 전압에 따라 신호 증폭해서 신호 판독을 행하는 증폭 트랜지스터(6)를 분리 배치한다. 리셋 트랜지스터(4)의 활성화 영역으로서의 소스를 플로팅 디퓨전(FD)의 활성화 영역과 공통으로 구성하고, 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터(6)의 제어 전극으로서 기능하는 게이트에 이르는 FD 배선(9)을 각 콘택트를 통해 금속 배선(M1)의 제 1 층으로서 직선상의 최단 거리 레이아웃으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 이 화소 중심을 광학적 등간격으로 배치하고 있다.
이와 같이, 상기 제 1 실시형태에 의하면, 포토다이오드의 중심과 화소 중심을 일치시켜서 화소 중심을 광학적 등간격으로 배치함으로써 경사 방향의 입사광에 기인하는 셰이딩을 방지할 수 있다. 이 상태에서 2화소 공유 구조만으로 플로팅 디퓨전(FD)과 리셋 확산 영역을 연속으로 하고, 제 1 층 메탈 배선이 플로팅 디퓨전(FD)과 증폭 트랜지스터(6)의 게이트(61) 사이의 드론 배선[FD 배선(9)]을 거의 직선상의 최단 레이아웃을 형성함으로써 FD 용량(CFD)과 FD 배선(9)에 의한 배선 용량(Cd) 등의 플로팅 디퓨전(FD) 에 관한 용량(C)을 대폭 저감할 수 있다. 또한, 전압 변환 게인(η)을 대폭 향상시키고, 그 결과로서 고체 촬상 소자에 고감도 및 고해상도를 제공할 수 있다.
또한, 외부 전원으로부터 전원선(82)의 전원 전압(Vdd)에 의해 노이즈가 실리지만, 그 노이즈가 플로팅 디퓨전(FD)에 실려 그것이 증폭되어서 신호 출력이 된다면 문제가 된다. 그러나, FD 배선(9)이, 전술한 바와 같이, 거의 직선상의 최단 거리 레이아웃으로 되고, 또한 FD 배선(9)을 제 1 금속 배선(M1)으로 함으로써 FD 배선(9)이 제 2 금속 배선(M2)의 전원선(82)과 거리적으로 떨어져 있기 때문에 그 배선간의 용량을 통해 영향을 주는 노이즈가 저감된다.
또한, 2화소 공유 구조로 함으로써 플로팅 디퓨전(FD)에 관한 용량(C)의 저감 효과 이외에 화소 파손시의 색 보간 처리를 행할 때에 주목 화소가 파손되었을 경우, 그 주위의 동일색의 4화소의 평균치로 주목 화소를 보간하고 있다. 그런데, 종방향의 4화소 공유 구조는, 도 7에도 도시된 바와 같이, 같은 색을 포함하고 있기 때문에 그 색 보간 처리에 사용하는 주목 화소 주변의 동일색의 화소도 4화소에 의해 공유되는 신호 판독 회로 중의 트랜지스터의 파손에 의해 판독될 수 없다. 한편, 같은 색을 포함하지 않는 2화소 공유 구조이면 그 파손 색의 색 보간 처리에 사용하는 주변의 화소는 파손되지 않아 통상의 색 보간 처리 방법으로 색 보간을 할 수 있고, 화소 결함 불량을 복구할 수 있다.
또한, 전송 트랜지스터(2)의 게이트(21) 형상이 평면으로 볼 때 삼각형이기 때문에 전하 판독 거리가 그 내주측과 그 외주측에서 같지 않지만, 전송 트랜지스터의 채널 길이를 확장하기 위해 그 내주측의 짧은 거리로부터 채널이 넓어지고 만곡되어 신호 전하가 판독되게 되어 있다. 이 구조에 의하면, 전송 트랜지스터(2)의 게이트(21) 형상이 벨트 형상인 경우에 비해 플로팅 디퓨전(FD)의 평면으로 볼 때 의 면적을 더욱 좁게 할 수 있고, 결과적으로 보다 FD 용량을 작게 할 수 있다.
(제 2 실시형태)
상기 제 1 실시형태에 의하면, 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키고, 플로팅 디퓨전(FD)의 활성화 영역으로서 기능하는 리셋 트랜지스터 활성화 영역에 의해 FD 활성화 영역 면적을 저감하고, 또한, 플로팅 디퓨전(FD)에 접속되는 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터의 게이트에 이르는 FD 배선(9)을 제 2 금속 배선(M2)이 아니라 제 1 금속 배선(M1)으로 하고, 또한 이 FD 배선은 거의 직선상의 최단 거리 레이아웃으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 이 화소 중심을 광학적 등간격으로 배치한다. 본 발명의 제 2 실시형태에서는 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터의 게이트에 이르는 FD 배선(9)을 제 2 금속 배선(M2)이 아니라 제 1 금속 배선(M1)으로 하는 조건을 상기 제 1 실시형태의 모든 조건에서 제외한다. 즉 이 FD 배선(9)을 제 2 금속 배선(M2)으로 구성하는 경우이다.
본 발명의 제 2 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자에 의하면, 피사체로부터의 화상광을 광전 변환해서 촬상하는 두개의 포토다이오드(12, 13)는 하나의 신호 판독 회로(11)를 공유하고, 두개의 포토다이오드(12, 13)로부터 공통의 플로팅 디퓨전(FD)으로 신호 전하를 판독하여 전압 변환하고, 이 변환 전압에 따라서 신호 판독 회로(11)에 의해 신호 판독을 행한다. 신호 판독 회로(11)를 구성함과 아울러 플로팅 디퓨전(FD)의 전위를 리셋하기 위한 리셋 트랜지스터(4)와 플로팅 디퓨전(FD)의 전압에 따라서 신호 증폭해서 신호 판독을 행하는 증폭 트랜지스터(6)를 분리 배치하고, 리셋 트랜지스터(4)의 활성화 영역으로서의 소스를 플로팅 디퓨전(FD)의 활성화 영역과 공통으로 구성하고, 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터(6)의 제어 전극으로서 기능하는 게이트에 이르는 FD 배선(9)을 각 콘택트 및 금속 배선(M1)의 제 1 층을 통해 금속 배선(M2)의 제 2 층으로서 직선상의 최단 거리 레이아웃(예를 들면, 4화소 공유의 도 8의 경우 등)을 갖는다. 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 이 화소 중심을 광학적 등간격으로 배치하고 있다.
이와 같이, 본 발명의 제 2 실시형태에 의하면, FD 배선(9)을 제 1 금속 배선(M1)이 아니라, 도 8과 같이 제 2 금속 배선(M2)으로 함으로써 상기 제 1 실시형태의 경우에 비해 플로팅 디퓨전(FD) 에 관한 용량(C)의 저감 효과는 더욱 작지만, 2화소 공유 구조로 플로팅 디퓨전(FD)과 리셋 확산 영역을 연속으로 형성하고, 제 2 층 메탈 배선[FD 배선(9)]으로 플로팅 디퓨전(FD)과 증폭 트랜지스터(6)의 게이트(61) 사이의 드론 배선을 거의 직선상의 최단 길이로 함으로써 FD 용량(CFD)과 FD 드론 배선에 의한 배선 용량(Cd) 등의 플로팅 디퓨전(FD)에 관한 용량(C)을 대폭 저감할 수 있고, 전압 변환 게인(η)을 대폭 향상시킬 수 있고, 그 결과로서 고감도 및 고해상도의 고체 촬상 소자를 얻을 수 있다. 또한, 포토다이오드의 중심과 화소 중심을 일치시켜서 화소 중심을 광학적 등간격으로 배치함으로써 경사 방향의 입사광에 기인하는 셰이딩을 방지할 수 있다.
(제 3 실시형태)
상기 제 1 실시형태에 이하면, 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키고, 리셋 트랜지스터 활성화 영역을 플로팅 디퓨전(FD)의 활성화 영역으로서 기능하게 함으로써 FD 활성화 영역 면적을 저감하고, 또한, 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터의 게이트에 이르는 FD 배선(9)을 제 2 금속 배선(M2)이 아니라 제 1 금속 배선(M1)으로 하고, 또한 이 FD 배선(9)은 거의 직선상의 최단 거리 레이아웃으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 화소 중심을 광학적 등간격으로 한다. 본 발명의 제 3 실시형태에 의하면, 배선 용량을 저감하기 위해 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터의 게이트에 이르는 FD 배선(9)이 제 2 메탈 배선(M2)이 아니라 제 1 메탈 배선(M1)으로서 규정되는 조건과, FD 배선(9)이 직선상의 최단 길이의 레이아웃을 갖는 조건을 제 1 실시형태의 모든 조건으로부터 제외한다.
본 발명의 제 3 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자에서는 피사체로부터의 화상광을 광전 변환해서 촬상하는 2개의 포토다이오드(12, 13)가 하나의 신호 판독 회로(11)를 공유하고, 포토다이오드(12, 13)로부터 공통의 플로팅 디퓨전(FD)으로 신호 전하를 판독하여 전압 변환하고, 변환 전압에 따라서 신호 판독 회로(11)에 의해 신호 판독을 행하는 것이며, 플로팅 디퓨전(FD)으로부터 신호 판독 회로(11)의 증폭 트랜지스터(6)의 제어 전극으로서 기능하는 게이트(61)에 이르는 FD 배선(9)을 금속 배선의 제 1 층으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 그 화소 중심을 광학적 등간격으로 배치한다.
이와 같이, 본 발명의 제 3 실시형태에 의하면, 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키고, 또한 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 증폭 트랜지스터(6)의 게이트(61)에 이르는 FD 배선(9)을 제 2 금속 배선(M2)이 아니라 제 1 금속 배선(M1)으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 화소 중심을 광학적 등간격으로 배치함으로써 상기 제 2 실시형태의 경우에 비해 플로팅 디퓨전(FD)에 관한 용량(C)의 저감 효과는 더욱 작지만, 2화소 공유 구조로 제 2 금속 배선(M2)의 제 2 층으로 플로팅 디퓨전(FD)과 증폭 트랜지스터(6)의 게이트(61) 사이의 드론 배선을 구성함으로써 FD 용량(CFD)이나 FD 드론 배선에 의한 배선 용량(Cd) 등, 플로팅 디퓨전(FD)에 관한 용량(C)을 저감할 수 있고, 전압 변환 게인(η)을 향상시킬 수 있고, 그 결과로서 양호한 감도 및 양호한 해상도를 가진 고체 촬상 소자를 얻을 수 있다. 또한, 포토다이오드의 중심과 화소 중심을 일치시켜서 그 화소 중심을 광학적 등간격으로 배치함으로써 경사 방향의 입사광에 기인하는 셰이딩을 방지할 수 있다.
(제 4 실시형태)
본 발명의 제 4 실시형태에 의하면, 상기 제 1 실시형태∼제 3 실시형태의 고체 촬상 소자 중 적어도 어느 하나를 화상 입력 디바이스로서 촬상부에 사용한, 예를 들면 디지털 비디오 카메라, 디지털 스틸 카메라 등의 디지털 카메라나, 감시 카메라, 도어 인터콤 카메라, 차량 장착 카메라, 텔레비전 전화용 카메라 및 휴대 전화용 카메라 등의 화상 입력 카메라, 스캐너, 팩시밀리, 카메라 장착 휴대 전화 장치 등의 완성 제품으로서의 전자 정보 기기에 대해서 설명한다.
도 16은 본 발명의 제 4 실시형태로서 본 발명의 제 1 실시형태∼제 3 실시형태에 의한 고체 촬상 소자 중 어느 하나를 포함하는 고체 촬상 장치를 촬상부에 사용한 전자 정보 기기의 개략 구성예를 나타낸 블록도이다.
도 16에 있어서, 본 발명의 제 4 실시형태에 의한 전자 정보 기기(90)는 상기 제 1 실시형태∼제 3 실시형태에 의한 고체 촬상 소자(1) 중 어느 하나로부터의 촬상 신호를 각종 신호 처리해서 컬러 화상 신호를 얻는 고체 촬상 장치(91)와, 이 고체 촬상 장치(91)로부터의 고품위의 컬러 화상 데이터를 기록용으로 소정 신호 처리한 후에 데이터 기록하는 기록 미디어 등의 메모리부(92)와, 이 고체 촬상 장치(91)로부터의 고품위의 컬러 화상 데이터를 표시용으로 소정 신호 처리한 후에 액정 표시 화면 등의 표시 화면상에 표시하는 액정 표시 장치 등의 표시 수단(93)과, 이 고체 촬상 장치(91)로부터의 고품위의 컬러 화상 데이터를 통신용으로 소정 신호 처리를 한 후에 통신 처리하는 송수신 장치 등의 통신 수단(94)과, 이 고체 촬상 장치(91)로부터의 고품위의 컬러 화상 데이터를 인쇄(인자)해서 출력(프린트 아웃)하는 화상 출력 수단(95)을 구비하고 있다. 또한, 이 전자 정보 기기(90)로서 이것에 한정되지 않고, 고체 촬상 장치(91) 이외에 메모리부(92)와, 표시 수단(93)과, 통신 수단(94)과, 프린터 등의 화상 출력 수단(95) 중 적어도 어느 하나를 구비하고 있어도 좋다.
따라서, 본 발명의 제 4 실시형태에 의하면, 이 고체 촬상 장치(91)로부터의 컬러 화상 신호에 의거하여 이것을 표시 화면상에 양호하게 표시하거나, 이것을 지면에서 화상 출력 수단(95)에 의해 양호하게 프린트 아웃(인쇄)하거나, 이것을 통신 데이터로서 유선 또는 무선으로 양호하게 통신하거나, 이것을 메모리부(92)에 소정의 데이터 압축 처리를 행해서 양호하게 기억하거나, 각종 데이터 처리를 양호하게 행할 수 있다.
또한, 상기 제 1 실시형태∼제 4 실시형태에서는 특히 설명하지 않았지만, 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 포토다이오드 중 플로팅 디퓨전 용량을 더욱 작게 하기 위해서 두개의 포토다이오드(12. 13)마다 신호 판독 회로(11)를 공유하고, 두개의 포토다이오드(12, 13)로부터 공통의 플로팅 디퓨전(FD)으로 신호 전하를 판독하여 전압 변환하고, 이 변환된 신호 전압에 따라서 신호 판독 회로(11)에 의해 신호선(7)에 신호 판독을 행한다. 이것에 의해서도 포토다이오드 면적 및 트랜지스터 배치 영역을 포함하는 화소 면적을 미소화하더라도 포토다이오드 면적을 더욱 확보할 수 있고, 또한 FD 용량을 개선해서 고감도이고 고해상도, 또한 경사 입사광에 기인하는 셰이딩이 발생하지 않는 고체 촬상 소자를 얻을 수 있는 목적을 달성할 수 있다.
또한, 상기 제 1 실시형태∼제 4 실시형태에서는 증폭 트랜지스터(6)의 신호 출력측의 한쪽 구동 영역이 두개의 포토다이오드(12, 13) 중 하측의 포토다이오드(13)의 우하의 모서리부와, 이것에 종하 방향으로 대향하여 인접한 다른 두개의 포토다이오드(12, 13) 중 상측 포토다이오드(12)의 우상의 모서리부 사이를 포함하는 행간 영역에 형성되어 있었지만, 이것에 한정되지 않고, 증폭 트랜지스터(6)의 신호 출력측의 한쪽 구동 영역이 두개의 포토다이오드(12, 13) 중 상측의 포토다이오드(12)의 우상의 모서리부와, 이것에 종상 방향으로 대향하여 인접한 다른 두개의 포토다이오드(12, 13) 중 하측의 포토다이오드(13)의 우하의 모서리부 사이를 포함하는 행간 영역에 형성되어 있어도 좋다. 이 경우에, 신호선(7)이 증폭 트랜지스터(6)의 신호 출력측의 한쪽 구동 영역에 콘택트(C1)를 통해 접속되어서 이 두개의 포토다이오드(12, 13)의 평면으로 볼 때 직사각형 또는 정사각형의 종방향 우측의 변을 따라 배치되어 있다.
또한, 상기 제 1 실시형태∼제 4 실시형태에서는 증폭 트랜지스터(6)의 신호 출력측의 게이트(61)가 두개의 포토다이오드(12, 13) 중 하측의 포토다이오드(13)의 우하의 모서리부에 횡방향으로 대향해서 인접한 다른 포토다이오드(12, 13)의 모서리부와, 이것에 종하 방향으로 대향해서 인접한 또 다른 두개의 포토다이오드(12, 13) 중 상측의 포토다이오드(12)의 모서리부 사이를 포함하는 행간 영역에 형성되어 있었지만, 이것에 한정되지 않고, 증폭 트랜지스터(6)의 신호 출력측의 게이트(61)가 두개의 포토다이오드(12, 13) 중 상측의 포토다이오드(12)의 우상의 모서리부에 횡방향으로 대향해서 인접한 다른 포토다이오드(12, 13)의 모서리부와, 이것에 종상 방향으로 대향하여 인접한 또 다른 두개의 포토다이오드(12, 13) 중 하측의 포토다이오드(13)의 모서리부 사이를 포함하는 행간 영역에 형성되어 있어도 좋다. 이 경우에, 플로팅 디퓨전(FD)으로부터 신호 판독 회로(11)의 증폭 트랜지스터(6)의 게이트(61)에 이르는 FD 배선(9)이 증폭 트랜지스터(6)의 게이트(61)와, 플로팅 디퓨전(FD)에 각 콘택트(G1)를 각각 통해 접속되어서 두개의 포토다이 오드(12, 13)에 횡방향으로 대향해서 인접한 다른 두개의 포토다이오드(12, 13)의 평면으로 볼 때 직사각형 또는 정사각형의 종방향의 변을 따라 배치되어 있다.
이상과 같이, 본 발명의 바람직한 제 1 실시형태∼제 4 실시형태를 이용하여 본 발명을 예시해 왔지만, 본 발명은 이 제 1 실시형태∼제 4 실시형태에 한정해서 해석되어야 할 것이 아니다. 본 발명은 특허청구의 범위에 의해서만 그 범위가 해석되어야 하는 것으로 이해된다. 당업자는 본 발명의 구체적인 바람직한 제 1 실시형태∼제 4 실시형태의 기재로부터 본 발명의 기재 및 기술 상식에 의거해서 등가의 범위를 실시할 수 있는 것으로 이해된다. 본 명세서에 있어서 인용한 특허, 특허출원 및 문헌은 그 내용 자체가 구체적으로 본 명세서에 기재되어 있는 바와 같이 그 내용이 본 명세서에 대한 참고로서 인용되어야 하는 것으로 이해된다.
본 발명은 피사체로부터의 화상광을 광전 변환해서 촬상하는 반도체 소자로 구성된 복수 화소 공유 구조의 고체 촬상 소자 및 이 복수 화소 공유 구조의 고체 촬상 소자를 화상 입력 디바이스로서 촬상부에 사용한, 예를 들면 디지털 비디오 카메라 및 디지털 스틸 카메라 등의 디지털 카메라나, 화상 입력 카메라, 스캐너, 팩시밀리, 카메라 장착 휴대 전화 장치 등의 전자 정보 기기의 분야에 있어서, 포토다이오드의 중심과 화소 중심을 일치시켜서 그 화소 중심을 광학적 등간격으로 배치함으로써 경사 방향의 입사광에 기인하는 셰이딩을 방지할 수 있다. 이 상태에서 2화소 공유 구조로 플로팅 디퓨전(FD)과 리셋 확산 영역을 함께 공통화하고, 제 1 금속 배선의 제 1 층(또는, 제 2 금속 배선의 제 2 층)으로 플로팅 디퓨전(FD)과 증폭 트랜지스터의 게이트 사이의 드론 배선을 거의 직선상의 최단 레이아웃으로 함으로써 FD 용량(CFD)이나 FD 드론 배선에 의한 배선 용량(Cd) 등, 플로팅 디퓨전(FD) 에 관한 용량(C)을 대폭 저감할 수 있고, 전압 변환 게인(η)을 대폭 향상시킬 수 있고, 그 결과로서 고체 촬상 소자를 위해 고감도 및 고해상도를 제공할 수 있다.
또한, 2화소 공유 구조에 의해 플로팅 디퓨전(FD)의 활성 영역 면적을 반감시키고, 또한 배선 용량을 삭감하기 위해서 플로팅 디퓨전(FD)으로부터 신호 증폭 수단의 제어 전극에 이르는 FD 배선을 제 1 금속 배선(M1)으로 하고, 또한 포토다이오드의 중심과 화소 중심을 일치시켜서 그 화소 중심을 광학적 등간격으로 배치하는 것만으로도 플로팅 디퓨전(FD) 에 관한 용량(C)의 저감 효과는 더욱 작지만, 2화소 공유 구조에 의한 FD 용량(CFD)이나 FD 드론 배선에 의한 배선 용량(Cd) 등의 플로팅 디퓨전(FD)에 관한 용량(C)을 저감할 수 있고, 전압 변환 게인(η)을 향상시킬 수 있고, 그 결과로서 고체 촬상 소자를 위해 양호한 감도 및 양호한 해상도를 제공할 수 있다. 또한 S/N비가 개선될 수 있다.
본 발명의 범위 및 사상으로부터 벗어나지 않은 다양한 수정이 당업자에게 자명해 질 것이고, 당업자에 의해 용이하게 이루어질 수 있다. 따라서, 여기에 첨부된 청구 범위는 여기에 게시한 설명에 한정되는 것을 의도하지 않고 넓게 해석된다.
도 1은 본 발명의 제 1 실시형태에 의한 2화소 공유 구조의 고체 촬상 소자에 있어서의 플로팅 디퓨전부의 요부 구성예를 개략적으로 나타낸 평면도이다.
도 2는 도 1의 2화소 공유 구조의 고체 촬상 소자에 있어서의 단위 화소부의 회로도이다.
도 3은 도 2의 2화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 게이트 전극층 형성까지의 레이아웃 도면이다.
도 4는 도 2의 2화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 1 금속 배선(M1)의 층 형성까지의 레이아웃 도면이다.
도 5는 도 2의 2화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 2 금속 배선(M2)의 층을 포함시킨 레이아웃 도면이다.
도 6(a)는 도 3의 전송 트랜지스터의 게이트 형상의 일례를 개략적으로 나타낸 평면도, 도 6(b)는 도 3의 전송 트랜지스터의 게이트와 플로팅 디퓨전(FD) 사이에 발생하는 Fring 용량을 개략적으로 나타낸 게이트와 FD의 요부 종단면도이다.
도 7은 본 발명의 제 1 실시형태의 것과 플로팅 디퓨전(FD)에 관한 용량(C)에 대해서 비교하기 위한 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 1 금속 배선(M1)의 층 형성까지의 레이아웃 도면이다.
도 8은 본 발명의 제 1 실시형태의 것과 플로팅 디퓨전(FD)에 관한 용량(C)에 대해서 비교하기 위한 참고예로서의 4화소 공유 구조의 고체 촬상 소자의 화소부에 있어서의 제 2 금속 배선(M2)의 층을 포함시킨 레이아웃 도면이다.
도 9는 참조문헌 1에 기재되어 있는 종래의 MOS형 이미지 센서의 화소 구성예를 개략적으로 나타낸 평면도이다.
도 10은 참조문헌 2에 기재되어 있는 종래의 MOS형 이미지 센서의 단위 화소부의 회로도이다.
도 11은 도 10의 종래 MOS형 이미지 센서의 화소부에 있어서의 게이트 전극층 형성까지의 레이아웃 도면이다.
도 12는 도 10의 종래 MOS형 이미지 센서의 화소부에 있어서의 제 1 금속 배선(M1)의 층 형성까지의 레이아웃 도면이다.
도 13은 도 10의 종래 MOS형 이미지 센서의 화소부에 있어서의 제 2 금속 배선M 2의 층을 포함시킨 레이아웃 도면이다.
도 14는 도 3의 2화소 공유 구조의 고체 촬상 소자에 있어서의 감도와, 도 8의 참고예로서의 4화소 공유 구조의 고체 촬상 소자에 의한 감도를 막대 그래프로 개략적으로 나타낸 도면이다.
도 15는 도 3의 2화소 공유 구조의 고체 촬상 소자에 있어서의 S/N비와, 도 8의 참고예로서의 4화소 공유 구조의 고체 촬상 소자에 의한 S/N비를 그래프로 개략적으로 나타낸 도면이다.
도 16은 본 발명의 제 4 실시형태로서, 본 발명의 제 1 실시형태∼제 3 실시형태의 고체 촬상 소자 중 어느 하나를 포함하는 고체 촬상 장치를 촬상부에 사용한 전자 정보 기기의 개략 구성예를 나타낸 블록도이다.
[부호의 설명]
1 : 고체 촬상 소자 2, 3 : 전송 트랜지스터(전하 전송 수단)
2a, 3a, 4a : 활성 영역 4 : 리셋 트랜지스터(리셋 수단)
5 : 선택 트랜지스터(화소 선택 수단)
6 : 증폭 트랜지스터(신호 증폭 수단)
7 : 신호선 8, 82 : 전원선
9 : FD 배선 10 : 단위 화소부(2화소 공유 구조부)
11 : 신호 판독 회로 12, 13 : 포토다이오드(수광부)
21, 31, 41, 51, 61 : 게이트(제어 전극)
22, 32 : 전하 전송 제어선 42 : 리셋 신호선
52 : 화소 선택선 FD : 플로팅 디퓨전(전하 전압 변환부)
CFD : FD 용량 Cd : 배선 기생 용량(배선 용량)
C1 : 제 1 콘택트 C2 : 제 2 콘택트
Vdd : 전원 전압(리셋 전압) M1 : 제 1 금속 배선
M2 : 제 2 금속 배선 TX1, TX2 : 전하 전송 제어 신호
Sel : 화소 선택 신호 RST : 리셋 신호
90 : 전자 정보 기기 91 : 고체 촬상 장치
92 : 메모리부 93 : 표시 수단
94 : 통신 수단 95 : 화상 출력 수단
Claims (20)
- 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 판독을 행하는 2화소 공유 구조의 고체 촬상 소자로서:상기 플로팅 디퓨전의 전위를 전원 전압의 전위로 리셋하기 위한 리셋 수단과 상기 플로팅 디퓨전의 전압에 따라서 신호 증폭해서 신호 판독을 행하는 신호 증폭 수단을 분리 배치하고, 상기 리셋 수단 및 신호 증폭 수단은 상기 신호 판독 회로를 구성하고,상기 리셋 수단의 활성화 영역을 상기 플로팅 디퓨전의 활성화 영역으로서 기능하도록 구성하고,상기 플로팅 디퓨전으로부터 상기 신호 증폭 수단의 제어 전극에 이르는 배선을 직선상의 최단 거리 레이아웃을 갖는 금속 배선의 제 1 층으로 형성하고,상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것을 특징으로 하는 고체 촬상 소자.
- 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 판독을 행하는 2화소 공유 구조의 고체 촬상 소자로서:상기 신호 판독 회로를 구성하고, 상기 플로팅 디퓨전의 전위를 전원 전압의 전위로 리셋하기 위한 리셋 수단과 상기 플로팅 디퓨전의 전압에 따라서 신호 증폭해서 신호 판독을 행하는 신호 증폭 수단을 분리 배치하고, 상기 리셋 수단 및 신호 증폭 수단은 상기 신호 판독 회로를 구성하고,상기 리셋 수단의 한쪽 활성화 영역을 상기 플로팅 디퓨전의 활성화 영역으로서 기능하도록 구성하고,상기 플로팅 디퓨전으로부터 상기 신호 증폭 수단의 제어 전극에 이르는 배선을 직선상의 최단 거리 레이아웃으로 형성하고,상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것을 특징으로 하는 고체 촬상 소자.
- 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 증폭해서 신호 판독을 행하는 2화소 공유 구조의 고체 촬상 소자로서:상기 플로팅 디퓨전으로부터 신호 증폭 수단의 제어 전극에 이르는 배선을 금속 배선의 제 1 층으로 형성하고,상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것을 특징으로 하는 고체 촬상 소자.
- 피사체로부터의 화상광을 광전 변환해서 촬상하는 복수의 수광부 중 플로팅 디퓨전 용량을 더욱 작게 하기 위해서 두개의 수광부마다 신호 판독 회로를 공유하고, 상기 두개의 수광부에서 공통인 플로팅 디퓨전으로 신호 전하를 판독하여 신호 전하/전압 변환하고, 변환 전압에 따라서 상기 신호 판독 회로에 의해 신호 판독을 행하는 고체 촬상 소자로서:상기 수광부의 중심과 화소 중심을 일치시켜서 상기 화소 중심을 광학적 등간격으로 배치한 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,상기 플로팅 디퓨전은 상기 두개의 수광부 사이에 대향하는 변의 양단부 중 어느 하나가 한쪽의 대향 단부 사이에 설치되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 5 항에 있어서,상기 플로팅 디퓨전과 상기 두개의 수광부 사이에는 전하 전송 수단이 설치되어 있고, 상기 전하 전송 수단의 제어 전극은 상기 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 4모서리부 중 하나의 모서리부상을 커버링하는 평면으로 볼 때 삼각형상으로 형성되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 6 항에 있어서,상기 두개의 수광부 사이를 폭으로 하는 벨트 형상 길이 방향을 따라 이 사이의 간격을 좁게 하기 위해 상기 전하 전송 수단의 제어 전극과 상기 리셋 수단이 한쪽 방향으로 설치되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,상기 두개의 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 서로 대향하는 모서리부 사이에 상기 플로팅 디퓨전이 설치되어 있고, 상기 플로팅 디퓨전과 상기 두개의 수광부 사이에 전하 전송 수단이 설치되어 있고, 상기 전하 전송 수단의 활성 영역이 상기 플로팅 디퓨전의 활성 영역으로서 기능하도록 형성되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,매트릭스상으로 행렬 방향으로 설치된 복수의 수광부 중 두개의 수광부가 평면으로 볼 때 열방향으로 인접해서 제공되어 단위 화소부를 형성하고 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 9 항에 있어서,상기 단위 화소부의 행간에 상기 신호 판독 회로를 구성하는 신호 증폭 수단이 설치되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 10 항에 있어서,상기 신호 증폭 수단은 증폭 트랜지스터로 구성되고, 상기 증폭 트랜지스터의 신호 출력측의 한쪽 구동 영역이 상기 두개의 수광부의 상기 단위 화소부의 행간측의 모서리부와 이것에 종방향의 한쪽 또는 다른쪽으로 대향해서 인접한 다른 두개의 수광부의 모서리부 사이의 영역에 형성되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 10 항에 있어서,상기 증폭 트랜지스터의 신호 출력측의 게이트가 상기 두개의 수광부의 상기 단위 화소부의 행간측의 모서리부에 횡방향으로 대향해서 인접한 다른 두개의 수광부의 모서리부와 이것에 종방향의 한쪽 또는 다른쪽으로 대향해서 인접한 또 다른 두개의 수광부의 모서리부 사이를 포함하는 행간 영역에 형성되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 11 항에 있어서,신호선은 상기 증폭 트랜지스터의 신호 출력측의 한쪽 구동 영역에 콘택트를 통해 접속되고, 상기 두개의 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 종방향의 변을 따라 직선상으로 배치되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 12 항에 있어서,상기 플로팅 디퓨전으로부터 상기 신호 판독 회로의 신호 증폭 수단의 제어 전극에 이르는 배선이 상기 증폭 트랜지스터의 신호 출력측의 게이트와 상기 플로팅 디퓨전에 각 콘택트를 각각 통해 접속고, 상기 두개의 수광부에 횡방향으로 대향해서 인접한 다른 두개의 수광부의 평면으로 볼 때 직사각형 또는 정사각형의 종방향의 변을 따라 직선상으로 배치되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 또는 제 2 항에 있어서,상기 리셋 수단의 다른쪽 활성화 영역과, 상기 신호 증폭 수단의 다른쪽 구동 영역에 직렬 접속되는 화소 선택 수단의 다른쪽 구동 영역은 각 콘택트를 통해 금속 배선 제 1 층의 전원선에 의해 접속되어 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 15 항에 있어서,상기 두개의 수광부는 종방향으로 배치되고, 표시 화면상에 행렬 방향으로 설치된 복수의 수광부 중 행마다 순차적으로 상기 화소 선택 수단에 의해 선택되 고, 상기 신호 증폭 수단에 의해 신호 증폭되어서 신호 판독되는 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,상기 화소 중심의 등간격의 배치는 상기 수광부 및 상기 신호 판독 회로의 일부로서의 트랜지스터 배치 영역을 포함하는 화소 중심의 배열 피치가 행방향 및 열방향에서 동일한 것을 특징으로 하는 고체 촬상 소자.
- 제 8 항에 있어서,상기 플로팅 디퓨전의 활성 영역과, 상기 각 전하 전송 수단의 활성 영역과, 상기 리셋 수단의 활성 영역을 플로팅 디퓨전 면적이 레이아웃상에서 최소가 되도록 서로 근접시켜 공통화하고 있는 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 내지 제 4 항 중 어느 한 항에 있어서,MOS형 고체 촬상 소자인 것을 특징으로 하는 고체 촬상 소자.
- 제 1 항 내지 제 4 항 중 어느 한 항에 기재된 고체 촬상 소자를 화상 입력 디바이스로서 촬상부에 사용한 것을 특징으로 하는 전자 정보 기기.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2007-00202394 | 2007-08-02 | ||
JP2007202394A JP2009038263A (ja) | 2007-08-02 | 2007-08-02 | 固体撮像素子および電子情報機器 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090013701A KR20090013701A (ko) | 2009-02-05 |
KR100994692B1 true KR100994692B1 (ko) | 2010-11-16 |
Family
ID=40332066
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080074587A KR100994692B1 (ko) | 2007-08-02 | 2008-07-30 | 고체 촬상 소자 및 전자 정보 기기 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20090046186A1 (ko) |
JP (1) | JP2009038263A (ko) |
KR (1) | KR100994692B1 (ko) |
CN (1) | CN101359674B (ko) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5221982B2 (ja) * | 2008-02-29 | 2013-06-26 | キヤノン株式会社 | 固体撮像装置及びカメラ |
TWI433307B (zh) * | 2008-10-22 | 2014-04-01 | Sony Corp | 固態影像感測器、其驅動方法、成像裝置及電子器件 |
JP5029624B2 (ja) * | 2009-01-15 | 2012-09-19 | ソニー株式会社 | 固体撮像装置及び電子機器 |
JP5537172B2 (ja) * | 2010-01-28 | 2014-07-02 | ソニー株式会社 | 固体撮像装置及び電子機器 |
JP5688540B2 (ja) * | 2010-02-26 | 2015-03-25 | パナソニックIpマネジメント株式会社 | 固体撮像装置およびカメラ |
EP2693741A1 (en) * | 2011-03-31 | 2014-02-05 | FUJIFILM Corporation | Solid-state image capturing element, drive method therefor, and image capturing device |
JP5915031B2 (ja) * | 2011-08-31 | 2016-05-11 | ソニー株式会社 | 撮像装置および撮像方法、並びに電子機器 |
JP2013157883A (ja) | 2012-01-31 | 2013-08-15 | Sony Corp | 固体撮像素子およびカメラシステム |
CN108683867A (zh) * | 2012-02-23 | 2018-10-19 | 联咏科技股份有限公司 | 光感应像素电路与影像传感器 |
JP2014022561A (ja) * | 2012-07-18 | 2014-02-03 | Sony Corp | 固体撮像装置、及び、電子機器 |
JP6256054B2 (ja) * | 2014-01-31 | 2018-01-10 | 株式会社ニコン | 固体撮像素子及び撮像装置 |
JP6355402B2 (ja) * | 2014-04-14 | 2018-07-11 | キヤノン株式会社 | 固体撮像装置及びカメラ |
JP2015207594A (ja) * | 2014-04-17 | 2015-11-19 | パナソニックIpマネジメント株式会社 | 固体撮像装置 |
WO2016006052A1 (ja) * | 2014-07-09 | 2016-01-14 | ルネサスエレクトロニクス株式会社 | 半導体装置 |
JP6213743B2 (ja) * | 2014-10-08 | 2017-10-18 | パナソニックIpマネジメント株式会社 | 撮像装置およびその駆動方法 |
FR3030884B1 (fr) * | 2014-12-19 | 2016-12-30 | Stmicroelectronics (Grenoble 2) Sas | Structure de pixel a multiples photosites |
TWI696278B (zh) | 2015-03-31 | 2020-06-11 | 日商新力股份有限公司 | 影像感測器、攝像裝置及電子機器 |
TWI701819B (zh) * | 2015-06-09 | 2020-08-11 | 日商索尼半導體解決方案公司 | 攝像元件、驅動方法及電子機器 |
JP6524502B2 (ja) * | 2015-07-02 | 2019-06-05 | パナソニックIpマネジメント株式会社 | 撮像素子 |
JP7005886B2 (ja) | 2016-03-31 | 2022-01-24 | ソニーグループ株式会社 | 固体撮像素子、および電子機器 |
CN109479107A (zh) * | 2016-05-31 | 2019-03-15 | Bae系统成像解决方案有限公司 | 适于提供额外的颜色信息的光电检测器 |
JP2018137336A (ja) * | 2017-02-22 | 2018-08-30 | ソニーセミコンダクタソリューションズ株式会社 | 受光装置 |
JP2019050522A (ja) * | 2017-09-11 | 2019-03-28 | キヤノン株式会社 | 撮像装置 |
KR102551862B1 (ko) | 2018-01-29 | 2023-07-06 | 에스케이하이닉스 주식회사 | 이미지 센서 |
JP7003018B2 (ja) | 2018-09-12 | 2022-01-20 | 株式会社東芝 | 撮像装置 |
JP7329318B2 (ja) * | 2018-10-25 | 2023-08-18 | ソニーグループ株式会社 | 固体撮像装置及び撮像装置 |
KR102660132B1 (ko) * | 2018-12-11 | 2024-04-25 | 소니 세미컨덕터 솔루션즈 가부시키가이샤 | 고체 촬상 장치 및 전자 기기 |
KR102651393B1 (ko) * | 2019-04-05 | 2024-03-27 | 에스케이하이닉스 주식회사 | 쉴딩 배선을 갖는 이미지 센서 |
KR20210050896A (ko) * | 2019-10-29 | 2021-05-10 | 에스케이하이닉스 주식회사 | 이미지 센싱 장치 |
CN113141444B (zh) * | 2020-01-19 | 2023-08-08 | Oppo广东移动通信有限公司 | 图像传感器、成像装置、电子设备、图像处理系统及信号处理方法 |
KR20220043943A (ko) | 2020-09-28 | 2022-04-06 | 삼성전자주식회사 | 이미지 센서 |
CN117577657B (zh) * | 2024-01-15 | 2024-04-16 | 上海元视芯智能科技有限公司 | 高转换增益像素单元及图像传感器 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3209180B2 (ja) * | 1998-05-26 | 2001-09-17 | 日本電気株式会社 | 固体撮像装置の製造方法 |
JP3571982B2 (ja) * | 2000-01-27 | 2004-09-29 | キヤノン株式会社 | 固体撮像装置及びそれを備えた固体撮像システム |
KR100690880B1 (ko) * | 2004-12-16 | 2007-03-09 | 삼성전자주식회사 | 픽셀별 광감도가 균일한 이미지 센서 및 그 제조 방법 |
US7541628B2 (en) * | 2005-07-09 | 2009-06-02 | Samsung Electronics Co., Ltd. | Image sensors including active pixel sensor arrays |
US7449736B2 (en) * | 2005-07-12 | 2008-11-11 | Micron Technology, Inc. | Pixel with transfer gate with no isolation edge |
JP4752447B2 (ja) * | 2005-10-21 | 2011-08-17 | ソニー株式会社 | 固体撮像装置およびカメラ |
EP1788797B1 (en) * | 2005-11-18 | 2013-06-26 | Canon Kabushiki Kaisha | Solid-state image pickup device |
KR100772892B1 (ko) * | 2006-01-13 | 2007-11-05 | 삼성전자주식회사 | 플로팅 확산 영역의 커패시턴스를 제어할 수 있는 공유픽셀형 이미지 센서 |
-
2007
- 2007-08-02 JP JP2007202394A patent/JP2009038263A/ja active Pending
-
2008
- 2008-07-30 KR KR1020080074587A patent/KR100994692B1/ko not_active IP Right Cessation
- 2008-08-01 US US12/221,315 patent/US20090046186A1/en not_active Abandoned
- 2008-08-04 CN CN2008101451506A patent/CN101359674B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR20090013701A (ko) | 2009-02-05 |
CN101359674B (zh) | 2011-04-20 |
CN101359674A (zh) | 2009-02-04 |
US20090046186A1 (en) | 2009-02-19 |
JP2009038263A (ja) | 2009-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100994692B1 (ko) | 고체 촬상 소자 및 전자 정보 기기 | |
CN110771155B (zh) | 固态摄像装置、固态摄像装置的驱动方法、以及电子设备 | |
KR101425218B1 (ko) | 고체 촬상 장치 및 카메라 | |
KR101068698B1 (ko) | 고체 촬상 장치 | |
JP5089017B2 (ja) | 固体撮像装置及び固体撮像システム | |
KR102653538B1 (ko) | 반도체 장치 및 전자 기기 | |
WO2010074007A1 (ja) | 固体撮像素子およびその製造方法、電子情報機器 | |
US8754452B2 (en) | Solid-state imaging device, method of manufacturing same, and electronic apparatus | |
WO2014002367A1 (ja) | 固体撮像装置 | |
CN108551559B (zh) | 摄像元件 | |
JP4480033B2 (ja) | 固体撮像素子および電子情報機器 | |
JP2008060476A (ja) | 固体撮像装置および電子情報機器 | |
JP2011103359A (ja) | 固体撮像素子および電子情報機器 | |
JP6842240B2 (ja) | 画素ユニット、及び撮像素子 | |
US20100066882A1 (en) | Solid-state image capturing element and electronic information device | |
JP2009026984A (ja) | 固体撮像素子 | |
KR20230050330A (ko) | 고체 촬상 소자 및 전자기기 | |
JP5526342B2 (ja) | 固体撮像装置 | |
US8754974B2 (en) | Solid-state imaging device | |
KR20070046903A (ko) | 증폭형 고체 촬상장치 | |
US8576312B2 (en) | Solid-state image pickup device with particular pixel arrangement | |
JP6813971B2 (ja) | 光電変換装置及び撮像システム | |
WO2010090133A1 (ja) | 固体撮像装置 | |
JP5619093B2 (ja) | 固体撮像装置及び固体撮像システム | |
JP2013005193A (ja) | 固体撮像素子および電子情報機器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131022 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20141105 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20151030 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |