KR100363408B1 - C-반응성단백질단편으로부터유도된올리고펩티드 - Google Patents

C-반응성단백질단편으로부터유도된올리고펩티드 Download PDF

Info

Publication number
KR100363408B1
KR100363408B1 KR1019960701879A KR19960701879A KR100363408B1 KR 100363408 B1 KR100363408 B1 KR 100363408B1 KR 1019960701879 A KR1019960701879 A KR 1019960701879A KR 19960701879 A KR19960701879 A KR 19960701879A KR 100363408 B1 KR100363408 B1 KR 100363408B1
Authority
KR
South Korea
Prior art keywords
mmol
pro
group
lys
amino acid
Prior art date
Application number
KR1019960701879A
Other languages
English (en)
Inventor
파트리지아 카레토
플라비오 레오니
파브리지오 마르쿠시
기안니 그로모
파올로 마스카그니
마시모 피노리
실바나 카펠레티
Original Assignee
이탈파마코 에스.피.에이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이탈파마코 에스.피.에이. filed Critical 이탈파마코 에스.피.에이.
Application granted granted Critical
Publication of KR100363408B1 publication Critical patent/KR100363408B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4737C-reactive protein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Cardiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Rheumatology (AREA)
  • Pain & Pain Management (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Immunology (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

본 발명은 C-반응성 단백질 단편으로부터 유도된 올리고펩티드 및 이를 면역조절제, 심혈관 절찬 및 염증성 질환의 치료제로서 이용하는 방법에 관한 것이다.

Description

C-반응성 단백질 단편으로부터 유도된 올리고펩티드
본 발명은 C-반응성 단백질(이하 CRP라 함)의 단편으로부터 유도된 올리고펩티드, 및 이를 면역조절제(immuno-modulating agent) 및 심혈관 질환과 염증 질한의 치료용으로 사용하는 방법에 관한 것이다.
CRP는 일반적으로 혈중 농도가 매우 낮은 단백질이며, 염증성 처리 후에는 2000배까지 그 농도가 올라간다[제이. 제이. 몰리와 아이. 쿠쉬너, Am. N.Y. Acad Sci. ,389, 406-418(1989)], 에프. 에이. 로비 등(생화학회지,262, 15권, 7053-7057(1987))은 터프신의 서열과 매우 유사한 3가지와 CRP 테트라펩티드 서열을 밝혀냈다. 이렇게 화학적으로 합성된 테트라펩티드는 터프신에서와 같은 방법으로 식세포인 백혈구를 자극하여 과산화물을 생성하며, 또한 단핵세포를 유도하여 인터류킨 1을 생성한다. 터프신 처림, 3가지의 CRP 테트라펩티드는 생체 내에서 프로테아제에 의해 빠르게 대사되어 비활성화된다.
화학적으로 변형된 상기 CRP 테트라펩티드 단편의 유사체는 면역조절 기능이 있으며, 패혈 쇼크의 치료와 같은 심혈관 질환 및 염증 질환의 치료에 유용하다는 것이 이제 놀랍게도 발견되었다.
그러므로, 본 발명은 식 ( I )의 올리고펩티드 및 약제학적으로 허용가능한 산성 또는 염기성 염에 관한 것이다.
여기에서, A1은 트레오닌, 류신, 이소류신, 발린, 사르코신, 알라닌, 글리신 및 (C2-6)아실-글리신으로 이루어진 그룹에서 선택된 하나의 아미노산 잔기이거나, 또는 빈자리이며:
A2는 적어도 하나의 (C1-6) 알킬, 벤질 또는 (C2-6)아실 그룹에 의해 Nα-치환된 류신, 이소류신, 발린, 리신, 오르니틴으로 이루어진 군에서 선택된 하나의 아미노산 잔기이며;
A3는 프롤린, 류신, 이소류신 및 발린으로 이루어진 군에서 선택된 하나의 아미노산 잔기이며;
A4는 아그마틴 잔기이거나 또는 C-말단부가 선택적으로 아미드화된 아르기닌, 류신 및 글루타민으로 이루어진 군에서 선택된 하나의 아미노산 잔기, 또는 빈자리이며;
단, A1, A2및 A4중의 오로지 하나만이 빈자리이고, 상기 화합물들은 상기 아미노산 잔기와 아그마틴 잔기의 측쇄 그룹이 (C1-6)-알킬, 벤질 또는 (C2-6) 아실로 이루어진 군으로부터 선택된 적어도 하나의 그룹에 의해 선택적으로 치환될 수 있다는 데 특징이 있으며, 또한 상기 아미노산 잔기 각각은 Cα가 D- 또는 L- 형태이거나, 또는 부분입체이성질체(diastereomer)와 거울상 이성질체 (enantiomer)중의 하나의 형태일 수 있음.
본 발명에 따른 화합물중 바람직한 것은, 식 ( I )로 표시되는 화합물 및 약제학적으로 허용가능한 산성 또는 염기성염에 있어서,
A1은 글리신, 트레오닌, 류신, 이소류신, 발린, 사르코신, 알라닌 및 (C2-6)아실-글리신으로 이루어진 군에서 선택된 하나의 아미노산 잔기이거나, 또는 빈자리이며;
A2는 (C1-6)알킬, 벤질 또는 (C2-6)아실 그룹에 의해 Nα-치환된 리신으로 이루어진 아미노산 잔기이며;
A3은 프롤린이며;
A4는 아그마틴 잔기 또는 C-말단이 선택적으로 아미드화된 글루타민, 류신, 아르기닌 잔기이거나, 또는 빈자리이며:
상기 화합물은 상기 아미노산 잔기와 아그마틴 잔기의 측쇄 그룹이 (C1-6)알킬, 벤질 및 (C2-6)아실로 이루어진 군으로분터 선택된 적어도 하나의 치환기에 의해 선택적으로 치환될 수 있고, 또한 상기 아미노산 잔기 각각은 Cα가 D 또는 L 형태이거나 부분입체이성질체와 거울상 이성질체중의 하나의 형태일 수 있는 것을 특징으로 하는 것이다.
(C1-6)알킬로서는, 메틸, 에틸, 프로필, 이소프로필, 부틸, sec-부틸, t-부틸, n-펜틸, 3-메틸-펜틸, n-헥실 그룹 및 관련된 위치 이성질체와 같은 것이 있다. (C2-6)아실로서는, 포르밀, 아세틸, 프로피오닐, 부티릴, 펜타노일, 헥사노일 및 관련된 위치 이성질체와 같은 것이 있다.
본 발명의 다른 목적은 식 ( I )의 올리고펩티드를 패혈 쇼크와 같은 심혈관 질환과 염증 질환의 치료 및 면역조절제로서 이용하는 방법에 관한 것이다.
일반식 ( I )의 화합물은 공지되어 있는 펩티드 합성 방법을 이용하여 고체상 또는 용액상으로 제조될 수 있다[메리필드, 알.비. (Merrifild, R.B. ), Biochemistry, 3, 1385(1964) 참조]. 달리 언급되지 않으면, Cα가 L-구조(configuration)인 아미노산 잔기가 이용되는 것을 의미한다.
바람직하기로는, 선택된 아미노산으로부터 출발하여 요구되는 아미노산을 단계적으로 부가하는 식으로 올리고펩티드를 조합하는 합성이 용액에서 이루어진다. 미리-합성된 디-또는 트리펩티드 단위가 채용될 수도 있다. 올리고펩티드의 합성이 모든 아미노산으로부터 출발하여 N-말단이나 C-말단의 양 방향으로 진행될 수 있다하더라도, N-말단 방향으로 합성이 이루어지는 것이 바람직하다. 아미노산 또는, 필요시, 미리-합성된 디- 또는 트리펩티드는 그 자체로서 이용될 수 있다. 또는 t-부틸(tBu)기 등을 이용한 에스테르화에 의해 카르복시 그룹이 보호 및/또는 벤질옥시카르보닐(Z)기 등을 이용한 아미드화에 의해 아민 그룹이 보호된 관련 유도체의 형태 또는, 경우에 따라, 2, 2, 5, 7, 8-펜타메틸-크로만-6-설포닐 (Pmc), t-부틸옥시카르보닐 (BOC) 또는 트리플루오로아세트산(TFA) 등을 이용하여 측쇄 그룹이 적절하게 보호되어 있는 관련 유도체의 형태로 이용될 수 있다. 이러한 보호는 펩티트 화학 분야에서 공지된 방법에 의해 이루어질 수 있다.
어쨌든, 싱기 언급된 바와 같이 보호된 유도체는 상업적으로 구입할 수도 있다. α-아미노 부분의 보호기는 이어지는 아미노산과의 축합 반응 이전에 제거되는것이 좋다. 예를 들어, 보호기는 중간 정도의 강산(가령, 트리플루오로아세트산)을 이용하는 산분해를 통하거나, 또는 적절한 팔라듐 촉매의 존재하에 알칼리에 용해한 포름산 또는 그 염, 트리에틸실란, 히드라진 등과 같은 수소 도우너 또는 수소 가스를 이용하는 촉매 가-수소분해를 통하여 제거될 수 있다. 여기에서, 수소 도우너는 탈보호되는 아미노산 및 다른 것의 견지에서 선택되는 것이다. 그런 다음, 상기 반응에 관련되지 않을 부분이 적절하게 보호되어 있는 아미노산 잔기와의 축합 반응이 이루어진다.
이러한 축합은 몇가지의 공지된 방법중의 하나를 통하여 이루어질 수 있다. 상세하게는, 선택적으로 1-하이드록시-벤조트리아졸(HOBT), 4-디메틸-아미노-피리딘(DMAP), 트리에틸아민(TEA), N-메틸-모폴린, N-메틸-이미다졸 등과 같은 촉매의 존재하에, 벤조트리아졸-1-일-옥시-트리스(디메틸아미노)-포스포늄 헥사플루오로포스페이 트(BOP), 브로모-트리스-피롤리듐-포스포늄 헥사플루오로포스페이트(PyBroP), 디사이클로헥실카르보이미드 (DCC) 등과 같은 축합제 또는 숙신이미드(Su), 플루오라이드(F)가 활성 에스테르로서 이용될 수 있다.
아미노산의 Nα-알킬 유도체는, 메탄올과 같은 극성 용매에서 선택적 환원제인 시아노보로하이드라이드의 존재하에 저온에서 적절한 알데히드로 처리하여 얻어진다.
아미드의 형태로 C-말단부를 갖는 식 ( I )의 올리고펩티드가 필요한 경우, 이러한 부분을 갖는 상용 아미노산이 출발물질로서 이용될 수 있거나 C-말단 아미노산이 HOBT 암모늄염으로 아미드화 될 수 있다. 또는 A4가 아그마틴 잔기일 경우 아그마틴 그 자체로 아미드화 될 수 있다.
A1및/또는 A2가 아실화된 아미노산 잔기인 식 ( I )의 화합물은 DMAP와 같은 촉매의 존재하에 저온에서 적절한 아실-안하이드라이드로 처리하여 얻어진다. 다른 방법으로서, 상용 Nα-아실 아미노산 잔기가 채용될 수 있다.
그 생성물은 적절한 용매로부터 결정화에 의해 정제될 수 있다. 또는 필요한 경우 역상 크로마트그래피 및 이온교환 크로마토그래피와 같은 공지된 크로마토그래피 기술이 이용될 수 있다.
이하, 본 발명에 따른 변형된 올리고펩티드의 일부에 대한 합성예가 기재되어 있다.
보호된 단편과 변형된 올리고펩티드의 아미노산 유도체의 HPLC 분석은 다음 실헌 조건하에서 실행된다:
컬럼: 리크로소브(Lichrosorb) RP-18;
온도: 25℃ (다른 언급이 없는 경우);
유속: 1.5ml /분;
검출기: 자스코(Jasco) 875-UV(230nm):
용출 용매 A: 물 90%, 아세토니트릴 10%, 트리플루오로아세트산(TFA) 0.1%;
용출 용매 B: 아세토니트릴, 트리플루오로아세트산 0.1%;
용출 용매 C: 물, 트리플루오로아세트산 0.1%;
농도 구배;
( I ): B:A를 0:100에서 40:60으로 변화시키고(20분), 계속하여 80: 20으로 변화시킴(10분)
( II ): A:C를 0:100에서 50:50으로 변화(20분)시키고, 계속하여 A:C를 100:0으로 변화시키고(3분), 다시 B:A를 0:100에서 40:60으로 변화시킴(20분).
달리 언급되지 않으면, 모든 합성 단계는 실온에서 이루어진다.
110℃에서 6M 염산으로 22시간 동안 가수분해 한 후, 베크만 시스템골드(Beckman SYSTEM GOLD) 아미노산 분석기를 이용하여 아미노산의 조성과 비율이 결정되었다.
더욱 상세하기로는, 실시예에서 이용되는 약어의 의미는 아래와 같다:
BDHA-Cl: 벤질디메틸헥사데실암모늄 클로라이드
Boc: t-부틸옥시카르보닐
(Boc)20: 디-t-부틸-디카보네이트
BOP: 벤조트리아졸-1-일-옥시-트리스-(디메틸아미노)-포스포늄 헥사플루오로포스페이트
BSA: N,O-비스(트리메틸실릴)-아세트아미드
DCC: 디사이클로헥실카르보디이미드
DMAP: 4-디메틸아미노-피리딘
DMF: 디메틸포름아미드
F: 플루오라이드
HOBT: 1 -하이드록시 -벤조트리아졸
Pmc : 2,2,5,7,8-펜타메틸-크로만-6-설포닐
PyBroP· 브로모-트리스-피롤리디늄-포스포늄 헥사플루오로포스페이트
tBu: t-부틸
TBAF: 테트라부틸암모늄 플루오라이드
TEA: 트리에틸아민
TFA: 트리플루오로아세트산
Su: 숙신이미드
Z: 벤질옥시 카르보닐
실시예 1
H-Sar-Lys-Pro-Arg-OH · 2AcOH
A] 60㎖ 디클로로에탄에 Z-Arg(Pmc)-OH 6.9g (12mmole)을 녹인 슬러리에, N, N-디메틸포름아미드-디-t-부틸-아세테이트 8.64㎖(36mmole)를 50℃에서 60분간 부가하였다. 부가후, 반응 혼합물을 50℃에서 40분간 교반한 다음, 5% 탄산수소나트륨 수용액 20㎖를 부가하였다. 디클로로에탄을 진공하에서 증발시키고 수용액 상을 100㎖의 에틸아세테이트로 희석하였다. 유기상을 분리하여 5% 탄산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 포화 염화나트륨 수용액으로 세척하였다. 유기상을 무수물화하고, 진공하에서 증발시킨 다음, 결과물인 조생성물(crude)을 실리카겔 칼럼(용출 용매; 에틸아세테이트/n-헥산 = 6:4) 상에서 정제하였다. 3.4g의 Z-Arg(Pmc)-OtBu[HPLC, 농도 구배( I ): 머무름 시간 32분; 순도 99%]를 얻었다.
B] 80㎖의 메탄올에 A]에서 생성된 화합물 3.385g(5.36mmole)을 녹인 용액에, 포름산 암모늄 1.416g(21.44mmole)이 3㎖의 물에 녹아 있는 용액과 팔라듐 해면(약 1g)을 부가하였다. 반응 혼합물을 상온에서 2시간 동안 천천히 교반하였다. 촉매를 여과하여 제거한 후, 진공하에서 용매를 증발시키고, 잔류물을 에틸아세테이트에 취하여 5% 탄산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화하여 진공하에서 증발시킴으로써, 2.88g의 H-Arg(Pmc)-OtBu · HCOOH [HPLC, 농도 구배( I ): 머무름 시간 23.40분; 순도 99.3%]을 얻었다.
C] B]에서 생성된 화합물을 30㎖의 DMF/메틸렌클로라이드(1:1)에 용해시켰다. 별도로, Z-Pro-OH 1.403g(5.63mmole)을 20㎖의 DMF/메틸렌클로라이드(1:1)에 용해시킨 다음, BOP(2.49g, 5.63mmole), HOBT(0.76g, 5.63mmole) 및 TEA(1.56㎖, 11.26mmole)를 부가하였다. 상기 두 용액을 혼합한 다음, 얻어진 반응 혼합물을 1시간 동안 교반하였다. 그런 다음, 진공하에서 용매를 증발시키고, 잔류물을 에틸아세테이트에 취하여 5% 탄산소소나트륨으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화하고 진공하에서 증발시킨 다음, 잔류물을 에틸에테르에서 분쇄하여, 3.71g의 Z-Pro-Arg(Pmc)-OtBu[HPLC, 농도 구배( I ): 머무름 시간 29.49분: 순도 99.6%]을 얻었다.
D] 50㎖의 메탄올에 C]에서 얻은 화합물 3.709g(5.08mmole)을 녹인 용액에, 질소 분위기에서 350mg의 Pd/C를 부가한 다음, 연속적으로 트리에틸실란4㎖(24mmole)를 매우 천천히 부가하였다. 약 2시간 후, 반응 혼합물을 여과하고, 진공하에서 용매를 증발시켜 3.01g의 H-Pro-Arg(Pmc)-OtBu[HPLC, 농도 구배( I ): 머무름 시간 24.25분; 순도 99.56%]를 얻었다.
E] D]에서 생성된 화합물(2.375g, 4mmole)을 20㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 용해시켰다. Z-Lys(Boc)-OH(1.826g, 4.8mmole)를 20㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 용해시킨 다음, BOP(2.12g, 4.8mmole), HOBT(0.648g, 4.8mmole) 및 TEA(1.33㎖, 9.6mmole)를 부가하였다. 상기 두 용액을 혼합하고, 얻어진 반응 혼합물을 1시간 동안 교반한 다음, C] 단계에서 기술된 바와 같이 처리하였다. 잔류물을 에틸에테르에서 분쇄하여 3.64g의 Z-Lys(Boc)-Pro-Arg(Pmc)-OtBu를 얻었다.
F] 70㎖의 메탄올에 E]에서 생성된 화합물 3.64g(3.8mmole)을 녹인 용액에, 포름산 암모늄 1.321g(20mmole)이 3㎖의 물에 녹아있는 용액과 약 1g의 신선한 팔라듐 해면을 부가하였다. 그런 다음, B]에서 기술된 바와 같은 과정을 거쳐, 3.27g의 H-Lys(Boc)-Fro-Arg(Pmc)-OtBu를 얻었다.
G] Z-Sar-OH(0.196g, 0.88mmole)를 4㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 용해시키고, 계속하여 BOP(0.39g, 0.88mmole), HOBT(0.119g, 0.88mmole), TEA(0.24g, 1.76mmole) 및 F]에서 생성된 화합물(0.694g, 0.88mmole)이 4㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 용해되어 있는 용액을 부가하였다. 상기 용액을 1시간 동안 교반하였다. 그런 다음, 진공하에서 용매를 증발시키고, 잔류물을 에틸아세테이트에 취하고, 5% 탄산수소나트륨, 2.5% 황산수소칼륨으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화하고, 진공하에서 증발시킨 다음, 잔류물을 에틸에테르에서 분쇄하여, 0.746g의 Z-Sar-Lys(Boc)-Pro-Arg(Pmc)-OtBu를 얻었다.
H] G]에서 생성된 화합물(0.746g, 0.726mmole)을 95% TFA 수용액 10㎖에 용해시켰다. 75분 후, 반응 혼합물을 물로 희석시킨 다음, 진공하에서 증발시켰다. 잔류물을 물에 취하고, 에틸에테르로 세척한 다음, 동결 건조하였다. 역상 변위(displacement) 크로마토그래피에 의해 생성물을 정제하였다. 생성물을 TFA 수용액(0.1% v/v) 3㎖에 용해한 다음, TFA(0.1% v/v)를 함유하는 물로 미리 평형화된 VYDAC C18 (250 × 10mm) 칼럼에 0.5㎖/분의 유속으로 주입했다. TFA(0.1% v/v)를 함유하는 50mM BDHA-Cl 수용액을 0.5㎖/분의 유속으로 흘려서 칼럼을 용출시켰다. 약 1시간의 용출 후, 변위제가 용출될 때까지 0.5㎖ 단위로 분액을 수집하였다. 분액들을 HPLC로 분석하여 순수 생성물을 함유하는 분액을 취합하여 동결 건조하였다. 0.2g의 Z-Sar-Lys-Pro-Arg-OH[HPLC, 농도 구배( I ): 머무름 시간 11.04분: 순도> 95%]를 얻었다.
I] H]에서 생성된 화합물(0.2g, 0.28mmole)을 85% 포름산(5㎖)에 용해한 다음, 신선한 팔라듐 해면을 부가하였다. 반응 혼합물을 100분 동안 가볍게 교반하였다. 촉매를 여과하여 제거한 후, 반응 혼합물을 물로 희석하고 동결 건조하였다. pH 5인 암노늄아세테이트의 농도를 300분간 0.015M에서 0.15M까지 변화시키며 유속을 3㎖/분으로하여 S-세파로즈(Sepharose) F/F 칼럼(16×200mm)를 이용하여 이온 교환크로마토그래피에 의해 생성물을 정제하였다. 수집된 분액을 HPLC로 분석하여순수한 생성물을 함유하는 분액을 수집하여 동결 건조함으로써 0.1g의 H-Sar-Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 2
H-(D)Ala-Lys-Pro-Arg-OH · 2AcOH
Z-(D)Ala-OH 0.122g(0.55mmole) 및 실시예 1,F]에서 생성된 화합물 0.434g(0.5mmole)로부터 출발하여 실질적으로 실시예 1,G-I]에서 개시된 바와 같은 방법을 통하여, 0.089g의 H-(D)Ala-Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 3
Ac-Gly-Lys-Pro-Arg-OH · AcOH
Ac-Gly-OH(0.09g, 0.77mmole)과 실시예 1,F]에서 생성된 화합물(0.607g, 0.7mmole)로부터 출발하여 실시예 1,G-H]의 방법에 따라서, 0.116g의 Ac-Gly-Lys-Pro-Arg-OH ·AcOH를 얻었다.
실시예 4
H-Gly-(Et)Lys-Pro-Arg-OH · 2AcOH
실시예 1,F]에서 생성된 화합물 (0.96g, 1.1mmole)을 8㎖의 메탄올에 용해시킨 다음, 소디윰 시아노보로하이드라드 0.071g(1.12mmole)을 부가하였다. 반응 혼합물을 -15℃까지 냉각한 다음, 아세트알데히드 0.062㎖(1.12mmole)을 부가하였다. 60분 후, 진공하에서 반응 혼합물을 증발시키고, 잔류물을 물에 취한 다음, HCl을 가하여 pH 3이 되도록 하였다. 침전물을 여과한 다음, HCl(pH 3)로 세척하였다.70%의 H-(Et)Lys(Boc)-Pro-Arg(Pmc)-OtBu와 26%의 디알킬화 부산물로 이루어진 0.825g의 흰색 고체를 얻었다.
B] Z-Gly-OH (0.994g, 4.75mmole)를 3㎖의 DMF/메틸렌클로라이드(4:6 v/v)에 용해시킨 다음, PyBroF(2.21g 4.75mmole), 디이소프로필에틸아민(2.4㎖, 14.25mmole) 및 A]에서의 생성된 고체가 DMF/메틸렌클로라이드 (4:6 v/v) 6㎖에 용해되어 있는 용액을 차례로 부가하였다. 반응 혼합물을 80분간 교반하였다. 진공하에서 용매를 증발시키고, 잔류물을 에틸아세테이트에 취하고, 5% 탄산수소나트륨, 2.5% 황산수소칼륨으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시켰다. 60%의 Z-Gly-(Et)Lys(Boc)-Pro-Arg(Pmc)-OtBu를 함유하는 혼합물 0.95g을 얻었다.
C] B]에서 생성된 화합물 0.75g으로부터 출발하여 실시예 1,H]에서 개시된 바와 같은 방법을 통하여, 0.125g의 Z-Gly-(Et)Lys-Pro-Arg-OH를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 12분; 순도 94%.
D] pH 6인 암노늄 아세테이트의 농도를 270분에 걸쳐 0.02M에서 0.2M까지 변화시키며 유속을 3㎖/분으로 하고 CM-세파덱스(Sephadex) C-25 칼럼 (16×200mm)을 이용하여 이온-교환 크로마토그래피에 의해 C]에서 생성된 화합물을 정제하였다. 수집된 분액을 HPLC로 분석하여 순수한 생성물을 함유하는 분액을 취하여 동결 건조함으로써 0.1g의 Z-Gly-(Et)Lys-Pro-Arg-OH ·2AcOH(ITF 1931)를 얻었다.
1.04.
E] D]에서 생성된 화합물을 실시예 1, I]에 개시된 바와 같이 처리하였다. 0.089g의 H-Gly-(Et)Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 5
Ac-Lys-Pro-Arg-OH · TFA
실시예 1, F]에서 생성된 화합물(0.3g, 0.34mmole)을 1㎖의 메틸렌클로라이드에 용해시켰다. 이 용액을 -20℃까지 냉각한 다음, DMAP(0.048g, 0.38mmole)와 아세트산 무수물(0.035㎖, 0.38mmole)를 부가하였다. 30분 후, 상기 용액을 5% 탄산수소나트륨 수용액과 염화나트륨 포화용액으로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시켜, 0.28g의 Ac-Lys(Boc)-Pro-Arg(Pmc)-OtBu를 얻었다.
B] A]에서 생성된 화합물(0.28g, 0.324mmole)을 실시예 1,H]에서 개시된 바와 같이 처리하였다. 0.085g의 Ac-Lys-Pro-Arg-OH ·TFA를 얻었다.
실시예 6
H-Gly-(D)Lys-Pro-Arg-OH · 2AcOH
A] Z-(D)Lys(Boc)-OH 0.544g(1.43mmole)과 실시예 1,D]에서 생성된 화합물 0.772g(1.3mmole)로부터 출발하여 실시예 1,G]에서 개시된 바와 같은 방법을 통하여, 1.2g의 2-(D)Lys(Boc)-Pro-Arg(Pmc)-OtBu를 얻었다.
B] A]에서 생성된 화합물(1.2g, 1.29mmole)을 30㎖의 메탄올에 용해시켜 얻어진 용액에 포름산 암모늄 0.325g(5.16mmole)이 0.3㎖의 물에 녹아 있는 용액과 약 0.22의 신설한 팔라듐 해면을 부가하였다. 2시간 후, 촉매를 여과하여 제거한 다음, 진공하에서 용매를 증발시켰다. 잔류물을 50㎖의 에틸아세테이트에 취한 다음, 5%의 탄산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시킴으로써 1.119g의 H- (D)Lys(Boc)-Pro-Arg(Pmc)-OtBu ·HCOOH를 얻었다.
C] Z-Gly-OH 0.229g(1.43mmole)과 B]에서 생성된 화합물 1.119g(1.29mmole)으로부터 출발하여 실시예 1,G-I]의 방법에 따라서, 0.23g의 H-Gly-(D)Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 7
H-Gly-Lys-Pro-Arg-NH 2 · 3AcOH
A] Z-Arg(Pmc)-OH(2.87g, 5mmole)을 15㎖의 DMF에 용해시키고, HOBT 암모늄염 0.837g(5.5mmole)을 부가한 다음, 반응 혼합물을 0℃까지 냉각하였다. DCC 1.135g(5.5mmole)을 부가한 후, 반응 혼합물을 실온에서 300분 동안 교반하였다. 디사이클로헥실우레아를 여과하여 제거한 후, 용매를 진공하에서 증발시키고, 잔류물을 25㎖의 아세테이트에 취하고, 5% 탄산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화하고, 용매를 진공하에서 증발시킨 다음, 잔류물을 에틸에테르/n-헥산에서 결정화시켰다. 2.8g의 Z-Arg(Pmc)-NH2[HPLC(B:A를 20:80에서 60:40까지 20분간 변화시킴): 머무름 시간 15.7분; 순도 98%]를 얻었다.
B] 50㎖의 메탄올에 A]에서 생성된 화합물 1.045g(1.82mmole)이 녹아있는 용액에, 질소 분위기하에서 150mg의 Pd/C를 부가한 다음, 트리에틸실란 2㎖(12mmole)를 매우 서서히 부가하였다. 120분 후, 반응 혼합물을 여과한 다음, 용매를 진공하에서 증발시킴으로써 0.8g의 H-Arg(Pmc)-NH2[HPLC(B:A를 20:80에서 60:40까지 20분간 변화시킴): 머무름 시간 8.6분; 순도 98.5%]를 얻었다.
C] Z-Pro-OH(0.499g, 2mmole)와 B]에서 생성된 화합물(0.8g, 1.82mmole)로부터 출발하여 실질적으로 실시예 1,G]에서 개시된 방법을 통하여, 1.2g의 Z-Pro-Arg(Pmc)-NH2를 얻었다. 얻어진 화합물을 25㎖의 메탄올에 용해시키고, 10% Pd/C 100mg을 부가한 다음, 트리에틸실란 1.52㎖(9.1mmole)을 매우 서서히 부가하였다, 130분 후, 반응 혼합물을 여과한 다음, 용매를 진공하에서 증발시킴으로써, 0.955g의 H-Pro-Arg(Pmc)-NH2를 얻었다.
D] Z-Lys(Boc)-OH 0.745g(1.96mmole)과 C]에서 생성된 화합물 0.955g(1.78mmole)로부터 출발하여 C]에서 개시된 바와 같은 방법을 통하여, 1.19g의 H-Lys(Boc)-Pro-Arg(Pmc)-NH2를 얻었다.
E] Z-Gly-OH 0.385g(1.71mmole)과 D]에서 생성된 화합물 1.19g(1.55mmole)로부터 출발하여 실시예 1,G-I]에서 개시된 바와 같은 방법을 거쳐 조성생물을 얻었다. 그런 다음, pH 7인 아세트산암모늄의 농도를 240분에 걸쳐 0.025M에서 0.30M까지 변화시키면서 유속을 2㎖/분으로 하여 16×200mm CM-52 셀룰로오스 칼럼을 이용한 이온교환 크로마토그래피에 의해 정제하였다. 수집된 분액을 HPLC로 분석하여 순수한 분액을 취합한 다음 동결 건조함으로써, 0.283g의 H-Gly-Lys-Pro-Arg-NH2·3AcOH를 얻었다.
실시예 8
H-Gly-Lys-Pro-Agm · 3AcOH
A] Z-Lys-OH(0.84g, 3mmole)을 1M 수산화나트륨 용액 3㎖와 디옥산 3㎖로 이루어진 용액 6㎖에 용해시킨 다음, 에틸-티올-트리플루오로아세테이트 0.57㎖(4.5mmole)를 부가하였다. 반응 혼합물을 40℃에서 약 7시간 동안 교반하고, 용매를 진공하에서 증발시킨 다음, 잔류물을 5% 탄산수소나트륨 40㎖에 취하였다. 수용액상을 에틸아세테이트로 세척하고, pH 2로 조절한 다음, 에틸아세테이트로 추출하였다. 유기상을 무수물화하고, 진공하에서 증발시킴으로써 1g의 Z-Lys(TFA)-OH[HPLC: 농도 구배 ( I ): 머무름 시간 19.7분; 순도 96%]를 오일형태로 얻었다.
B] H-Pro-OtBu · HCl(0.283g, 1.364mmole)을 9㎖의DMF/메틸렌클로라이드(1:1)에 용해시켰다. A]에서 생성된 화합물(0.565g, 1.5mmole)을 9㎖의 DMF/메틸렌클로라이드(1:1)에 용해시킨 다음, BOP(0.66g, 1.5mmole), HOBT(0.202g, 1.5mmole) 및 TEA(0.63㎖, 4.5mmole)를 부가하였다. 상기 두 용액을 혼합하고, 그 혼합물을 30분간 교반한 다음, 실시예 1,G]에 개시된 바와 같은 방법을 통하여 0.725g의 Z-Lys-(TFA)-Pro-OtBu[HPLC, 농도 구배( I ): 머무름 시간 26.12분: 순도 95.5%]를 오일형태로서 얻었다.
C] B]에서 생성된 화합물 0.725g(1.36mmole)이 20㎖의 메탄올에 녹아있는 용액에, 포름산 암모늄 80.26g(4.1mmole)이 0.1㎖의 물에 녹아 있는 용액과 약 0.2g의 신설한 팔라듐 해면을 부가하였다. 2시간 후, 촉매를 여과하여 제거한 다음, 진공하에서 용매를 증발시켰다. 잔류물을 40㎖의 에틸아세테이트에 취하고, 5% 탄산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시킴으로써 0.5g의 H-Lys(TFA)-Pro-OtBu · HCOOH[HPLC, 농도 구배( I ); 머무름 시간 16.24분; 순도 95%]를 얻었다.
D] C]에서 생성된 화합물을 10㎖의 DMF/메틸렌클로라이드(1:1)에 용해시켰다. Z-Gly-OH(0.291g, 1.4mmole)를 10㎖의 DMF/메틸렌클로라이드(1:1)에 부가한 다음, BOP(0.615g, 1.4mmole), HOBT(0.188g, 1.4mmole) 및 TEA(0.39㎖, 2.8mmole)를 부가하였다. 상기 두 용액을 혼합하고, 그 혼합물을 60분 동안 교반한 다음, 실질적으로 실시예 1,G]의 과정을 따랐다. 유기상을 무수물화한 다음, 진공하에서 증발시킴으로써 오일형태의 잔류물을 얻은 다음, 실리카 겔 칼럼(용출용매: 에틸아세테이트/n-헥산 9:1)을 이용하여 크로마토그래피시켜, 0.588g의 Z-Gly-Lys(TFA)-Pro-OtBu[HPLC, 농도 구배( I ); 머무름 시간 24.51분; 순도 99.3%]를 얻었다.
E] 미리 0℃로 냉각시킨 37% 염산 15㎖에 D]에서 생성된 화합물을 용해시켰다. 0℃에서 8분 후, 반응 혼합물을 15㎖의 물로 희석시킨 다음, 진공하에서 증발시켰다. 잔류물을 물에 취하고 에틸에테르로 세척한 다음, 동결 건조함으로써 0.531g의 Z-Gly-Lys(TFA)-Pro-OH[HPLC, 농도 구배( I ): 머무름 시간 17.69분: 순도 95%]를 얻었다.
F] E]에서 생성된 화합물(0.53g, 1mmole)을 5㎖의 에틸아세테이트에 용해시키고, N-하이드록시숙신이미드 0.138g(1.2mmole)를 부가한 다음, 반응 혼합물을 -20℃까지 냉각시켰다. DCC 0.248g(1.2mmole)을 부가하였다. 반응 혼합물을 실온에서 90분간 방치하고, 침전물을 여과하여 제거한 다음, 용매를 증발시켰다. 0.625g의 Z-Gly-Lys(TFA)-Pro-OSu를 얻었다. 탄산수소나트륨(0.115g, 1.09mmole)를 22㎖의 물에 용해시키고, 아그마틴설페이트(0.498g, 2.18mmole)와 N-메틸-이미다졸(0.087㎖, 1.09mmole)를 연속적으로 부가하였다. 상기 용액에 Z-Gly-Lys(TFA)-Pro-OSu 0.57g(0.91mmole)을 부가하였다. 반응 혼합물을 실온에서 30분 동안 교반하고, pH 3이 되도록한 다음, 에틸아세테이트로 세척하였다. 수용액상을 동결건조하였다. 0.58g의 Z-Gly-Lys(TFA) -Pro-Agm을 얻었다.
G] F]에서 생성된 화합물을 35㎖의 물에 용해시킨 다음, 1M의 수산화나트륨을 부가하여 pH 12.7이 되도록하였다. 30분 후, 1M의 염산을 부가하여 pH가 7이 되도록 한 다음, 수용액상을 동결건조하였다. 생성되는 잔류물을 무수 에탄올에 취하고, 염을 여과하여 제거한 다음, 용액을 진공하에서 증발시켰다. 실시예 1,H]에 개시된 방법에 따른 역상 변위 크로마토그래피에 의해, 얻어진 생성물을 정제하였다. 0.251g의 Z-Gly-Lys-Pro-Agm[HPLC, 농도 구배( I ): 머무름 시간 10.77분; 순도 97.5%]을 얻었다.
H] G]에서 생성된 화합물을 실질적으로 실시예 1,I]에 개시된 바와 같이 처리하였다. 0.229g의 H-Gly-Lys-Pro-Agm ·3AcOH를 얻었다.
실시예 9
H-Gly-Lys-Pro-OH · AcOH
A] Z-Lys(Boc)-OH(1.487g, 3.8mmole)를 15㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 용해시킨 다음, BOP(1.72g, 3.8mmole), HOBT(0.52g, 3.8mmole), TEA(1.08㎖, 7.8mmole) 및 H-Pro-OtBu(0.623g, 3mmole)가 15㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 녹아 있는 용액을 차례로 부가하였다. 상기 용액을 1시간 동안 교반하였다. 용매를 진공하에서 증발시키고, 잔류물을 에틸아세테이트에 취하고, 5% 탄산수소나트륨 수용액, 2.5% 황산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화하고, 진공하에서 증발시킨 다음, 잔류물을 에틸에테르에서 분쇄함으로써 1.6g의 Z-Lys(Boc)-Pro-OtBu를 얻었다.
B] A]에서 생성된 화합물(1.59g, 2.9mmole)을 20㎖의 메탄올에 용해시킨 다음, 포름산 암모늄(0.731g, 11.6mmole)이 0.6㎖의 물에 녹아 있는 용액과 신선한 팔라듐 해면(약 0.5g)을 부가하였다. 2시간 후, 촉매를 여과하여 제거한 다음, 용매를 진공하에서 증발시켰다. 잔류물을 50㎖의 에틸아세테이트에 취하고, 5% 탄산수소나트륨 수용액으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시킴으로써 1.119g의 H-Lys(Boc)-Pro-OtBu · HCOOH를 얻었다.
C] Z-Gly-OH(0.762g, 3.64mmole)를 15㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 용해시킨 다음, BOP(1.61g, 3.64mmole), HOBT(0.491g, 3.64mmole), TEA(1.0㎖, 7.28mmole) 및 H-Lys(Boc)-Pro-OtBu(1.119g, 2.8mmole)가 15㎖의 DMF/메틸렌클로라이드(1:1 v/v)에 녹아 있는 용액을 차례로 부가하였다. 반응 혼합물을 A]에 개시된 바와 같이 처리하였다. 1.16g의 Z-Gly-Lys(Boc)-Pro-OtBu를 얻었다.
D] C]에서 생성된 화합물(0.746g, 0.726mmole)을 95% TFA 수용액 20㎖에 용해시켰다. 1시간 후, 반응 혼합물을 물로 희석시킨 다음, 진공하에서 증발시켰다. 잔류물을 물에 취하고, 에틸에테르로 세척한 다음, 동결건조하였다. 변위 역상 크로마토그래피로 생성물을 정제하였다. 생성물을 TFA(0.1% v/v)를 함유하는 수용액 3㎖에 용해시킨 다음, TFA(0.1% v/v)를 함유하는 물로 미리 평형화된 VYDAC C18 (250 × 10mm) 칼럼에 0.5㎖/분의 유속으로 주입했다. TFA(0.1% v/v)를 함유하는50mM BDHA-Cl 수용액을 0.5㎖/분의 유속으로 흘려 칼럼을 용출시켰다. 약 1시간의 용출 후, 변위제가 용출될 때까지 0.5㎖ 단위의 분액을 수집하였다. 분액을 HPLC로 분석하여 순수한 생성물을 함유하는 분액을 취한 다음, 동결건조하였다. 0.325g의 Z-Gly-Lys-Pro-OH를 얻었다.
HPLC: 농도 구배 ( I ), 머무름 시간 11.48분; 순도> 95%.
E] D]에서 생성된 화합물(0.325g, 0.59mmole)을 85% 포름산 5㎖에 용해시킨 다음, 신선한 해면 팔라듐을 부가하였다. 반응 혼합물을 약 1시간 동안 서서히 교반하였다. 촉매를 여과하여 제거하고, 포름산을 물로 희석한 다음, 동결건조하였다. pH 5인 아세트산암모늄의 농도를 0.015M에서 0.15M까지 5시간 동안 변화시키면서 3㎖의 유속으로 S-세파로즈 F/F 칼럼(16×200mm)을 이용한 이온교환 크로마토그래피에 의해 생성물을 정제하였다. 수집된 분액을 HPLC로 분석하여 순수한 생성물을 함유하는 분액을 취한 다음, 동결건조함으로써 0.165g의 H-Gly-Lys-Pro-OH · AcOH를 얻었다.
실시예 10
H-(Et)Lys-Pro-Arg-OH · 2AcOH
A] 클로로포름/메탄올(9/1 v/v)로 미리 평형화된 로바르 리크로프렙(Lobar Lichroprep) Si 60 칼럼 40-63㎛ (31×2.5cm)를 이용한 실리카겔 크로마토그래피에 의해, 실시예 4,A]에서 생성된 화합물 0.4g을 정제하였다. 클로로포름/메탄올(9/1 v/v)을 8㎖/분의 유속으로 흘려 칼림을 용출시켰다. 순수한 생성물을 함유하는 분액을 취하고 용매를 진공하에서 증발시켰다. 0.28g의 H-(Et)Lys(Boc)-Pro-Arg(Pmc) -OtBu를 얻었다.
HPLC: 농도 구배 ( I ), 머무름 시간 28.5분, 순도> 99%.
B] A]에서 생성된 화합물 (0.28g, 0.33mmole)을 95% TFA 수용액 6㎖에 용해시켰다. 70분 후, 반응 혼합물을 물로 희석한 다음, 진공하에서 증발시켰다. 잔류물을 물에 취하고, 에틸에테르로 세척한 다음, 동결건조하였다. pH 6인 아세트산암모늄의 농도를 0.02M에서 0.2M까지 270분간 변화시키면서 유속을 3㎖/분으로하여 CM-세파덱스 C-25 칼럼 (16×200mm)을 이용한 이온교환 크로마토그래피에 의해, 생성물을 정제하였다. 수집된 분액을 HPLC로 분석하여 순수 생성물을 함유하는 분액을 취한 다음, 동결건조함으로써 0.14g의 H-(Et)Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 11
(Et) 2 Lys-Pro-Arg-OH ·2AcOH
A] 실시예 4,A]에서 생성된 화합물 0.425g을 7㎖의 메탄올에 용해시킨 다음, 소디움시아노보로하이드라이드 0.063g(1mmole)을 부가하였다. 반응 혼합물을 -15℃까지 냉각한 다음, 아세트알데히드 0.155㎖ (2.5mmnle)를 부가하였다. 90분 후, 반응 혼합물을 진공하에서 증발시키고, 잔류물을 물에서 슬러리화시킨 다음, 염산을 부가하여 pH 3이 되도록 하였다. 생성된 침전물을 여과한 다음, pH 3인 염산으로 세척하였다. 0.4g의 (Et)2Lys(Boc)-Pro-Arg(Pmc)-OtBu를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 30.3분; 순도> 98%.
B] A]에서 생성된 화합물(0.4g, 0.455mmole)을 실시예 10,B]에서와 같이 처리하였다. 0.14g의 (Et)2Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 12
H-Gly-(Et)Lys-Pro-Leu-OH · AcOH
A] 실시예 9,A]에서 생성된 화합물(5.33g, 10mmole)을 Pd/C의 존재하에 130㎖의 무수 에탄올에 용해시켰다. 아세트알데히드(0.745㎖, 12mmole)를 30분간 떨어뜨리고, 20㎖의 무수 에탄올에 용해시킨 다음, 트리에틸실란(9.56㎖, 60mmole)을 60분간 부가하였다. 75분 후, 촉매를 여과하여 제거한 다음, 용매를 진공하에서 증발시켰다. 오일형태의 잔류물을 50㎖의 무수 에틸에테르에 용해시킨 다음, HCl로 포화된 에틸아세테이트 3㎖를 부가하였다. 생성된 침전물을 여과한 다음, 진공하에서 건조하였다. 4.25g의 H-(Et)Lys(Boc)-Pro-OtBu ·HCl를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 19.83분; 순도> 98%.
B] Z-Gly-OH(3.78g, 18mmole)를 12㎖의 DMF와 67㎖의 메틸렌클로라이드의 혼합용매에 용해시켰다.. 용액을 -15℃까지 냉각한 다음, DCC(1.86g, 9.03mmole)를 부가하였다. 15분 후, 반응혼합물을 여과한 다음, A]에서 생성된 화합물(2.8g, 6.02mmole)이 40㎖의 메틸렌클로라이드에 용해되어 있는 용액에 부가하였다. N-메틸-모르폴린(0.66㎖, 6.02mmole)을 부가한 후, 반응 혼합물을 35℃에서 60분간 방치하였다. 용매를 진공하에서 증발시키고, 잔류물을 에틸아세테이트에 취한 다음, 5% 탄산수소나트륨 수용액과 2.5% 황산수소칼륨 수용액으로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시켰다. 3.7g의 Z-Gly-(Et)Lys(Boc)-Pro-OtBu를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 28.60분; 순도 94%.
C] B]에서 생성된 화합물(3.7g, 6mmole)을 95% TFA 수용액 15㎖에 용해시켰다. 15분 후, 반응 혼합물을 에틸에테르에 서서히 부가하고, 생성되는 침전물을 여과한 다음, 진공하에서 건조하였다. 2.9g의 Z-Gly-(Et)Lys-Pro-OH를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 14.93분; 순도 94%.
D] C]에서 생성된 화합물(1g, 1.73mmole)을 디옥산/수산화나트륨 0.5M 수용액(1/1 v/v) 6.92㎖에 용해시켰다. 용액을 0℃까지 냉각한 다음, (Boc)2O(0.415g, 1.903mmole)를 부가하였다. 반응 혼합물을 pH 12, 상온에서 45분 동안 방치하였다. 용매를 진공하에서 증발시키고, 잔류물을 물에 취한 다음, 에틸에테르로 세척하였다. 수용액상을 산성화시켜 pH 3이 되도록한 다음, 30㎖의 에틸아세테이트로 추출하였다. 유기상을 무수물화한 다음, 진공하에서 증발시켰다. 0.96g의 Z-Gly-(Et)Lys(Boc)-Pro-OH를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 23.04분: 순도 92%.
E] D]에서 생성된 화합물(0.281g, 0.5mmole)을 4㎖의 DMF/메틸렌클로라이드(1:1)에 용해시킨 다음, BOP(0.221g, 0.5mmole), HOBT(0.067g, 0.5mmole), TEA(0.219㎖, 1.57mmole) 및 H-Leu-OtEu · HCl(0.117g, 0.525mmole)를 부가하였다. 실시예 1,C]에 따라 진행시켜 0. 365g의 Z-Gly-(Et)Lys(Boc)-Pro-Leu-OtBu를 얻었다.
HPLC: 농도 구배( I ) 머무름 시간 29.86분: 순도> 99%.
F] E]에서 생성된 화합물(0.365g, 0.5mmole)로부터 출발하여 실질적으로 실시예 1,H-I]에 개시된 바와 같은 방법을 통하여, 0.155g의 H-Gly-(Et)Lys-Pro-Leu-OH ·AcOH를 얻었다.
실시예 13
H-Gly-(Et)Lys-Pro-Agm · 3AcOH
A] 실시예 12,D]에서 생성된 화합물(0.425g, 0.75mmole), N-하이드록시숙신이미드(0.103g, 0.9mmole) , DCC(0.186g, 0.9mmole)로부터 출발하여 탄산나트륨(0.095g, 0.9mmole), 황산아그마틴(0.411g, 1.8mmole) 및 N-메틸-이미다졸(0.072㎖, 0.9mmole)을 연속적으로 부가한 다음, 실시예 8,F]에 기재된 방법에 따라 반응을 진행시켜 0.5g의 Z-Gly(Et)Lys(Boc)-Pro-Agm을 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 20.6분; 순도 85%.
B] A]에서 생성된 화합물(0.5g, 0.74mmole)로부터 출발하여 실시예 1,H-I]에 개시되어 있는 방법을 통하여, 0.169g의 H-Gly-(Et)Lys-Pro-Agm · 3AcOH를 얻었다.
실시예 14
H-Gly-(Et)Lys-Pro-OH ·2AcOH
실시예 12,C]에서 생성된 화합물(0.2g, 0.347mmole)로부터 출발하여 실시예 1, I]에 개시된 바와 같은 방법을 통하여 0.085g의 H-Gly-(Et)Lys-Pro-OH ·2AcOH를 얻었다.
실시예 15
H-Leu-(Et)Lys-Pro-Arg-OH · 2AcOH
A] 실시예 12,A]에서 생성된 화합물(0.732g, 1.5mmole)을 질소분위기에서 8㎖의 아세토니트릴에 용해시킨 다음, BSA 0.733㎖(3mmole)Z-Leu-F[엘.에이. 카르피노(L.A. Carpino), 이.엠.이 맨사우어(E.M.E. Mansour), 디. 사다트-알라이(D. Sadat-Aalaee), J Org. Chem., 1991, 56, 2611-2614] 1.6g(6mmole) 및 TBAF 0.094g(0.3mmole)이 2㎖의 아세토니트릴에 용해되어 있는 용액을 부가하였다. 반응 혼합물을 실온에서 240분 동안 교반하였다. 용매를 진공하에서 증발시키고, 잔류물을 에틸아세테이트에 취한 다음, 중성이 될 때까지 5% 탄산수소나트륨과 2.5% 황산수소칼륨으로 세척하였다. 유기상을 무수물화하고, 진공하에서 증발시킨 다음, 잔류물을 헥산/에틸아세테이트(7/3 v/v)로 미리 평형화된 로바르 리크로프렙 Si 60칼럼, 40-63㎛ (44×3 7cm)을 이용한 실리카 겔 크로마토그래피로 정제하였다. 헥산/에틸아세테이트(7/3 v/v)를 이용하여 16㎖/분의 유속으로 칼럼을 용출시켰다. 순수 생성물을 함유하는 분액을 수집하여, 용매를 진공하에서 증발시켰다. 0.5g의 Z-Leu-(Et)Lys(Boc)-Pro-OtBu를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 31.5분: 순도 94%,
B] A]에서 생성된 화합물(0.5g, 0.74mmole)을 실시예 12,C-D]에 개시된 바와 같이 처리하였다. 0.43g의 Z-Leu-(Et)Lys(Boc)-Pro-OH를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 31.5분: 순도> 98%.
C] B]에서 생성된 화합물(0.43g, 0.695mmole)을 9㎖의 1,2-디메톡시에탄에 용해시킨 다음, N-하이드록시숙신이미드(0.128g, 1.112mmole)을 부가하였다. -20℃까지 냉각한 후, DCC(0.215g, 1.042mmole)을 부가하였다. 15분 후, 반응 혼합물을 여과하였다. 그 용액에, DMF/KCl 0.15M 수용액(2/1 v/v) 21㎖에 용해된 H-Arg-OH를 부가하였다. 반응 혼합물을 실온에서 110분 동안 교반하였다. 용매를 진공하에서 증발시키고, 잔류물을 무수 에탄올에 여러번 취한 다음, 여과하였다. 0.455g의 Z-Leu-(Et)Lys(Boc)-Pro-Arg-OH를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 24.38분; 순도 84%.
D] C]에서 생성된 화합물을 실시예 1,H]에 개시된 바와 같이 처리함으로써,Z-Leu-(Et)Lys-Pro-Arg-OH ·TFA(ITF 1929)를 얻었다.
E] D]에서 생성된 화합물(0.341g, 0.44mmole)을 실시예 1,I]에 개시된 바와 같이 처리하였다. 0.06g의 H-Leu-(Et)Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 16
H-Gly-(isoBu)Lys-Pro-Arg-OH · 2AcOH
A] 실시예 9,B]에서 생성된 화합물(2.38g, 5.95mmole)을 34㎖의 메탄올에 용해시킨 다음, 20.4㎖의 아세트산을 부가하였다. 반응 혼합물을 -20℃까지 냉각하고, 이소부틸알데히드(1.36㎖, 14.87mmole)를 떨어뜨린 다음, 소디움시아노보로하이드라이드(0.748g, 11.9mmole)을 부가하였다. 반응 혼합물을 상온에서 100분 동안 교반하였다. 용매를 진공에서 증발시키고, 잔류물을 에틸아세테이트에 취하여, 5% 탄산나트륨과 pH 5의 염산으로 세척한 다음, 중성이 될 때까지 물로 세척하였다. 유기상을 무수물화한 다음, 진공하에서 증발시켰다. 2.65g의 H-(isoBu)Lys(Boc)-Pro-OtBu를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 22.85분; 순도 97%.
B] A]에서 생성된 화합물(2.2g, 4.8mmole)과 Z-Gly-F(4.2g, 20mmole)로부터 출발하여 실질적으로 실시예 15,A-D]에 개시되어 있는 바와 같이 실시하여, 0.2g의 H-Gly-(isoBu)Lys-Pro-Arg-OH ·2AcOH를 얻었다.
실시예 17
H-Gly-(isoBut)Lys-Pro-OH · AcOH
실시예 16,A]에서 생성된 화합물(0.455g, 1mmole)과 Z-Gly 플루오라이드(0.84g, 4mmole)로부터 출발하여, 실질적으로 실시예 15,A]와 실시예 10,B]에 개시되어 있는 순으로 실시하여, 0.172g의 H-Gly-(isoBut)Lys-Pro-OH · AcOH를 얻었다.
실시예 18
H-Gly-(Bzl)Lys-Pro-Arg-OH · 2AcOH
실시예 9,B]에서 생성된 화합물(1.36g, 3mmole)과 벤즈알데히드(0.546g, 5.4mmole)로부터 출발하여, 실질적으로 실시예 16,A-B]의 방법을 통하여, 0.395g의 H-Gly-(Bzl)Lys-Pro-Arg-OH · 2AcOH를 얻었다.
실시예 19
H-Gly-Pro-Pro-Arg-OH · AcOH
A] H-Pro-OtBu · HCl(0.315g, 1.5mmole)과 Z-Pro-OH(0.397g, 1.59mmole)로부터 출발하여, 실시예 1,C-D]의 방법에 따라 0.4g의 H-Pro-Pro-OtBu를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 11.38분: 순도 93%.
B] Z-Gly-OH(0.333g, 1.59mmole)와 A]에서 생성된 화합물(0.4g, 1.5mmole)로부터 출발하여 실질적으로 실시예 1,G-H]의 방법을 통하여, 0.6s의 Z-Gly-Pro-Pro-OH를 얻었다.
HPLC: 농도 구배( I ), 머무름 시간 14.81분: 순도> 98%.
C] B]에서 생성된 화합물을 실질적으로 실시예 15,C-D]에 개시되어 있는 바와 같이 처리하였다. 0.045g의 H-Gly-Pro-Pro-Arg-OH ·AcOH를 얻었다.
HPLC: (칼럼 온도 60℃ ) 농도 구배(II), 머무름 시간 12.06분, 순도> 98%.
본 발명의 화합물은 면역조절, 심혈관 및 항염증 활성이 있는 것으로 나타났다. 특히, 패혈쇼크에 대한 치료제로서 유용한 것으로 나타났다. 이러한 활성은 다음의 약리학적 시험에 의해 결정되었다.
체중이 20-22g인 BALB/C암컷 쥐들의 복막 내에 0.5㎖의 생리 용액에 녹아 있는 LPS(지다당류 시에로타입(sierotype) 0127:B8-시그마)를 각각 1mg씩 접종했다. 쥐들을 10마리 단위로 나누었다. LPS를 투여한 지 20분 및 120분 후에, 본 발명의 화합물의 일부를 각 쥐의 복막 내에 62.5(㎍/쥐)씩 접종하였다. 하나의 그룹은 LPS로만 처리하여 대조군으로서 고찰되었다.
동물들은 적어도 4일 동안 모니터링되었으며, 그 결과는 다음 표에 나타나 있다.
[
[ 표 ]
본 발명의 화합물의 심혈관 활성은, 실질적으로 씨. 클락 등((C. Clark et al. ), Journ., Exp. Methods, 3, 357, 1980.)에 의해 수행된, 마취시킨 쥐의 왼쪽 관상동맥 폐쇄에 의해 유도되는 허혈에 따른 심장보호 활성을 평가할 목적으로 시행한 시험을 통해 연구되었다. 관상동맥의 폐쇄는 저산소, 부정맥을 포함하여 심전도 패턴을 변화시키는 경우를 많이 발생시켜 궁극적으로 실험 동물을 죽음에 이르게 한다.
이러한 실험에서, 12마리의 그룹으로 나눠진 찰스 리버 숫쥐를 넴뷰탈(nembutal)(65mg/kg 복막내 주사)로 마취시킨 다음, 심전계에 연결시켜 심전도를 연속적으로 모니터링하였다. 이어서, 동물의 흉부를 개방하고, 심낭을 절개한 후, 봉합실로 좌측 관상동맥을 돌려감았다. 10분의 회복기간 후, 심전도상의 변화가 기록되지 않을 때, 생리식염수에 용해 또는 현탁시킨 본 발명의 화합물의 소정량을 동물의 정맥 내에 투여하였다. 대조군의 동물의 정맥 내에는 생리식염수를 투여했다. 5분 후, 좌측 관상동맥을 결찰한 다음, 결찰 상태를 30분 동안 유지하였다.
대표 실험에서, 0.4㎍/kg의 투여량에서 조차 심실빈맥(VT) 및 심실세동(VF)의 심각한 감소 및 치사가 관찰되었다. 특히, 실시예 4의 화합물을 3㎍/kg 투여하면, 결찰한지 18분 후에 발생하는 치사율이 대조군에 대해 약 80%가 감소하였으며, VT와 VF는 약 50%가 감소하였다.
또한 본 발명의 목적은 그 약학적 조성물을 포함하여 새로운 올리고펩티드를 면역조절제와 심혈관 및 염증성 병리의 치료에 사용하는 방법, 및 이 방법과 관련된 모든 산업적 측면에 관한 것이다. 이러한 약학적 조성물의 예는 정제, 설탕 코팅된 정제와 필름 코팅된 정제, 시럽 및 액제가 있으며, 시럽과 액제는 경구 및 근육 내 혹은 정맥 내 투여에 적절하다. 이러한 조성물은 상기 유효 성분 그 자체 또는 약학적으로 허용될 수 있는 일반적인 담체 및 부형제와의 조합물을 포함한다.
활성 성분의 투여량의 범위는 이용되는 화합물에 따라 매우 광범위할 수 있으며, 화합물은 치료 요구에 따라 매일 적어도 한 번 투여될 수 있다.

Claims (9)

  1. 일반식 ( I )과 같은 올리고펩티드 및 약학적으로 허용가능한 산성 또는 염기성염:
    여기에서, A1은 글리신, 트레오닌, 류신, 이소류신, 발린, 사르코신, 알라닌, 글리신 및 (C2-6)아실-글리신으로 이루어진 그룹에서 선택된 하나의 아미노산 잔기이거나, 또는 빈자리이며;
    A2는 적어도 하나의 (C1-6) 알킬, 벤질 또는 (C2-6)아실 그룹에 의해 Nα-치환된 류신, 이소류신, 발린, 리신, 오르니틴으로 이루어진 군에서 선택된 하나의 아미노산 잔기이며;
    A3는 프롤린, 류신, 이소류신 및 발린으로 이루어진 군에서 선택된 하나의 아미노산 잔기이며;
    A4는 C-말단부가 선택적으로 아미드화된 아르기닌, 류신 및 글루타민으로 이루어진 군에서 선택된 하나의 아미노산 잔기 또는 아그마틴 잔기, 또는 빈자리이며;
    단, A1및 A4중의 오로지 하나만이 빈자리일 수 있으며, 상기 화합물들은 상기 아미노산 잔기와 아그마틴 잔기의 측쇄 그룹이(C1-6)-알킬, 벤질 및 (C2-6) 아실로이루어진 군으로부터 선택된 적어도 하나의 그룹에 의해 선택적으로 치환될 수 있다는 데 특징이 있으며, 또한 상기 아미노산 잔기 각각은 상기 측쇄를 갖는 카본 원자가 D 또는 L 형태이거나 또는 부분입체이성질체와 거울상 이성질체중의 하나의 형태임.
  2. 제1항에 있어서, A1은 글리신, 사르코신, 알라닌 및 (C2-6)아실-글리신으로 이루어진 군에서 선택된 하나의 아미노산 잔기이거나, 또는 빈자리이며;
    A2는 리신 및 (C1-6)알킬, 벤질 또는 (C2-6)아실 그룹에 의해 선택적으로 Nα-치환된 리신으로 이루어진 군에서 선택된 하나의 아미노산 잔기이며;
    A3은 프롤린이며;
    A4는 아그마틴 잔기, 아르기닌 잔기 또는 C-말단이 선택적으로 아미드화된 아르기닌 잔기이거나, 또는 빈자리이며,
    상기 화합물은 상기 아미노산 잔기와 아그마틴 잔기의 측쇄 그룹이 (Cl-6)알킬, 벤질 및 (C2-6)아실로 이루어진 군으로분터 선택된 적어도 하나의 치환기에 의해 선택적으로 치환될 수 있고, 상기 아미노산 잔기 각각은 Cα가 D 또는 L 형태이거나, 또는 부분입체이성질체와 거울상 이성질체중의 하나의 형태일 수 있는 것을 특징으로 하는 올리고펩티드 및 약학적으로 허용가능한 산성 또는 염기성염.
  3. 제1항에 있어서, A1은 글리신, A2는 Nα-에틸-리신, A3는 프롤린 및 A4는 아르기닌인 것을 특징으로 하는 올리고펩티드 및 약학적으로 허용가능한 산성 또는 염기성염.
  4. 제1항에 있어서, A1은 빈자리, A2는 Nα-아세틸-리신, A3는 프롤린 및 A4는 아르기닌인 것을 특징으로 하는 올리고펩티드 및 약학적으로 허용가능한 산성 또는 염기성염.
  5. 제1항에 있어서, A1은 글리신, A2는 Nα-에틸-리신, A3는 프롤린 및 A4는 빈자리인 것을 특징으로 하는 올리고펩티드 및 약학적으로 허용가능한 산성 또는 염기성염.
  6. 심혈관제로서 이용되는 것을 특징으로 하는 제1항 내지 5항중 어느 한 항에 따른 화합물.
  7. 항염증제로서 이용되는 것을 특징으로 하는 제1항 내지 제5항중 어느 한 항에 따른 화합물.
  8. 패혈쇼크 치료제로서 이용되는 것을 특징으로 하는 제1항 내지 5항중 어느한 항에 따른 화합물.
  9. 약학적으로 허용가능한 부형제 및 제1항에 따른 올리고펩티드를 포함하는 것을 특징으로 하는 심혈관, 항염증 또는 패혈쇼크 치료용 약학적 조성물.
KR1019960701879A 1993-10-12 1994-05-16 C-반응성단백질단편으로부터유도된올리고펩티드 KR100363408B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITMI932154A IT1271486B (it) 1993-10-12 1993-10-12 Oligopeptidi immunomodulatori derivati di frammenti della proteina c- reattiva
ITMI93A002154 1993-10-12

Publications (1)

Publication Number Publication Date
KR100363408B1 true KR100363408B1 (ko) 2003-02-11

Family

ID=11367010

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019960701879A KR100363408B1 (ko) 1993-10-12 1994-05-16 C-반응성단백질단편으로부터유도된올리고펩티드

Country Status (19)

Country Link
US (1) US6057295A (ko)
EP (1) EP0723552B1 (ko)
JP (1) JP3221881B2 (ko)
KR (1) KR100363408B1 (ko)
CN (1) CN1041524C (ko)
AT (1) ATE226591T1 (ko)
AU (1) AU684511B2 (ko)
CA (1) CA2173939C (ko)
DE (1) DE69431603T2 (ko)
DK (1) DK0723552T3 (ko)
ES (1) ES2185652T3 (ko)
FI (1) FI961584A (ko)
HU (1) HUT75538A (ko)
IL (1) IL109761A0 (ko)
IT (1) IT1271486B (ko)
NO (1) NO961423L (ko)
PT (1) PT723552E (ko)
WO (1) WO1995010531A1 (ko)
ZA (1) ZA943610B (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6342481B1 (en) * 1993-10-12 2002-01-29 Italfarmaco S.P.A. Oligopeptides derived from C-reactive protein fragments
EP1408031A1 (en) * 2002-10-09 2004-04-14 3 D Gene Pharma Pyrolidine derivatives useful in treatment of hepatitis C virus infection
WO2010033240A2 (en) 2008-09-19 2010-03-25 Nektar Therapeutics Carbohydrate-based drug delivery polymers and conjugates thereof
DK2526119T3 (en) 2010-01-19 2018-07-30 Harvard College Manipulated opsonin for pathogen detection and treatment
WO2013012924A2 (en) 2011-07-18 2013-01-24 President And Fellows Of Harvard College Engineered microbe-targeting molecules and uses thereof
US10551379B2 (en) 2013-03-15 2020-02-04 President And Fellows Of Harvard College Methods and compositions for improving detection and/or capture of a target entity
AU2014268603B2 (en) 2013-05-21 2018-03-22 President And Fellows Of Harvard College Engineered heme-binding compositions and uses thereof
EP3912986B1 (en) 2013-12-18 2023-12-13 President and Fellows of Harvard College Crp capture/detection of bacteria
CN108289928A (zh) 2015-08-06 2018-07-17 哈佛大学校长及研究员协会 改进的微生物-结合分子和其用途

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253190A2 (en) * 1986-07-16 1988-01-20 ENIRICERCHE S.p.A. Partially retro-inverted tuftsin analogues, method for the preparation thereof and pharmaceutical compositions containing them

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2945239A1 (de) * 1979-11-09 1981-05-21 Troponwerke GmbH & Co KG, 5000 Köln Oligopeptide, verfahren zu ihrer herstellung sowie ihre verwendung in arzneimitteln
US4353823A (en) * 1981-09-01 1982-10-12 Chipens Gunar I Synthetic analog of tuftisin
GB8525615D0 (en) * 1985-10-17 1985-11-20 Hoffmann La Roche Polypeptides
IT1254883B (it) * 1992-04-16 1995-10-11 Italfarmaco Spa Tetrapeptidi parzialmente modificati e retroinvertiti, analoghi di frammenti della proteina c-reattiva.

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0253190A2 (en) * 1986-07-16 1988-01-20 ENIRICERCHE S.p.A. Partially retro-inverted tuftsin analogues, method for the preparation thereof and pharmaceutical compositions containing them

Also Published As

Publication number Publication date
ATE226591T1 (de) 2002-11-15
FI961584A0 (fi) 1996-04-11
ITMI932154A1 (it) 1995-04-12
DE69431603D1 (de) 2002-11-28
JPH09503200A (ja) 1997-03-31
DK0723552T3 (da) 2003-02-24
JP3221881B2 (ja) 2001-10-22
PT723552E (pt) 2003-02-28
EP0723552A1 (en) 1996-07-31
WO1995010531A1 (en) 1995-04-20
ES2185652T3 (es) 2003-05-01
CN1041524C (zh) 1999-01-06
CN1133048A (zh) 1996-10-09
HU9600934D0 (en) 1996-08-28
AU684511B2 (en) 1997-12-18
ZA943610B (en) 1995-01-25
NO961423D0 (no) 1996-04-11
CA2173939A1 (en) 1995-04-20
IT1271486B (it) 1997-05-28
AU6844194A (en) 1995-05-04
CA2173939C (en) 2002-08-27
ITMI932154A0 (it) 1993-10-12
DE69431603T2 (de) 2003-03-13
US6057295A (en) 2000-05-02
EP0723552B1 (en) 2002-10-23
NO961423L (no) 1996-06-10
IL109761A0 (en) 1994-08-26
FI961584A (fi) 1996-04-11
HUT75538A (en) 1997-05-28

Similar Documents

Publication Publication Date Title
JPH08502971A (ja) ファルネシル−タンパク質トランスフェラーゼの阻害剤
JP2000256397A (ja) 新規な環状テトラペプチド誘導体とその医薬用途
AU4111700A (en) Low-molecular inhibitors of complement proteases
KR100363408B1 (ko) C-반응성단백질단편으로부터유도된올리고펩티드
JPS61197595A (ja) 胃液分泌を阻害するトリペプチド及びテトラペプチドのエステル,並びに当該成分を活性成分として含む薬剤組成物の製造方法
US6069232A (en) Polyfluoroalkyl tryptophan tripeptide thrombin inhibitors
US4713367A (en) Retro-inverso analogs of the bradykinin potentiating peptide BPP5a
US6342481B1 (en) Oligopeptides derived from C-reactive protein fragments
HU201964B (en) Process for producing peptides inhibiting maturation of t-lymphocytes and activity of macrophages, as well as pharmaceutical compositions comprising same
Thierry et al. Synthesis and activity of NAcSerAspLysPro analogs on cellular interactions between T-cell and erythrocytes in rosette formation
US5663148A (en) Anaphylatoxin receptor ligands containing lipophilic residues
US3433779A (en) Long-chain aliphatic esters of lysine and other basic amino acids and peptides thereof
US3891692A (en) N-(cyclopropylalkoxycarbonyl)amino acids
JPH0223543B2 (ko)
EP0217804B1 (en) Analogs of substances p
JP2007161696A (ja) 新規なヘプタペプチド及びプロリルエンドペプチダーゼ阻害剤
CA1284550C (en) Retro-inverso analogs of the bradykinin potentiating peptide bpp*in5a*xx
JPH06172202A (ja) アシル−補酵素a:コレステロールアシル転移酵素阻害 剤
RU2442791C1 (ru) Способ получения бусерелина и промежуточные соединения для его получения
RU2144038C1 (ru) Пептиды для ингибирования высвобождения пепсина, фармацевтическая композиция
JPS6121239B2 (ko)
SU1116698A1 (ru) Аналоги энкефалина, обладающие анальгетической активностью
WO1992019644A1 (en) Vasorelaxant peptide
JPH07505640A (ja) C反応性タンパク断片の部分修飾及び逆転置テトラペプチド類似体
CA2015053A1 (en) Retro-inverse, one- or more-bond bearing analogues of thymopentin, a method for synthesizing the same and their employment for the preparation of pharmaceutical

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20061110

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee