KR100696760B1 - Manufacturing method for semiconductor device - Google Patents

Manufacturing method for semiconductor device Download PDF

Info

Publication number
KR100696760B1
KR100696760B1 KR1020000086350A KR20000086350A KR100696760B1 KR 100696760 B1 KR100696760 B1 KR 100696760B1 KR 1020000086350 A KR1020000086350 A KR 1020000086350A KR 20000086350 A KR20000086350 A KR 20000086350A KR 100696760 B1 KR100696760 B1 KR 100696760B1
Authority
KR
South Korea
Prior art keywords
film
layer
semiconductor device
manufacturing
etch
Prior art date
Application number
KR1020000086350A
Other languages
Korean (ko)
Other versions
KR20020058288A (en
Inventor
김유창
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020000086350A priority Critical patent/KR100696760B1/en
Publication of KR20020058288A publication Critical patent/KR20020058288A/en
Application granted granted Critical
Publication of KR100696760B1 publication Critical patent/KR100696760B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76802Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
    • H01L21/76807Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics for dual damascene structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02118Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer carbon based polymeric organic or inorganic material, e.g. polyimides, poly cyclobutene or PVC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02131Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being halogen doped silicon oxides, e.g. FSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02134Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising hydrogen silsesquioxane, e.g. HSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02137Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material comprising alkyl silsesquioxane, e.g. MSQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks

Abstract

본 발명은 반도체소자의 제조방법에 관한 것으로, 듀얼 다마신(dual damascene) 공정에서 제1금속배선을 형성하고, 상기 제1금속배선을 노출시키는 비아콘택홀을 형성하기 위한 식각공정 시 상기 제1금속배선 상부에 형성되는 식각방지막을 제거한 후 제2금속배선을 형성하기 위한 트랜치를 형성함으로써 상기 비아콘택홀 및 트랜치의 식각프로파일의 변형을 방지하고, 쓰루풋(through-put)을 향상시켜 소자의 공정 수율 및 신뢰성을 향상시키는 기술이다. The present invention relates to a method of manufacturing a semiconductor device, wherein the first metal wiring is formed in a dual damascene process and the first metal wiring is formed in an etching process for forming a via contact hole exposing the first metal wiring. After removing the etch stop layer formed on the metal wiring, the trench is formed to form the second metal wiring, thereby preventing deformation of the etch profile of the via contact hole and the trench, and improving throughput. It is a technique to improve the yield and reliability.

Description

반도체소자의 제조방법{Manufacturing method for semiconductor device}Manufacturing method for semiconductor device

도 1a 내지 도 1e 는 종래기술에 따른 반도체소자의 제조방법에 의한 공정 단면도. 1A to 1E are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the prior art.

도 2a 내지 도 2d 는 본 발명에 따른 반도체소자의 제조방법에 의한 공정 단면도.2A to 2D are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention.

< 도면의 주요부분에 대한 부호 설명 ><Explanation of Signs of Major Parts of Drawings>

11, 101 : 하부절연막 13, 103 : 제1금속배선11, 101: lower insulating film 13, 103: first metal wiring

15, 105 : 제1식각방지막 17, 107 : 제1층간절연막15, 105: first etching prevention film 17, 107: first interlayer insulating film

19, 109 : 제2식각방지막 21, 111 : 제2층간절연막19, 109: Second etching prevention film 21, 111: Second interlayer insulating film

23, 113 : 제3질화막 25, 115 : 제1유기반사방지막23, 113: third nitride film 25, 115: first oil-based prevention film

27, 117 : 제1감광막패턴 29, 119 : 비아콘택홀27, 117: first photoresist pattern 29, 119: via contact hole

31, 121 : 제2유기반사방지막 33, 123 : 제2감광막패턴31, 121: second oil-based anti-fogging film 33, 123: second photoresist film pattern

35, 125 : 트랜치35, 125: trench

본 발명은 반도체소자의 제조방법에 관한 것으로서, 보다 상세하게 듀얼다마 신공정에서 비아콘택홀을 형성공정 시 제1금속배선 상부에 형성된 식각방지막을 제거한 후 제2금속배선을 형성하기 위한 트랜치를 형성함으로써 소자의 공정 수율 및 신뢰성을 향상시키는 반도체소자의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a semiconductor device, and more particularly, by forming a trench for forming a second metal interconnection after removing an etch barrier layer formed on an upper portion of a first metal interconnection during a via contact hole formation process in a dual damascene process. The present invention relates to a method for manufacturing a semiconductor device for improving the process yield and reliability of the device.

최근의 반도체장치의 고집적화 추세는 미세 패턴 형성 기술의 발전에 큰 영향을 받고 있으며, 반도체장치의 제조공정 중에서 식각 또는 이온주입 공정 등의 마스크로 매우 폭 넓게 사용되는 감광막 패턴의 미세화가 필수 요건이다.The recent trend of high integration of semiconductor devices has been greatly influenced by the development of fine pattern formation technology, and the miniaturization of photoresist patterns, which are widely used as masks such as etching or ion implantation processes, is essential in the manufacturing process of semiconductor devices.

상기 감광막 패턴의 분해능(R)은 축소노광장치의 광원의 파장(λ) 및 공정 변수(k)에 비례하고, 노광 장치의 렌즈 구경(numerical aperture : NA, 개구수)에 반비례한다. The resolution R of the photoresist pattern is proportional to the wavelength λ of the light source of the reduction exposure apparatus and the process variable k, and inversely proportional to the numerical aperture NA of the exposure apparatus.

R = k*λ/NAR = k * λ / NA

여기서, 상기 축소노광장치의 광분해능을 향상시키기 위하여 광원의 파장을 감소시키게 되며, 예를 들어 파장이 436 및 365nm인 G-라인 및 i-라인 축소노광장치는 공정 분해능이 각각 약 0.7, 0.5㎛ 정도가 한계이고, 0.5㎛이하의 미세 패턴을 형성하기 위해 파장이 작은 원자외선(deep ultra violet ; DUV), 예를 들어 파장이 248㎚인 KrF 레이저나 193㎚인 ArF 레이저를 광원으로 사용하는 노광장치를 이용하거나, 공정상의 방법으로는 노광마스크(photo mask)를 위상 반전 마스크(phase shift mask)를 사용하는 방법과, 이미지 콘트라스트를 향상시킬 수 있는 별도의 박막을 웨이퍼 상에 형성하는 씨.이.엘.(contrast enhancement layer, 이하 CEL이라 함)방법이나 두 층의 감광막 사이에 SOG 등의 중간층을 개재시킨 삼층레지스트(tri layer resist, TLR) 방법 또는 감광막의 상측에 선택적으로 실리콘 을 주입시키는 실리레이션 방법 등이 개발되어 분해능 한계치를 낮추고 있다.Here, the wavelength of the light source is reduced in order to improve the optical resolution of the reduced exposure apparatus. For example, the G-line and i-line reduced exposure apparatus having wavelengths of 436 and 365 nm have a process resolution of about 0.7 and 0.5 µm, respectively. Exposure using a light source of deep ultra violet (DUV), for example, KrF laser having a wavelength of 248 nm or ArF laser having a wavelength of 193 nm, to form a fine pattern of 0.5 µm or less. As an apparatus or process method, a photo mask is used as a phase shift mask, and a separate thin film is formed on the wafer to improve image contrast. L. (contrast enhancement layer, CEL) method, tri-layer resist (TLR) method in which an intermediate layer such as SOG is interposed between two layers of photoresist, or selectively on top of the photoresist. Silicate injection methods have been developed to lower the resolution limit.

또한 상하의 도전배선을 연결하는 콘택홀은 소자가 고집적화되어감에 따라 자체의 크기와 주변배선과의 간격이 감소되고, 콘택홀의 지름과 깊이의 비인 에스펙트비(aspect ratio)가 증가한다. 따라서, 다층의 도전배선을 구비하는 고집적 반도체소자에서는 콘택을 형성하기 위하여 제조 공정에서의 마스크들간의 정확하고 엄격한 정렬이 요구되어 공정여유도가 감소된다.In addition, the contact hole connecting the upper and lower conductive wirings has a high integration of the device, and the size of the contact holes decreases, and the distance between the peripheral wirings is reduced, and the aspect ratio, which is the ratio of the diameter and the depth of the contact hole, increases. Therefore, in a highly integrated semiconductor device having multiple conductive wirings, accurate and tight alignment between masks in a manufacturing process is required to form a contact, thereby reducing process margin.

이러한 콘택홀은 간격유지를 위하여 마스크 정렬시 오배열의 여유(misalignment tolerance), 노광공정시의 렌즈 왜곡(lens distortion), 마스크 제작 및 사진식각 공정시의 임계크기 변화(critical dimension variation), 마스크간의 정합(registration) 등과 같은 요인들을 고려하여 마스크를 형성한다.These contact holes have misalignment tolerance when aligning the mask, lens distortion during the exposure process, critical dimension variation during the mask fabrication and photolithography process, and between masks to maintain the spacing. The mask is formed by considering factors such as registration.

그리고, 콘택홀 형성시 리소그래피(lithography)공정의 한계를 극복하기 위하여 자기 정렬 방법으로 콘택홀을 형성하는 자기정렬콘택(self aligned contact, 이하 SAC 라 함)기술이 개발되었다. In order to overcome the limitations of the lithography process in forming the contact holes, a self aligned contact (SAC) technology for forming contact holes by a self alignment method has been developed.

상기 SAC 방법은 식각방지막으로 사용하는 물질에 따라 다결정실리콘층이나 질화막 또는 산화질화막 등을 사용하는 것으로 나눌 수 있으며, 가장 유망한 것으로 질화막을 사용하는 방법이 있다.The SAC method may be classified into a polysilicon layer, a nitride film, an oxynitride film, or the like according to a material used as an etching prevention film, and the most promising method is a method using a nitride film.

도시되어 있지는 않으나, 종래 반도체소자의 SAC 제조방법에 관하여 살펴보면 다음과 같다.Although not shown, the SAC manufacturing method of the conventional semiconductor device will be described as follows.

먼저, 반도체기판 상에 소정의 하부구조물, 예를 들어 소자분리 절연막과 게이트 절연막, 마스크 산화막 패턴과 중첩되어 있는 게이트 전극 및 소오스/드레인 영역 등의 모스 전계효과 트랜지스터(MOS field effect transistor : 이하 MOS FET 라 함) 등을 형성한 후, 상기 구조의 전표면에 식각방지막과 산화막 재질의 층간절연막을 순차적으로 형성한다.First, a MOS field effect transistor (MOS FET) such as a gate electrode and a source / drain region overlapping a predetermined substructure on a semiconductor substrate, for example, a device isolation insulating film, a gate insulating film, and a mask oxide film pattern. And the like, and then sequentially form an etch stop film and an interlayer insulating film made of an oxide film on the entire surface of the structure.

그 다음, 상기 반도체기판에서 저장전극이나 비트라인 등의 콘택으로 예정되어 있는 부분 상의 층간절연막을 노출시키는 감광막 패턴을 형성한 후, 상기 감광막 패턴에 의해 노출되어 있는 층간절연막을 건식식각하여 식각방지막을 노출시키고, 다시 식각방지막을 식각하여 콘택홀을 형성한다. Next, a photoresist pattern is formed on the semiconductor substrate to expose an interlayer insulating film on a portion of the semiconductor substrate, which is intended to be a contact such as a storage electrode or a bit line. Then, the interlayer insulating film exposed by the photosensitive film pattern is dry-etched to form an etch stop layer. It exposes and etches an etch stop layer again, and forms a contact hole.

상기에서 식각방지막을 다결정실리콘으로 사용하는 경우, 이는 다시 식각방지막을 전면에 형성하는 방법과 콘택홀이 형성될 지역에만 다결정실리콘층 패드를 형성하는 방법으로 나누어지는데, 이러한 다결정실리콘 SAC 방법은 산화막과는 다른 식각기구를 가지는 다결정실리콘을 식각방지막으로 사용하므로 산화막과는 높은 식각선택비차를 얻을 수 있으나, 전면 증착 방법은 콘택홀간의 절연 신뢰성이 떨어지고, 패드를 형성하는 방법은 콘택 패드와 실리콘기판간의 오정렬 발생시 기판에 손상이 발생되는데, 이를 방지하기 위하여 스페이서 또는 폴리머를 사용하여 콘택 패드를 확장시키는 방법이 제시되고 있으나, 이 역시 0.18㎛ 이하의 디자인룰을 실현할 수 없는 문제점이 있다.When the etch barrier is used as polysilicon, it is divided into a method of forming an etch barrier on the front surface and a method of forming a polysilicon layer pad only in a region where a contact hole is to be formed. Such a polysilicon SAC method is characterized in that Since polycrystalline silicon having different etching mechanisms is used as an etch stopper, it is possible to obtain a high etching selectivity difference from an oxide film. However, in the case of the front deposition method, the insulation reliability between contact holes is inferior, and the pad forming method is used between the contact pad and silicon substrate. When misalignment occurs, damage occurs to the substrate. In order to prevent this, a method of expanding a contact pad using a spacer or a polymer has been proposed, but this also has a problem in that a design rule of 0.18 μm or less can not be realized.

상기와 같은 문제점을 해결하기 위하여 제시되고있는 것이 질화막을 식각방지막으로 사용하는 SAC방법이다. 이 방법은 층간절연막과 식각방지막간의 식각선택비차가 5 : 1 이상으로 큰 조건에서 건식식각하여 질화막을 제거하여 콘택홀을 형성하는데, 상기 식각공정은 식각선택비를 증가시키기 위하여 다량의 폴리머를 발생 시키는 C-H-F계 가스나 수소를 포함하는 가스를 불활성 가스와 혼합하여 사용한다. In order to solve the above problems, the SAC method using a nitride film as an etch stop layer is proposed. In this method, dry etching is performed under the condition that the etching selectivity difference between the interlayer insulating film and the etching prevention film is greater than 5: 1 to remove the nitride film to form a contact hole, and the etching process generates a large amount of polymer to increase the etching selectivity. CHF-based gas or hydrogen-containing gas is mixed with an inert gas.

도 1a 내지 도 1e 는 종래기술에 따른 반도체소자의 제조방법에 의한 공정 단면도이다. 1A to 1E are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the prior art.

먼저, 소정의 하부구조물, 예를들어 소자분리 절연막(도시안됨)과 MOS FET(도시안됨) 및 캐패시터(도시안됨) 등이 형성되어 있는 반도체기판 상부에 하부절연막(11)을 형성한다. First, a lower insulating layer 11 is formed on a semiconductor substrate on which a predetermined lower structure, for example, an isolation layer (not shown), a MOS FET (not shown), a capacitor (not shown), and the like are formed.

다음, 상기 하부절연막(11) 상부에 제1금속배선(13)을 형성한다. Next, a first metal wiring 13 is formed on the lower insulating layer 11.

그 다음, 전체표면 상부에 제1식각방지막(15), 제1층간절연막(17), 제2식각방지막(19), 제2층간절연막(21), 제3식각방지막(23) 및 제1유기반사방지막(25)의 적층구조를 형성한다. 이때, 상기 제1식각방지막(15), 제2식각방지막(19) 및 제3식각방지막(23)은 질화막으로 형성하되, 상기 제1식각방지막(15)과 제3식각방지막(23)은 400 ∼ 500Å 두께로 형성하고, 상기 제2식각방지막(19)은 900 ∼ 1100Å 두께로 형성한다. 그리고, 상기 제1층간절연막(17)과 제2층간절연막(21)은 산화막을 이용하여 4000 ∼ 6000Å 두께로 형성하고, 상기 제1유기반사방지막(25)은 500 ∼ 700Å 두께로 형성한다.Next, the first etch stop layer 15, the first interlayer insulating layer 17, the second etch stop layer 19, the second interlayer insulating layer 21, the third etch stop layer 23, and the first organic layer on the entire surface. A laminated structure of the antireflection film 25 is formed. In this case, the first etch barrier 15, the second etch barrier 19 and the third etch barrier 23 is formed of a nitride film, the first etch barrier 15 and the third etch barrier 23 is 400 It is formed to a thickness of ~ 500 kPa, and the second etching prevention film 19 is formed to a thickness of 900 ~ 1100 kPa. The first interlayer insulating film 17 and the second interlayer insulating film 21 are formed to have a thickness of 4000 to 6000 GPa using an oxide film, and the first oil barrier film 25 is 500 to 700 GPa thick.

다음, 상기 제1유기반사방지막(25) 상부에 비아콘택홀으로 예정되는 부분을 노출시키는 제1감광막패턴(27)을 형성한다. 상기 제1감광막패턴(27)은 DUV용 감광막을 이용하여 7000 ∼ 8000Å 두께로 형성한다. (도 1a 참조)Next, a first photoresist layer pattern 27 is formed on the first oil barrier layer 25 to expose a portion of the via contact hole. The first photoresist pattern 27 is formed to a thickness of 7000 to 8000 Å using a DUV photosensitive film. (See Figure 1A)

그 다음, 상기 제1감광막패턴(27)을 식각마스크로 상기 제1유기반사방지막(25), 제3식각방지막(23), 제2층간절연막(21), 제2식각방지막(19) 및 제1층간절연막(17)을 순차적으로 식각하여 비아콘택홀(29)을 구비하는 제1유기반사방지막(25)패턴, 제3식각방지막(23)패턴, 제2층간절연막(21)패턴, 제2식각방지막(19)패턴 및 제1층간절연막(17)패턴을 형성한다.Subsequently, the first photoresist layer 25, the third etch barrier 23, the second interlayer dielectric 21, the second etch barrier 19 and the first photoresist layer 27 are etched using the etch mask. The first interlayer insulating layer 17 is sequentially etched to form the first oil-based anti-sagging film 25 pattern having the via contact hole 29, the third etching preventing film 23 pattern, the second interlayer insulating film 21 pattern, and the second interlayer insulating film 17. An etch stop layer 19 pattern and a first interlayer insulating layer 17 pattern are formed.

다음, 상기 제1감광막패턴(27)과 제1유기반사방지막(25)패턴을 제거한다. 다음, ACT935, ACT970, ST250 또는 EKC640 등의 습식 케미칼(wet chemical)을 이용하여 세정공정을 실시한다. (도 1b 참조)Next, the first photoresist layer pattern 27 and the first oil barrier layer 25 pattern are removed. Next, a cleaning process is performed using wet chemical such as ACT935, ACT970, ST250 or EKC640. (See FIG. 1B)

그 다음, 전체표면 상부에 제2유기반사방지막(31)을 500 ∼ 700Å 두께로 형성한다. 상기 제2유기반사방지막(31)은 상기 비아콘택홀(29) 저부에 노출되는 제1식각방지막(15) 상에도 형성된다. Next, the second oil-based anti-film 31 is formed to a thickness of 500 ~ 700Å over the entire surface. The second oil barrier layer 31 is also formed on the first etch barrier layer 15 exposed to the bottom of the via contact hole 29.

다음, 상기 구조 상부에 제2금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴(33)을 형성하되, 상기 비아콘택홀(29) 내부에도 상기 제2감광막패턴(33)을 잔존시켜 후속식각공정에서 제1금속배선(13)이 손상되는 것을 방지한다. (도 1c 참조)Next, a second photoresist layer pattern 33 is formed on the upper portion of the structure to expose a predetermined portion of the second metal wiring, and the second photoresist layer pattern 33 remains in the via contact hole 29 to be subsequently etched. The first metal wiring 13 is prevented from being damaged in the process. (See Figure 1C)

그 다음, 상기 제2감광막패턴(33)을 식각마스크로 상기 제3식각방지막(23)패턴 상부의 제2유기반사방지막(31)과 제3식각방지막(23)패턴, 제2층간절연막(21)패턴을 식각하여 제2금속배선이 형성될 부분을 노출시키는 트렌치(35)를 형성한다. Next, the second photoresist layer 31, the third etch barrier 23 pattern, and the second interlayer insulating layer 21 on the pattern of the third etch barrier 23 are formed using the second photoresist layer pattern 33 as an etch mask. The trench is etched to form the trench 35 exposing the portion where the second metal wiring is to be formed.

다음, 상기 제2감광막패턴(33)과 제2유기반사방지막(31)을 제거한다. Next, the second photoresist layer pattern 33 and the second oil barrier layer 31 are removed.

그 다음, O2플라즈마 처리를 실시하여 전 공정에서 발생한 불소를 제거한다. Then, an O 2 plasma treatment is performed to remove fluorine generated in all processes.

다음, ACT935, ACT970, ST250 또는 EKC640 등의 습식 케미칼(wet chemical) 을 이용하여 세정공정을 실시한다. (도 1d 참조)Next, a cleaning process is performed using wet chemical such as ACT935, ACT970, ST250 or EKC640. (See FIG. 1D)

그 다음, 전면식각공정을 실시하여 상기 비아콘택홀(29) 저부의 제1식각방지막(15)을 제거하여 상기 제1금속배선(13)을 노출시킨다. 이때, 상기 제2식각방지막(19)과 제3식각방지막(23)패턴도 식각된다. (도 1e 참조)Next, a first etching prevention layer 15 at the bottom of the via contact hole 29 is removed by performing a front surface etching process to expose the first metal wiring 13. In this case, the second etch stop layer 19 and the third etch stop layer 23 pattern is also etched. (See Figure 1E)

그 후, 도시되어 있지는 않지만 전체표면 상부에 금속층을 형성한 후, 상기 금속층을 화학적 기계적 연마(chemical mechanical polishing, CMP) 또는 전면식각공정으로 평탄화시켜 제1금속배선(13)에 접속되는 제2금속배선을 형성한다. Thereafter, although not shown, after forming a metal layer over the entire surface, the second metal is connected to the first metal wiring 13 by planarizing the metal layer by chemical mechanical polishing (CMP) or an entire surface etching process. Form the wiring.

상기와 같은 종래기술에 따른 반도체소자의 제조방법은, 제2금속배선이 형성될 트랜치를 형성한 후, 제1금속배선 상에 형성되는 식각방지막을 제거하기 위한 식각공정 시 상기 제1금속배선이 손상 될 수 있고, 상기 식각방지막의 식각속도가 늦기 때문에 식각공정 중 비아콘택홀 및 트랜치의 식각프로파일이 손상될 수 있고, 쓰루풋(through-put)이 저하되는 문제점이 있다. In the method of manufacturing a semiconductor device according to the prior art as described above, the first metal wiring is formed during an etching process for removing the etch stop layer formed on the first metal wiring after forming the trench in which the second metal wiring is to be formed. The etching profile of the via contact hole and the trench may be damaged during the etching process because the etching rate of the etch barrier is slow, and the throughput of the through-put may be reduced.

본 발명은 상기한 종래기술의 문제점을 해결하기 위하여, Al막을 배선재료로 사용하는 듀얼 다마신공정에서 비아콘택홀을 형성하기 위한 식각공정 시 제1금속배선 상부의 식각방지막을 제거하여 상기 제1금속배선을 노출시킨 후 제2금속배선을 형성하기 위한 트랜치를 형성함으로써 상기 비아콘택홀 및 트랜치의 식각프로파일의 변형을 방지하고, 그에 따른 반도체소자의 특성 및 신뢰성을 향상시키는 반도체소자의 제조방법을 제공하는데 그 목적이 있다.In order to solve the above problems of the prior art, the first metal is removed by removing the etch stop layer on the first metal wiring during the etching process for forming the via contact hole in the dual damascene process using the Al film as the wiring material. The present invention provides a method of manufacturing a semiconductor device that prevents deformation of an etch profile of the via contact hole and the trench by exposing a trench to form a second metal wiring after exposing wiring, thereby improving characteristics and reliability of the semiconductor device. Its purpose is to.

이상의 목적을 달성하기 위하여 본 발명에 따른 반도체소자의 제조방법은,In order to achieve the above object, a method of manufacturing a semiconductor device according to the present invention,

소정의 하부구조물이 형성되어 있는 반도체기판 상부에 하부절연막을 형성하는 공정과,Forming a lower insulating film on the semiconductor substrate on which a predetermined lower structure is formed;

상기 하부절연막 상부에 제1금속배선을 형성하는 공정과,Forming a first metal wiring on the lower insulating layer;

상기 제1금속배선 상부에 제1식각방지막, 제1층간절연막, 제2식각방지막, 제2층간절연막, 제3식각방지막 및 제1유기반사방지막의 적층구조를 형성하는 공정과,Forming a stacked structure of a first etch stop layer, a first interlayer dielectric layer, a second etch barrier layer, a second interlayer dielectric layer, a third etch barrier layer, and a first anti-base layer on the first metal wiring;

상기 제1유기반사방지막 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴을 형성하는 공정과,Forming a first photoresist layer pattern exposing a portion intended as a via contact on the first oil-based anti-fog layer;

상기 제1감광막패턴을 식각마스크로 상기 적층구조를 식각하여 상기 제1금속배선을 노출시키는 비아콘택홀을 형성하는 공정과,Forming a via contact hole exposing the first metal wiring by etching the layered structure using the first photoresist pattern as an etch mask;

상기 제1감광막패턴 및 제1유기반사방지막을 제거하는 공정과,Removing the first photoresist pattern and the first oil barrier film;

상기 제3식각방지막 상부 및 비아콘택홀 저부에 제2유기반사방지막을 형성하는 공정과,Forming a second oil-based anti-film on the upper portion of the third etch stop layer and the bottom of the via contact hole;

전체표면 상부에 제2금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴을 형성하되, 상기 제2감광막패턴은 상기 비아콘택홀 내부에도 형성되는 공정과,Forming a second photoresist pattern on the entire surface of the second photoresist layer, the second photoresist pattern being formed inside the via contact hole;

상기 제2감광막패턴을 식각마스크로 상기 제2유기반사방지막, 제3식각방지막 및 제2층간절연막을 식각하여 트랜치를 형성하는 공정과,Forming a trench by etching the second oil barrier layer, the third etch barrier layer, and the second interlayer dielectric layer using the second photoresist pattern as an etch mask;

상기 제2감광막패턴 및 제2유기반사방지막을 제거하는 공정을 포함하는 것을 특징으로 한다.And removing the second photoresist layer pattern and the second oil barrier layer.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.                     

도 2a 내지 도 2d 는 본 발명에 따른 반도체소자의 제조방법에 의한 공정 단면도이다. 2A to 2D are cross-sectional views illustrating a method of manufacturing a semiconductor device according to the present invention.

먼저, 소정의 하부구조물, 예를 들어 소자분리 절연막(도시안됨)과 MOS FET(도시안됨) 및 캐패시터(도시안됨) 등이 형성되어 있는 반도체기판 상부에 하부절연막(101)을 형성한다. First, a lower insulating layer 101 is formed on a semiconductor substrate on which a predetermined lower structure, for example, an isolation layer (not shown), a MOS FET (not shown), a capacitor (not shown), and the like are formed.

다음, 상기 하부절연막(101) 상부에 제1금속배선(103)을 형성한다. Next, a first metal wiring 103 is formed on the lower insulating film 101.

그 다음, 전체표면 상부에 제1식각방지막(105), 제1층간절연막(107), 제2식각방지막(109), 제2층간절연막(111), 제3식각방지막(113) 및 제1유기반사방지막(115)의 적층구조를 형성한다. Next, the first etch stopper film 105, the first interlayer insulating film 107, the second etch stopper film 109, the second interlayer insulating film 111, the third etch stopper film 113 and the first organic layer on the entire surface. A stack structure of the antireflection film 115 is formed.

상기 제1식각방지막(105), 제2식각방지막(109) 및 제3식각방지막(113)은 질화막을 400 ∼ 500Å 두께로 형성한다. The first etch stop layer 105, the second etch stop layer 109, and the third etch stop layer 113 form a nitride film having a thickness of 400 to 500 μm.

그리고, 상기 제1층간절연막(107)과 제2층간절연막(111)은 산화막을 4000 ∼ 6000Å 두께로 형성한다. 또한, 상기 제1층간절연막(107)과 제2층간절연막(111)은 BCB, Flare, SiLK 등의 CxHyOz 유기 저유전물질 또는 SiOC:H막, SiOC막, SiOF막, 실록산 SOG막, 실리케이트 SOG막, HSQ막, MSQ막, HOSP막, LOSP막 또는 FSG막 등의 무기저유전물질로 형성할 수 있다. 상기 제3식각방지막(113)도 상기 무기저유전물질로 형성될 수 있다. The first interlayer insulating film 107 and the second interlayer insulating film 111 form an oxide film with a thickness of 4000 to 6000 kV. In addition, the first interlayer insulating film 107 and the second interlayer insulating film 111 are C x H y O z organic low dielectric materials such as BCB, Flare, SiLK, or SiOC: H film, SiOC film, SiOF film, and siloxane SOG. It may be formed of an inorganic low dielectric material such as a film, a silicate SOG film, an HSQ film, an MSQ film, a HOSP film, a LOSP film, or an FSG film. The third etch stop layer 113 may also be formed of the inorganic low dielectric material.

상기 제1유기반사방지막(115)은 500 ∼ 700Å 두께로 형성한다.The first oil barrier film 115 is formed to a thickness of 500 ~ 700Å.

다음, 상기 제1유기반사방지막(115) 상부에 비아콘택홀으로 예정되는 부분을 노출시키는 제1감광막패턴(117)을 형성한다. 상기 제1감광막패턴(117)은 DUV용 감광막을 이용하여 7000 ∼ 8000Å 두께로 형성한다. (도 2a 참조)Next, a first photoresist layer pattern 117 is formed on the first oil barrier layer 115 to expose a predetermined portion of the via contact hole. The first photoresist pattern 117 is formed to a thickness of 7000 to 8000 Å using a DUV photoresist. (See Figure 2A)

그 다음, 상기 제1감광막패턴(117)을 식각마스크로 상기 제1유기반사방지막(115), 제3식각방지막(113), 제2층간절연막(111), 제2식각방지막(109), 제1층간절연막(107) 및 제1식각방지막(107)을 순차적으로 식각하여 비아콘택홀(119)을 구비하는 제1유기반사방지막(115)패턴, 제3식각방지막(113)패턴, 제2층간절연막(111)패턴, 제2식각방지막(109)패턴, 제1층간절연막(107)패턴 및 제1식각방지막(105)패턴을 형성한다.Next, the first photoresist layer 115, the third etch barrier layer 113, the second interlayer dielectric layer 111, the second etch barrier layer 109, and the first photoresist layer pattern 117 are used as an etch mask. The first interlayer insulating film 107 and the first etch stop layer 107 are sequentially etched to form the first oil barrier layer 115 pattern including the via contact hole 119, the third etch stop layer 113 pattern, and the second layer. The insulating layer 111 pattern, the second etch stop layer 109 pattern, the first interlayer insulating layer 107 pattern, and the first etch stop layer 105 pattern are formed.

이때, 상기 제1층간절연막(107)과 제2층간절연막(111)이 유기저유전물질인 경우, CxHy 또는 N2/H2 가스를 주식각가스로 사용하여 식각되고, 무기저유전물질인 경우 CxFy, CO, N2, Ar 및 이들의 조합 중 선택된 어느 하나를 이용한 플라즈마 건식식각공정으로 식각된다. 또한, 상기 제1식각방지막(105)은 CF4, CHF3, Ar 및 이들의 조합 중 선택된 어느 하나를 사용한 플라즈마 건식식각방법으로 제거하되, 바이어스 파워는 100∼300W의 낮은 전압을 사용함으로써 상기 제1금속배선(103)을 손상을 최소화한다. 또한, 상기 제1식각방지막(105)을 SiC막으로 형성하는 경우 CF4, CH3F, CO, Ar 및 이들의 조합 중 선택된 어느 하나를 이용한 플라즈마 건식식각방법으로 제거한다. 이는 O2 가스를 첨가하지 않고 CO 가스를 대신 사용하고, H 성분이 많이 첨가된 CH3F 가스를 사용하여 무기저유전물질의 표면 특성이 열화되는 것을 방지한다. At this time, when the first interlayer insulating film 107 and the second interlayer insulating film 111 are organic low dielectric materials, the substrate is etched using C x H y or N 2 / H 2 gas as the stock corner gas, and the inorganic low dielectric layer The material is etched by a plasma dry etching process using any one selected from C x F y , CO, N 2 , Ar, and a combination thereof. In addition, the first etch barrier 105 is removed by a plasma dry etching method using any one selected from CF 4 , CHF 3 , Ar, and a combination thereof, the bias power by using a low voltage of 100 ~ 300W Minimize damage to the metal wiring 103. In addition, when the first etch stop layer 105 is formed of a SiC film, it is removed by a plasma dry etching method using any one selected from CF 4 , CH 3 F, CO, Ar, and a combination thereof. This prevents deterioration of the surface characteristics of the inorganic low dielectric material by using a CO 3 gas instead of adding O 2 gas and using a CH 3 F gas having a high H component.

다음, 상기 제1감광막패턴(117)과 제1유기반사방지막패턴(115)을 제거한다. (도 2b 참조)Next, the first photoresist film pattern 117 and the first oil barrier film pattern 115 are removed. (See Figure 2b)

그 다음, 전체표면 상부에 제2유기반사방지막(121)을 500 ∼ 700Å 두께로 형성한다. 상기 제2유기반사방지막(121)은 상기 비아콘택홀(119) 저부에 노출되는 제1금속배선(103) 상에도 형성된다. 상기 제2유기반사방지막(121)을 비아콘택홀(119) 저부에도 형성함으로써 후속 식각공정 시 식각장벽으로 사용되어 상기 제1금속배선(105)이 손상되는 것을 방지한다. Next, a second oil-based anti-morning film 121 is formed on the entire surface to a thickness of 500 to 700 mm 3. The second oil barrier layer 121 is also formed on the first metal wire 103 exposed to the bottom of the via contact hole 119. The second oil barrier layer 121 is also formed at the bottom of the via contact hole 119 to be used as an etch barrier during the subsequent etching process to prevent the first metal wiring 105 from being damaged.

다음, 상기 구조 상부에 제2금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴(123)을 형성하되, 상기 비아콘택홀(119) 내부에도 상기 제2감광막패턴(123)을 잔존시켜 후속식각공정에서 제1금속배선(103)이 손상되는 것을 방지한다. (도 2c 참조)Next, a second photoresist layer pattern 123 is formed on the structure to expose a predetermined portion of the second metal wiring, and the second photoresist layer pattern 123 remains in the via contact hole 119 to be subsequently etched. The first metal wiring 103 is prevented from being damaged in the process. (See Figure 2c)

그 다음, 상기 제2감광막패턴(123)을 식각마스크로 상기 제2유기반사방지막(121), 제3식각방지막패턴(113), 제2층간절연막패턴(111)을 식각하여 제2금속배선이 형성될 부분을 노출시키는 트렌치(125)를 형성한다. Then, the second photoresist layer 121, the third etch barrier pattern 113, and the second interlayer dielectric layer pattern 111 are etched using the second photoresist layer pattern 123 as an etch mask. A trench 125 is formed that exposes the portion to be formed.

다음, 상기 제2감광막패턴(123)과 제2유기반사방지막(121)을 제거하여 상기 제1금속배선(103)을 노출시킨다. Next, the first metal wiring 103 is exposed by removing the second photoresist layer pattern 123 and the second oil barrier layer 121.

그 다음, ACT935, ACT970, ST250 또는 EKC640 등의 습식 케미칼(wet chemical)을 이용하여 세정공정을 실시한다. (도 2d 참조)Next, a cleaning process is performed using wet chemical such as ACT935, ACT970, ST250 or EKC640. (See FIG. 2D)

그 후, 도시되어 있지는 않지만 전체표면 상부에 금속층을 형성한 후, 상기 금속층을 화학적 기계적 연마(chemical mechanical polishing, CMP) 또는 전면식각공정으로 평탄화시켜 제1금속배선(103)에 접속되는 제2금속배선을 형성한다. Thereafter, although not shown, after forming a metal layer on the entire surface, the second metal is connected to the first metal wiring 103 by planarizing the metal layer by chemical mechanical polishing (CMP) or an entire surface etching process. Form the wiring.

이상에서 설명한 바와 같이 본 발명에 따른 반도체소자의 제조방법은, 듀얼 다마신(dual damascene) 공정에서 제1금속배선을 형성하고, 상기 제1금속배선을 노출시키는 비아콘택홀을 형성하기 위한 식각공정 시 상기 제1금속배선 상부에 형성되는 식각방지막을 제거한 후 제2금속배선을 형성하기 위한 트랜치를 형성함으로써 상기 비아콘택홀 및 트랜치의 식각프로파일의 변형을 방지하고, 쓰루풋을 향상시켜 소자의 공정 수율 및 신뢰성을 향상시키는 이점이 있다.As described above, in the method of manufacturing a semiconductor device according to the present invention, an etching process for forming a first metal wiring in a dual damascene process and forming a via contact hole exposing the first metal wiring is performed. After removing the etch stop layer formed on the upper first metal interconnection to form a trench for forming the second metal interconnection to prevent the deformation of the etch profile of the via contact hole and the trench, and improve the throughput, the process yield of the device And there is an advantage to improve the reliability.

Claims (14)

소정의 하부구조물이 형성되어 있는 반도체기판 상부에 하부절연막을 형성하는 공정과,Forming a lower insulating film on the semiconductor substrate on which a predetermined lower structure is formed; 상기 하부절연막 상부에 제1금속배선을 형성하는 공정과,Forming a first metal wiring on the lower insulating layer; 상기 제1금속배선 상부에 제1식각방지막, 제1층간절연막, 제2식각방지막, 제2층간절연막, 제3식각방지막 및 제1유기반사방지막의 적층구조를 형성하는 공정과,Forming a stacked structure of a first etch stop layer, a first interlayer dielectric layer, a second etch barrier layer, a second interlayer dielectric layer, a third etch barrier layer, and a first anti-base layer on the first metal wiring; 상기 제1유기반사방지막 상부에 비아콘택으로 예정되는 부분을 노출시키는 제1감광막패턴을 형성하는 공정과,Forming a first photoresist layer pattern exposing a portion intended as a via contact on the first oil-based anti-fog layer; 상기 제1감광막패턴을 식각마스크로 상기 적층구조를 식각하여 상기 제1금속배선을 노출시키는 비아콘택홀을 형성하는 공정과,Forming a via contact hole exposing the first metal wiring by etching the layered structure using the first photoresist pattern as an etch mask; 상기 제1감광막패턴과 제1유기반사방지막을 제거하는 공정과,Removing the first photoresist pattern and the first oil barrier film; 상기 제3식각방지막 상부 및 비아콘택홀 저부에 제2유기반사방지막을 형성하는 공정과,Forming a second oil-based anti-film on the upper portion of the third etch stop layer and the bottom of the via contact hole; 전체표면 상부에 제2금속배선으로 예정되는 부분을 노출시키는 제2감광막패턴을 형성하되, 상기 제2감광막패턴은 상기 비아콘택홀 내부에도 형성되는 공정과,Forming a second photoresist pattern on the entire surface of the second photoresist layer, the second photoresist pattern being formed inside the via contact hole; 상기 제2감광막패턴을 식각마스크로 상기 제2유기반사방지막, 제3식각방지막 및 제2층간절연막을 식각하여 트랜치를 형성하는 공정과,Forming a trench by etching the second oil barrier layer, the third etch barrier layer, and the second interlayer dielectric layer using the second photoresist pattern as an etch mask; 상기 제2감광막패턴 및 제2유기반사방지막을 제거하는 공정을 포함하는 것을 특징으로 하는 반도체소자의 제조방법.And removing the second photoresist pattern and the second oil barrier film. 제 1 항에 있어서,The method of claim 1, 상기 제1층간절연막과 제2층간절연막은 산화막을 이용하여 4000 ∼ 6000Å 두께로 형성되는 것을 특징으로 하는 반도체소자의 제조방법. And the first interlayer insulating film and the second interlayer insulating film are formed to have a thickness of 4000 to 6000 mV using an oxide film. 제 1 항에 있어서,The method of claim 1, 상기 제1층간절연막과 제2층간절연막은 유기저유전물질 또는 무기저유전물질로 형성되는 것을 특징으로 하는 반도체소자의 제조방법.And the first interlayer insulating film and the second interlayer insulating film are formed of an organic low dielectric material or an inorganic low dielectric material. 제 3 항에 있어서,The method of claim 3, wherein 상기 유기저유전물질은 BCB, Flare, SiLK 및 이들의 조합 중 선택된 어느 하나인 것을 특징으로 하는 반도체소자의 제조방법. The organic low dielectric material is a manufacturing method of a semiconductor device, characterized in that any one selected from BCB, Flare, SiLK and combinations thereof. 제 3 항에 있어서,The method of claim 3, wherein 상기 무기저유전물질은 SiOC:H막, SiOC막, SiOF막, 실록산 SOG막, 실리케이트 SOG막, HSQ막, MSQ막, HOSP막, LOSP막, FSG막 및 이들의 조합 중 선택된 어느 하나인 것을 특징으로 하는 반도체소자의 제조방법. The inorganic low dielectric material is any one selected from SiOC: H film, SiOC film, SiOF film, siloxane SOG film, silicate SOG film, HSQ film, MSQ film, HOSP film, LOSP film, FSG film and combinations thereof A method of manufacturing a semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 제1식각방지막, 제2식각방지막 및 제3식각방지막은 질화막으로 형성되 는 것을 특징으로 하는 반도체소자의 제조방법. The first etch stop layer, the second etch stop layer and the third etch stop layer is a semiconductor device manufacturing method, characterized in that formed of a nitride film. 제 1 항에 있어서,The method of claim 1, 상기 제1식각방지막은 무기저유전물질로 형성되는 것을 특징으로 하는 반도체소자의 제조방법. The first etch stop layer is a semiconductor device manufacturing method, characterized in that formed of an inorganic low dielectric material. 제 1 항에 있어서,The method of claim 1, 상기 제1유기반사방지막과 제2유기반사방지막은 500 ∼ 700Å 두께로 형성되는 것을 특징으로 하는 반도체소자의 제조방법. The first oil-based anti-freeze film and the second oil-based anti-freeze film is a manufacturing method of a semiconductor device, characterized in that formed in the thickness of 500 ~ 700Å. 제 1 항에 있어서,The method of claim 1, 상기 제1층간절연막과 제2층간절연막이 유기저유전물질로 형성되는 경우, CxHy 또는 N2/H2 가스를 주식각가스로 사용하는 식각공정으로 식각되는 것을 특징으로 하는 반도체소자의 제조방법. When the first interlayer dielectric layer and the second interlayer dielectric layer are formed of an organic low dielectric material, the semiconductor device may be etched by an etching process using C x H y or N 2 / H 2 gas as a stock corner gas. Manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 제1층간절연막과 제2층간절연막이 무기저유전물질로 형성되는 경우, CxFy, CO, N2, Ar 및 이들의 조합 중 선택된 어느 하나를 이용한 플라즈마 건식식각공정으로 식각되는 것을 특징으로 하는 반도체소자의 제조방법. When the first interlayer dielectric layer and the second interlayer dielectric layer are formed of an inorganic low dielectric material, the first interlayer dielectric layer and the second interlayer dielectric layer are etched by a plasma dry etching process using any one selected from C x F y , CO, N 2 , Ar, and a combination thereof. A method of manufacturing a semiconductor device. 제 1 항에 있어서,The method of claim 1, 상기 제1식각방지막은 CF4, CHF3, Ar 및 이들의 조합 중 선택된 어느 하나를 이용하여 형성하고, 100∼300W의 바이어스파워를 인가하는 플라즈마 건식식각방법으로 식각되는 것을 특징으로 하는 반도체소자의 제조방법. The first etch barrier layer is formed using any one selected from CF 4 , CHF 3 , Ar, and a combination thereof, and is etched by a plasma dry etching method applying a bias power of 100 to 300W. Manufacturing method. 제 1 항에 있어서,The method of claim 1, 상기 제1식각방지막을 SiC막으로 형성하는 경우 CF4, CH3F, CO, Ar 및 이들의 조합 중 선택된 어느 하나를 이용한 플라즈마 건식식각방법으로 식각되는 것을 특징으로 하는 반도체소자의 제조방법. When the first etch stop layer is formed of a SiC film is a semiconductor device manufacturing method characterized in that the etching by plasma dry etching method using any one selected from CF 4 , CH 3 F, CO, Ar and combinations thereof. 제 1 항에 있어서,The method of claim 1, 상기 제2감광막패턴과 제2유기반사방지막을 제거하고 습식케미칼을 이용한 세정공정을 실시하는 것을 특징으로 하는 반도체소자의 제조방법. And removing the second photoresist layer pattern and the second oil-based anti-fogging layer and performing a cleaning process using a wet chemical. 제 13 항에 있어서,The method of claim 13, 상기 습식케미칼은 ACT935, ACT970, ST250, EKC640 및 이들의 조합 중 선택된 어느 하나인 것을 특징으로 하는 반도체소자의 제조방법.The wet chemical is a method of manufacturing a semiconductor device, characterized in that any one selected from ACT935, ACT970, ST250, EKC640 and combinations thereof.
KR1020000086350A 2000-12-29 2000-12-29 Manufacturing method for semiconductor device KR100696760B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000086350A KR100696760B1 (en) 2000-12-29 2000-12-29 Manufacturing method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000086350A KR100696760B1 (en) 2000-12-29 2000-12-29 Manufacturing method for semiconductor device

Publications (2)

Publication Number Publication Date
KR20020058288A KR20020058288A (en) 2002-07-12
KR100696760B1 true KR100696760B1 (en) 2007-03-19

Family

ID=27689383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000086350A KR100696760B1 (en) 2000-12-29 2000-12-29 Manufacturing method for semiconductor device

Country Status (1)

Country Link
KR (1) KR100696760B1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100480893B1 (en) * 2002-10-15 2005-04-07 매그나칩 반도체 유한회사 Method for forming inductor of semiconductor device
KR100914391B1 (en) * 2002-12-27 2009-08-28 매그나칩 반도체 유한회사 Method of forming a metal line in a semiconductor device
KR100909177B1 (en) * 2002-12-27 2009-07-22 매그나칩 반도체 유한회사 How to form a dual damascene pattern
KR100568864B1 (en) * 2004-01-12 2006-04-10 삼성전자주식회사 Methode for forming interconnection line of Semiconductor device
KR100766160B1 (en) * 2005-03-31 2007-10-10 주식회사 하이닉스반도체 Method of fomring bit line contact hole in a flash memory device
KR100720529B1 (en) * 2005-12-29 2007-05-22 동부일렉트로닉스 주식회사 Metal line of semiconductor device and method for forming the same
KR100718451B1 (en) * 2005-12-29 2007-05-14 동부일렉트로닉스 주식회사 Metal line in semiconductor device and manufacturing method thereof
KR100880312B1 (en) * 2006-07-25 2009-01-28 주식회사 하이닉스반도체 Method for forming metal line of semiconductor memory device
KR100827483B1 (en) * 2006-11-27 2008-05-06 동부일렉트로닉스 주식회사 Method for forming metal line of semiconductor device
KR100896841B1 (en) * 2007-10-04 2009-05-12 주식회사 동부하이텍 Method for forming bond pad on fabricating a semiconductor device
KR20140083696A (en) * 2012-12-26 2014-07-04 제일모직주식회사 A method for forming dual damascene structure of semiconductor device, and a semiconductor device thereof
KR20150090495A (en) * 2014-01-29 2015-08-06 세메스 주식회사 Apparatus and Method for treating substrate

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102000A (en) * 1996-06-18 1998-01-06 Yodogawa Steel Works Ltd Open-close type ditch cover

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH102000A (en) * 1996-06-18 1998-01-06 Yodogawa Steel Works Ltd Open-close type ditch cover

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
10-2000-43228 *
10-2000-45375 *

Also Published As

Publication number Publication date
KR20020058288A (en) 2002-07-12

Similar Documents

Publication Publication Date Title
KR100474546B1 (en) Fabricating method for semiconductor device
KR100696760B1 (en) Manufacturing method for semiconductor device
US6528418B1 (en) Manufacturing method for semiconductor device
US6432816B2 (en) Method for fabricating semiconductor device
KR100350764B1 (en) Manufacturing method of semiconductor device
KR20010063763A (en) Manufacturing method for semiconductor device
KR100420413B1 (en) Manufacturing method for semiconductor device
KR100546144B1 (en) Manufacturing method of semiconductor device
US7087533B2 (en) Method for fabricating semiconductor device
KR100685595B1 (en) Manufacturing method for semiconductor device
KR100307558B1 (en) Manufacturing method of semiconductor device
KR20060113282A (en) Manufacturing method for semiconductor device
KR100419752B1 (en) Manufacturing method of semiconductor device
KR100307560B1 (en) Manufacturing method of semiconductor device
KR20060114446A (en) Manufacturing method for semiconductor device
KR100861188B1 (en) Manufacturing method for semiconductor device
KR20000045358A (en) Fabrication method of semiconductor device
KR100527568B1 (en) Manufacturing method for semiconductor device
KR100333548B1 (en) Fabricating method for semiconductor device
KR100482997B1 (en) Manufacturing method for semiconductor device
KR100535083B1 (en) Manufacturing method for semiconductor device
KR20000045357A (en) Method for fabricating semiconductor device
KR20050000002A (en) Manufacturing method for semiconductor device
KR20030058635A (en) Manufacturing method for semiconductor device
KR20000027790A (en) Method of manufacturing a semiconductor device

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20110222

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee