JPWO2020137174A1 - プロジェクタシステム - Google Patents

プロジェクタシステム Download PDF

Info

Publication number
JPWO2020137174A1
JPWO2020137174A1 JP2020562884A JP2020562884A JPWO2020137174A1 JP WO2020137174 A1 JPWO2020137174 A1 JP WO2020137174A1 JP 2020562884 A JP2020562884 A JP 2020562884A JP 2020562884 A JP2020562884 A JP 2020562884A JP WO2020137174 A1 JPWO2020137174 A1 JP WO2020137174A1
Authority
JP
Japan
Prior art keywords
projector
projection
curved screen
projector device
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020562884A
Other languages
English (en)
Inventor
亮佑 中越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
JVCKenwood Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JVCKenwood Corp filed Critical JVCKenwood Corp
Publication of JPWO2020137174A1 publication Critical patent/JPWO2020137174A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3147Multi-projection systems
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/04Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with cameras or projectors providing touching or overlapping fields of view
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3182Colour adjustment, e.g. white balance, shading or gamut
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Controls And Circuits For Display Device (AREA)

Abstract

ユーザから見て背面側が凸の透過型の曲面スクリーン(30)に、それぞれ映像を投影する複数のプロジェクタ装置(10)を備えるプロジェクタシステム(1)において、制御部(20)は、入力映像を、それぞれ重複領域を持たせて複数の映像に分割し、分割した複数の映像を複数のプロジェクタ装置(10)にそれぞれ供給する。複数のプロジェクタ装置(10)の各投射光の光軸は、曲面スクリーン(30)の中心点よりも複数のプロジェクタ装置(30)から見て遠方の位置を交点とする。

Description

本発明は、超広角レンズを使用して撮影された映像を複数のプロジェクタ装置から投影するプロジェクタシステムに関する。
プロジェクションマッピング、シミュレータ(例えば、フライトシミュレータ)等において、1つの映像を複数のプロジェクタ装置で投影するマルチ投影システムが使用されることがある。マルチ投影システムでは、通常、複数のプロジェクタ装置を等間隔に配置している(例えば、特許文献1参照)。
プロジェクタ装置から曲面スクリーン(例えば、シリンドリカルスクリーンやドームスクリーン)に投影する場合、プロジェクタ装置のレンズに、魚眼レンズやスクリーンの曲率に最適化された特殊なレンズが用いられることが多い。上記プロジェクタ装置から魚眼レンズや特殊なレンズを介して投射され、スクリーンに投影された映像は、中心領域の解像度が密で、周辺領域の解像度が粗になる。
遠隔地の映像を、リアルタイムに没入感のある映像として曲面スクリーンに投影するには、超広角で高精細な映像を撮影し、撮影した映像を低遅延で伝送する必要がある。超広角で高精細な映像を撮影する方法として、複数のカメラで撮影する方法と、魚眼レンズ等の超広角レンズを使用した単眼カメラで撮影する方法が考えられる。後者の方が映像処理にかかる負荷が少ないためリアルタイム性において有利である。
特開2009−206665号公報
魚眼レンズ等の超広角レンズで撮影された映像は、中心領域の解像度が密で、周辺領域の解像度が粗になる。したがって、超広角レンズを使用して撮影した映像を、魚眼レンズや特殊なレンズを備えるプロジェクタ装置から投射すると、スクリーンに投影された画像の周辺領域の解像度が二重に低下することになる。
本実施形態はこうした状況に鑑みてなされたものであり、その目的は、超広角レンズを使用して撮影された映像を複数のプロジェクタ装置から投影する際、投影された映像の品質低下を抑制する技術を提供することにある。
上記課題を解決するために、本実施形態のある態様のプロジェクタシステムは、ユーザから見て背面側が凸の透過型の曲面スクリーンと、前記曲面スクリーンに、それぞれ映像を投影する複数のプロジェクタ装置と、入力映像を、それぞれ重複領域を持たせて複数の映像に分割し、分割した複数の映像を前記複数のプロジェクタ装置にそれぞれ供給する制御部と、を備える。前記複数のプロジェクタ装置の各投射光の光軸は、前記曲面スクリーンの中心点よりも前記複数のプロジェクタ装置から見て遠方の位置を交点とする。
なお、以上の構成要素の任意の組合せ、本実施形態の表現を方法、装置、システムなどの間で変換したものもまた、本実施形態の態様として有効である。
本実施形態によれば、超広角レンズを使用して撮影された映像を複数のプロジェクタ装置から投影する際、投影された映像の品質低下を抑制することができる。
本発明の実施の形態に係るプロジェクタシステムを説明するための図である。 図1の撮像装置の構成例を示す図である。 図1の制御装置の構成例を示す図である。 図1のプロジェクタ装置の構成例を示す図である。 2台のプロジェクタ装置による配置例1を示す図である。 2台のプロジェクタ装置による配置例2を示す図である。 2台のプロジェクタ装置による配置例3を示す図である。 図7の配置例3におけるプロジェクタ装置の投射光の光軸の条件を説明するための図である。 図7の配置例3におけるプロジェクタ装置の投射光の光軸の条件を説明するための別の図である。 4台のプロジェクタ装置による配置例4を示す図である。 4台のプロジェクタ装置による配置例5を示す図である。 図11の配置例5におけるプロジェクタ装置の投射光の光軸の条件を説明するための図である。 図13(a)、(b)は、プロジェクタ装置から投影される映像の画素密度と投射距離の関係を説明するための図である。
図1は、本発明の実施の形態に係るプロジェクタシステム1を説明するための図である。本実施の形態に係るプロジェクタシステム1では、曲面スクリーン30を使用する。本実施の形態では曲面スクリーン30として、ユーザAから見て背面側が凸で水平方向に湾曲する透過型のシリンドリカルスクリーンを使用する例を説明する。図1は、プロジェクタシステム1を上から見た図であり、中心角が180°の円弧上に曲面スクリーン30が形成されている。例えば、曲面スクリーン30の幅(直径)は約2〜3mに設計され、ユーザAは曲面スクリーン30の中心点付近から、曲面スクリーン30に投影された映像を観察する。このような設計では、ユーザAは高い没入感を得ることができる。
プロジェクタシステム1は、複数のプロジェクタ装置10と制御装置20を備える。図1では、4台のプロジェクタ装置10(第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c、第4プロジェクタ装置10d)を使用する例を示している。
複数のプロジェクタ装置10は、ユーザAから見て曲面スクリーン30の背面側に設置され、曲面スクリーン30の背面から曲面スクリーン30に向けて映像を投射する。制御装置20は、入力映像をフレーム単位で重複領域を持たせて空間的に分割し、それぞれ重複領域を持つ分割した映像を複数のプロジェクタ装置10にそれぞれ供給する装置である。
本実施の形態において、複数のプロジェクタ装置10が投射すべき映像は、撮像装置3で撮像され、ネットワーク2を介して制御装置20に伝送されてくる映像である。以下、撮像装置3で撮像された実写の動画映像をリアルタイムに曲面スクリーン30に投影させる例を想定する。
図2は、図1の撮像装置3の構成例を示す図である。撮像装置3は、撮像部31及び処理部35を備える。撮像部31は、超広角レンズ32、固体撮像素子33及び信号処理回路34を含む。超広角レンズ32は、画角が140°以上の超広角レンズであり、本実施の形態では、画角が180°の魚眼レンズを使用することを想定する。超広角レンズ32の画角と、曲面スクリーン30の中心角は近似した値であることが好ましい。なお、画角が180°以上の魚眼レンズが使用されてもよい。また、中心角が180°以上の曲面スクリーン30が使用されてもよい。
固体撮像素子33は、超広角レンズ32を介して入射される光を電気的な画像信号に変換し、信号処理回路34に出力する。固体撮像素子33は例えば、30Hz/60Hzのフレームレートで画像信号を出力する。固体撮像素子33には例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ又はCCD(Charge Coupled Devices)イメージセンサを使用することができる。信号処理回路34は、固体撮像素子33から入力される画像信号に対して、A/D変換、ノイズ除去などの信号処理を施し、処理部35に出力する。
処理部35は、画像処理部36、圧縮部37及び通信部38を含む。処理部35の機能はハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源として、CPU、ROM、RAM、GPU(Graphics Processing Unit)、DSP(Digital Signal Processor)、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
画像処理部36は、信号処理回路34から入力された画像信号を、超広角レンズ32の視野角に応じて設定された歪パラメータに基づき座標変換する。例えば、画面の中心からの距離と角度が比例する等距離射影方式を用いて座標変換する。また画像処理部36は、座標変換して生成した円形画像から矩形画像を切り出して、一般的なアスペクト比の画像信号を生成する。また画像処理部36は、画像信号に対して、階調補正、色補正、輪郭補正などの各種の画像処理を施すこともできる。
圧縮部37は、画像処理部36から入力される画像信号を、所定の圧縮方式に基づき圧縮する。圧縮方式には、高圧縮率でビジュアルロスレスな圧縮方式が用いられることが好ましい。通信部38は、有線または無線によりネットワーク2に接続するための通信インタフェースであり、圧縮部37により圧縮された画像信号を含む映像信号を、所定の通信規格に従い制御装置20に送信する。ネットワーク2は、インターネットや専用線などの通信路の総称であり、その通信媒体、通信経路、プロトコルは問わない。
図3は、図1の制御装置20の構成例を示す図である。制御装置20は、通信部21、伸張部22、分割部23、重複領域補正部24及び映像出力部25を備える。制御装置20の機能もハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源として、CPU、ROM、RAM、GPU、DSP、ASIC、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
図1では、制御装置20が複数のプロジェクタ装置10から独立した装置として構成される例を示している。制御装置20は、複数のプロジェクタ装置10とそれぞれケーブル(例えば、HDMI(登録商標)ケーブル、LANケーブル)で接続されている。なお制御装置20と複数のプロジェクタ装置10間が無線で接続されてもよい。
なお、制御装置20が複数のプロジェクタ装置10から独立した装置として構成されるのではなく、制御装置20が実装されたボードが、複数のプロジェクタ装置10のいずれかに内蔵される構成でもよい。その場合、制御装置20を内蔵するプロジェクタ装置10と、他のプロジェクタ装置10間が有線または無線で接続される。
通信部21は、有線または無線によりネットワーク2に接続するための通信インタフェースであり、撮像装置3から送信されてきた映像信号を、所定の通信規格に従い受信する。伸張部22は、撮像装置3における圧縮方式に対応した伸張方式で、受信された映像信号を伸張する。
分割部23は、伸張部22から入力された映像信号を、複数のプロジェクタ装置10の台数の映像信号に分割する。本実施の形態では入力された映像を、水平方向に4分割する。その際、各映像の境界部分に重複領域を持たせる。即ち、各映像の境界部分において冗長部分を持たせた状態で、元の入力映像から各映像を切り出す。隣接する2つの映像間の重複領域の大きさは、後述する複数のプロジェクタ装置10の設置態様に依存する。
重複領域補正部24は、分割された複数の映像において、隣接する2つの映像の重複領域の各輝度を、両者のブレンド比に応じて補正する。最も単純な処理では、2つの映像の重複領域の各輝度を1:1で規定し、2つの映像の重複領域のブレンド比の合計が1になるように各映像の重複領域の各輝度を0.5倍して、各輝度を補正する。また重複領域に輝度傾斜が付いたブレンド比が規定されてもよい。例えば、重複領域の左側の映像と右側の映像のブレンド比を、重複領域の左端で1:0、右端で0:1になるように輝度傾斜が付けられてもよい。
なお複数のプロジェクタ装置10の台数が多い場合、隣接する3つの映像で重複領域が形成される場合もある。その場合も、3つの映像の重複領域のブレンド比の合計が1になるように、各映像の重複領域の各輝度を補正する。
映像出力部25は、それぞれ重複領域が補正され、分割された複数の映像を複数のプロジェクタ装置10にそれぞれ出力する。図1に示す例では、4つの分割された映像を、4つのプロジェクタ装置10にそれぞれ出力する。
図4は、図1のプロジェクタ装置10の構成例を示す図である。プロジェクタ装置10は、投射部11及び処理部15を備える。投射部11は、光源12、光変調部13及び投写レンズ14を含む。処理部15は、映像入力部16及び映像信号設定部17を含む。処理部15の機能もハードウェア資源とソフトウェア資源の協働、又はハードウェア資源のみにより実現できる。ハードウェア資源として、CPU、ROM、RAM、GPU、DSP、ASIC、FPGA、その他のLSIを利用できる。ソフトウェア資源としてファームウェア等のプログラムを利用できる。
映像入力部16に、制御装置20から映像が入力される。映像信号設定部17は、入力された映像信号を光変調部13に設定する。
光源12には、ハロゲンランプ、キセノンランプ、メタルハライドランプ、超高圧水銀ランプ、レーザーダイオード等を使用することができる。
光変調部13は、映像信号設定部17から設定される映像信号に応じて、光源12から入射される光を変調する。光変調部13には、LCD(Liquid Crystal Display)方式、LCoS(Liquid Crystal on Silicon)方式、DLP(Digital Light Processing)方式などが使用される。LCD方式では、3原色の透過型液晶パネルが使用され、各色の透過型液晶パネルで生成された映像が合成されて投射される。LCoS方式では、3原色の反射型液晶パネルが使用され、各色の反射型液晶パネルで生成された映像が合成されて投射される。DLP方式では、DMD(Digital Micromirror Device)が使用される。DMDは、画素数に対応した複数のマイクロミラーを備え、各マイクロミラーの向きが各映像信号に応じて制御されることにより、所望の映像が生成される。
投写レンズ14は、光変調部13から入射される光を拡大して出力する。投写レンズ14には、一般的な画角のレンズが使用され、魚眼レンズや曲面スクリーン30の曲率に最適化された特殊なレンズは使用されない。
以下、複数のプロジェクタ装置10の配置について考察する。最初に単純化のため、2台のプロジェクタ装置10(第1プロジェクタ装置10a、第2プロジェクタ装置10b)が使用される場合を説明する。
図5は、2台のプロジェクタ装置10による配置例1を示す図である。配置例1は、曲面スクリーン30ではなく、平面スクリーン30fが使用される例である。また分割前の入力映像は、図2に示した超広角レンズ32を使用して撮像された映像ではなく、標準レンズを使用して撮像された映像が使用される。標準レンズを使用して撮像された映像は、画面内の画素密度が略均一になる。一方、超広角レンズ32を使用して撮像された映像は、中心から周辺にかけて画素密度(解像度)が低下する。即ち、映像の中心の画素サイズが最も小さくなり、画面端の画素サイズが最も大きくなる。
プロジェクタ装置10と投影面との間の距離が近いほど、投影された映像の画素密度(解像度)が高くなる。即ち、画素サイズが小さくなる。また両者の距離が近いほど、映像が明るくなる。反対に両者の距離が離れるほど、投影された映像の画素密度(解像度)が低くなる。即ち、画素サイズが大きくなる。また両者の距離が離れるほど、映像が暗くなる。
図5に示す例では、第1プロジェクタ装置10a及び第2プロジェクタ装置10bは、それぞれの投射光の光軸が、平面スクリーン30fの投影面に対して垂直になるように配置される。第1プロジェクタ装置10aの投射位置から平面スクリーン30fの各投影位置までの距離は周辺にいくほど長くなる。したがって、厳密には第1プロジェクタ装置10aから平面スクリーン30fに投影された映像は、周辺にいくほど画素密度が低下し、かつ暗くなる。しかしながら、画面の中心部と周辺部の画素密度および明るさの差は、無視できる程度であり、画面内の画素密度と明るさ分布は、略均一といえる。第2プロジェクタ装置10bから平面スクリーン30fに投影された映像も同様である。
上述したように分割前の入力映像の画素密度も略均一であるため、第1プロジェクタ装置10a及び第2プロジェクタ装置10bから平面スクリーン30fに投影された全体映像の画素密度も略均一となる。
図6は、2台のプロジェクタ装置10による配置例2を示す図である。配置例2以降では、平面スクリーン30fではなく曲面スクリーン30が使用され、分割前の入力映像は、図2に示した超広角レンズ32を使用して撮像された映像が使用される。
ここで、曲面スクリーン30の円弧の中心点を、曲面スクリーン30の中心点P1とする。図6に示す例は、曲面スクリーン30に対して第1プロジェクタ装置10aと第2プロジェクタ装置10bを等間隔に配置した例である。曲面スクリーン30の中心角度を、(プロジェクタ装置10の台数+1)で割った角度で、曲面スクリーン30に対して複数のプロジェクタ装置10の投射光の光軸が等間隔に設定されるように、複数のプロジェクタ装置10が設置される。より具体的には、複数のプロジェクタ装置10の投射光の光軸が曲面スクリーン30の中心点P1で交わり、複数のプロジェクタ装置10の投射光の光軸が曲面スクリーン30の投影面に等角度で当たり、かつ各プロジェクタ装置10の投射位置から各投射光の光軸が投影面に当たる位置(Pa、Pb)までの投影距離が等しくなるように、複数のプロジェクタ装置10の投射位置が設定される。
図6に示す例では、曲面スクリーン30の中心角度が180°、プロジェクタ装置10の台数が2である。したがって、第1プロジェクタ装置10aと第2プロジェクタ装置10bの投射光の各光軸が曲面スクリーン30の中心点P1で交わり、第1プロジェクタ装置10aと第2プロジェクタ装置10bの投射光の各光軸が曲面スクリーン30の投影面に60°間隔の位置(Pa、Pb)で当たり、かつ第1プロジェクタ装置10aと第2プロジェクタ装置10bの各投射位置から各投射光の光軸が投影面に当たる位置(Pa、Pb)までの投射距離が等しくなるように、第1プロジェクタ装置10aと第2プロジェクタ装置10bの投射位置が設定される。
図6の下側の3本の帯は、入力映像の画素密度、第1プロジェクタ装置10aの投射光が曲面スクリーン30に投影された映像の画素密度、及び第2プロジェクタ装置10bの投射光が曲面スクリーン30に投影された映像の画素密度をそれぞれ模式的に表している。
入力映像は、魚眼レンズを使用して撮像された映像であるため、中心部分の画素密度が最も高く、周辺にいくにしたがって低下していく。第1プロジェクタ装置10aから投影された映像の画素密度は、第1プロジェクタ装置10aの投射光の光軸が曲面スクリーン30の投影面に当たる位置が最も高くなり、その位置から左右に離れるにしたがって低下していく。同様に、第2プロジェクタ装置10bから投影された映像の画素密度は、第2プロジェクタ装置10bの投射光の光軸が曲面スクリーン30の投影面に当たる位置が最も高くなり、その位置から左右に離れるにしたがって低下していく。
図6に示す例では、曲面スクリーン30全体に投影された映像の画素密度に2つの山(水平方向における画素密度が相対的に高い領域)が発生し、2つの山の間の中心部分の画素密度は2つの山の部分の画素密度より低くなっている。ここで2つの山は、各プロジェクタ装置10の画素密度において光軸が投影面に当たる位置(Pa、Pb)にそれぞれ対応している。これに対して入力映像の画素密度は中心部分が最も高くなるため、入力映像の画素密度の分布と、曲面スクリーン30全体に投影された映像の画素密度の分布との間に大きな乖離が発生する。なお、画素密度の分布は明るさの分布にも対応しており、曲面スクリーン30全体に投影された映像の中心部分の明るさは、両側の2つの山の部分の明るさより暗くなっている。
人間の眼は、視線方向を中心に30°程度の視野角範囲の映像に対して敏感であるため、曲面スクリーン30の中心部分を見ているユーザAにとって、曲面スクリーン30の中心部分の解像度および明るさの低下は目立ちやすく、没入感を低下させる要因となる。
図7は、2台のプロジェクタ装置10による配置例3を示す図である。配置例3では、曲面スクリーン30全体に投影される映像の中心部の画素密度が、周辺部の画素密度より高くなるように第1プロジェクタ装置10aと第2プロジェクタ装置10bの投射位置が設定される。
上記を実現するために、複数のプロジェクタ装置10を、ケラレ等の画像不具合が発生しない範囲で可能な限り、曲面スクリーン30の中心に寄せた状態でオフセット配置する。この場合、複数のプロジェクタ装置10の投射光の光軸が曲面スクリーン30の中心点P1より複数のプロジェクタ装置10から見て遠方の位置の交点P2で交わる。より具体的には交点P2は、曲面スクリーン30の投影面上の中心と中心点P1とを結んだ線の延長線上に位置する。また、複数のプロジェクタ装置10の投射光の光軸が曲面スクリーン30の投影面に当たる位置(Pa’、Pb’)が、当該複数の光軸が曲面スクリーン30の投影面に等角度で当たる場合の位置(Pa、Pb)より、それぞれ投影面上の中心に近づいた位置になる。なお複数のプロジェクタ装置10の投射光の光軸が曲面スクリーン30の投影面に当たる位置(Pa’、Pb’)は、複数のプロジェクタ装置10の投射光の光軸が交点P2で交われば、当該複数の光軸が曲面スクリーン30の投影面に等角度で当たる場合の位置(Pa、Pb)と同じ位置でもよい。
図7に示す例では、第1プロジェクタ装置10aと第2プロジェクタ装置10bの投射光の光軸が曲面スクリーン30の中心点P1より遠方の位置の交点P2で交わる。また、第1プロジェクタ装置10aと第2プロジェクタ装置10bの各投射光の光軸が曲面スクリーン30の投影面に当たる位置(Pa’、Pb’)が、当該2つの光軸が投影面に等角度で当たる2点の位置(Pa、Pb)より、それぞれ投影面上の中心に近づいた位置になっている。したがって、第1プロジェクタ装置10aの投射光の光軸と第2プロジェクタ装置10bの投射光の光軸とのなす角度が60°未満になる。
図8に示すように、第1プロジェクタ装置10aと第2プロジェクタ装置10bのそれぞれの投射光の光軸は、2つの投射光の光軸の交点P2を中心とする円C1の円弧の接線L1と直交する関係になる。ここで接線L1は、第1プロジェクタ装置10aと第2プロジェクタ装置10bのそれぞれの投射光の光軸と、2つの投射光の光軸の交点P2を中心とする円C1と、の交点を接点とする。
なお図9に示すように、実線で表す曲面スクリーン30aが、中心角が180°に満たない円弧である場合でも、図8に示した条件と同様に、第1プロジェクタ装置10aと第2プロジェクタ装置10bのそれぞれの投射光の光軸は、2つの投射光の光軸の交点P2を中心とする円C1の円弧の接線L1と直交する関係になる。ここで接線L1は、第1プロジェクタ装置10aと第2プロジェクタ装置10bのそれぞれの投射光の光軸と、2つの投射光の光軸の交点P2を中心とする円C1と、の交点を接点とする。
曲面スクリーンは円弧に限らない。曲面スクリーンは例えば、楕円の弧でもよい。曲面スクリーンが楕円の弧である場合、楕円の長軸と短軸との交点を曲面スクリーンの中心点P1とする。
図6と図7の第1プロジェクタ装置10aから投影された映像の画素密度を示す帯を比較すると、図7に示す例のほうが、画素密度が最も高い領域が、曲面スクリーン30全体に投影された映像の中心に寄っていることが分かる。即ち、右方向に寄っていることが分かる。同様に、図6と図7の第2プロジェクタ装置10bから投影された映像の画素密度を示す帯を比較すると、図7に示す例のほうが、画素密度が最も高い領域が、曲面スクリーン30全体に投影された映像の中心に寄っていることが分かる。即ち、左方向に寄っていることが分かる。
第1プロジェクタ装置10aの投射光の光軸と第2プロジェクタ装置10bの投射光の光軸とのなす角度をさらに小さく設定すれば、第1プロジェクタ装置10aから投影された映像の画素密度が最も高い領域と、第2プロジェクタ装置10bから投影された映像の画素密度が最も高い領域をさらに中心に寄せることができる。
図7に示す例では図6に示した例と比較して、曲面スクリーン30全体に投影された映像の画素密度の分布が入力映像の画素密度の分布に近づいており、撮像装置3で撮像された映像の解像度と明るさに近い映像を投影することができる。したがって、ユーザAの没入感を向上させることができる。
図10は、4台のプロジェクタ装置10による配置例4を示す図である。配置例4は、曲面スクリーン30に対して第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dを等間隔に配置した例である。図10に示す例では、曲面スクリーン30の中心角度が180°、プロジェクタ装置10の台数が4である。したがって、第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dの各投射光の光軸が曲面スクリーン30の中心点P1で交わり、第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dの各投射光の光軸が曲面スクリーン30の投影面に36°間隔で当たり、かつ第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dの各投射位置から各投射光の光軸が投影面に当たる位置(Pa、Pb、Pc、Pd)までの投射距離が等しくなるように、第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dの投射位置が設定される。
図10の下側の5本の帯は、入力映像の画素密度、第1プロジェクタ装置10aの投射光が曲面スクリーン30に投影された映像の画素密度、第2プロジェクタ装置10bの投射光が曲面スクリーン30に投影された映像の画素密度、第3プロジェクタ装置10cの投射光が曲面スクリーン30に投影された映像の画素密度、及び第4プロジェクタ装置10dの投射光が曲面スクリーン30に投影された映像の画素密度をそれぞれ模式的に表している。
図10に示す例では、曲面スクリーン30全体に投影された映像の画素密度に4つの山(水平方向における画素密度が相対的に高い領域)が発生している。ここで4つの山は、各プロジェクタ装置10の画素密度において光軸が投影面に当たる位置(Pa、Pb、Pc、Pd)にそれぞれ対応している。隣接する2つの山の谷間部分の画素密度は、2つの山の部分の画素密度より低くなっている。このように曲面スクリーン30全体に投影された映像の画素密度が、不自然なばらつきを持つものになっている。明るさについても同様に、不自然なばらつきを持つものになっている。
図11は、4台のプロジェクタ装置10による配置例5を示す図である。配置例5では、曲面スクリーン30全体に投影される映像の中心部の画素密度が、周辺部の画素密度より高くなるように第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dの投射位置が設定される。
図11に示す例では、第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dの各投射光の光軸が曲面スクリーン30の投影面に当たる位置(Pa’、Pb’、Pc’、Pd’)が、当該4つの光軸が投影面に等角度で当たる4点の位置(Pa、Pb、Pc、Pd)より、それぞれ投影面上の中心に近づいた位置になっている。
隣接する2つのプロジェクタ装置10の2つの投射光の光軸がなす角度は、投影面上の中心に近いほど、小さく設定されることが好ましい。図11に示す例では、第2プロジェクタ装置10bの投射光の光軸と第3プロジェクタ装置10cの投射光の光軸とのなす角度は、第1プロジェクタ装置10aの投射光の光軸と第2プロジェクタ装置10bの投射光の光軸とのなす角度、及び第3プロジェクタ装置10cの投射光の光軸と第4プロジェクタ装置10dの投射光の光軸とのなす角度より小さく設定されている。
図11に示す例では、曲面スクリーン30の中心部に投射している第2プロジェクタ装置10bと第3プロジェクタ装置10cの各投射位置から各投射光の光軸が投影面に当たる位置(Pb’、Pc’)までの投射距離が、曲面スクリーン30の周辺部に投射している第1プロジェクタ装置10aと第4プロジェクタ装置10dの各投射位置から各投射光の光軸が投影面に当たる位置(Pa’、Pd’)までの投射距離より、短く設定されている。上述したように当該距離が短くなるほど、投影された映像の画素密度が高くなり、明るくなる。
図11に示す例では、曲面スクリーン30の中心部に投射している第2プロジェクタ装置10bと第3プロジェクタ装置10cの投射光の光軸は、曲面スクリーン30の中心点P1より各プロジェクタ装置10から見て遠方の位置の交点P2で交わっている。曲面スクリーン30の周辺部に投射している第1プロジェクタ装置10aと第4プロジェクタ装置10dの投射光の光軸は、各プロジェクタ装置10から見て、第2プロジェクタ装置10bと第3プロジェクタ装置10cの投射光の光軸の交点P2より近傍であり、かつ曲面スクリーン30の中心点P1より遠方の位置の交点P3で交わっている。交点P3の位置は、上述した各プロジェクタ装置10の投射距離に依存する。交点P2及び交点P3は、曲面スクリーン30の投影面上の中心と中心点P1とを結んだ線の延長線上に位置する。
複数のプロジェクタ装置10の投射光の光軸が曲面スクリーン30の投影面に当たる位置(Pa’、Pb’、Pc’、Pd’)は、複数のプロジェクタ装置10の投射光の光軸が中心点P1よりも遠方で交われば、当該複数の光軸が曲面スクリーン30の投影面に等角度で当たる場合の位置(Pa、Pb、Pc、Pd)と同じ位置でもよい。
図12に示すように、画面中心部に投影する第2プロジェクタ装置10bと第3プロジェクタ装置10cのそれぞれの投射光の光軸は、それら2つの投射光の光軸の交点P2を中心とする円C1の円弧の接線L1と直交する関係になる。ここで接線L1は、第2プロジェクタ装置10bと第3プロジェクタ装置10cのそれぞれの投射光の光軸と、2つの投射光の光軸の交点P2を中心とする円C1と、の交点を接点とする。画面側部に投影する第1プロジェクタ装置10aと第4プロジェクタ装置10dのそれぞれの投射光の光軸は、それら2つの投射光の光軸の交点P3を中心とする円C2の円弧の接線L2と直交する関係になる。ここで接線L2は、第1プロジェクタ装置10aと第4プロジェクタ装置10dのそれぞれの投射光の光軸と、2つの投射光の光軸の交点P3を中心とする円C2と、の交点を接点とする。なお、プロジェクタ装置10の数がさらに増えても同様の関係が成り立つ。
図10と図11の第1プロジェクタ装置10a、第2プロジェクタ装置10b、第3プロジェクタ装置10c及び第4プロジェクタ装置10dから投影された映像の画素密度を示す帯をそれぞれ比較すると、図11に示す例のほうが、画素密度が最も高い領域が、曲面スクリーン30全体に投影された映像の中心に寄っていることが分かる。
図11に示す例では図10に示した例と比較して、曲面スクリーン30全体に投影された映像の画素密度の分布が入力映像の画素密度の分布に近づいており、撮像装置3で撮像された映像の解像度と明るさに近い映像を投影することができる。したがって、ユーザAの没入感を向上させることができる。
図13(a)、(b)は、プロジェクタ装置10から投影される映像の画素密度と投射距離の関係を説明するための図である。図13(a)は平面スクリーン30fに投影する場合の例であり、図13(b)は曲面スクリーン30に投影する場合の例である。
図13(a)において、プロジェクタ装置10の投射距離をL、平面スクリーン30f上の投影範囲の水平方向の長さをH、プロジェクタ装置10の投写角をθとすると、下記(式1)の関係が成り立つ。
H/2=L*tan(θ/2) ・・・(式1)
図13(b)において、プロジェクタ装置10の投射光が曲面スクリーン30のシリンドリカル投影面に当たる中心位置(第1投影位置)とプロジェクタ装置10の投射位置との間の距離(第1投射距離)をL、プロジェクタ装置10の投射光の第1投射距離地点における投射範囲の水平方向の長さをH、プロジェクタ装置10の投写角をθとすると、下記(式2)の関係が成り立つ。
図13(b)において、プロジェクタ装置10の投射光が曲面スクリーン30のシリンドリカル投影面に当たる最端位置(第2投影位置)を、当該投射光の光軸上に平行移動させた位置と、プロジェクタ装置10の投射位置との間の距離(第2投射距離)をL’、プロジェクタ装置10の投射光の第2投射距離地点における投射範囲の水平方向の長さをH’、プロジェクタ装置10の投写角をθとすると、下記(式3)の関係が成り立つ。
H/2=L*tan(θ/2) ・・・(式2)
H’/2=L’*tan(θ/2) ・・・(式3)
プロジェクタ装置10から投影される映像の水平方向の画素数をXとすると、平面スクリーン30fに示すような平面上での水平方向における画素密度Pは下記(式4)で表される。
P=X/H=X/(2*L*tan(θ/2)) ・・・(式4)
曲面スクリーン30に示すようなシリンドリカル投影面の中心の画素密度に対する端の画素密度の画素密度比は、第1投射距離Lに対する第2投射距離L’の投射距離比(L’/L)に反比例する。
つまり、魚眼レンズのような画素密度が中心から周辺にかけて低下していく入力映像に対しては、複数のプロジェクタ装置10をオフセット配置させ、中心に近いところでの投射距離比を小さく、周辺では大きくすることで、入力映像の解像度の低下を抑えた表示が可能となる。図13(b)において、例えば入力映像の画素密度の変化特性が、中心の画素密度に対して端の画素密度が0.8倍であるとする。この場合、プロジェクタ装置10の投影範囲において、第2投射距離L’は第1投射距離Lの1.25倍まで許容されることになり、その条件下でプロジェクタ装置10を配置することができる。
入力映像の中心から端にかけての画素密度の変化特性は、例えば撮像に使用したレンズのMTF(Modulation Transfer Function)特性から推定することができる。したがって、各プロジェクタ装置10の第1投射距離Lと第2投射距離L’は、入力映像のMTF特性から推定される、入力映像の表示解像度を低下させない投射距離比の範囲に収まるように決定される。
以上説明したように本実施の形態によれば、魚眼レンズ等の超広角レンズを使用して撮影された入力映像を複数のプロジェクタ装置10を用いてマルチ投影する際、複数のプロジェクタ装置10を等間隔に配置するのではなく、入力映像の解像度の変化に応じた配置とする。超広角レンズを使用して撮影された入力映像は、画面内の解像度が均一でなく、中心から周辺にかけて解像度が低下していく。複数のプロジェクタ装置10を入力映像の解像度の変化に応じた配置とすることにより、スクリーンに投影された映像の解像度を最適化することができる。
具体的には、複数のプロジェクタ装置10を、ケラレ等の画像不具合が発生しない範囲で可能な限り、曲面スクリーン30の中心に寄せた状態でオフセット配置する。これにより、各プロジェクタ装置10から投影される映像の画素密度が左右不均一になり、曲面スクリーン30全体に投影された映像は曲面スクリーン30の中心に近いほど画素密度が高い状態となる。したがってユーザAが観察する映像は、超広角レンズを使用して撮影された映像の画素密度の分布と近い画素密度の分布となり、入力映像の持つ解像度を損ねることなく曲面スクリーン30に投影することが可能となる。なお本実施の形態に係る複数のプロジェクタ装置10の配置方法は、曲面スクリーン30に特に有効であるが、平面スクリーン30fに対しても一定の効果がある。
またプロジェクタ装置10の投写レンズ14に、魚眼レンズや曲面スクリーン30の曲率に最適化された特殊なレンズを使用する必要がないため、既存のプロジェクタ装置10を有効に活用することができる。
以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
上述の実施の形態では、ユーザAから見て背面側が凸で水平方向に湾曲する透過型のシリンドリカルスクリーンを使用する例を説明した。この点、背面側が凸で垂直方向に湾曲する透過型のシリンドリカルスクリーンにも、複数のプロジェクタ装置10を垂直方向に並べて配置する場合、上述の実施の形態に係る配置方法を使用することができる。また、背面側が凸の透過型のドームスクリーンにも、複数のプロジェクタ装置10を垂直方向および水平方向に並べて配置する場合、上述の実施の形態に係る配置方法を使用することができる。
またユーザAから見て正面側が凸の反射型のシリンドリカルスクリーン又はドームスクリーンを使用し、複数のプロジェクタ装置10で正面側から投影する場合にも、上述の実施の形態に係る配置方法を使用することができる。
また上記図5−図12では、各プロジェクタ装置10の投射光の光軸の角度を、プロジェクタ装置10の配置により調整する例を示したが、プロジェクタ装置10のあおり角調整機能により調整してもよい。
本発明は、曲面スクリーンに投影するプロジェクタシステムに利用可能である。
1 プロジェクタシステム、 2 ネットワーク、 3 撮像装置、 31 撮像部、 32 超広角レンズ、 33 固体撮像素子、 34 信号処理回路、 35 処理部、 36 画像処理部、 37 圧縮部、 38 通信部、 A ユーザ、 10 プロジェクタ装置、 11 投射部、 12 光源、 13 光変調部、 14 投写レンズ、 15 処理部、 16 映像入力部、 17 映像信号設定部、 10a 第1プロジェクタ装置、 10b 第2プロジェクタ装置、 10c 第3プロジェクタ装置、 10d 第4プロジェクタ装置、 20 制御装置、 21 通信部、 22 伸張部、 23 分割部、 24 重複領域補正部、 25 映像出力部、 30 曲面スクリーン、 30f 平面スクリーン。

Claims (4)

  1. ユーザから見て背面側が凸の透過型の曲面スクリーンと、
    前記曲面スクリーンに、それぞれ映像を投影する複数のプロジェクタ装置と、
    入力映像を、それぞれ重複領域を持たせて複数の映像に分割し、分割した前記複数の映像を前記複数のプロジェクタ装置にそれぞれ供給する制御部と、を備え、
    前記複数のプロジェクタ装置の各投射光の光軸は、前記曲面スクリーンの中心点よりも前記複数のプロジェクタ装置から見て遠方の位置を交点とすることを特徴とするプロジェクタシステム。
  2. 前記曲面スクリーンは、シリンドリカルスクリーン又はドームスクリーンであることを特徴とする請求項1に記載のプロジェクタシステム。
  3. 前記複数のプロジェクタ装置の各投射光の光軸が前記曲面スクリーンの投影面に当たる位置が、前記曲面スクリーンの中心角度を前記複数のプロジェクタ装置の台数に1を加えた値で割った角度で、前記複数のプロジェクタ装置の投射位置が等間隔に設定される場合に各投射光の光軸が前記曲面スクリーンの投影面に当たる複数の位置より、それぞれ前記投影面上の中心に近い位置になるように、前記複数のプロジェクタ装置の投射位置が設定されることを特徴とする請求項1または2に記載のプロジェクタシステム。
  4. 前記プロジェクタ装置の投射光の光軸が前記曲面スクリーンの投影面に当たる位置と当該プロジェクタ装置の投射位置との間の距離を第1投射距離とし、前記プロジェクタ装置の投射光が前記曲面スクリーンの投影面に当たる最端位置を、前記投射光の光軸上に平行移動させた位置と、当該プロジェクタ装置の投射位置との間の距離を第2投射距離とし、前記第1投射距離に対する前記第2投射距離の比率を投射距離比とするとき、
    各プロジェクタ装置の前記第1投射距離と第2投射距離が、前記入力映像の中心から端にかけての画素密度の変化特性から特定される前記入力映像の表示解像度を低下させない前記投射距離比の範囲に収まるように決定されることを特徴とする請求項3に記載のプロジェクタシステム。
JP2020562884A 2018-12-28 2019-11-06 プロジェクタシステム Pending JPWO2020137174A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018247256 2018-12-28
JP2018247256 2018-12-28
PCT/JP2019/043401 WO2020137174A1 (ja) 2018-12-28 2019-11-06 プロジェクタシステム

Publications (1)

Publication Number Publication Date
JPWO2020137174A1 true JPWO2020137174A1 (ja) 2021-11-18

Family

ID=71128986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562884A Pending JPWO2020137174A1 (ja) 2018-12-28 2019-11-06 プロジェクタシステム

Country Status (5)

Country Link
US (1) US11624971B2 (ja)
EP (1) EP3904957B1 (ja)
JP (1) JPWO2020137174A1 (ja)
CN (1) CN113227896B (ja)
WO (1) WO2020137174A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115629509A (zh) * 2021-07-14 2023-01-20 中强光电股份有限公司 投影设备
JP2023017206A (ja) * 2021-07-26 2023-02-07 セイコーエプソン株式会社 プロジェクターの制御方法、及びプロジェクター
CN115439365B (zh) * 2022-09-07 2023-02-17 生态环境部卫星环境应用中心 高塔相机图像几何校正方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4473355A (en) * 1983-06-30 1984-09-25 Messerschmitt-Boelkow-Blohm Gesellschaft Mit Beschraenkter Haftung Visual simulator and display screen for said simulator
GB2349236B (en) * 1999-04-17 2003-05-28 Thomson Training & Simulation Projection system
JP2000352763A (ja) * 1999-06-09 2000-12-19 Kuriputon:Kk 投写型映像装置の光遮蔽板
US6347012B1 (en) * 2000-03-06 2002-02-12 Lockheed Martin Corporation Display system with improved luminosity
JP2004012947A (ja) * 2002-06-10 2004-01-15 Tis Corporation:Kk スクリーン表示装置及び複合スクリーン表示装置
KR100516173B1 (ko) * 2002-12-28 2005-09-22 삼성전자주식회사 곡률 스크린을 구비한 투사형 영상 재생 장치
JP4547960B2 (ja) * 2004-03-29 2010-09-22 株式会社日立製作所 映像表示システム及び映像生成方法
JP2006033672A (ja) * 2004-07-21 2006-02-02 Victor Co Of Japan Ltd 曲面マルチスクリーン投射方法及び曲面マルチスクリーン投射装置
JP5125127B2 (ja) * 2007-01-31 2013-01-23 セイコーエプソン株式会社 プロジェクタ
JP5217497B2 (ja) 2008-02-26 2013-06-19 ソニー株式会社 画像投影システム、制御装置、画像投影方法、プログラム及び記録媒体
CN101290467B (zh) * 2008-06-05 2010-06-16 北京理工大学 基于多投影机旋转屏三维影像可触摸的真三维显示方法
GB201016566D0 (en) * 2010-10-01 2010-11-17 Barco Nv Curved back projection screen
GB2499635B (en) * 2012-02-23 2014-05-14 Canon Kk Image processing for projection on a projection screen
CN102998885B (zh) * 2012-11-20 2015-09-02 芜湖市安曼特微显示科技有限公司 对投影仪投影图像失真校正的方法
JP2017201748A (ja) * 2016-05-02 2017-11-09 キヤノン株式会社 画像生成装置、画像生成方法、及びそのプログラム

Also Published As

Publication number Publication date
EP3904957A4 (en) 2022-03-02
US20210325766A1 (en) 2021-10-21
CN113227896B (zh) 2023-02-17
EP3904957A1 (en) 2021-11-03
CN113227896A (zh) 2021-08-06
EP3904957B1 (en) 2023-05-17
WO2020137174A1 (ja) 2020-07-02
US11624971B2 (en) 2023-04-11

Similar Documents

Publication Publication Date Title
US11624971B2 (en) Projector system
US8890922B2 (en) Video communication method, device and system
JP4761471B2 (ja) タイル・ディスプレイの継ぎ目を平滑化するシステムおよび方法
US11178367B2 (en) Video display apparatus, video display system, and luminance adjusting method of video display apparatus
US20240007741A1 (en) Method and system for correcting image
JP6793483B2 (ja) 表示装置、電子機器およびそれらの制御方法
WO2022247419A1 (zh) 激光投影设备及图像校正系统
JP7223837B2 (ja) 画像処理装置、投影システム、画像処理方法、及び画像処理プログラム
JP2017156581A (ja) 投影装置及びその制御方法
CN111479099A (zh) 投影装置及其投影方法
JP2003348500A (ja) 投射画像の調整方法、画像投射方法および投射装置
JP2011188404A (ja) マルチプロジェクションシステムにおける画像処理装置、マルチプロジェクションシステムにおける画像処理方法及びマルチプロジェクションシステム
US20110157153A1 (en) Projection-type image display apparatus provided with an image pickup function
WO2020162051A1 (ja) 投射型映像表示システム
JP2014048527A (ja) 画像処理装置、画像表示装置、画像処理方法及びプログラム
US8322865B2 (en) Projection apparatus and image adjustment method
JP7194834B2 (ja) 制御装置、投影装置、制御方法、及び制御プログラム
JP6536803B2 (ja) 映像信号処理装置及び投射型表示装置
JP2005091449A (ja) 画像投影装置
TWI769681B (zh) 顯示環景影像的顯示系統及其操作方法
JP2005031270A (ja) ドームスクリーンにおけるビデオ画像投映装置
JP7151398B2 (ja) 光学装置及び画像投影装置
US20160212391A1 (en) Method and device for projecting content
JP2019186906A (ja) 投影装置、制御方法及びプログラム
JP2023102634A (ja) 制御装置、画像投射システム、制御方法、およびプログラム