KR100890414B1 - 히터 부착 정전척 - Google Patents

히터 부착 정전척 Download PDF

Info

Publication number
KR100890414B1
KR100890414B1 KR1020070072164A KR20070072164A KR100890414B1 KR 100890414 B1 KR100890414 B1 KR 100890414B1 KR 1020070072164 A KR1020070072164 A KR 1020070072164A KR 20070072164 A KR20070072164 A KR 20070072164A KR 100890414 B1 KR100890414 B1 KR 100890414B1
Authority
KR
South Korea
Prior art keywords
electrode
heating element
alumina
electrostatic chuck
base
Prior art date
Application number
KR1020070072164A
Other languages
English (en)
Other versions
KR20080008298A (ko
Inventor
카즈히로 노보리
테츠야 가와시리
료오요 하토리
Original Assignee
니뽄 가이시 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니뽄 가이시 가부시키가이샤 filed Critical 니뽄 가이시 가부시키가이샤
Publication of KR20080008298A publication Critical patent/KR20080008298A/ko
Application granted granted Critical
Publication of KR100890414B1 publication Critical patent/KR100890414B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68757Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a coating or a hardness or a material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Resistance Heating (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

본 발명은 기판 적재면에 적재한 기판의 탈착 응답성을 향상시키는 동시에, 저항 발열체의 니오븀 성분이 지지 부재 중으로 확산하는 것을 억제하는 히터 부착 정전척을 제공하는 것을 목적으로 한다.
본 발명의 히터 부착 정전척(1)은 알루미나를 포함하는 소결체로 이루어지는 기체(3)와, 이 기체(3) 중의 상부측에 설치된 전극(5)과, 기체(3) 중의 하부측에 매설된 저항 발열체(7)를 포함하며, 상기 기체(3)는 전극(5)에서부터 기체 상면(9)까지의 유전체층(11)과, 전극(5)에서부터 기체 하면(23)까지의 지지 부재(13)로 구성된다. 상기 유전체층(11) 중의 탄소 함유량이 100 ppm 이하, 상기 지지 부재(13) 중의 탄소 함유량이 0.03∼0.25 wt%이고, 상기 저항 발열체(7)는 코일형으로 형성되며, 또한 주성분이 니오븀인 것을 특징으로 한다.
기판, 정전척, 히터, 저항 발열체, 탈착 응답성, 유전체층

Description

히터 부착 정전척{ELECTROSTATIC CHUCK WITH HEATER}
본 발명은 쿨롱 타입의 히터 부착 정전척에 관한 것이다.
종래로부터, 반도체 등을 제조할 때에 쿨롱 타입의 히터 부착 정전척이 이용되는 경우가 있다. 이 히터 부착 정전척에는 세라믹으로 이루어지는 기체가 설치되어 있고, 상기 기체의 내부에 전극 및 저항 발열체가 설치된다. 또한, 기체의 상면은 웨이퍼 등의 기판이 적재되는 기판 적재면으로 형성되어 있다. 상기 기체에 있어서의 전극으로부터 기판 적재면까지의 부분은 유전체층으로 형성되어 있고, 전극으로부터 기체의 하면까지의 부분은 지지 부재로 형성되어 있다(예컨대, 일본 특허 공개 평 제11-12053호 공보 참조).
그러나, 상기 종래의 히터 부착 정전척에 있어서는, 유전체층의 체적 저항률이 작으므로, 기판 적재면에 적재된 기판의 탈착 응답성이 저하할 우려가 있었다. 탈착 응답성이 저하하면, 기판이 정전척으로부터 떨어질 때까지 긴 시간이 필요하므로, 기판의 처리 시간이 길게 되어, 단위 시간당 기판의 처리 능력이 저하한다.
또한, 상기 저항 발열체의 주성분이 니오븀(Nb)이므로, 저항 발열체가 설치된 지지 부재 중에 니오븀 성분이 확산할 우려가 있었다. 이 니오븀 성분이 확산함으로써, 저항 발열체 전체의 저항치가 커지게 되고, 확산 부분의 발열 밀도가 설계치와 상이해진다. 또한, 기체의 각 부위에서 확산 정도가 고르지 못하여, 기판 적재면의 온도 분포가 커지고, 결과적으로 기판의 균열성(均熱性)이 저하한다고 하는 문제점이 생길 우려가 있었다. 기판의 균열성이 저하하면, 반도체 제조 프로세스에 있어서 균일한 에칭이나 막 형성을 달성하기 어려워지며, 그 결과 제조되는 디바이스의 수율이 악화할 우려가 있다.
그래서, 본 발명의 목적은 기판 적재면에 적재한 기판의 탈착 응답성을 향상시키기 위해 유전체층의 체적 저항률을 높게하는 동시에, 저항 발열체 중의 주성분인 니오븀이 지지 부재 중에 확산하는 것을 억제하는 히터 부착 정전척을 제공하는 것에 있다.
상기 목적을 달성하기 위해, 본 발명에 따른 히터 부착 정전척은, 알루미나 를 함유하는 소결체로 이루어지는 기체와, 상기 기체 중의 상부측에 설치된 전극과, 기체 중의 하부측에 매설된 저항 발열체를 포함하며, 상기 기체는 전극으로부터 기체 상면까지의 유전체층과, 전극으로부터 기체 하면까지의 지지 부재로 구성되며, 상기 유전체층 중의 탄소 함유량이 100 ppm 이하, 상기 지지 부재 중의 탄소 함유량이 0.03∼0.25 wt%이며, 상기 저항 발열체는 코일형으로 형성되고 주성분이 니오븀인 것을 특징으로 한다.
본 발명에 따른 히터 부착 정전척은 이하의 효과를 갖는다.
1) 지지 부재 중의 탄소 함유량이 0.03∼0.25 wt%이므로, 저항 발열체 중의 주성분인 니오븀의 확산을 방지할 수 있다. 이 니오븀 성분의 확산 방지에 의해, 저항 발열체가 규정의 저항을 갖게 되므로, 원하는 설계치대로의 발열 밀도를 발현한다고 하는 효과를 얻을 수 있다. 또한, 지지 부재 중의 알루미나 소결체가 회흑색 내지 흑색으로 착색되고, 저항 발열체로부터의 열을 효율 좋게 방사하여 가열 효율을 개선하는 효과를 얻을 수 있다. 이로 인해, 가열되는 기판의 균열성을 양호하게 한다고 하는 효과를 얻을 수 있다.
2) 저항 발열체는 코일형으로 형성되어 지지 부재 중에 매설되어 있으므로, 스크린 인쇄 등의 박막으로 이루어지는 저항 발열체와 비교하여, 지지 부재에 있어서의 저항 발열체의 위쪽 부분과 아래쪽 부분이 확실하게 결합한다. 또한, 저항 발열체는 코일형으로 형성되어 삼차원형으로 열을 발산하므로, 스크린 인쇄 등의 박막으로 이루어지는 저항 발열체에 비해, 열을 기판 적재면까지 효율적으로 전달할 수 있다.
3) 유전체층은 탄소 함유량이 100 ppm 이하로 작으므로, 체적 저항률이 높게 된다. 따라서, 쿨롱 타입의 정전척으로서 채용하는 경우에, 기판 적재면에 적재된 기판의 탈착 응답성을 향상시킬 수 있다.
4) 저항 발열체의 주성분은 니오븀이므로, 알루미나를 함유하는 기체와 상기 저항 발열체의 열팽창 계수차가 작아진다. 따라서, 저항 발열체가 가열된 경우에, 저항 발열체의 주위의 부분과 저항 발열체 사이에 생기는 열 왜곡을 대폭 저감시킬 수 있다. 결과적으로, 반복되는 열 싸이클에 대해, 긴 수명으로 파손되기 어렵고, 장기적 신뢰성이 높은 히터 부착 정전척을 얻을 수 있다.
이하, 본 발명의 실시형태에 대해 설명한다.
[정전척]
도 1은 본 발명의 실시형태에 의한 히터 부착 정전척을 도시하는 평면도, 도 2는 도 1의 A-A 선에 의한 단면도이다.
본 발명의 실시형태에 의한 히터 부착 정전척(1)은 도 1, 2에 도시한 바와 같이, 알루미나를 함유하는 소결체로 이루어지는 기체(3)와, 상기 기체(3) 중의 상부측에 매설된 전극(5)과, 기체(3)의 하부측에 매설된 저항 발열체(7)를 구비하고 있다.
[기체]
상기 기체(3)는 도 1 및 도 2에 도시한 바와 같이 원반형으로 형성되어 있 고, 기체(3)의 상면(표면)은 웨이퍼 등의 기판이 적재되는 기판 적재면(9)으로 형성되어 있다. 또한, 기체(3) 중의 전극(5)으로부터 위쪽, 즉 전극(5)에서부터 기판 적재면(9)까지의 부분은 유전체층(11)으로 형성되어 있다. 또한, 전극(5)으로부터 아래쪽, 즉 전극(5)에서부터 기체(3)의 하면(이면)까지의 부분은 지지 부재(13)로 형성되어 있다.
상기 유전체층(11) 중의 탄소 함유량은 100 ppm 이하로 작으므로, 유전체층(11)의 체적 저항률이 높게 된다. 따라서, 본 실시형태의 히터 부착 정전척(1)을 쿨롱 타입으로서 채용하는 경우에, 기판 적재면(9)에 적재된 기판의 탈착 응답성을 향상시킬 수 있다.
[전극]
도 1 및 도 2에 도시한 바와 같이, 기체(3)의 상부측에는, 기체(3)보다도 직경이 작은 원판형의 전극(5)이 매설되어 있다. 이 전극(5)은 주성분이 텅스텐 카바이드이고, 또한, 5 vol% 이상 20 vol% 이하의 알루미나를 포함하고 있다. 전극(5) 중에 있어서의 텅스텐 카바이드의 함유량은 70 vol%∼95 vol%가 바람직하다.
또한, 도 2에 도시한 바와 같이, 기체(3)의 직경 방향 중심부에 기체(3)의 하면에서부터 위쪽을 향해 연장되는 수용 구멍(15)이 형성되어 있고, 이 수용 구멍(15) 내에 전극용 급전 부재(21)가 배치되어 있다. 이 전극용 급전 부재(21)의 상단은 접속 부재(19)를 통해 전극(5)에 접속되어 있고, 전극용 급전 부재(21)로부터 접속 부재(19)를 통해 전극(5)에 전력이 공급되면, 기체(3)의 유전체층(11)에 정전 흡착력(쿨롱력)이 발생하여 기체(3)의 기판 적재면(9)에 기판이 흡착된다.
전극(5)은 알루미나 및 텅스텐 카바이드의 금속 분말을 함유하는 인쇄 페이스트를 메쉬형, 빗형, 원형 형상 등으로 인쇄한 것을 이용할 수 있다. 또한, 전극(5)은 철망이나 펀칭 메탈을 이용하더라도 좋다.
상기 전극(5)은 주성분이 텅스텐 카바이드이며, 5 vol% 이상 20 vol% 이하의 알루미나를 포함하고 있으므로, 알루미나 부분이 3차원적으로 연결되어 텅스텐 카바이드층을 망형으로 관통하여, 지지 부재(13) 및 유전체층(11)의 알루미나와 결합한다. 따라서, 텅스텐 카바이드만으로 전극을 작성한 경우에 비해, 전극(5)과 지지 부재(13) 및 전극(5)과 유전체층(11)의 접합 강도가 향상된다. 텅스텐 카바이드는 알루미나와 반응하지 않지만, 열팽창 계수가 알루미나에 비해 작다. 이로 인해, 텅스텐 카바이드만으로 형성된 전극은 접합 강도가 낮고, 열 싸이클에 의해 열화할 우려가 있다. 그러나, 기체(3) 중에 알루미나를 혼합함으로써 전극(5)의 열팽창 계수를 알루미나에 가깝게 하여, 장기 신뢰성을 높일 수 있다.
[저항 발열체]
저항 발열체(7)는 코일형으로 형성되어 있고, 니오븀을 주성분으로 하고 있다. 여기서, 저항 발열체(7) 중에 있어서의 니오븀의 함유량은 95 wt% 이상이 바람직하다. 또한, 저항 발열체(7) 중에는, 니오븀 이외의 금속 성분, 예컨대 백금(Pt)이 포함되어 있더라도 좋다.
또한, 도 2에 도시한 바와 같이, 저항 발열체(7)는 지지 부재(13) 중에 매설되어 있고, 전극(5)보다도 아래쪽에 배치되어 있다. 그리고, 기체(3)의 하면(23)으 로부터 위쪽을 향해 연장되는 수용 구멍(17)이 형성되어 있고, 이 수용 구멍(17) 내에 저항 발열체용 급전 부재(25)가 배치되어 있다. 이 저항 발열체용 급전 부재(25)의 상단은 접속 부재(27)를 통해 저항 발열체(7)에 접속되어 있고, 저항 발열체용 급전 부재(25)로부터 접속 부재(27)를 통해 저항 발열체(7)에 전력이 공급되면, 저항 발열체(7)가 가열되어, 기판 적재면(9)에 적재된 기판에 열을 공급하도록 구성되어 있다.
본 실시형태에 의한 저항 발열체(7)는 코일형으로 형성되어 지지 부재(13) 중에 매설되어 있다. 이로 인해, 스크린 인쇄 등의 박막으로 이루어지는 저항 발열체와 비교하면, 지지 부재(13)에 있어서의 저항 발열체(7)의 위쪽 부분(29)과 아래쪽 부분(31)을 강고하게 결합할 수 있다.
저항 발열체(7)가 코일형으로 형성되어 3차원적으로 열을 방출하므로, 스크린 인쇄 등의 박막과 비교하여, 열을 기판 적재면(9)에 효율적으로 전달할 수 있다. 또한, 저항 발열체(7)는 백금 또는 니오븀을 포함하므로, 알루미나를 포함하는 기체(3)와의 열팽창 계수의 차가 감소한다.
또한, 지지 부재(13) 중의 탄소 함유량이 0.03∼0.25 wt%로 높다. 따라서, 이 탄소가 니오븀 성분과 반응하여, 저항 발열체의 표면에 매우 얇은 탄화상과 산화상을 형성한다. 이 탄화상 및 산화상 중에서 니오븀의 확산 속도는 매우 느리고, 또한, 탄화상은 알루미나와 반응하기 어렵다. 이와 같이 탄화상과 산화상이 배리어막이 되므로, 저항 발열체(7) 중의 니오븀 성분이 지지 부재(13) 중에 확산하는 것을 억제할 수 있다.
[히터 부착 정전척의 제조 방법]
본 실시형태에 의한 히터 부착 정전척을 제조하는 순서를 설명한다. 또한, 정전척(1)은 도 2를 상하 반대로 한 위치 관계로 제조된다. 즉, 유전체층(11)을 제작하고, 이 유전체층(11) 위에 전극(5)을 형성하며, 이 전극(5)의 위에 지지 부재(13)를 형성한다.
(유전체층의 제작)
우선, 기체(3)의 유전체층(11)을 제작한다. 이 유전체층(11)은 전술한 바와 같이 탄소 함유량이 100 ppm 이하로 설정된다.
세라믹스 원료 분말로서, 높은 순도(예컨대 99.7%)의 알루미나 분말과 소결조제인 MgO 원료 분말을 사용한다. 이 세라믹스 원료 분말에 바인더인 폴리비닐알콜(PVA), 물 및 분산제 등을 첨가하여, 트로멜(trommel)로 소정 시간(예컨대, 16시간) 혼합하여 슬러리를 제작한다. 여기서, PVA의 혼합량은 예컨대 2 wt%가 바람직하다. 얻어진 슬러리를 스프레이 드라이어를 이용하여 분무 건조시켜, 조립 분말을 얻은 후 하소(calcination)한다. 하소는 공기 중 등의 산화성 분위기 중에서, 예컨대, 500℃로 5시간 유지하여 행함으로써, 바인더를 조립 분말로부터 제거한다. 이와 같이 하여 하소 알루미나 조립 분말을 제작한다. 바인더에는 탄소가 함유되어 있으므로, 바인더의 제거에 의해 유전체층(11)의 탄소 함유량을 저감할 수 있다.
다음으로, 상기 하소 알루미나 조립 분말을 금형에 충전하여, 소정 압력으로 프레스 성형을 행하여 알루미나 성형체를 제작한다. 계속해서, 이 알루미나 성형체를 카본제의 새거(sagger)에 셋트하고 핫 프레스 소성법을 이용하여 소성한다. 소 성은 소정 압력을 가한 상태에서 또한 질소 분위기중에서 행함으로써, 알루미나 소결체를 얻을 수 있다. 이와 같이 하여 작성된, 유전체층(11)이 되는 알루미나 소결체의 탄소 함유량은 100 ppm 이하이다.
<전극의 형성>
이어서, 상기 알루미나 소결체를 연삭 가공하여, 소정의 크기(예컨대, φ 340 ㎜, 두께 6 ㎜)의 원반을 제작한다. 이 때, 원반의 표면 및 이면 중의 한쪽의 면을 연삭 가공에 의해 평활면으로 마무리한다.
그리고, 전극(5)의 재료가 되는 텅스텐 카바이드 분말, 5 vol% 이상 20 vol% 이하의 알루미나 분말 및 바인더를 혼합하여 인쇄 페이스트를 제작하고, 스크린 인쇄법에 의해 알루미나 소결체의 평활면 상에 전극(5)을 형성하여 건조시킨다.
<지지 부재의 형성>
전극(5)이 형성된 알루미나 소결체를 금형 내에 셋트하여, 전극(5)을 덮도록 알루미나 조립 분말을 충전하고, 소정 압력으로 프레스 성형을 행한다. 이에 따라, 도 2에 도시하는 지지 부재(13)의 위쪽 부분(29)을 형성한다. 여기서의 알루미나 조립 분말은 바인더를 포함하는 것으로, 하소를 실시하고 있지 않았다.
알루미나 조립 분말은 다음과 같이 하여 작성하더라도 좋다. 알루미나 분말과 소결조제인 MgO 원료 분말에 바인더인 폴리비닐알콜(PVA), 물 및 분산제 등을 첨가하여, 트로멜로 소정 시간(예컨대, 16시간) 혼합하여 슬러리를 제작한다. 여기서, 바인더로서 PVA를 이용하는 경우의 혼합량은 0.7∼3 wt%가 바람직하다. 얻어진 슬러리를 스프레이 드라이어를 이용하여 분무 건조시켜 알루미나 조립 분말을 얻는다.
이어서, 코일형의 저항 발열체(7)를 지지 부재(13)의 위쪽 부분(29)의 위[즉, 도 2에 있어서의 지지 부재(13)의 위쪽 부분(29)의 저면]에 적재하고, 그 위에 알루미나 조립 분말을 더 충전하여 소정 압력으로 프레스 성형한다.
이상에 의해, 기체(3)를 이루는 알루미나 성형체가 제작된다.
<기체의 소결>
계속해서, 상기 알루미나 성형체를 카본제의 새거에 셋트하여, 핫 프레스 소성법 등을 이용하여 소결한다. 소결은 소정의 가압 하에, 또한 질소 분위기에서 행하고, 고온으로 소정 시간 유지함으로써 행한다. 이 후, 2회의 소결 공정을 거친 알루미나 소결체의 표면을 다이아몬드 지석으로써 평면 연삭 가공을 행하여, 알루미나 소결체의 두께를 조정함으로써 유전체층(11)을 형성한다. 또한, 알루미나 소성체의 측면을 연삭하는 동시에, 필요한 구멍 형성 가공, 급전 부재(21, 25)의 부착을 행함으로써, 히터 부착 정전척이 완성된다.
이상의 작성 방법에 의해, 얻어진 유전체층의 탄소 함유량은 100 ppm 이하이고, 지지 부재 중의 탄소 함유량은 0.03∼0.25 wt%로 될 수 있다. 지지 부재(13) 중의 탄소 함유량은 알루미나 조립 분말을 작성할 때의 바인더의 혼합량으로 제어한다. 또한, 바인더의 혼합량 이외에, 소결시의 승온 속도, 분위기 중의 산소 농도 등을 적절하게 선택하더라도 좋다.
이상의 방법에 따르면, 바인더 중의 탄소가 소결 시에 일부 잔류하여, 지지 부재(13)가 되는 알루미나 소결체 내에 불순물 탄소로서 확산한 상태로 된다. 그 때문에, 알루미나 소결체가 회흑색 내지 흑색으로 착색되어, 저항 발열체(7)로부터의 열을 효율 좋게 방사하여, 가열 효율을 개선하는 효과를 얻을 수 있다.
또한, 저항 발열체(7)와 알루미나 소결체 내의 탄소가 반응하여 저항 발열체(7)의 표면에 매우 얇은 탄화상과 산화상을 형성한다. 이 탄화상과 산화상은 금속의 확산 속도가 매우 작으므로, 보호층으로서 작용하여, 알루미나 소결체 내로의 니오븀의 확산을 억제한다.
이어서, 본 발명을 실시예를 이용하여 구체적으로 설명한다.
[실시예 1]
우선, 실시예 1로서, 유전체층(11) 및 지지 부재(13)의 탄소 함유량을 달리한 기체(3)를 복수 제작하여, 저항 발열체(7)의 니오븀 성분이 지지 부재(13) 중에 확산하는지의 여부 등을 검증했다.
구체적으로는, 유전체층(11) 중의 탄소 함유량이 100 ppm 미만이고, 또한, 지지 부재(13) 중의 탄소 함유량이 0.03∼0.25 wt%의 정전척(1)을 본 발명예 1∼4로 하여, 유전체층(11) 내 또는 지지 부재(13) 내의 탄소 함유량이 상기 범위를 벗어난 정전척(1)을 비교예 1∼8로 했다.
우선, 본 발명예 1의 정전척의 제작 순서에 대해 설명한다.
세라믹스 원료 분말로서, 순도가 99.7%의 알루미나 분말(입자 지름: 1 ㎛)과 소결조제인 MgO 원료 분말을 사용했다. 또한, 세라믹스 원료 분말 중의 MgO의 함유량은 0.04 wt%로 했다. 이 세라믹스 원료 분말에 바인더인 폴리비닐알콜(PVA): 2 wt%, 물 및 분산제를 첨가하여, 트로멜로 16시간 혼합하여 슬러리를 제작했다.
얻어진 슬러리를 스프레이 드라이어를 이용하여 분무 건조하고, 그 후 500℃에서 5시간 유지하여 바인더를 제거하여 평균 입자 지름이 약 80 ㎛인 알루미나 조립 분말을 제작했다. 이 알루미나 조립 분말을 금형에 충전하여, 200 kg/㎠의 압력으로 프레스 성형을 행했다.
계속해서, 이 알루미나 성형체를 카본제의 새거에 셋트하고, 핫 프레스 소성법을 이용하여 소결했다. 소결은 100 kg/㎠의 가압 하에, 또한 질소 가압 분위기(압력: 150 kPa)로 행하고, 300℃/h로 승온하여 1600℃로 2시간 유지하여 알루미나 소결체를 얻었다.
이어서, 알루미나 소결체를 연삭 가공하여, φ 340 ㎜, 두께 6 ㎜의 원반을 제작했다. 이때, 원반의 표면 및 이면 중의 한쪽의 면을 연삭 가공에 의해, 표면 거칠기(Ra)가 0.8 ㎛ 이하인 평활면으로 마무리했다.
80 vol%의 텅스텐 카바이드(WC), 20 vol%의 알루미나 및 바인더로서 테르피네올을 혼합하여 인쇄 페이스트를 제작하고, 스크린 인쇄법에 의해 상기 알루미나 소결체의 평활면 상에 φ 290 ㎜, 두께 10 ㎛의 전극(5)을 형성하여 건조시켰다.
그 후, 전술한 인쇄 전극(5)이 형성된 알루미나 소결체를 금형에 셋트하여, 바인더 첨가량이 3 wt%이고 하소를 실시하지 않은 알루미나 조립 분말을 충전하여, 200 kg/㎠의 압력으로 프레스 성형을 행했다.
그리고, 코일형의 저항 발열체(7)를 적재하고, 이 저항 발열체(7)의 위에, 바인더 첨가량이 3 wt%이고 하소를 실시하지 않은 알루미나 조립 분말을 충전하 여, 200 kg/㎠의 압력으로 프레스 성형을 행했다.
계속해서, 이 알루미나 성형체를 카본제의 새거에 셋트하고, 핫 프레스 소성법을 이용하여 소결했다. 소결은 100 kg/㎠의 가압 하에, 또한 질소 가압 분위기(압력: 150 kPa)에서 행하고, 300℃/h로 승온하여 1600℃로 2시간 유지했다. 이렇게 해서, 전극(5)과 저항 발열체(7)를 매설한 알루미나 소결체를 얻었다.
이 후, 2회의 소결 공정을 거친 알루미나 소결체의 표면을 다이아몬드 지석으로써 평면 연삭 가공을 행하여, 알루미나 소결체의 두께를 조정했다. 또한, 알루미나 소결체의 측면을 연삭하는 동시에, 필요한 구멍 형성 가공, 급전 부재(21, 25)의 인출을 행함으로써, 본 발명예 1의 정전척(1)을 제작했다.
또한, 본 발명예 2∼4 및 비교예 1∼8의 정전척(1)은 상기 본 발명예 1과 동일한 순서로 제작했다. 단, 유전체층(11)의 바인더 첨가량 등에 대해서는, 표 1 및 표 2에 나타내는 조건으로 했다.
또, 이하의 표 1 내지 표 3의 ESC 전극 재료의 란에 기재된 vol%의 값은, 알루미나(Al2O3)의 함유량을 나타낸다. 예를 들면, 본 발명예 1의 ESC 전극 재료에서는 알루미나가 20 vol% 함유되는 것을 의미한다. 또, 후술하는 표 3의 비교예 10에 있어서 ESC 전극 재료는 텅스텐 카바이드(WC) 만으로 되어 있다.
Figure 112007052326111-pat00001
Figure 112007052326111-pat00002
이상의 실시예 1에 있어서, 유전체층(11)의 체적 저항률은 실온 및 200℃ 모두에서, 본 발명예 1∼4 쪽이 비교예 1∼8보다도 높게 되었다. 즉, 유전체층(11) 중의 탄소 함유량을 100 ppm 이하로 함으로써, 쿨롱 타입의 히터 부착 정전척으로서 최적의 높은 체적 저항률을 얻을 수 있었다.
또한, 지지 부재(13)의 절연 내압은 본 발명예 1∼4 쪽이 비교예 6∼8보다도 높게 되었다. 또한, 본 발명예 1∼4 쪽이 비교예 6∼8보다도 균열성이 좋게 되었다. 즉, 지지 부재(13) 중의 탄소 함유량을 0.25 wt% 이하로 함으로써, 지지 부재(13)의 체적 저항률을 실용상 충분한 절연 내압을 확보할 수 있을 때까지 유지시키는 동시에, 저항 발열체(7)로부터의 누설 전류가 적으므로 균열성도 향상시킬 수 있었다.
또한, 지지 부재(13) 중에 있어서의 저항 발열체(7)의 니오븀 성분의 확산은 본 발명예 1∼4에서는 전부 생기지 않았지만, 비교예 4, 5에서는 발생했다. 또한, 기판 적재면(9)에 있어서의 균열성의 면내 편차 및 저항 발열체(7)의 저항치는 본 발명예 1∼4 쪽이 비교예 1∼8보다도 양호해졌다. 이 균열성의 편차가 저감한 이유는 지지 부재(13) 중에 있어서의 저항 발열체(7)의 니오븀의 확산이 억제되어, 설계대로의 온도 분포가 발현했기 때문이라고 생각된다. 즉, 지지 부재(13) 중의 탄소 함유량을 0.03 wt% 이상으로 함으로써 히터 부착 정전척에 흡착되는 기판의 균열성을 현저하게 향상시킬 수 있었다.
[실시예 2]
이어서, 전극(5)의 재질에 의해 전극(5)의 밀착 강도가 변화되는지의 여부를 검증했다. 구체적으로는, 5 vol% 이상 20 vol% 이하의 알루미나 및 텅스텐 카바이드을 포함하는 전극(5)을 구비한 정전척(1)을 본 발명예 5∼7로 하고, 이 범위를 벗어난 정전척(1)을 비교예 9∼10로 했다.
각각의 정전척(1)의 제작 순서는 전술한 본 발명예 1과 동일한 순서로 했다. 단, 전극(5)의 재질 등에 대해서는 표 3에 나타내는 조건으로 했다.
Figure 112008070261097-pat00007
표 3에 도시한 바와 같이, 본 발명예 5, 6, 7 쪽이 비교예 9, 10보다도 전극(5)의 밀착 강도가 높게 되는 것이 판명되었다. 또, 알루미나의 함유량을 22 vol% 이상으로 하면, ESC 전극의 임피던스가 커지게 되어 바람직하지 않다. ESC 전극에는 고주파 전류를 인가하기 때문에, 임피던스가 낮은 것이 바람직하다.
[측정 방법]
또한, 이하에, 실시예 1 및 실시예 2에 있어서의 각 측정치의 측정 방법에 대해 설명했다.
우선, 알루미나 소결체 내의 탄소 함유량에 대해서는, 고주파 가열 적외선 흡수법에 의해 측정했다.
또한, 체적 저항률에 대해서는, JIS C2141에 준한 방법에 의해 대기 분위기(온도: 23℃) 및 200℃에서 측정했다. 인가 전압을 1000 V/㎜로 하여, 전압을 인가한 후의 30분 경과 시에 있어서의 전류치를 판독하여, 체적 저항률을 산출했다.
전단 강도에 대해서는, 마이크로드롭렛(microdroplet)법에 의해 측정했다. 측정 장치는 복합재 계면 특성 평가 장치(일본의 도에이 산교 제조)를 사용했다. 제작된 기체(3)로부터, 전극(5)이 직경 방향의 중심으로 되도록 φ 9.9 ㎜, 두께 12 ㎜의 원반을 잘라내어, 전단 강도의 측정을 행했다.
절연 내압에 대해서는, JIS C2141에 준한 방법에 의해 대기 분위기(온도: 23℃)에서 측정했다.
저항 발열체(7)의 주위로의 Nb의 확산에 대해서는, 알루미나 소결체 내의 저항 발열체(7)를 포함하는 부분을 잘라내어 단면을 연마한 후, EPMA(Electron Probe Micro-Analysis : X선 현미 분석)로 Nb의 확산의 유무를 확인했다.
균열성에 대해서는, 도 3에 도시한 바와 같이, 정전척(1)을 진공 챔버(35)에 넣고, 저압(1E- Torr 미만)에서 제어 온도를 100℃로 설정한 상태로, 기판 적재면(9)에 있어서의 온도를 적외선 카메라로써 측정했다. 또한, 도 3의 균열성 측정 장치의 구조를 간단히 설명한다.
균열성 측정 장치(33)는 상자 형태의 진공 챔버(35)와, 상기 진공 챔버(35)의 위쪽에 배치된 적외선 카메라(37)와, 정전척(1)에 접속된 컨트롤러(39)를 구비하고 있다. 진공 챔버(35)의 상벽면(41)에는 개구부(43)가 형성되고, 이 개구부(43)는 사파이어 유리(45)에 의해 덮여진다. 상기 적외선 카메라(37)는 개구부(43)의 위쪽에 배치되어 있다. 또한, 진공 챔버(35)의 저면에는, 다리부(47)가 설치되고, 상기 다리부(47)의 위에 정전척(1)이 적재된다. 정전척(1)의 저항 발열체용 급전 부재(25)를 컨트롤러(39)에 접속한다.
저항 발열체(7)의 저항치에 대해서는, 전극 단자 사이의 저항을 Digital Multimeter(TR6847: Advantest Corporation 제조)를 이용하여, 대기 분위기 하(온도: 23℃)에서 측정했다.
도 1은 본 발명의 실시형태에 의한 히터 부착 정전척을 도시하는 평면도.
도 2는 도 1의 A-A선에 의한 단면도.
도 3은 실시예에 이용한 균열성 측정 장치를 측방에서 본 단면도.
<도면의 주요 부분에 대한 부호의 설명>
1 : 히터 부착 정전척
3 : 기체
5 : 전극
7 : 저항 발열체
9 : 기판 적재면(기체 상면)
11 : 유전체층
13 : 지지 부재
23 : 하면(기체 하면)

Claims (2)

  1. 알루미나 소결체로 이루어지는 기체와, 이 기체 중의 상부측에 설치된 전극과, 기체 중의 하부측에 매설된 저항 발열체를 포함하며, 상기 기체는 전극에서부터 기체 상면까지의 유전체층과, 전극에서부터 기체 하면까지의 지지 부재로 구성되고,
    상기 유전체층 중의 탄소 함유량이 100 ppm 이하, 상기 지지 부재 중의 탄소 함유량이 O.03∼0.25 wt%이고,
    상기 저항 발열체는 코일형으로 형성되고, 주성분이 니오븀이며,
    상기 전극은, 주성분이 텅스텐 카바이드이고, 5 vol% 이상 20 vol% 이하의 알루미나를 포함하는 것인 히터 부착 정전척.
  2. 삭제
KR1020070072164A 2006-07-19 2007-07-19 히터 부착 정전척 KR100890414B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006196794 2006-07-19
JPJP-P-2006-00196794 2006-07-19

Publications (2)

Publication Number Publication Date
KR20080008298A KR20080008298A (ko) 2008-01-23
KR100890414B1 true KR100890414B1 (ko) 2009-03-26

Family

ID=39042373

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070072164A KR100890414B1 (ko) 2006-07-19 2007-07-19 히터 부착 정전척

Country Status (4)

Country Link
JP (1) JP2008047881A (ko)
KR (1) KR100890414B1 (ko)
CN (1) CN101110383B (ko)
TW (1) TWI352399B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615529B1 (ko) 2023-09-19 2023-12-19 주식회사 제스코 이층 히터 패턴이 구비된 정전척

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10192766B2 (en) * 2014-10-17 2019-01-29 Sumitomo Osaka Cement Co., Ltd. Electrostatic chuck device
KR102376825B1 (ko) * 2014-11-28 2022-03-21 엔지케이 인슐레이터 엘티디 알루미나 소결체 및 광학 소자용 하지 기판
CN104465478B (zh) * 2014-12-22 2017-01-25 北京中科信电子装备有限公司 一种静电吸盘的加工方法
JP6783528B2 (ja) * 2016-02-29 2020-11-11 日本碍子株式会社 セラミック構造体、その製法及び半導体製造装置用部材
CN106263036B (zh) * 2016-08-11 2019-03-08 深圳市新宜康科技股份有限公司 一种电子烟用温控陶瓷发热芯及雾化器
JP7015425B1 (ja) * 2020-09-08 2022-02-02 日本発條株式会社 ステージおよびその作製方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133557A (en) 1995-01-31 2000-10-17 Kyocera Corporation Wafer holding member
KR20050067085A (ko) * 2003-12-26 2005-06-30 니뽄 가이시 가부시키가이샤 정전 척과 그 제조 방법 및 알루미나 소결 부재와 그 제조방법
KR20060067832A (ko) * 2004-12-14 2006-06-20 니뽄 가이시 가부시키가이샤 알루미나 부재 및 그 제조 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001219331A (ja) * 2000-02-07 2001-08-14 Ibiden Co Ltd 静電チャック
JP2003133196A (ja) * 2002-06-14 2003-05-09 Ibiden Co Ltd 半導体製造・検査装置用セラミック基板
JP4467453B2 (ja) * 2004-09-30 2010-05-26 日本碍子株式会社 セラミックス部材及びその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133557A (en) 1995-01-31 2000-10-17 Kyocera Corporation Wafer holding member
KR20050067085A (ko) * 2003-12-26 2005-06-30 니뽄 가이시 가부시키가이샤 정전 척과 그 제조 방법 및 알루미나 소결 부재와 그 제조방법
KR20060067832A (ko) * 2004-12-14 2006-06-20 니뽄 가이시 가부시키가이샤 알루미나 부재 및 그 제조 방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102615529B1 (ko) 2023-09-19 2023-12-19 주식회사 제스코 이층 히터 패턴이 구비된 정전척

Also Published As

Publication number Publication date
CN101110383B (zh) 2010-04-14
TWI352399B (en) 2011-11-11
CN101110383A (zh) 2008-01-23
JP2008047881A (ja) 2008-02-28
KR20080008298A (ko) 2008-01-23
TW200811989A (en) 2008-03-01

Similar Documents

Publication Publication Date Title
JP4394667B2 (ja) ヒータ付き静電チャックの製造方法
KR100890414B1 (ko) 히터 부착 정전척
JP4744855B2 (ja) 静電チャック
KR101531726B1 (ko) 정전 척 및 그 제조 방법
KR100748924B1 (ko) 정전 척 및 그 제조 방법
EP1881519B1 (en) Electrostatic chuck heater
US7011874B2 (en) Ceramic substrate for semiconductor production and inspection devices
US7848075B2 (en) Electrostatic chuck with heater
KR20080025012A (ko) 정전 척 및 그 제조 방법
KR20070066890A (ko) 정전척
JP2001302330A (ja) セラミック基板
JP2008135737A (ja) 静電チャック及び静電チャックの製造方法
KR100634182B1 (ko) 기판 가열 장치와 그 제조 방법
JP5032444B2 (ja) 基板保持体
JP4436575B2 (ja) ウエハ支持部材及びその製造方法
JP3746935B2 (ja) サセプタ及びその製造方法
US7633738B2 (en) Electrostatic chuck and manufacturing method thereof
KR100883155B1 (ko) 정전척 히터
JP2003188247A (ja) 静電チャック及びその製造方法
JP2001319967A (ja) セラミック基板の製造方法
JP2002170870A (ja) 半導体製造・検査装置用セラミック基板および静電チャック
JP7184652B2 (ja) 保持装置
JP2002134600A (ja) 静電チャック
JP4597253B2 (ja) ヒータ付き静電チャック

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130227

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140220

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150223

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20160219

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20170221

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20180302

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190305

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200303

Year of fee payment: 12