KR100349187B1 - 스핑고신 및 스핑가닌의 유도체의 제조방법 - Google Patents

스핑고신 및 스핑가닌의 유도체의 제조방법 Download PDF

Info

Publication number
KR100349187B1
KR100349187B1 KR1019990062144A KR19990062144A KR100349187B1 KR 100349187 B1 KR100349187 B1 KR 100349187B1 KR 1019990062144 A KR1019990062144 A KR 1019990062144A KR 19990062144 A KR19990062144 A KR 19990062144A KR 100349187 B1 KR100349187 B1 KR 100349187B1
Authority
KR
South Korea
Prior art keywords
formula
group
compound represented
acid
hydrogen
Prior art date
Application number
KR1019990062144A
Other languages
English (en)
Other versions
KR20010064029A (ko
Inventor
정성기
이재목
Original Assignee
학교법인 포항공과대학교
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 학교법인 포항공과대학교 filed Critical 학교법인 포항공과대학교
Priority to KR1019990062144A priority Critical patent/KR100349187B1/ko
Publication of KR20010064029A publication Critical patent/KR20010064029A/ko
Application granted granted Critical
Publication of KR100349187B1 publication Critical patent/KR100349187B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C213/00Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C213/08Preparation of compounds containing amino and hydroxy, amino and etherified hydroxy or amino and esterified hydroxy groups bound to the same carbon skeleton by reactions not involving the formation of amino groups, hydroxy groups or etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/02Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C217/04Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C217/28Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having etherified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having one amino group and at least two singly-bound oxygen atoms, with at least one being part of an etherified hydroxy group, bound to the carbon skeleton, e.g. ethers of polyhydroxy amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C221/00Preparation of compounds containing amino groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C225/00Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones
    • C07C225/02Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C225/14Compounds containing amino groups and doubly—bound oxygen atoms bound to the same carbon skeleton, at least one of the doubly—bound oxygen atoms not being part of a —CHO group, e.g. amino ketones having amino groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being unsaturated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 항암제, 항균제, 소염제, 위궤양제, 동맥경화제 및 면역억제제 등의 합성 중간체로 사용되는 스핑고신 및 스핑가닌 유도체의 새로운 제조방법을 제공한다. 본 발명에 따른 제조방법은 입체선택성이 높아 광학적 및 입체적으로 순수한 이성질체를 제조할 수 있고, 하나의 출발 물질로 다양한 입체이성질체 제조가 가능하며, 반응시간이 짧은 등의 장점이 있다.

Description

스핑고신 및 스핑가닌의 유도체의 제조방법{Manufacturing method for derivatives of sphingosine and sphinganine}
본 발명은 스핑고신 및 스핑가닌 유도체의 신규한 제조방법에 관한 것이다.
천연 스핑고신은 긴사슬의 불포화 아미노알코올 화합물로서 동물의 뇌 및 신경조직에 분포하는 인지질 스핑고미엘린, 당지질 등을 구성하는 주요성분이며, 스핑고신 유도체의 하나로서 스핑고신의 이중결합이 환원된 디하이드로스핑고신을 스핑가닌이라 한다.
이러한 스핑고신과 스핑가닌의 유도체는 항균제, 항염제, 소염제, 위궤양제, 동맥경화치료제, 면역억제제 등의 합성 중간체로서 이용되고 있다. 이러한 스핑고신 및 스핑가닌 유도체가 의약품 제조의 중간체로 사용하기 위해서는 광학적 및 입체적으로 순순한 화합물을 얻는 것이 매우 중요하다.
현재까지 문헌상으로 알려진 광학적으로 순수한 스핑고신 및 스핑가닌의 유도체를 제조하기 위한 방법으로는 첫째, 세린을 출발물질로 이용하는 방법(J. Org. Chem.1986,51, 5320; Tetrahedron Lett.1988,29, 3027; J. Org. Chem.1992,58, 4309), 둘째, 탄수화물을 이용하는 방법(Tetrahedron Lett.1993,49, 6645;Synthesis1995, 868), 셋째, 키랄보조기를 이용하는 방법(J. Am. Chem. Soc.1988,110, 7910; J. Org. Chem.1994,59,3240), 넷째, 효소를 이용하거나 비대칭에폭시 반응을 통하여 얻어진 키랄 화합물을 출발물질로 이용하는 방법(Terahedron Lett.1981,22, 4433; J. Org. Chem.1994,59, 7944) 등이 있다.
그러나, 문헌 상에 보고된 세린을 출발물질로 이용하는 방법에서는 중간 단계로 알데히드 중간체를 경유하기 때문에 라세미화 또는 에피머화가 발생할 가능성이 크며, 또한 알데히드기에 유기금속 시약을 도입할 때 입체선택성이 낮아 광학적 및 입체적으로 순수한 형태의 이성질체를 얻기에는 어려움이 있다.
한편, 탄수화물을 이용하는 방법은 통상 반응단계가 길뿐 아니라, 불안정한 알데히드 중간체를 경유하며, 하나의 출발물질로 부터 하나의 이성질체만이 제조되는 단점이 있다. 또한, 키랄보조기를 이용하는 방법과 비대칭 에폭시화 반응을 통한 방법은 수율이 낮고 제조단가가 높아 실용화에 어려움이 많을 뿐만 아니라 하나의 출발물질로 부터 하나의 이성질체만이 제조되는 단점을 가지고 있다.
상술한 바와 같은 종래의 방법들이 가지고 있는 단점들을 보완하여 라세미화와 에피머화가 발생하지 않으며, 하나의 출발물질로부터 다양한 입체이성질체를 제조할 수 있는 중간체의 제조방법을 본 발명자들이 문헌(Tetrahedron: Asymmetry1999,10, 1441)에 보고한 바 있다. 그러나, 이 방법은 아미노기의 보호기로서 p-메톡시벤질기(PMB) 또는 그의 유사체들을 도입하기 때문에 일반성이 높은 반면에 도입 단계가 길며 또한 최종적으로 보호기를 탈보호화하는 과정에서 애로점이 있을수 있다.
따라서, 본 발명이 이루고자 하는 제1 기술적 과제는 상술한 바와 같은 문제점을 해결한 스핑고신 유도체의 제조방법을 제공하는 것이다.
또한, 본 발명이 이루고자 하는 제2 기술적 과제는 상기에서 제1 기술적 과제에서 제조한 물질을 이용하여 스핑가닌 유도체의 제조방법을 제공하는 것이다.
이하 본 발명에 따른 화학식들에서 *는 키랄 탄소를 의미하며, 그에 의한 모든 입체 이성질체는 본 발명에 포함된다.
상기 제1 기술적 과제를 달성하기 위한 본 발명의 제1 태양은,
(a) 하기 화학식 1로 표시되는 화합물과 하기 화학식 2로 표시되는 화합물을 반응시켜 하기 화학식 3으로 표시되는 화합물을 제조하는 단계;
CH3PO(OR5)2
상기 식들에서, R1은 수소 또는 저급 알킬기로서 메틸,에틸, 프로필, 이소프로필, 부틸, t-부틸 및 페닐기로 이루어진 군으로부터 선택되는 어느 하나이며, R2는 수소 또는 히드록시기의 보호기로서 메톡시메틸, 메톡시티오메틸, 트리에틸실릴, 트리이소프로필실릴, t-부틸디페닐실릴, t-부틸디메틸실릴, 트리메틸실릴, 트리페닐실릴, 벤질, p-메톡시벤질, t-부톡시메틸, 테트라히드로피라닐, 3,4-디메톡시벤질, o-니트로벤질, 디페닐메틸 및 트리페닐메틸(트리틸)로 이루어진 군으로부터 선택되는 어느 하나이며, R3는 수소 또는 아민기의 보호기로서 트리페닐메틸, 알릴, 디(4-메톡시페닐)메틸, N-5-디벤조수베릴, (4-메톡시페닐)디페닐페닐 및 9-페닐플루오로레닐로 군으로부터 선택되는 어느 하나이며, R4및 R5는 각각 독립적으로 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 페닐 및 벤질기로 이루어진 군으로부터 선택되는 어느 하나임.
(b) 상기 화학식 3으로 표시되는 화합물과 하기 화학식 4로 표시되는 알데히드 화합물을 염기 조건에서 반응시켜 하기 화학식 5로 표시되는 화합물을 제조하는 단계; 및
R6CHO
상기 식 들에서, R1, R2, 및 R3는 상기에서 정의한 바와 같으며, R6는 수소 또는 탄소수 1 내지 30의 탄화수소임.
(c) 상기 화학식 5로 표시되는 화합물의 케톤기를 환원하여 하기 화학식 6으로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑고신 유도체의 제조방법을 제공한다.
상기 식에서, R1, R2, R3및 R6는 상기에서 정의한 바와 같다.
제1 기술적 과제를 달성하기 위한 본 발명의 제1 태양에 있어서, 상기 (b) 단계의 반응 속도를 증가시키기 위해서 염화리튬을 첨가제로 사용하는 것이 바람직하다.
상기 제1 기술적 과제를 달성하기 위한 본 발명의 제2 태양은,
(a) 제 1항에서 제조한 상기 화학식 5로 표시되는 화합물을 아민기와 염을 형성할 수 있는 산과 반응시켜 하기 화학식 7로 표시되는 화합물을 제조하는 단계;및
R1은 수소 또는 저급 알킬기로서 메틸,에틸, 프로필, 이소프로필, 부틸 t-부틸 및 페닐기로 이루어진 군으로부터 선택되는 어느 하나이며, R2는 수소 또는 히드록시기의 보호기로서 메톡시메틸, 메톡시티오메틸, 트리에틸실릴, 트리이소프로필실릴, t-부틸디페닐실릴, t-부틸디메틸실릴, 트리메틸실릴, 트리페닐실릴, 벤질, p-메톡시벤질, t-부톡시메틸, 테트라히드로피라닐, 3,4-디메톡시벤질, o-니트로벤질, 디페닐메틸 및 트리페닐메틸로 이루어진 군으로부터 선택되는 어느 하나이며, R6는 수소 또는 탄소수 1 내지 30의 탄화수소이며, R7은 아민과 염을 형성할 수 있는 산임.
(b) 상기 화학식 7로 표시되는 화합물의 케톤기를 환원하여 하기 화학식 8로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑고신 유도체의 제조방법을 제공한다.
상기 식에서, R1, R2, R6및 R7은 상기 화학식 7에서 정의한 바와 같다.
상기 제1 기술적 과제를 달성하기 제 2 태양에 있어서, 상기 아민과 염을 형성할 수 있는 산은 초산, 개미산, 타르타르산, 메틸술폰산, 트리플루오로아세트산, p-톨루엔술폰산, 염산, 황산 및 인산으로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.
상기 제2 기술적 과제를 달성하기 위한 본 발명의 제1 태양은 상술한 바와 같이 제조한 화학식 5로 표시되는 화합물의 탄소 이중결합을 금속촉매하에서 수소화 환원반응시켜 단일 결합으로 형성하는 단계 및 케톤기를 환원시켜 하기 화학식 9로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑가닌 유도체의 제조방법을 제공한다.
상기 식에서, R1, R2, R3및 R6는 상기 화학식 5에서 정의한 바와 같다.
상기 제2 기술적 과제를 달성하기 위한 본 발명의 제2 태양은 상술한 바와 같이 제조한 상기 화학식 7로 표시되는 화합물의 탄소 이중결합을 금속촉매하에서 수소화 환원반응시켜 단일 결합으로 형성하는 단계 및 케톤기를 환원하여 하기 화학식 10으로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑가닌 유도체의 제조방법을 제공한다.
상기 식에서, R1, R2, R6및 R7은 상기 화학식 7에서 정의한 바와 같다.
상기 제1 기술적 과제를 달성하기 위한 제1 태양 및 제2 태양에 있어서, 상기 금속촉매는 니켈 , 백금, 팔라듐 및 로듐으로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.
상기 제1 기술적 과제를 달성하기 위한 제1 태양 및 제2 태양에 있어서, 수소화 환원반응을 촉진시키기 위해 산촉매를 더 부가할 수 있으며, 산촉매로는 염산, 황산, 인산, 초산, 개미산, 메탄술폰산 및 트리플루오로아세트산으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다.
상기 제1 기술적 과제 및 제2 기술적 과제를 달성하기 위한 제1 태양과 제2 태양 각각에 있어서, 상기 케톤기 환원단계의 환원제가 NaBH4, LiBH4, LiAlH4, L-셀렉트리드, 디이소프로필알루미늄하이드리드, Zn(BH4)2, Me4BH(OAc)3, NaBH3CN, LiBHEt3,LiAl(OMe)3, CeCl3·7H2O, CeCl3, SmCl3, ZrCl4, CaCl2, ZnCl2, TiCl4, SnCl4및 MnCl2로 이루어진 군으로부터 선택되는 어느 하나 이상인 것이 바람직하다.
이하, 본 발명에 따른 각각의 태양을 반응식을 통하여 상세히 설명하기로 한다. 이하 반응식에서 R1,R2, R3, R4, R5, R6, 및 R7는 상술한 바와 일치한다.
먼저, 상기 제1 기술적과제를 달성하기 위한 본 발명의 제1 태양은 하기 반응식 1로 나타낼 수 있다.
먼저, 상기 반응식 1에서 (a) 단계는 본 발명이 속하는 기술분야에 널리 알려진 통상의 방법으로 제조가 가능한 상기 화학식 1로 표시되는 화합물에 상기 화학식 2으로 표시되는 화합물을 무수 및 강염기 조건하에서 용매로 불활성 용매를 사용하여 포스포네이트기를 도입시켜 화학식 3으로 표시되는 화합물을 제조하는 단계이다.
상기 (a) 단계에서 사용할 수 있는 강염기로는 메틸리튬, n-부틸리튬, sec-부틸리튬, t-부틸리튬, 리튬디이소필아미드 등을 예로 들 수 있으며, 불활성 용매로는 헥산, 벤젠, 톨루엔, 테트라하이드로푸란, 디옥산, 디메틸술폭시드, 아세토니트릴, 디클로로메탄, 클로로포름, 1,2-디크로로에탄, 에테르 등을 들 수 있다.
또한, 상기 (a) 단계의 반응은 -100 내지 50℃에서 이루어질 수 있으며, 바람직하게는 -80 내지 0℃이다.
다음으로, 상기 반응식 1의 (b) 단계는 상기 (a) 단계에서 제조한 상기 화학식 3으로 표시되는 화합물과 상기 화학식 4로 표시되는 화합물을 염기조건하에서 반응 용매로 헥산, 벤젠, 톨루엔, 테트라하이드로푸란, 디옥산, 디메틸술폭시드, 아세토니트릴, 디클로로메탄, 클로로포름, 1,2-디크로로에탄, 에테르, 에틸아세테이트, 메탄올, 에탄올, 프로판올, 부탄올, t-부탄올 등을 사용하여 포스포네이트기를 치환하여 상기 화학식 5로 표시되는 화합물을 제조하는 단계이다.
상기 (b) 단계에서 사용하기 위한 염기로는 상기 (a) 단계에서 설명한 강염기뿐만 아니라 트리에틸아민, N,N-디메틸아미노피리딘, 1,8-디아지비시클로[5.4.0]운데-7-센(이하 DBU), 디이소프로필에틸아민, 탄산칼륨, 탄산나트륨, 탄산세슘 등의 약염기를 사용할 수 있으며, 반응속도를 증가시키기 위하여 염화리튬을 첨가제로 사용하는 것이 바람직하다.
또한, 상기 (b) 단계의 반응은 -30 내지 80℃에서 이루어지는 것이 적절하다.
이어서, 상기 반응식 1의 (c) 단계는 상기 (b) 단계에서 제조한 상기 화학식 5로 표시되는 화합물의 케톤기를 헥산, 벤젠, 톨루엔, 테트라하이드로푸란, 디옥산, 디메틸술폭시드, 아세토니트릴, 디클로로메탄, 클로로포름, 1,2-디크로로에탄, 에테르, 에틸아세테이트, 메탄올, 에탄올, 프로판올, 부탄올, t-부탄올 등의 반응용매에서 환원하여 상기 화학식 6으로 표시되는 화합물을 제조하는 단계이다.
상기 (c) 단계에서 사용하기 위한 환원제는 NaBH4, LiBH4, LiAlH4, L-셀렉트리드, 디이소프로필알루미늄하이드리드, Zn(BH4)2, Me4BH(OAc)3, NaBH3CN, LiBHEt3,LiAl(OMe)3, CeCl3·7H2O, CeCl3, SmCl3, ZrCl4, CaCl2, ZnCl2, TiCl4, SnCl4및 MnCl2로 이루어진 군으로부터 선택되는 어느 하나 이상인 것이 바람직하며, CeCl3·7H2O를 사용하는 경우에는 환원시 부분입체 선택성을 높일 수 있다.
다음으로, 상기의 제1 기술적과제를 달성하기 위한 본 발명의 제2 태양은 하기 반응식 2로 나타낼 수 있다.
먼저, 상기 반응식 2의 (a) 단계는 상술한 바와 같은 상기 반응식 1의 (a) 및 (b) 단계에 의해 제조된 상기 화학식 5로 표시되는 화합물에 아민기의 보호기를 탈보호하고 염을 형성할 수 있는 산을 반응시켜 상기 화학식 7로 표시되는 화합물을 제조하는 단계로서 아민기와 염을 형성할 수 있는 산으로는 초산, 개미산, 타르타르산, 메틸술폰산, 트리플루오로아세트산, p-톨루엔술폰산, 염산, 황산 및 인산으로 이루어진 군에서 선택되는 어느 하나 이상인 것이 바람직하다.
다음으로, 반응식 2의 (b) 단계는 상기 (a) 단계에서 제조한 화학식 7로 표시되는 화합물의 케톤기를 헥산, 벤젠, 톨루엔, 테트라하이드로푸란, 디옥산, 디메틸술폭시드, 아세토니트릴, 디클로로메탄, 클로로포름, 1,2-디크로로에탄, 에테르, 에틸아세테이트, 메탄올, 에탄올, 프로판올, 부탄올, t-부탄올 등의 반응용매에서 환원하여 상기 화학식 8로 표시되는 화합물을 제조하는 단계이다.
상기 (b) 단계에서 사용하기 위한 환원제는 NaBH4, LiBH4, LiAlH4, L-셀렉트리드, 디이소프로필알루미늄하이드리드, Zn(BH4)2, Me4BH(OAc)3, NaBH3CN, LiBHEt3,LiAl(OMe)3, CeCl3·7H2O, CeCl3, SmCl3, ZrCl4, CaCl2, ZnCl2, TiCl4, SnCl4및 MnCl2로 이루어진 군으로부터 선택되는 어느 하나 이상인 것이 바람직하며, CeCl3·7H2O를 사용할 경우 환원시 부분입체 선택성을 높일 수 있다.
다음으로, 상기 제2 기술적과제를 달성하기 위한 본 발명의 제1 태양과 제2 태양은 각각 하기 반응식 3과 4로 나타낼 수 있다.
상기 반응식 3과 4의 (a) 단계는 상기 반응식 1과 2에서 제조한 상기 화학식 5 및 7로 표시되는 화합물들의 케톤기를 환원하는 단계로서, 상기 반응식 1에서의 (c) 단계와 반응식 2에서의 (b) 단계와 동일한 단계이다.
또한, 반응식 3과 4의 (b) 단계는 상기 (a) 단계에서 제조한 화합물, 즉 화학식 6 또는 8로 표시되는 화합물의 탄소 이중결합을 통상의 금속촉매하에서 수소화 반응에 의해 단일결합으로 환원하는 단계로서, 반응식 3에서는 상기 화학식 9로표시되는 화합물이 제조되고, 반응식 4에서는 상기 화학식 10으로 표시되는 화합물 이 제조된다.
상기 반응식 3과 4의 (b) 단계는 헥산, 벤젠, 톨루엔, 테트라하이드로푸란, 디옥산, 디메틸술폭시드, 아세토니트릴, 디클로로메탄, 클로로포름, 1,2-디크로로에탄, 에테르, 에틸아세테이트, 메탄올, 에탄올, 프로판올, 부탄올, t-부탄올 등의 반응용매에서 실시될 수 있으며, 상기 금속 촉매로는 니켈, 백금, 팔라듐 및 로듐으로 이루어진 군에서 선택되는 어느 하나 이상이 바람직하다.
또한, 상기 반응식 3과 4의 (b) 단계는 -50 내지 100℃에서 실시되는 것이 적절하며, 반응 속도를 증가시키기 위하여 산촉매, 바람직하게는 염산, 황산, 인산, 초산, 개미산, 메탄술폰산 및 트리플루오로아세트산으로 이루어지는 그룹에서 선택되는 어느 하나 이상의 산촉매를 더 부가할 수 있다.
반응식 3과 4에서 나타낸 바와 같이 (a) 단계와 (b) 단계는 그 순서가 바뀌어도 무관하다. 즉, 탄소 이중결합의 환원을 먼저 한 후 케톤기를 환원하여도 상기 화학식 9 또는 10으로 표시되는 화합물을 제조할 수 있다.
이하, 실시예를 통하여 본 발명을 상세히 설명하고자 한다. 하기의 실시예에 의해 본 발명이 제한되지 않음은 명백하다.
<실시예 1>
L-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르의 제조
디클로메탄 30ml에 L-세린 메틸에스테르 하이드로클로라이드 0.50g(3.2mmol)과 트리에틸아민 0.74g(7.3mmol)을 가하고 -20℃로 냉각한 후에 t-부틸디메틸실릴클로라이드 0.85g(3.85mmol)을 가하였다. 상기 용액을 상온에서 48시간 동안 교반 후 트리에틸아민 0.42g(4.16mmol)과 트리틸클로라이드(Ph3CCl) 0.98g(3.52mmol)을 각각 가하고 2시간 동안 환류 교반하였다. 이 용액을 상온으로 냉각하고 물로 세척 후 황산마그네슘으로 건조하고 실리카겔 컬럼으로 분리한 후 80% 에탄올로 재결정하여 L-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르 1.53g을 제조하였다(수율 95%).
L-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르의 화학적 특징 요약:
융점; 88 내지 89℃, [α]D+45.81(c 1.02, CHCl3), IR(neat); 3443(br), 2951, 1734, 1113cm-1,1H-NMR(CDCl3); 7.54-7.16(m, 15H), 3.93(dd, 1H), 3.67(dd, 1H), 3.50(dd, 1H), 0.89(s, 9H), 0.06(d, 6H).
(2S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올의 제조
테트라하이드로푸란 40ml에 디메틸메틸포스포네이트 1.36g(10.96mmol)을 가한 후 -78℃로 냉각한 후 n-부틸리튬(1.6M in THF) 6.9ml(10.96mmol)를 적가하였다. 같은 온도에서 10분간 더 교반한 후 상기에서 제조한 L-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르 1.31g(2.74mmol)을 테트라하이드로푸란 5ml에 용해한 용액을 상기의 냉각된 용액에 10분간 적가하였다. 같은 온도에서 1시간 교반한 후 약 2 시간에 걸쳐 0℃로 한 후 포화암모늄 용액 30ml를 주의해서 가하고 에틸아세테이트 50ml를 넣고 추출하였다. 유기층을 취하여 물로 세척하고 황산마그네슘으로건조하고 실리카겔 컬럼으로 분리하여 1.40g의 포스포네이트 유도체를 얻었다(수율 99%). 이 포스포네이트 유도체를 테트라하이드로푸란 10ml에 가하고 테트라데실알데히드 0.83g(3.91mmol), DBU 0.39g(2.59mmol)및 염화리튬 0.22g(5.18mmol)을 각각 가하고 상온에서 5시간 동안 교반하였다. 묽은 시트르산 3g을 물 15ml에 용해한 용액을 상기의 반응액에 가한 후 에틸아세테이트 30ml로 추출하였다. 유기층을 취하여 물로 세척하고 황산마그네슘으로 건조한 후 실리카겔 컬럼으로 분리하여 (2S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올을 유상으로 1.40g 제조하였다(수율 87%).
(2S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올의 화학적 특징 요약:
[α]D+63.92(c 0.89, CHCl3), IR(neat); 3445(br), 2926, 1627, 1105cm-1,1H-NMR(CDCl3); 7.49-7.11(m, 15H), 6.35(dt, 1H), 5.81(d, 1H), 3.84(dd, 1H), 3.68(dd, 1H), 3.42(dd, 1H), 1.98(q, 2H), 1.26(s, 22H, br), 0.88(t, 3H), 0.83(s, 9H), 0.01(d, 6H).
(2S, 3S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센 -1,3-디올의 제조
상기에서 제조한 (2S, 4E)-2-L-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올 2.35g(3.6mmol)에 메탄올 50ml와 디클로로메탄 5ml을 가하고0℃로 냉각한 후 CeCl3·7H2O1.10g(3mmol)을 가하고 1분간 교반하였다. NaBH40.40g(10.5mmol)을 가하고 같은 온도에서 3시간 교반하였다. 물 50ml을 가하고 에틸아세테이트 100ml로 추출하였다. 유기층을 취하고 물로 세척한 후 황산마그네슘으로 건조한 후 실리카겔 컬럼크로마토그라피로 분리하여 (2S, 3S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올 1.87g을 제조하였다(수율 80%).
(2S, 3S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올의 화학적 특징 요약:
[α]D-10.45(c 1.06, CHCl3), IR(neat); 3479(br), 2926, 2854, 1673, 1464cm-1,1H-NMR(CDCl3); 7.57-7.16(m, 15H), 5.60(dt, 1H), 5.38(dd, 1H), 3.80(t, 1H), 3.01(dd, 1H), 2.79(dd, 1H), 2.01(q, 2H), 1.24(m, 22H), 0.89-0.81(m, 12H), 0.19(d, 6H).
(2S, 3S, 4E)-2-아미노-옥타데센-1,3-디올의 제조
상기에서 제조한 (2S, 3S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올 350mg(0.5mmol)을 테트라하이드로푸란 3ml과 메탄올 10ml에 녹이고 진한 염산 3ml을 부가한 후 5시간 동안 40℃ 전후에서 교반하고 헥산으로 2회 세척하여 중성물질을 제거하였다. 감압증류하여 대부분의 메탄올을 제거하고 잔사에 물 20ml을 넣은 후 1N-수산화나트륨 용액으로 pH 10의 알칼리 용액으로 한 후 클로로포름으로 추출한 후 무수 황산나트륨으로 건조하고 감압증류하면 백색의 고체가 얻어지며, 클로로포름, 에테르 및 헥산이 1:1:4로 혼합된 용매로 재결정하여 (2S, 3S, 4E)-2-아미노-옥타데센-1,3-디올 0.12g을 제조하였다(수율 80%)
(2S, 3S, 4E)-2-아미노-옥타데센-1,3-디올의 화학적 특징요약:
융점; 87-88℃, [α]D-1.53(c 0.50, CHCl3),1H-NMR(CDCl3); 5.71(dt, 1H), 5.43(dd, 1H), 3.79(dd, 1H), 3.66(dd, 1H), 3.52(dd, 1H), 2.77(q, 1H), 2.02(m, 6H.NH2+2OH+CH2), 1.35-1.23(m, 22H), 0.86(t, 3H).
<실시예 2>
(2S, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드의 제조
상기 실시예 1에서 제조한 (2S, 4E)-2-L-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올 0.60g(0.92mmol)에 메탄올 3ml와 테트라하이드로푸란 5ml을 가하고 2N-염산 용액 0.5ml를 가하였다. 1시간 동안 환류 교반하고 상온으로 냉각하였다. 감압증류하여 반응용매를 완전히 제거하면 고체가 생성되며 이소프로판올과 에틸아세테이트로 재결정하여 0.23g의 (2S, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드를 제조하였다(수율 75%).
(2S, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드의 화학적 특징 요약:
융점; 148-150℃(분해), [α]D-22.44(c 0.95, MeOH), IR(neat); 3444(br), 2921, 2851, 1673, 1635cm-1,1H-NMR(CDCl3); 8.20(s, 2H, br), 7.11(dd, 1H),6.25(d, 1H), 4.77(s, 1H, br), 4.30(d, 1H), 3.98(dd, 1H), 2.20(q, 2H), 1.41-1.24(m, 22H), 0.86(t, 3H).
(2S, 3R, 4E)-2-아미노-옥타데센-1,3-디올의 제조
상기에서 제조한 (2S, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드 300mg(0.9mmol)을 테트라하이드로푸란 30ml에 가하고 -78℃로 냉각하였다. 테트라하이드로푸란에 0.1M 농도로 ZnBH4가 용해된 용액 3당량을 주사기로 적가한 후 5시간 동안 같은 온도에서 교반하였다. 반응액에 물 30ml을 주의해서 가하고 1N-염산 용액으로 pH1의 산성용액이 되게한 후 헥산으로 세척하였다. 수층을 취하여 1N-수산화나트륨 용액으로 pH10의 알칼리 용액이 되게한 후 클로포포름으로 추출하였다. 무수 황산나트륨으로 건조하고 감압증류하면 백색의 고체가 얻어지며, 이를 에테르와 헥산으로 재결정하여 (2S, 3R, 4E)-2-아미노-옥타데센-1,3-디올 0.2g을 제조하였다(수율 75%).
(2S, 3R, 4E)-2-아미노-옥타데센-1,3-디올의 화학적 특성 요약:
융점; 69-72℃, [α]D-0.25(c 0.49, CHCl3),1H-NMR(CDCl3); 5.74(dt, 1H), 5.39(dd, 1H), 4.04(dd, 1H), 3.64(m, 2H), 2.86(m, 1H), 2.40(br, 4H), 2.03(q, 2H), 1.42-1.23(m, 22H), 0.86(t, 3H).
<실시예 3>
D-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르의 제조
D-세린 메틸에스테르 하이드로클로라이드를 사용한 것을 제외하고는 실시예1의 L-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르 제조와 동일한 방법으로 D-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르를 제조하였다(수율 90%).
D-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르의 화학적 특징 요약:
융점; 88 내지 89℃, [α]D-46.28(c 1.15, CHCl3), IR(neat); 3443(br), 2951, 1734, 1113cm-1,1H-NMR(CDCl3); 7.54-7.16(m, 15H), 3.93(dd, 1H), 3.67(dd, 1H), 3.50(dd, 1H), 0.89(s, 9H), 0.06(d, 6H).
(2R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올의 제조
상기에서 제조한 D-(N-트리틸-O-t-부틸디메틸실릴)세린 메틸에스테르 0.81g을 사용하여 실시예 1의 (2S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올의 제조시와 동일한 방법으로 (2R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올 0.87g을 제조하였다(수율 78%).
(2R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올의 화학적 특징 요약:
[α]D-62.51(c 0.98, CHCl3), IR(neat); 3445(br), 2926, 1627, 1105cm-1,1H-NMR(CDCl3); 7.49-7.11(m, 15H), 6.35(dt, 1H), 5.18(d, 1H), 3.84(dd, 1H), 3.68(dd, 1H), 3.42(dd, 1H), 1.98(q, 2H), 1.26(s, 22H, br), 0.88(t, 3H),0.83(s, 9H), 0.01(d, 6H).
(2R, 3R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올의 제조
상기에서 제조한 (2R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1-올 0.42g을 사용하여 실시예 1에서의 (2S, 3S, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센 -1,3-디올 제조시와 동일한 방법으로 (2R, 3R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올 0.33g을 제조하였다(수율 78%)
(2R, 3R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올의 화학적 특징 요약:
[α]D+9.75(c 1.98, CHCl3), IR(neat); 3479(br), 2926, 2854, 1673, 1464cm-1,1H-NMR(CDCl3); 7.57-7.16(m, 15H), 5.60(dt, 1H), 5.38(dd, 1H), 3.80(t, 1H), 3.01(dd, 1H), 2.79(dd, 1H), 2.01(q, 2H), 1.24(m, 22H), 0.89-0.81(m, 12H), 0.19(d, 6H).
(2R, 3R, 4E)-2-아미노-옥타데센-1,3-디올의 제조
상기에서 제조한 (2R, 3R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-4-옥타데센-1,3-디올 0.27g을 사용하여 실시예 2에서의 (2S, 3R, 4E)-2-아미노-옥타데센-1,3-디올 제조시와 동일한 방법으로 (2R, 3R, 4E)-2-아미노-옥타데센-1,3-디올 0.15g을 제조하였다(수율85%).
(2R, 3R, 4E)-2-아미노-옥타데센-1,3-디올의 화학적 특성 요약:
융점; 85-87℃, [α]D+2.15(c 0.48, CHCl3),1H-NMR(CDCl3); 5.74(dt, 1H), 5.39(dd, 1H), 4.04(dd, 1H), 3.64(m, 2H), 2.86(m, 1), 2.40(br, 4H), 2.30(q, 2H), 1.42-1.23(m, 22H), 0.86(t, 3H).
<실시예 4>
(2R, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드의 제조
실시예 3에서 제조한 (2R, 4E)-2-[N-(트리틸)아미노]-1-O-t-부틸디메틸실릴-3-옥소-4-옥타데센-1올 1.42g을 사용하여 실시예 2에서의 (2S, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드 제조시와 동일한 방법으로 (2R, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드 0.60g을 제조하였다(수율 83%).
(2R, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드의 화학적 특징 요약:
융점; 146-148℃, [α]D-25.07(c 1.28, MeOH), IR(neat); 3444(br), 2921, 2851, 1673, 1635cm-1,1H-NMR(CDCl3); 8.20(s, 2H, br), 7.11(dd, 1H), 6.25(d, 1H), 4.77(s, 1H, br), 4.30(d, 1H), 3.98(dd, 1H), 2.28(q, 2H), 1.41-1.24(m, 22H), 0.86(t, 3H).
(2R, 3S, 4E)-2-아미노-옥타데센-1,3-디올의 제조
상기에서 제조한 (2R, 4E)-2-아미노-3-옥소-옥타데센-1-올 하이드로클로라이드 0.43g을 사용하여 실시예 2에서의 (2S, 3R, 4E)-2-아미노-옥타데센-1,3-디올 제조시와 동일한 방법으로 (2R, 3S, 4E)-2-아미노-3-옥타데센-1,3-디올 0.31g을 제조하였다(수율 80%).
(2R, 3S, 4E)-2-아미노-옥타데센-1,3-디올의 화학적 특성 요약:
융점; 70-73℃, [α]D+0.43(c 0.45, CHCl3),1H-NMR(CDCl3); 5.74(dt, 1H), 5.39(dd, 1H), 4.04(dd, 1H), 3.64(m, 2H), 2.86(m, 1), 2.40(br, 4H), 2.30(q, 2H), 1.42-1.23(m, 22H), 0.86(t, 3H).
<실시예 5>
L-(N-트리틸-O-벤질)세린 메틸에스테르의 제조
메탄올 30ml르 빙욕조로 냉각하고 아세틸클로라이드 4.2g을 10분간 적가한 후 빙욕조를 제거하고 20분간 상온에서 교반하였다. 이어서 상기 용액에 L-(O-벤질)세린 2.0g(10.2mmol)을 가한 후 8시간 동안 환류 교반하였다. 다음으로 상기 용액에서 용매를 감압증류하여 제거한 후 얻어진 자사를 에탄올과 에틸아세테이트의 혼합용매로 재결정하여 2.4g의 L-(O-벤질)세린 메틸에스테르 하이드로클로라이드를 얻었다(수율 89%). L-(O-벤질)세린 메틸에스테르 하이드로클로라이드 1.54g(6.27mmol)을 취하여 디클로로메탄 40ml에 가한 후 트리에틸아민 1.52g(15mmol)을 가하였다. 이어서 빙욕조로 냉각하고 트리틸클로라이드 2.1g(7.53mmol)을 넣고 상온에서 15시간 교반한 후 디클로로메탄을 감입증류하여 제거하고 물과 에틸아세테이트 30ml를 각각 가하고 추출하였다. 유기층을 취하고물로 세척 후 황산마그네슘으로 건조하고 용매를 제거하여 거품형의 유상물질로서 L-(N-트리틸-O-벤질)세린 메틸에스테르 2.8g을 제조하였다(수율 100%).
L-(N-트리틸-O-벤질)세린 메틸에스테르의 화학적 특징요약:
[α]D+53.44(c 0.93, CHCl3), IR(neat); 3322, 3030, 2861, 1737, 1449, 1205cm-1,1H-NMR(CDCl3); 7.52-7.17(m, 20H), 4.52(dd, 2H), 3.60-3.51(m, 2H), 3.22(s, 9H).
(2S, 4E)2-[N-(트리틸)아미노]-1-O-벤질-3-옥소-4-옥타데센-1-올의 제조
테트라하이드로푸란 100ml에 디메틸메틸포스포네이트 3.0g(24.6mmol)을 가한 후 -78℃로 냉각한 후 n-부틸리튬(1.6M) 15ml(24.6mmol)를 10분간 적가하였다. 같은 온도에서 10분간 교반한 후 상기에서 제조한 L-(N-트리틸-O-벤질)세린 메틸에스테르 2.2g(4.87mmol)을 테트라하이드로푸란 10ml에 용해한 용액을 상기의 냉각된 용액에 10분간 적가하였다. 같은 온도에서 3시간 교반한 후 포화암모늄 용액 80ml를 주의해서 가하고 에틸아세테이트 100ml를 넣고 추출하였다. 유기층을 취하여 물로 세척하고 황산마그네슘으로 건조하고 실리카겔 컬럼으로 분리하여 1.40g의 포스포네이트 유도체를 얻었다(수율 85%). 이 포스포네이트 유도체 0.88g(1.62mmol)을 취하여 테트라하이드로푸란 15ml에 가하고 테트라데실알데히드 0.69g(3.24mmol), DBU 0.25g(3.24mmol) 및 염화리튬 0.14g(3.3mmol)을 각각 가하고 상온에서 5시간 동안 교반하였다. 묽은 시트르산 3g을 물 15ml에 용해한 용액을 상기의 반응액에가한 후 에틸아세테이트 30ml로 추출하였다. 유기층을 취하여 물로 세척하고 황산마그네슘으로 건조한 후 실리카겔 컬럼으로 분리하여 (2S, 4E)2-[N-(트리틸)아미노]-1-O-벤질-3-옥소-4-옥타데센-1-올을 유상물질로서 0.93g 제조하였다(수율 91%).
(2S, 4E)2-[N-(트리틸)아미노]-1-O-벤질-3-옥소-4-옥타데센-1-올의 화학적 특징 요약:
[α]D+70.60(c 1.33, CHCl3), IR(neat); 3400(br), 2924, 2854, 1627, 1454, 1106cm-1,1H-NMR(CDCl3); 7.54-7.15(m, 20H), 6.46(dt, 1H), 6.87(d, 1H), 4.89(s, 2H), 3.86(t, 1H), 3.77(dd, 1H), 2.04(q, 2H), 1.35(s, 22H, br), 0.93(t, 3H).
(2S, 3R, 4E)-2-아미노]-1-O-벤질-4-옥타데센-1,3-디올의 제조
상기에서 제조한 (2S, 4E)2-[N-(트리틸)아미노]-1-O-벤질-3-옥소-4-옥타데센 -1-올 50mg(0.08mmol)을 메탄올 5ml에 가하고 1N-염산용액(1.2당량)을 가한 후 약 30분간 환류교반하였다. 20℃로 냉각하고 NaBH421mg(0.53mmol)을 3회로 나누어 부가하엿다. 같은 온도에서 3시간 교반하고 물 20ml을 부가하고 에틸아세테이트로 추출하였다. 유기층을 취하여 물로 세척한 후 황산마그네슘으로 건조하고 실리카겔 컬럼으로 분리하였다. 이를 헥산으로 재결정하여 (2S, 3R, 4E)-2-아미노]-1-O-벤질-3,4-옥타데센-1,3-디올을 백색 고체로서 23mg 제조하였다(수율 75%).
(2S, 3R, 4E)-2-아미노]-1-O-벤질-3,4-옥타데센-1,3-디올의 화학적 특징 요약:
융점; 76-76.5℃, [α]D+2.01(c 0.98, CHCl3), IR(neat); 3354, 2915, 2848, 1470cm-1,1H-NMR(CDCl3); 7.36-7.25(m, 5H), 5.42(dt, 1H), 4.51(s, 2H), 4.04(t, 1H), 3.57-3.46(m, 2H), 3.01(q, 1H), 2.07-1.96(m, 5H), 1.35(s, 22H, br), 0.88(t, 3H).
상술한 바와 같이 본 발명에 따른 스핑고신 및 스핑가닌 유도체의 제조방법은 입체선택성이 높아 광학적 및 입체적으로 순수한 이성질체를 제조할 수 있고, 하나의 출발 물질로 다양한 입체이성질체 제조가 가능하며, 반응시간이 짧은 등의 장점이 있다.
본 발명은 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 발명이 속하는 기술분야에 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 실시가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (10)

  1. (a) 하기 화학식 1로 표시되는 화합물과 하기 화학식 2로 표시되는 반응시켜 하기 화학식 3으로 표시되는 화합물을 제조하는 단계;
    <화학식 1>
    <화학식 2>
    CH3PO(OR5)2
    <화학식 3>
    상기 식들에서, R1은 수소 또는 메틸기 및 페닐기로 이루어진 군으로부터 선택되는 어느 하나이며, R2는 수소 또는 히드록시기의 보호기로서 메톡시메틸, 메톡시티오메틸, 트리에틸실릴, 트리이소프로필실릴, t-부틸디페닐실릴, t-부틸디메틸실릴, 트리메틸실릴, 트리페닐실릴, 벤질, p-메톡시벤질, t-부톡시메틸, 테트라히드로피라닐, 3,4-디메톡시벤질, o-니트로벤질, 디페닐메틸 및 트리페닐메틸(트리틸)로 이루어진 군으로부터 선택되는 어느 하나이며, R3는 수소 또는 아민기의 보호기로서 트리페닐메틸, 알릴, 디(4-메톡시페닐)메틸, N-5-디벤조수베릴, (4-메톡시페닐)디페닐페닐 및 9-페닐플루오로레닐 군으로부터 선택되는 어느 하나이며, R4및 R5는 각각 독립적으로 메틸, 에틸, 프로필, 이소프로필, 부틸, 이소부틸, t-부틸, 페닐 및 벤질기로 이루어진 군으로부터 선택되는 어느 하나임.
    (b) 상기 화학식 3으로 표시되는 화합물과 하기 화학식 4로 표시되는 알데히드 화합물을 염기 조건에서 반응시켜 하기 화학식 5로 표시되는 화합물을 제조하는 단계; 및
    <화학식 4>
    R6CHO
    <화학식 5>
    상기 식 들에서, R1, R2, 및 R3는 상기에서 정의한 바와 같으며, R6는 수소 또는 탄소수 1 내지 30의 탄화수소임.
    (c) 상기 화학식 5로 표시되는 화합물의 케톤기를 환원하여 하기 화학식 6으로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑고신 유도체의 제조방법.
    <화학식 6>
    상기 식에서, R1, R2, R3및 R6는 상기에서 정의한 바와 같음.
  2. 제 1항에 있어서, 상기 (b) 단계의 반응 속도를 증가시키기 위해서 염화리튬을 첨가제로 사용하는 것을 특징으로 하는 제조방법.
  3. (a) 제 1항에서 제조한 상기 화학식 5로 표시되는 화합물을 아민기와 염을 형성할 수 있는 산과 반응시켜 하기 화학식 7로 표시되는 화합물을 제조하는 단계; 및
    <화학식 7>
    R1은 수소 또는 메틸기 및 페닐기로 이루어진 군으로부터 선택되는 어느 하나이며, R2는 수소 또는 히드록시기의 보호기로서 메톡시메틸, 메톡시티오메틸, 트리에틸실릴, 트리이소프로필실릴, t-부틸디페닐실릴, t-부틸디메틸실릴, 트리메틸실릴, 트리페닐실릴, 벤질, p-메톡시벤질, t-부톡시메틸, 테트라히드로피라닐, 3,4-디메톡시벤질, o-니트로벤질, 디페닐메틸 및 트리페닐메틸로 이루어진 군으로부터 선택되는 어느 하나이며, R6는 수소 또는 탄소수 1 내지 30의 탄화수소이며, R7은 아민과 염을 형성할 수 있는 산임.
    (b) 상기 화학식 7로 표시되는 화합물의 케톤기를 환원하여 하기 화학식 8로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑고신 유도체의 제조방법.
    <화학식 8>
    상기 식에서, R1, R2, R6및 R7은 상기 화학식 7에서 정의한 바와 같음.
  4. 제 3항에 있어서, 상기 산이 초산, 개미산, 타르타르산, 메틸술폰산, 트리플루오로아세트산, p-톨루엔술폰산, 염산, 황산 및 인산으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 제조방법.
  5. 제 1항에서 제조한 상기 화학식 5로 표시되는 화합물의 탄소 이중결합을 금속촉매하에서 수소화 환원반응시켜 단일 결합으로 형성하는 단계 및 케톤기를 환원시켜 하기 화학식 9로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑가닌 유도체의 제조방법.
    <화학식 9>
    상기 식에서, R1, R2, R3및 R6는 상기 1항에서 정의한 바와 같음.
  6. 제 3항에서 제조한 상기 화학식 7로 표시되는 화합물의 탄소 이중결합을 금속촉매하에서 수소화 환원반응시켜 단일 결합으로 형성하는 단계 및 케톤기를 환원시켜 하기 화학식 10으로 표시되는 화합물을 제조하는 단계를 포함하는 것을 특징으로 하는 스핑가닌 유도체의 제조방법.
    <화학식 10>
    상기 식에서, R1, R2, R6및 R7은 상기 3항에서 정의한 바와 같음.
  7. 제 5항 또는 6항에 있어서, 상기 금속촉매가 니켈 , 백금, 팔라듐 및 로듐으로 이루어진 군에서 선택되는 어느 하나 이상인 것을 특징으로 하는 제조방법.
  8. 제 5항 또는 6항에 있어서, 수소화 환원반응을 촉진시키기 위해 산촉매를 더 부가하는 것을 특징으로 하는 제조방법.
  9. 제 8항에 있어서, 상기 산촉매가 염산, 황산, 인산, 초산, 개미산, 메탄술폰산 및 트리플루오로아세트산으로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 제조방법.
  10. 제 1항, 3항, 5항 또는 6항에 있어서, 상기 케톤기 환원단계의 환원제가 NaBH4, LiBH4, LiAlH4, L-셀렉트리드, 디이소프로필알루미늄하이드리드, Zn(BH4)2, Me4BH(OAc)3, NaBH3CN, LiBHEt3, LiAl(OMe)3, CeCl3·7H2O, CeCl3, SmCl3, ZrCl4, CaCl2, ZnCl2, TiCl4, SnCl4및 MnCl2로 이루어진 군으로부터 선택되는 어느 하나 이상인 것을 특징으로 하는 제조방법.
KR1019990062144A 1999-12-24 1999-12-24 스핑고신 및 스핑가닌의 유도체의 제조방법 KR100349187B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019990062144A KR100349187B1 (ko) 1999-12-24 1999-12-24 스핑고신 및 스핑가닌의 유도체의 제조방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019990062144A KR100349187B1 (ko) 1999-12-24 1999-12-24 스핑고신 및 스핑가닌의 유도체의 제조방법

Publications (2)

Publication Number Publication Date
KR20010064029A KR20010064029A (ko) 2001-07-09
KR100349187B1 true KR100349187B1 (ko) 2002-08-14

Family

ID=19629699

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019990062144A KR100349187B1 (ko) 1999-12-24 1999-12-24 스핑고신 및 스핑가닌의 유도체의 제조방법

Country Status (1)

Country Link
KR (1) KR100349187B1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02115177A (ja) * 1988-10-21 1990-04-27 Noguchi Kenkyusho スフィンゴシン誘導体の製造方法及び中間体とその製造法
JPH02231484A (ja) * 1988-03-11 1990-09-13 Noguchi Kenkyusho トリオール誘導体とその製造法
JPH0649054A (ja) * 1993-06-10 1994-02-22 Noguchi Kenkyusho トリオール誘導体を用いるスフィンゴシンの製造方法
US5391800A (en) * 1992-04-03 1995-02-21 The Biomembrane Institute Method for inhibition of cell motility by sphingosine-1-phosphate, its derivatives and mimetics and method of synthesizing sphingosine-1-phosphate and its derivatives
US5430169A (en) * 1994-02-14 1995-07-04 The United States Of America Represented By The Department Of Health And Human Services Method for preparation of sphingoid bases
KR20000050322A (ko) * 1999-01-06 2000-08-05 정명식 스핑고신 전구체 화합물, 그 제조방법 및 이를 이용한 스핑고신

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02231484A (ja) * 1988-03-11 1990-09-13 Noguchi Kenkyusho トリオール誘導体とその製造法
JPH02115177A (ja) * 1988-10-21 1990-04-27 Noguchi Kenkyusho スフィンゴシン誘導体の製造方法及び中間体とその製造法
US5391800A (en) * 1992-04-03 1995-02-21 The Biomembrane Institute Method for inhibition of cell motility by sphingosine-1-phosphate, its derivatives and mimetics and method of synthesizing sphingosine-1-phosphate and its derivatives
JPH0649054A (ja) * 1993-06-10 1994-02-22 Noguchi Kenkyusho トリオール誘導体を用いるスフィンゴシンの製造方法
US5430169A (en) * 1994-02-14 1995-07-04 The United States Of America Represented By The Department Of Health And Human Services Method for preparation of sphingoid bases
KR20000050322A (ko) * 1999-01-06 2000-08-05 정명식 스핑고신 전구체 화합물, 그 제조방법 및 이를 이용한 스핑고신

Also Published As

Publication number Publication date
KR20010064029A (ko) 2001-07-09

Similar Documents

Publication Publication Date Title
EP3483161B1 (en) Intermediates used to make entecavir
CZ20022255A3 (cs) Způsob přípravy tolterodinu a jeho analogů a meziprodukty připravené při tomto způsobu
KR100953879B1 (ko) 신규의 광학 활성 화합물, 카르복실산 유도체의 속도론적광학 분할 방법 및 이를 위한 촉매
JPH05331128A (ja) (R)−(−)−4−シアノ−3−ヒドロキシ酪酸t−ブチルエステル及びその製造方法
MXPA05002874A (es) Procedimiento para la sintesis de intermediarios utiles para la sintesis de inhibidores de tubulina.
EP0299484B1 (en) Process for the preparation of intermediates for the synthesis of fosfomycin
KR100349187B1 (ko) 스핑고신 및 스핑가닌의 유도체의 제조방법
EP3106453B1 (en) Method for producing optically active compound, and novel metal-diamine complex
KR100926844B1 (ko) 스핑고신의 합성을 위한 제조방법
KR20060070485A (ko) 프로키랄 및 메소 사이클릭 무수물의 촉매적 비대칭탈대칭화
KR100189598B1 (ko) 광학 활성 시클로부탄 뉴클레오사이드 합성 중간체인 광학 활성 시클로부타논의 제조방법
US6639095B1 (en) Process for preparing optically active α-hydroxy acids and derivatives thereof
JP2005519118A (ja) 不斉アリル化、アルドール、およびタンデムアルドールおよびアリル化反応のための試薬
US5380849A (en) Process for optically pure decahydroisoqiunolines
US5329023A (en) Method of preparing optically active alcohols which consist substantially or entirely of one enantiomer
EP0478062A1 (en) In-situ preparation of diisopinocampheyl chloroborane
US4767853A (en) Synthesis of 1-(allyloxycarbonyl)-methyl-3-(hydroxyethyl)-4-beta-naphthoxythiocarbonylthio-2-azetidinones and hydroxy protected analogs thereof
US4384127A (en) Process for synthesis of optically pure prostaglandin E2 and analogs thereof
US5892088A (en) Sulfamate compound containing N-substituted carbamoyl group and method for preparing the same
JPH0637449B2 (ja) 光学活性アテノロール及びその中間体の製法
KR100576740B1 (ko) 스핑고신 전구체 화합물, 그 제조방법 및 이를 이용한 스핑고신
US5166397A (en) Process for producing optically active cyclobutylamines
JP2831358B2 (ja) trans−又はcis−構造のヘミカロン酸アルデヒト誘導体のエナンチオ選択的製造法
JP2974181B2 (ja) シクロブタノールの新規な製造法
KR100469946B1 (ko) 키랄(s)-2,3-치환-1-프로필아민유도체의제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20090812

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee