KR100990774B1 - 플라즈마 디스플레이 패널의 제조 방법 - Google Patents
플라즈마 디스플레이 패널의 제조 방법 Download PDFInfo
- Publication number
- KR100990774B1 KR100990774B1 KR1020100008744A KR20100008744A KR100990774B1 KR 100990774 B1 KR100990774 B1 KR 100990774B1 KR 1020100008744 A KR1020100008744 A KR 1020100008744A KR 20100008744 A KR20100008744 A KR 20100008744A KR 100990774 B1 KR100990774 B1 KR 100990774B1
- Authority
- KR
- South Korea
- Prior art keywords
- mgo
- display panel
- discharge
- plasma display
- protective film
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/10—AC-PDPs with at least one main electrode being out of contact with the plasma
- H01J11/12—AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J11/00—Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
- H01J11/20—Constructional details
- H01J11/34—Vessels, containers or parts thereof, e.g. substrates
- H01J11/40—Layers for protecting or enhancing the electron emission, e.g. MgO layers
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Gas-Filled Discharge Tubes (AREA)
Abstract
전회의 방전으로부터 어드레스 방전까지의 휴지 기간이 긴 경우라도 효과적으로 방전 지연을 개선시킬 수 있는 플라즈마 디스플레이 패널(PDP)이 기술된다. 이 PDP는, 대향 배치된 2개의 기판 구조체 간의 방전 공간에 노출되도록, 프라이밍 입자 방출층이 배치되어 있다. 그 프라이밍 입자 방출층은, 할로겐 원소가 1∼10000ppm 첨가된 산화 마그네슘 결정체로 구성된다.
Description
본 발명은, 플라즈마 디스플레이 패널(이하, 「PDP」라고 부름) 및 PDP의 기판 구조체에 관한 것이다.
도 6은, 종래의 PDP의 구성을 도시하는 사시도이다. PDP는, 전면측 기판 구조체(1)와, 배면측 기판 구조체(2)를 접합한 구조를 하고 있다. 전면측 기판 구조체(1)는, 글래스 기판으로 이루어지는 전면측 기판(1a) 상에, 투명 전극(3a)과 금속 전극(3b)으로 이루어지는 복수의 표시 전극(3)을 배치하고 있다. 표시 전극(3)은 유전체층(4)으로 덮여져 있고, 그 유전체층(4) 상에는 2차 전자 방출 계수가 높은 산화 마그네슘층으로 이루어지는 보호층(5)이 형성되어 있다. 배면측 기판 구조체(2)는, 글래스 기판으로 이루어지는 배면측 기판(2a) 상에, 복수의 어드레스 전극을 표시 전극과 직교하도록 배치하고 있다. 어드레스 전극(6) 사이에는 발광 영역을 규정하기(방전 공간을 구획하기) 위한 격벽(7)이 형성되어 있고, 그 어드레스 전극(6) 상의 격벽(7)으로 구분된 영역에는 적, 녹, 청의 형광체층(8)이 형성되어 있다. 접합한 전면측 기판 구조체(1)와 배면측 기판 구조체(2) 사이의 격벽으로 구획된 기밀한 방전 공간에는, Ne-Xe 가스로 이루어지는 방전 가스가 봉입되어 있다. 또한, 도시하지 않았지만, 어드레스 전극(6)은, 유전체층으로 피복되어 있고, 격벽(7) 및 형광체층(8)은, 이 유전체층 상에 형성되어 있다.
그렇게 해서 이 PDP에서는, 어드레스 전극(6)과, 스캔 전극을 겸하는 표시 전극(3) 사이에 전압을 인가함으로써, 어드레스 방전을 발생시켜, 쌍을 이루는 표시 전극(3) 사이에 전압을 인가함으로써, 리세트 방전이나 표시를 위한 서스테인 방전을 발생시킨다.
이러한 PDP는, 대형 박형 텔레비전으로서 실용화되어 있으며, 최근에는 고선명화가 진행되고 있다. 고선명화하면 화소수가 늘기 때문에, 셀의 점등 비점등을 결정하는 어드레스 조작의 시간이 증대한다. 어드레스 조작 시간(어드레스 기간)의 증대를 억제하기 위해서는, 어드레스 방전용 전압(어드레스 전압이라고도 함)의 펄스폭을 작게 할 필요가 있다. 그러나, 전압을 인가하고 나서 방전이 일어날 때까지의 시간(방전 지연)에 변동이 있기 때문에, 어드레스 전압의 펄스폭이 지나치게 작으면 방전이 일어나지 않을 수 있다. 그 경우, 어드레스된 셀의 점등을 유지하는 표시 기간에서 셀이 올바르게 점등하지 않기 때문에, 화질의 열화를 초래한다고 하는 문제가 있다.
이러한 PDP의 방전 지연을 개선하는 수단으로서, 일본 특개 2006-59786호 공보에 의해 전면측 기판 구조체에 전자 방출층으로서 산화 마그네슘 결정체층을 형성하는 예가 개시되어 있다.
본 발명자들이 예의 연구를 행한 바, 일본 특개 2006-59786호 공보에 개시된 방법에서는, 전회의 방전으로부터 어드레스 방전까지의 휴지 기간이 짧은 경우(대략, 수㎳정도 이하인 경우)에는 방전 지연의 개선 효과가 보이지만, 휴지 기간이 긴 경우에는 방전 지연의 개선 효과가 극단적으로 열화하는 것이 명백해졌다.
본 발명의 목적은, 전회의 방전으로부터 어드레스 방전까지의 휴지 기간이 긴 경우라도 효과적으로 방전 지연을 개선시킬 수 있는 PDP를 제공하는 것이다.
본 발명에 따르면, 대향 배치된 2개의 기판 구조체 간의 방전 공간에 노출되도록, 할로겐 원소가 1∼10000ppm 첨가된 산화 마그네슘 결정체를 함유하는 프라이밍 입자 방출층이 배치되어 있는 PDP가 제공된다.
본 발명자들은, 예의 연구를 행한 결과, 할로겐 원소가 1∼10000ppm 첨가된 산화 마그네슘 결정체(이하, 「MgO 결정체」라고 부름)를 함유하는 프라이밍 입자(이하, 「P 입자」라고 부름) 방출층이 방전 공간에 노출되도록 배치되어 있는 경우, 방전 지연의 개선 효과가 장시간 지속되기 때문에, 전회의 방전으로부터 어드레스 방전까지의 휴지 기간이 긴 경우라도 효과적으로 방전 지연을 개선시킬 수 있는 것을 발견하여, 본 발명의 완성에 이르렀다.
본 발명에 의해 방전 지연의 개선 효과가 장시간 지속되는 이유는 반드시 명확하지는 않지만, 첨가한 할로겐 원소가 MgO 결정체 내의 산소로 치환되고, 이것이 전자 트랩으로 되어, 전자 방출 특성이 향상하였기 때문이라고 추측된다.
또한, 본 발명에 따르면, 방전 지연의 개선 효과가 장시간 지속되기 때문에, 비교적 소량이어도 휴지 기간이 긴 경우의 방전 지연을 효과적으로 억제할 수 있어, 코스트 저감으로 이어진다.
도 1은 본 발명의 일 실시예의 PDP의 구조를 도시하는 도면으로, 도 1의 (a)는 평면도, 도 1의 (b) 및 도 1의 (c)는 각각 도 1의 (a) 중의 I-I 단면도 및 II-II 단면도.
도 2는 본 발명의 실시예에서의 샘플 B,D,E의 F 첨가량의 추정값을 구하기 위한 그래프.
도 3은 본 발명의 실시예의 방전 지연의 측정에 이용한 전압 파형을 도시한 도면.
도 4는 실시예 샘플 C를 이용해서 제조한 PDP와, 무첨가의 MgO 결정체를 이용해서 제조한 PDP에 대한, 휴지 기간과 방전 지연과의 관계를 나타내는 그래프.
도 5는 본 발명의 실시예에 따른, F 첨가량의 측정값 또는 추정값과, 방전 지연과의 관계를 나타내는 그래프.
도 6은 종래의 PDP의 구조를 도시하는 사시도.
도 2는 본 발명의 실시예에서의 샘플 B,D,E의 F 첨가량의 추정값을 구하기 위한 그래프.
도 3은 본 발명의 실시예의 방전 지연의 측정에 이용한 전압 파형을 도시한 도면.
도 4는 실시예 샘플 C를 이용해서 제조한 PDP와, 무첨가의 MgO 결정체를 이용해서 제조한 PDP에 대한, 휴지 기간과 방전 지연과의 관계를 나타내는 그래프.
도 5는 본 발명의 실시예에 따른, F 첨가량의 측정값 또는 추정값과, 방전 지연과의 관계를 나타내는 그래프.
도 6은 종래의 PDP의 구조를 도시하는 사시도.
이하, 본 발명의 실시예에 대해서 도면을 이용하여 설명한다. 도면이나 이하의 기술 중에서 나타내는 구성은, 예시로서, 본 발명의 범위는, 도면이나 이하의 기술 중에서 나타내는 것에 한정되지 않는다. 또한 이하의 실시예에서는, 반사형 3전극 면방전형 PDP를 예로 들어 설명을 하지만, 본 발명은, 이 이외의 종류의 PDP에도 적용 가능하다. 예를 들면, 「전면측」과 「배면측」의 구성이 역전한 투과형 PDP나, 전극수, 전극 배치, 방전 형식 등이 서로 다른 PDP에도 적용 가능하다.
도 1은, 본 발명의 일 실시예의 PDP의 구조를 나타내 것으로서, 도 1의 (a)은 평면도이며, 도 1의 (b) 및 (c)는 각각 도 1의 (a) 중의 I-I 단면도 및 II-II 단면도이다.
본 실시예의 PDP는, 대향 배치된 전면측 기판 구조체(1) 및 배면측 기판 구조체(2)를 갖는다. 전면측 기판 구조체(1)는, 전면측 기판(1a) 상에 각각이 투명 전극(3a)과 금속 전극(3b)으로 이루어지는 복수의 표시 전극(3)과, 복수의 표시 전극(3)을 덮는 유전체층(4)과, 유전체층(4) 상에 보호층(5)을 개재해서 P 입자 방출층(11)을 갖는다.
배면측 기판 구조체(2)는, 배면측 기판(2a) 상에 표시 전극(3)에 교차(바람직하게는, 직교)하는 복수의 어드레스 전극(6), 복수의 어드레스 전극(6)을 덮는 유전체층(9), 유전체층(9) 상에 격벽(7) 및 형광체층(8)을 갖는다.
전면측 기판 구조체(1)와 배면측 기판 구조체(2)는, 주연부가 봉착재로 접합되어 있고, 전면측 기판 구조체(1)와 배면측 기판 구조체(2) 사이의 격벽으로 구획된 기밀한 방전 공간 내에는 방전 가스(예를 들면, 네온에 수% 정도의 크세논을 혼합시킨 것)가 봉입되어 있다.
P 입자 방출층(11)은, 방전 공간에 노출되도록 배치되며, 할로겐 원소가 1∼10000ppm 첨가된 MgO 결정체를 함유하고 있다.
이하, 각 구성 요소에 대해서 상세하게 설명한다.
1-1. 기판, 표시 전극, 유전체층, 보호층(전면측 기판 구조체)
전면측의 기판(1a)은, 특별히 한정되지 않고, 해당 분야에서 공지의 기판을 어느 것이나 사용할 수 있다. 구체적으로는, 글래스 기판, 플라스틱 기판 등의 투명 기판을 들 수 있다.
표시 전극(3)은, 예를 들면, ITO, SnO2 등으로 이루어지는 폭이 넓은 투명 전극(3a)과, 전극의 저항을 내리기 위한, 예를 들면 Ag, Au, Al, Cu, Cr 및 그들의 적층체(예를 들면 Cr/Cu/Cr의 적층 구조) 등으로 이루어지는 폭이 좁은 금속 전극(3b)으로 구성할 수 있다. 투명 전극(3a) 및 금속 전극(3b)의 형상은, 특별히 한정되지 않고, T자형이나 사다리형이어도 된다. 투명 전극(3a)과 금속 전극(3b)의 형상은, 동일하여도 서로 달라도 된다. 예를 들면, 투명 전극(3a)을 T자형이나 사다리형으로 하고, 금속 전극(3b)을 스트레이트형으로 하여도 된다. 또한, 투명 전극(3a)은, 생략할 수도 있으며, 이 경우, 표시 전극(3)은, 금속 전극(3b) 만으로 이루어진다.
이러한 복수의 표시 전극(3)은, 2개씩이 페어로 되어 표시 라인을 구성하지만, 전극 배열 형태로서 전극 페어 사이에 비방전 영역(역 슬릿이라고도 함)을 형성한 배열, 전극을 등간격으로 배열하여 인접하는 전극 사이가 모두 방전 영역으로 되는 ALIS 형식의 배열 중 어느 하나에 의해 배치되어 있다. 이 페어는, 어드레스 전극(6)과의 사이의 어드레스 방전에 이용되는 스캔 전극(3Y)과, 스캔 전극(3Y)과의 사이의 서스테인 방전 등에 이용되는 서스테인 전극(3X)으로 구성된다.
유전체층(4)은, 예를 들면, 저융점 글래스 플릿에 바인더와 용제를 더한 저융점 글래스 페이스트를, 표시 전극(3) 형성 후의 기판 상에 스크린 인쇄법으로 도포하고, 소성함으로써 형성할 수 있다. 유전체층(4)은, 표시 전극(3) 형성 후의 기판 상에 CVD법 등으로 산화 실리콘을 퇴적함으로써 형성하여도 된다.
보호층(5)은, 예를 들면, 산화 마그네슘, 산화 칼슘, 산화 스트론튬 또는 산화 바륨 등의 금속(보다 구체적으로는 2가의 금속) 산화물로 이루어지고, 바람직하게는, 산화 마그네슘으로 이루어진다. 보호층(5)은, 증착법, 스퍼터법 또는 도포법 등으로 형성된다.
1-2. 기판, 어드레스 전극, 유전체층, 격벽, 형광체층(배면측 기판 구조체)
배면측의 기판(2a)은, 특별히 한정되지 않고, 해당 분야에서 공지의 기판을 어느 것이나 사용할 수 있다. 구체적으로는, 글래스 기판, 플라스틱 기판 등의 투명 기판을 들 수 있다.
어드레스 전극(6)은, 예를 들면 Ag, Au, A1, Cu, Cr 및 그들 적층체(예를 들면 Cr/Cu/Cr의 적층 구조) 등으로 구성할 수 있다.
유전체층(9)은, 유전체층(4)과 마찬가지의 재료 및 방법으로 형성할 수 있다.
격벽(7)은, 유전체층(9) 상에 저융점 글래스 페이스트 등의 격벽 형성 재료층을 형성하고, 이 격벽 형성 재료층을 샌드 블러스트 등에 의해 패터닝하고, 소성함으로써 형성할 수 있다. 격벽(7)은, 이 이외의 방법으로 형성하여도 된다. 격벽(7)의 형상은, 한정되지 않고, 예를 들면, 스트라이프형, 미앤더형, 격자형 또는 사다리형으로 할 수 있다.
형광체층(8)은, 예를 들면, 형광체 분말과 바인더를 포함하는 형광체 페이스트를 인접하는 격벽(7) 사이의 홈 내에 스크린 인쇄, 또는 디스펜서를 이용한 방법 등으로 도포하고, 이를 색 (R, G, B)마다 반복한 후, 소성함으로써 형성할 수 있다.
1-3. 프라이밍 입자(P 입자) 방출층
P 입자 방출층(11)은, 방전 공간에 노출되도록 배치되고, 할로겐 원소가 1∼10000ppm 첨가된 MgO 결정체(이하, 할로겐 원소가 첨가된 MgO 결정체를 「할로겐 첨가 MgO 결정체」라고 부름)를 함유하는 P 입자 방출 재료로 이루어진다. 본 명세서에서는, 「ppm」은, 중량 농도이다. P 입자 방출 재료는, 할로겐 첨가 MgO 결정체 이외의 성분을 함유하고 있어도 되고, 할로겐 첨가 MgO 결정체를 주성분으로 하여도 되고, 할로겐 첨가 MgO 결정체만으로 이루어져도 된다.
할로겐 원소의 종류는, 특별히 한정되지 않는다. 할로겐 원소는, 예를 들면, 불소, 염소, 브롬 및 요오드 중 1종 또는 2종 이상으로 이루어진다. 불소의 경우에 방전 지연의 개선 효과가 장시간 지속되는 것이 확인되고 있지만, 전자 상태의 유사성으로부터 불소 이외의 할로겐을 첨가한 경우에도 마찬가지의 효과가 얻어진다고 생각된다.
할로겐 원소의 첨가량은, 특별히 한정되지 않는다. 할로겐 원소의 첨가량은, 예를 들면, 1∼10000ppm이다. 실시예에서는, 24∼440ppm의 범위에서 할로겐 원소의 첨가량을 변화시켜도 거의 마찬가지의 효과가 얻어지는 것이 확인되고 있기 때문에, 할로겐 원소의 첨가량이 효과에 미치는 영향은 크지 않다고 생각되며, 첨가량이 1∼10000ppm 정도의 범위이면, 방전 지연의 개선 효과가 장시간 지속된다고 생각된다. 할로겐 원소의 첨가량은, 예를 들면, 1, 5, 10, 15, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, 160, 180, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, 1000, 1500, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 또는 10000ppm이다. 할로겐 원소의 첨가량은, 여기에서 예시한 어느 2개의 수치 사이의 범위 내이어도 된다. 할로겐 원소의 첨가량은, 연소-이온크로마토그래프 분석에 의해 측정할 수 있다.
할로겐 첨가 MgO 결정체의 제조 방법은, 특별히 한정되지 않는다. 할로겐 첨가 MgO 결정체는, 일례에서는, MgO 결정체와 할로겐 함유 물질을 혼합해서 소성하고, 해쇄함으로써 제조할 수 있다. MgO 결정체에 대해서는, 후술한다. 할로겐 함유 물질로서는, 예를 들면, 마그네슘의 할로겐화물(불화 마그네슘 등)이나 Al, Li, Mn, Zn, Ca, Ce의 할로겐화물을 들 수 있다. 소성은, 1000∼1700℃에서 행하는 것이 바람직하다. 소성의 온도는, 예를 들면, 1000, 1100, 1200, 1300, 1400, 1500, 1600 또는 1700℃이다. 소성의 온도는, 여기에서 예시한 어느 2개의 수치 사이의 범위 내이어도 된다. 소성물의 해쇄를 행하는 방법은, 특별히 한정되지 않지만, 예를 들면, 소성물을 유발에 넣고, 그것을 유봉으로 갈아 부수어 분체 형상으로 하는 방법을 들 수 있다.
할로겐 첨가 MgO 결정체는, 바람직하게는, 분체 형상으로서, 그 사이즈나 형상은 특별히 한정되지 않지만, 평균 입경이 0.05∼20㎛인 것이 바람직하다. 할로겐 첨가 MgO 결정체는, 평균 입경이 지나치게 작으면, 방전 지연의 개선 효과가 작고, 평균 입경이 지나치게 크면, P 입자 방출층(11)이 균일하게 형성되기 어렵기 때문이다.
할로겐 첨가 MgO 결정체의 평균 입경은, 다음의 수학식 1에 따라서 구할 수 있다.
(단, a는, 형상 계수로 6, S는, 질소 흡착법에 의해 구해지는 BET 비표면적, ρ는, 할로겐 첨가 MgO 결정체의 진밀도임)
할로겐 첨가 MgO 결정체의 평균 입경은, 구체적으로는, 예를 들면, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20㎛이다. 할로겐 첨가 MgO 결정체의 평균 입경의 범위는, 상기 구체적인 평균 입경으로서 예시한 수치의 어느 2개 사이이어도 된다.
다음으로, 할로겐 첨가 MgO 결정체의 제조에 사용되는 MgO 결정체에 대해서 설명한다. MgO 결정체는, 전자선의 조사에 의해 파장 영역 200∼300㎚ 내에 피크를 갖는 캐소드 루미네센스 발광을 행한다고 하는 특성을 갖고 있다. MgO 결정체는, 바람직하게는, 분체 형상이며, 그 사이즈나 형상은 특별히 한정되지 않지만, 평균 입경이 0.05∼20㎛인 것이 바람직하다.
MgO 결정체의 평균 입경은, 다음 수학식 2에 따라서 구할 수 있다.
(단, a는, 형상 계수로 6, S는, 질소 흡착법에 의해 구해진 BET 비표면적, ρ는, 산화 마그네슘의 진밀도임)
MgO 결정체의 평균 입경은, 구체적으로는, 예를 들면, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20㎛이다. MgO 결정체의 평균 입경의 범위는, 상기 구체적인 평균 입경으로서 예시한 수치의 어느 2개 사이이어도 된다.
MgO 결정체의 제조 방법은, 특별히 한정되지 않지만, 마그네슘 증기와 산소를 반응시키는 기상법으로 제조하는 것이 바람직하며, 예를 들면, 일본 특개 2004-182521호 공보에 기재된 방법이나, 『재료』 소화 62년 11월호, 제36권 제410호의 제1157∼1161페이지의 『기상법에 의한 마그네시아 분말의 합성과 그 성질』에 기재된 방법으로 제조할 수 있다. 또한, MgO 결정체는, 우베 마테리알즈 주식회사로부터 구입하여도 된다. 기상법으로 제조하는 것이 바람직한 것은, 기상법에 의해 MgO 결정체를 제조하면, 순도가 높은 단결정체가 얻어지기 때문이다.
P 입자 방출층(11)은, 직접 또는 별도의 층을 개재하여 유전체층(4) 상에 배치할 수 있다. 도 1에서는, P 입자 방출층(11)은, 보호층(5)을 개재해서 유전체층(4) 상에 배치되어 있다. 도 1의 구성은, 일례로서, P 입자 방출층(11)은, 전면측 기판 구조체(1)와 배면측 기판 구조체(2) 사이의 방전 공간에 노출되도록, 방전 공간의 어딘가에 배치되어 있으면 된다. 방전 공간 내의 어딘가에 P 입자 방출층(11)이 배치되어 있으면, P 입자 방출층(11)으로부터의 P 입자에 의해 방전 지연이 개선되기 때문이다. P 입자 방출층(11)은, 그 전체가 방전 공간에 노출되어 있는 것이 바람직하지만, 일부만이 노출되어 있어도 된다. 예를 들면, P 입자 방출층(11)은, 전면측 기판 구조체(1)에 배치하여도 되고, 배면측 기판 구조체(2)에 배치하여도 된다. P 입자 방출층(11)을 전면측 기판 구조체(1)에 배치하는 경우, 보호층(5)을 생략하여 P 입자 방출층(11)을 유전체층(4) 상에 배치하여도 되고, 개구부를 갖는 보호층(5)을 유전체층(4) 상에 배치하고, 이 개구부 내에 P 입자 방출층(11)을 배치하여도 된다.
P 입자 방출층(11)의 두께나 형상은, 특별히 한정되지 않는다. P 입자 방출층(11)은, 표시 영역의 전체면에 배치하여도 되고, 일부에만 배치하여도 된다. 예를 들면, 평면에서 볼 때 표시 전극(3)과 겹치는 영역에만 형성하거나, 스캔 전극(3Y)과 겹치는 영역에만 형성하거나 하여도 된다. 이 경우, 방전 지연의 개선 효과를 그다지 저하시키지 않고 P 입자 방출 재료의 사용량을 저감할 수 있다. 또한, 금속 전극(3b)과 겹치는 영역에만 형성하거나, 면방전이 일어나지 않는 표시 전극쌍 간의 비방전 라인(역 슬릿)과 겹치는 영역에만 형성하거나 하여도 된다. 이 경우, P 입자 방출층(11)을 형성함에 따른 휘도 저하를 억제할 수 있다. P 입자 방출층(11)은, 스트레이트 형상으로 형성하여도 되고, 방전 셀마다 분리한 섬형상으로 형성하여도 된다.
P 입자 방출층(11)의 형성 방법은, 특별히 한정되지 않는다. P 입자 방출층(11)은, 예를 들면, 분체 형상의 P 입자 방출 재료를 그대로 또는 분산매에 분산시킨 상태에서 보호층(5)을 향해서 산포함으로써 형성할 수 있다. 또한, 스크린 인쇄에 의해, P 입자 방출 재료를 보호층(5) 상에 부착시켜도 된다. 또한, P 입자 방출층(11)은, 디스펜서나 잉크제트 장치를 이용해서 P 입자 방출층(11)을 형성하는 부위에 P 입자 방출 재료를 함유하는 페이스트나 현탁액을 부착시킴으로써 형성하여도 된다.
이하, 본 발명의 구체적인 실시예에 대해서 설명한다. 이하의 실시예에서는, 불소가 첨가된 MgO 결정체(이하, 「F 첨가 MgO 결정체」라고 부름)를 방전 공간에 노출되도록 배치함에 따른 방전 지연 개선 효과를 조사했다. 또한, 불소가 첨가되지 않은 통상의 MgO 결정체를 방전 공간에 노출되도록 배치한 경우와 비교했다.
1. F 첨가 MgO 결정체의 제조 방법
이하의 방법으로 F 첨가량이 서로 다른 5종류의 F 첨가 MgO 결정체(실시예 샘플 A∼E와 부름)를 제작했다.
우선, MgO 결정체(우베 마테리알즈 주식회사제, 상품명:기상법 고순도 초미분 마그네시아(2000A))와, MgF2(후루찌 화학 주식회사제, 순도:99.99%)를 각각 유발과 유봉을 이용해서 응집 해쇄하여 분체 형상으로 했다.
다음으로, 표 1에 나타내는 혼합량으로 되도록, 응집 해쇄한 MgO 결정체와 MgF2를 칭량하고, 텀블러 혼합기로 혼합했다.
다음으로, 혼합한 것을 대기 중 1450℃에서 1시간 소성했다.
다음으로, 소성한 가루를 응집 해쇄하여 분체 형상으로 하여, 실시예 샘플 A∼E의 F 첨가 MgO 결정체를 얻었다.
다음으로, 실시예 샘플 A와 C의 F 첨가량을 연소 이온 크로마토그래프 분석에 의해 측정했다. 그 결과를 표 1에 나타낸다. 또한, 실시예 샘플 A와 C의 F 첨가량의 측정값으로부터 추측되는 실시예 샘플 B, D, E의 F 첨가량의 추정값을 도 2의 그래프에 따라서 구했다. 표 1에서는 F 첨가량의 추정값은 괄호를 쳐서 표시했다.
2. PDP의 제조 방법
다음으로, 실시예 샘플 A, B, C, D 또는 E의 F 첨가 MgO 결정체로 이루어지는 P 입자 방출층(11)을 갖는 PDP를 이하의 방법으로 제조했다. 또한, 후술하는 방전 지연 시험의 비교예에 사용하기 위해, F 첨가 MgO 결정체 대신에 F 첨가를 행하지 않은 MgO 결정체(메이커, 상품명은 상동)를 이용해서 PDP를 마찬가지의 방법 및 조건에서 제조했다.
2-1. 개요
도 1의 (a)∼(c)에 도시한 바와 같이 글래스 기판(1a) 상에 표시 전극(3), 유전체층(4), 보호층(5), P 입자 방출층(11)을 형성함으로써 전면측 기판 구조체(1)를 제작했다. 또한, 글래스 기판(2a) 상에 어드레스 전극(6), 유전체층(9), 격벽(7) 및 형광체층(8)을 형성함으로써 배면측 기판 구조체(2)를 제작했다. 다음으로, 전면측 기판 구조체(1)와 배면측 기판 구조체(2)를 서로 겹치고 주연부를 봉착재로 밀봉함으로써 내부에 기밀한 방전 공간을 갖는 패널을 제작했다. 다음으로, 방전 공간 내를 배기 후, 방전 가스를 봉입하여, PDP를 완성시켰다.
2-2. P 입자 방출층의 형성 방법
P 입자 방출층(11)은, 자세하게는, 이하의 방법으로 형성했다.
우선, F 첨가 MgO 결정체를 IPA(간토 화학 주식회사제, 전자 공업용) 1L에 대하여 2g의 비율로 혼합하여, 초음파 분산기로 분산시켜서 응집 해쇄시켜, 슬러리를 제작했다.
다음으로, 보호층(5) 상에 도장용 스프레이 건을 이용해서 상기 슬러리를 스프레이 도포하고, 그 후에 드라이 에어를 내뿜어서 건조시키는 공정을 수회 반복함으로써 P 입자 방출층(11)을 형성했다. P 입자 방출층(11)은, F 첨가 MgO 결정체의 중량이 1㎡당 2g으로 되도록 형성했다.
2-3. 그 외
그 외의 조건은, 이하와 같이 했다.
전면측 기판 구조체(1):
표시 전극(3a)의 폭: 270㎛
금속 전극(3b)폭: 95㎛
방전 갭의 폭: 100㎛
유전체층(4):저융점 글래스 페이스트의 도포 소성에 의해 형성, 두께: 30㎛
보호층(5):전자 빔 증착에 의한 MgO층, 두께: 7500Å
배면측 기판 구조체(2):
어드레스 전극(6)의 폭: 70㎛
유전체층(9):저융점 글래스 페이스트의 도포 소성에 의해 형성, 두께: 10㎛
어드레스 전극(6)의 바로 위에서의 형광체층(8)의 두께: 20㎛
형광체층(8)의 재료: Zn2SiO4:Mn(녹 형광체)
격벽(7)의 높이: 140㎛ 꼭대기부에서의 폭: 50㎛
격벽(7)의 피치(도 1의 (a)의 치수 A): 360㎛
방전 가스: Ne96%-Xe4%, 500Torr
3. 방전 지연 시험
다음으로, 제조한 각 PDP에 대해서 방전 지연 시험을 행하였다. 방전 지연 시험은, 도 3에 도시하는 측정용의 전압 파형에 의해 행하였다. 리세트 방전 기간에서는 서스테인 전극(3X)과 스캔 전극(3Y) 사이에서 리세트 방전을 일으키게 해서 유전체층의 전하 상태를 리세트하고, 이전의 방전의 영향을 제거했다. 예비 방전 기간에서는 특정한 셀을 선택한 후에 서스테인 전극(3X)과 스캔 전극(3Y) 사이에서 방전을 일으키게 해서 P 입자 방출 재료를 여기했다. 그 후, 10㎲∼50㎳의 휴지 기간을 경과한 후, 어드레스 방전 기간에 어드레스 전극(6)에 전압을 인가하고, 이 전압 인가 시로부터 실제로 방전이 개시될 때까지의 시간을 측정했다. 방전 개시까지의 시간은 1000회 측정하여, 누적 방전 확률이 90%로 되는 시간을 방전 지연으로 정의했다.
이와 같이 하여 얻어진 결과를 표 2, 도 4 및 도 5에 도시한다. 도 4는, 실시예 샘플 C를 이용해서 제조한 PDP와, 무첨가의 MgO 결정체를 이용해서 제조한 PDP에 대한, 휴지 기간과 방전 지연과의 관계를 나타내는 그래프이다. 도 5는, 표 2를 플롯한 것이다.
도 4로부터 명백한 바와 같이, 실시예 샘플 C를 이용해서 제조한 PDP에서는, 무첨가 MgO 결정체를 이용해서 제조한 PDP에 비교하여, 휴지 기간이 긴 부분에서도 방전 지연이 짧은 것을 알 수 있다. 이것은, 실시예 샘플 C과 같은, F 첨가 MgO 결정체는, 무첨가의 MgO 결정체에 비해서 방전 지연을 억제하는 효과가 길게 지속되는 것을 의미하고 있다.
또한, 표 2 및 도 5로부터 명백한 바와 같이, F 첨가량이 24∼440ppm의 범위에서, 방전 지연의 변화가 작은 것을 알 수 있다. 이것은, F원소의 첨가량이 방전 지연의 개선 효과에 미치는 영향은 크지 않은 것을 나타내고 있고, 첨가량이 1∼10000ppm 정도의 범위이면, 방전 지연의 개선 효과가 장시간 지속되는 것을 시사하고 있다고 생각된다.
1 : 전면측 기판 구조체
1a : 전면측 기판
2 : 배면측 기판 구조체
2a : 배면측 기판
3a : 투명 전극
3b : 금속 전극
3 : 표시 전극
4, 9 : 유전체층
5 : 보호층
6 : 어드레스 전극
7 : 격벽
8 : 형광체층
11 : P 입자 방출층
1a : 전면측 기판
2 : 배면측 기판 구조체
2a : 배면측 기판
3a : 투명 전극
3b : 금속 전극
3 : 표시 전극
4, 9 : 유전체층
5 : 보호층
6 : 어드레스 전극
7 : 격벽
8 : 형광체층
11 : P 입자 방출층
Claims (15)
- 플라즈마 디스플레이 패널의 제조 방법으로서,
MgO 결정체와 MgF2를 분체 형상으로 하여 혼합하는 공정과,
혼합된 MgO 결정체와 MgF2를 소성하는 공정과,
상기 소성에 의해 얻어진 불소가 첨가된 MgO 결정체를 분체 형상으로 하는 공정과,
상기 분체 형상으로 된 불소가 첨가된 MgO 결정체를 MgO층으로 이루어지는 플라즈마 디스플레이 패널의 보호막 상에 형성하는 공정
을 갖는 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법. - 삭제
- 제1항에 있어서, 상기 MgO 결정체와 MgF2를 혼합하는 공정에 있어서, MgF2의 혼합량을 0.003∼0.1몰%로 하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법.
- 제1항에 있어서, 불소가 첨가된 MgO 결정체를 상기 보호막 상에 형성하는 공정에 있어서, 상기 분체 형상의 불소가 첨가된 MgO 결정체를 이용하여 슬러리를 생성하고, 상기 슬러리를 상기 보호막 상에 스프레이 도포하고, 그 후 건조시키는 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법.
- 제1항에 있어서, 불소가 첨가된 MgO 결정체를 상기 보호막 상에 형성하는 공정에 있어서, 스크린 인쇄에 의해, 상기 분체 형상의 불소가 첨가된 Mg0 결정체를 상기 보호막 상에 형성하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법.
- 제1항에 있어서, 불소가 첨가된 MgO 결정체를 상기 보호막 상에 형성하는 공정에 있어서, 디스펜서 또는 잉크제트 장치에 의해, 상기 분체 형상의 불소가 첨가된 MgO 결정체를 포함하는 페이스트 또는 현탁액을 부착시킴으로써, 상기 보호막 상에 형성하는 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법.
- 플라즈마 디스플레이 패널의 제조 방법으로서,
할로겐 원소가 1∼10000ppm 첨가된 분체 형상의 MgO 결정체를 이용하여 슬러리를 생성하고,
상기 슬러리를 MgO층으로 이루어지는 플라즈마 디스플레이 패널의 보호막 상에 스프레이 도포하고,
건조시킴으로써, 상기 할로겐 원소가 1∼10000ppm 첨가된 분체 형상의 MgO 결정체를 상기 보호막 상에 형성하는
것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법. - 삭제
- 삭제
- 제7항에 있어서, 상기 분체 형상의 MgO 결정체는, 상기 보호막 상으로서, 평면에서 보아 표시 전극과 겹치는 영역, 스캔 전극과 겹치는 영역, 금속 전극과 겹치는 영역, 면 방전이 일어나지 않는 표시 전극쌍 간의 비방전 라인과 겹치는 영역 중 어느 하나의 영역에만 형성되는 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법.
- 삭제
- 삭제
- 제7항에 있어서, 상기 MgO 결정체는 불소를 24∼440ppm 첨가한 것을 특징으로 하는 플라즈마 디스플레이 패널의 제조 방법.
- 삭제
- 삭제
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPJP-P-2007-124718 | 2007-05-09 | ||
JP2007124718A JP4492638B2 (ja) | 2007-05-09 | 2007-05-09 | プラズマディスプレイパネル、プラズマディスプレイパネルの基板構体 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080022038A Division KR100990770B1 (ko) | 2007-05-09 | 2008-03-10 | 플라즈마 디스플레이 패널, 플라즈마 디스플레이 패널의기판 구조체 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100018025A KR20100018025A (ko) | 2010-02-16 |
KR100990774B1 true KR100990774B1 (ko) | 2010-10-29 |
Family
ID=39684299
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080022038A KR100990770B1 (ko) | 2007-05-09 | 2008-03-10 | 플라즈마 디스플레이 패널, 플라즈마 디스플레이 패널의기판 구조체 |
KR1020100008744A KR100990774B1 (ko) | 2007-05-09 | 2010-01-29 | 플라즈마 디스플레이 패널의 제조 방법 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080022038A KR100990770B1 (ko) | 2007-05-09 | 2008-03-10 | 플라즈마 디스플레이 패널, 플라즈마 디스플레이 패널의기판 구조체 |
Country Status (5)
Country | Link |
---|---|
US (2) | US7876050B2 (ko) |
EP (1) | EP1990826A1 (ko) |
JP (1) | JP4492638B2 (ko) |
KR (2) | KR100990770B1 (ko) |
CN (2) | CN101303949B (ko) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009044456A1 (ja) | 2007-10-02 | 2009-04-09 | Hitachi, Ltd. | プラズマディスプレイパネル及びその製造方法、並びに放電安定化粉体 |
JP5272451B2 (ja) * | 2008-03-10 | 2013-08-28 | パナソニック株式会社 | プラズマディスプレイパネル |
JP2010146741A (ja) * | 2008-12-16 | 2010-07-01 | Hitachi Plasma Display Ltd | プラズマディスプレイパネル |
US8058805B2 (en) | 2009-08-19 | 2011-11-15 | Samsung Sdi Co., Ltd. | Plasma display panel |
JP5745821B2 (ja) | 2010-11-12 | 2015-07-08 | タテホ化学工業株式会社 | フッ素含有酸化マグネシウム発光体及びその製造方法 |
JP2012226852A (ja) * | 2011-04-15 | 2012-11-15 | Panasonic Corp | プラズマディスプレイパネル |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3941289B2 (ja) * | 1998-06-30 | 2007-07-04 | 三菱マテリアル株式会社 | Pdp又はpalc用保護膜及びその製造方法並びにこれを用いたpdp又はpalc |
JP3991504B2 (ja) * | 1999-05-20 | 2007-10-17 | 三菱マテリアル株式会社 | Pdp又はpalc用保護膜の製造方法及びそのpdp又はpalc用保護膜並びにこれを用いたpdp又はpalc |
TW469465B (en) | 1998-12-10 | 2001-12-21 | Mitsubishi Materials Corp | Protective film for FPD and manufacture thereof, and FPD using the same |
CN1498413A (zh) * | 2001-01-23 | 2004-05-19 | 松下电器产业株式会社 | 气体放电面板的制造方法 |
JP2003022755A (ja) * | 2001-07-05 | 2003-01-24 | Mitsubishi Electric Corp | プラズマディスプレイパネル用基板、その製造方法、その保護膜成膜装置、およびプラズマディスプレイパネル |
JP4378917B2 (ja) * | 2002-07-01 | 2009-12-09 | 東洋インキ製造株式会社 | 顔料組成物の製造方法、該方法で製造される顔料組成物を用いた顔料分散体、および着色用樹脂組成物 |
US7511428B2 (en) * | 2002-10-22 | 2009-03-31 | Panasonic Corporation | Plasma display panel |
JP4195279B2 (ja) | 2002-12-02 | 2008-12-10 | 宇部マテリアルズ株式会社 | 高純度酸化マグネシウム微粉末の製造方法 |
US7391156B2 (en) * | 2003-09-24 | 2008-06-24 | Matsushita Electrical Industrial Co., Ltd. | Plasma display panel |
JP4543852B2 (ja) * | 2003-09-24 | 2010-09-15 | パナソニック株式会社 | プラズマディスプレイパネル |
JP4541832B2 (ja) | 2004-03-19 | 2010-09-08 | パナソニック株式会社 | プラズマディスプレイパネル |
JPWO2005098890A1 (ja) | 2004-04-08 | 2008-03-06 | 松下電器産業株式会社 | ガス放電表示パネル |
US7465413B2 (en) * | 2004-05-11 | 2008-12-16 | Panasonic Corporation | Phosphor and plasma display panel using the same |
CN1981165A (zh) | 2004-07-01 | 2007-06-13 | 大金工业株式会社 | 冷冻装置及空调装置 |
JP4683547B2 (ja) | 2004-09-16 | 2011-05-18 | パナソニック株式会社 | プラズマディスプレイパネル |
KR20070039204A (ko) * | 2005-10-07 | 2007-04-11 | 삼성에스디아이 주식회사 | 플라즈마 디스플레이 패널의 제조방법 |
KR20070047075A (ko) | 2005-11-01 | 2007-05-04 | 엘지전자 주식회사 | 플라즈마 디스플레이 패널의 보호막 |
EP1780749A3 (en) * | 2005-11-01 | 2009-08-12 | LG Electronics Inc. | Plasma display panel and method for producing the same |
JP4562742B2 (ja) * | 2006-02-21 | 2010-10-13 | 宇部マテリアルズ株式会社 | フッ素含有酸化マグネシウム粉末 |
JP4542080B2 (ja) * | 2006-11-10 | 2010-09-08 | パナソニック株式会社 | プラズマディスプレイパネル及びその製造方法 |
-
2007
- 2007-05-09 JP JP2007124718A patent/JP4492638B2/ja not_active Expired - Fee Related
-
2008
- 2008-03-10 US US12/045,051 patent/US7876050B2/en not_active Expired - Fee Related
- 2008-03-10 KR KR1020080022038A patent/KR100990770B1/ko not_active IP Right Cessation
- 2008-03-11 CN CN200810082883XA patent/CN101303949B/zh not_active Expired - Fee Related
- 2008-03-11 CN CN2009102093207A patent/CN101697335B/zh not_active Expired - Fee Related
- 2008-05-06 EP EP08251622A patent/EP1990826A1/en not_active Withdrawn
-
2010
- 2010-01-29 KR KR1020100008744A patent/KR100990774B1/ko not_active IP Right Cessation
- 2010-04-08 US US12/756,333 patent/US7934969B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101697335B (zh) | 2012-03-14 |
CN101303949B (zh) | 2011-11-30 |
US20080278419A1 (en) | 2008-11-13 |
US20100304633A1 (en) | 2010-12-02 |
JP2008282623A (ja) | 2008-11-20 |
JP4492638B2 (ja) | 2010-06-30 |
EP1990826A1 (en) | 2008-11-12 |
US7876050B2 (en) | 2011-01-25 |
KR20100018025A (ko) | 2010-02-16 |
US7934969B2 (en) | 2011-05-03 |
CN101303949A (zh) | 2008-11-12 |
KR20080099777A (ko) | 2008-11-13 |
KR100990770B1 (ko) | 2010-10-29 |
CN101697335A (zh) | 2010-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2214193B1 (en) | Plasma display panel | |
KR100990774B1 (ko) | 플라즈마 디스플레이 패널의 제조 방법 | |
KR20090067145A (ko) | 플라스마 디스플레이 패널과 그 제조방법 | |
EP2099052A1 (en) | Plasma display panel | |
KR101137594B1 (ko) | 플라즈마 디스플레이 패널 | |
EP2099051B1 (en) | Plasma display panel | |
KR20090067190A (ko) | 플라스마 디스플레이 패널과 그 제조방법 | |
KR101143756B1 (ko) | 플라즈마 디스플레이 패널 | |
KR101012540B1 (ko) | 플라즈마 디스플레이 패널 | |
KR101075002B1 (ko) | 플라즈마 디스플레이 패널 | |
KR101102721B1 (ko) | 플라스마 디스플레이 패널 | |
US7994718B2 (en) | Plasma display panel | |
JP5115536B2 (ja) | プラズマディスプレイパネルの製造方法 | |
EP2099049A1 (en) | Method for manufacturing plasma display panel | |
JP2008282624A (ja) | プラズマディスプレイパネル | |
EP2120252A1 (en) | Plasma display panel | |
JP2008287966A (ja) | プラズマディスプレイパネル | |
KR101101667B1 (ko) | 플라즈마 디스플레이 패널의 제조 방법 | |
KR20090112745A (ko) | 플라즈마 디스플레이 패널 | |
EP2141727A1 (en) | Plasma display panel | |
KR20090110338A (ko) | 플라즈마 디스플레이 패널 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A107 | Divisional application of patent | ||
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20131001 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20141002 Year of fee payment: 5 |
|
LAPS | Lapse due to unpaid annual fee |