JPWO2020095586A1 - 弾性波装置、分波器および通信装置 - Google Patents

弾性波装置、分波器および通信装置 Download PDF

Info

Publication number
JPWO2020095586A1
JPWO2020095586A1 JP2020556691A JP2020556691A JPWO2020095586A1 JP WO2020095586 A1 JPWO2020095586 A1 JP WO2020095586A1 JP 2020556691 A JP2020556691 A JP 2020556691A JP 2020556691 A JP2020556691 A JP 2020556691A JP WO2020095586 A1 JPWO2020095586 A1 JP WO2020095586A1
Authority
JP
Japan
Prior art keywords
resonator
elastic wave
pitch
wave device
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020556691A
Other languages
English (en)
Other versions
JP7278305B2 (ja
Inventor
伊藤 幹
幹 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2020095586A1 publication Critical patent/JPWO2020095586A1/ja
Application granted granted Critical
Publication of JP7278305B2 publication Critical patent/JP7278305B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14538Formation
    • H03H9/14541Multilayer finger or busbar electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02228Guided bulk acoustic wave devices or Lamb wave devices having interdigital transducers situated in parallel planes on either side of a piezoelectric layer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02244Details of microelectro-mechanical resonators
    • H03H9/02259Driving or detection means
    • H03H9/02275Comb electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/171Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator implemented with thin-film techniques, i.e. of the film bulk acoustic resonator [FBAR] type
    • H03H9/172Means for mounting on a substrate, i.e. means constituting the material interface confining the waves to a volume
    • H03H9/175Acoustic mirrors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/25Constructional features of resonators using surface acoustic waves
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezo-electric or electrostrictive material
    • H03H9/56Monolithic crystal filters
    • H03H9/566Electric coupling means therefor
    • H03H9/568Electric coupling means therefor consisting of a ladder configuration
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/64Filters using surface acoustic waves
    • H03H9/6423Means for obtaining a particular transfer characteristic
    • H03H9/6433Coupled resonator filters
    • H03H9/6483Ladder SAW filters

Abstract

弾性波装置1は、基板3と、基板3上に位置している多層膜5と、多層膜5上に位置している、圧電層7と、圧電層7上に位置しているIDT電極19を含む共振子15と、共振子15上に位置する保護膜37と、を有している。共振子15は、第1共振子15Lと、第1共振子15Lに比べて共振周波数の高い第2共振子15Hとを備えている。保護膜37は、第1共振子15L上における厚さが第2共振子15H上における厚さよりも厚くなっている。

Description

本開示は、弾性波を利用する電子部品である弾性波装置、当該弾性波装置を含む分波器および通信装置に関する。
圧電体上のIDT(interdigital transducer)電極に電圧を印加して、圧電体を伝搬する弾性波を生じさせる弾性波装置が知られている。IDT電極は、1対の櫛歯電極を有している。1対の櫛歯電極は、それぞれ複数の電極指を有しており、互いに噛み合うように配置される。弾性波装置においては、電極指のピッチの2倍を波長とする弾性波の定在波が形成され、この定在波の周波数が共振周波数となる。従って、弾性波装置の共振点は、電極指のピッチによって規定される。
近年、電極指のピッチに対して相対的に周波数の高い共振を実現する弾性波装置が望まれている。
本開示の一態様に係る弾性波装置は、基板と、前記基板上に位置している多層膜と、前記多層膜上に位置している、圧電層と、前記圧電層上に位置しているIDT電極を含む複数の共振子と、前記複数の共振子上に位置する保護膜と、を有している。前記多層膜は、低音響インピーダンス層と高音響インピーダンス層とが交互に積層されてなる。前記複数の共振子は、共振周波数の異なる第1共振子と第2共振子と備え、前記第1共振子は前記第2共振子に比べ共振周波数が低い。前記保護膜は、前記第1共振子上の厚さよりも前記第2共振子上の厚さが厚い。
本開示の一態様に係る分波器は、アンテナ端子と、前記アンテナ端子へ出力される信号をフィルタリングする送信フィルタと、前記アンテナ端子から入力される信号をフィルタリングする受信フィルタと、を有している。前記送信フィルタおよび前記受信フィルタの少なくとも一方が上記の弾性波装置を含んでいる。
本開示の一態様に係る通信装置は、アンテナと、前記アンテナに前記アンテナ端子が接続されている上記の分波器と、前記送信フィルタおよび前記受信フィルタに対して信号経路に関して前記アンテナ端子とは反対側に接続されているICと、を有している。
図1(a),図1(b)は、実施形態に係る弾性波装置を示す平面図である。 図1の弾性波装置のII−II線における断面図である。 共振子のピッチと共振周波数との相関を示す線図である。 図4(a)は、保護膜の厚さとインピーダンスとの相関を示す線図であり、図4(b)は保護膜の厚さと位相との相関を示す線図である。 保護膜の厚さと最大位相値との相関を示す線図である。 ピッチpを変化させたときのシミュレーション結果を示す図である。 ピッチpを変化させたときのシミュレーション結果を示す図である。 図7(a)および図7(b)は導電層の厚さを変化させたときのシミュレーション結果を示す図である。 図8(a)および図8(b)はDutyを変化させたときのシミュレーション結果を示す図である。 図1の弾性波装置の利用例としての分波器の構成を模式的に示す回路図である。 図1の弾性波装置の利用例としての通信装置の構成を模式的に示す回路図である。 ピッチpを変化させたときのシミュレーション結果を示す図である。 ピッチpを変化させたときのシミュレーション結果を示す図である。
以下、本開示に係る実施形態について、図面を参照して説明する。なお、以下の説明で用いられる図は模式的なものであり、図面上の寸法比率等は現実のものとは必ずしも一致していない。
本開示に係る弾性波装置は、いずれの方向が上方または下方とされてもよいものであるが、以下では、便宜的に、D1軸、D2軸およびD3軸からなる直交座標系を定義するとともに、D3軸の正側を上方として、上面または下面等の用語を用いることがある。また、平面視または平面透視という場合、特に断りがない限りは、D3軸方向に見ることをいう。なお、D1軸は、後述する圧電層の上面に沿って伝搬する弾性波の伝搬方向に平行になるように定義され、D2軸は、圧電層の上面に平行かつD1軸に直交するように定義され、D3軸は、圧電層の上面に直交するように定義されている。
(弾性波装置の全体構成)
図1は、弾性波装置1の要部の構成を示す平面図である。図1(a)は後述する共振子の構成を示しており、図1(b)は、図1(a)に示す共振子を複数設け、ラダー型フィルタを構成した例を示す。すなわち、直列共振子15Sと並列共振子15Pとをラダー型に接続している。ここで、直列共振子15Sを第2共振子または共振子15Hといい、直列共振子15Sよりも共振周波数の低い並列共振子15Pを第1共振子または共振子15Lということがある。図2は、図1(b)のII−II線(IIa−IIa線およびIIb−IIb線)における断面図である。
弾性波装置1は、例えば、基板3(図2)と、基板3上に位置する多層膜5(図2)と、多層膜5上に位置する圧電層7と、圧電層7上に位置する導電層9とを有している。各層は、例えば、概ね一定の厚さとされている。なお、基板3、多層膜5および圧電層7の組み合わせを固着基板2(図2)ということがある。
弾性波装置1では、導電層9に電圧が印加されることによって、圧電層7を伝搬する弾性波が励振される。弾性波装置1は、例えば、この弾性波を利用する共振子および/またはフィルタを構成している。多層膜5は、例えば、弾性波を反射して弾性波のエネルギーを圧電層7に閉じ込めることに寄与している。基板3は、例えば、多層膜5および圧電層7の強度を補強することに寄与している。
弾性波装置1は、図1(a)に示す共振子15を複数備えている。この例では、複数の共振子15が互いに電気的に接続されてフィルタを構成している。すなわち、図1(b)に示すように、端子T1と端子T2との間に直列共振子15Sが直列に接続されており、直列共振子15Sと基準電位Gndとの間に並列共振子15Pが、直列共振子15Sに対して並列に接続されている。このような構成とすることで、複数の共振子15(15S,15P)でラダー型フィルタを構成している。なお、図1(b)においては、共振子15の構造を簡略化して示している。
(固着基板の概略構成)
基板3は、直接的には、弾性波装置1の電気的特性に影響しない。従って、基板3の材料および寸法は適宜に設定されてよい。基板3の材料は、例えば、絶縁材料であり、絶縁材料は、例えば、樹脂またはセラミックである。なお、基板3は、圧電層7等に比較して熱膨張係数が低い材料によって構成されていてもよい。この場合、例えば、温度変化によって弾性波装置1の周波数特性が変化してしまうおそれを低減することができる。このような材料としては、例えば、シリコン等の半導体、サファイア等の単結晶および酸化アルミニウム質焼結体等のセラミックを挙げることができる。なお、基板3は、互いに異なる材料からなる複数の層が積層されて構成されていてもよい。基板3の厚さは、例えば、圧電層7よりも厚い。
多層膜5は、低音響インピーダンス層11と高音響インピーダンス層13とを交互に積層することにより構成されている。これにより、両者の界面においては弾性波の反射率が比較的高くなる。その結果、例えば、圧電層7を伝搬する弾性波の漏れが低減される。なお、低音響インピーダンス層11を構成する材料としては、二酸化ケイ素(SiO2)を例示できる。高音響インピーダンス層13を構成する材料としては、五酸化タンタル(Ta25)や酸化ハフニウム(HfO2)、酸化ジルコニウム(ZrO2)、酸化チタン(TiO2)を例示できる。
多層膜5の積層数は適宜に設定されてよい。例えば、多層膜5は、低音響インピーダンス層11および高音響インピーダンス層13の合計の積層数が2層以上12層以下とされてよい。多層膜5の合計の積層数は、偶数でもよいし、奇数でもよいが、圧電層7に接する層は、低音響インピーダンス層11である。基板3に接する層については、低音響インピーダンス層11,高音響インピーダンス層13のいずれであってもよい。また、各層の間や、基板3と多層膜5との間、もしくは多層膜5と圧電層7との間に、密着や拡散防止を目的に付加膜を挿入してもよい。その場合には、付加膜は弾性波装置1の特性に影響を与えない程度に薄く(概ね0.01λ以下)してもよい。
圧電層7は、タンタル酸リチウム(LiTaO3、以下、LTという)やニオブ酸リチウム(LiNbO3、以下、LNという)の単結晶によって構成されている。
圧電層7として、LTを用いる場合には、カット角は、例えば、オイラー角で(0°±10°,0°以上55°以下,0°±10°)である。別の観点では、LTは、回転YカットX伝搬のものであり、Y軸は、圧電層7の法線(D3軸)に対して90°以上145°の角度で傾斜している。X軸は、圧電層7の上面(D1軸)に概ね平行である。ただし、X軸とD1軸とは、XZ平面またはD1D2平面において−10°以上10°以下で傾斜していてもよい。
圧電層7として、LNを用いる場合には、オイラー角で(0,0,ψ)、ただしψは0°以上360°以下とする。別の観点では、Zカット基板としてもよい。
また、圧電層7の厚さは、比較的薄くされており、例えば、後述するλを基準として、0.175λ以上0.3λ以下である。圧電層7のカット角および厚さをこのように設定することにより、弾性波として、スラブモードに近い振動モードのものを利用することが可能になる。具体的にはA1モードの板波を用いることができる。これにより、後述する電極指のピッチに対して相対的に高周波(例えば5GHz以上)の共振周波数を実現することができる。
以下、本実施形態においては圧電層7としてLTを用いた場合を例に説明するものとする。
(導電層の概略構成)
導電層9は、例えば、金属により形成されている。金属は、適宜な種類のものとされてよく、例えば、アルミニウム(Al)またはAlを主成分とする合金(Al合金)である。Al合金は、例えば、Al−銅(Cu)合金である。なお、導電層9は、複数の金属層から構成されていてもよい。また、AlまたはAl合金と、圧電層7との間に、これらの接合性を強化するためのチタン(Ti)からなる比較的薄い層が設けられていてもよい。
導電層9は、図1(a)の例では、共振子15を構成するように形成されている。共振子15は、いわゆる1ポート弾性波共振子として構成されており、概念的かつ模式的に示す端子17Aおよび17Bの一方から所定の周波数の電気信号が入力されると共振を生じ、その共振を生じた信号を端子17Aおよび17Bの他方から出力可能である。
導電層9(共振子15)は、例えば、IDT電極19と、IDT電極19の両側に位置する1対の反射器21とを含んでいる。
IDT電極19は、1対の櫛歯電極23を含んでいる。各櫛歯電極23は、例えば、バスバー25と、バスバー25から互いに並列に延びる複数の電極指27と、複数の電極指27間においてバスバー25から突出するダミー電極29とを含んでいる。1対の櫛歯電極23は、複数の電極指27が互いに噛み合うように(交差するように)配置されている。
バスバー25は、例えば、概ね一定の幅で弾性波の伝搬方向(D1軸方向)に直線状に延びる長尺状に形成されている。そして、一対のバスバー25は、弾性波の伝搬方向に直交する方向(D2軸方向)において互いに対向している。なお、バスバー25は、幅が変化したり、弾性波の伝搬方向に対して傾斜したりしていてもよい。
各電極指27は、例えば、概ね一定の幅で弾性波の伝搬方向に直交する方向(D2軸方向)に直線状に延びる長尺状に形成されている。各櫛歯電極23において、複数の電極指27は、弾性波の伝搬方向に配列されている。また、一方の櫛歯電極23の複数の電極指27と他方の櫛歯電極23の複数の電極指27とは、基本的には交互に配列されている。
複数の電極指27のピッチp(例えば互いに隣り合う2本の電極指27の中心間距離)は、IDT電極19内において基本的に一定である。なお、IDT電極19の一部に、他の大部分よりもピッチpが狭くなる狭ピッチ部、または他の大部分よりもピッチpが広くなる広ピッチ部が設けられてもよい。
なお、以下において、ピッチpという場合、特に断りがない限りは、上記のような狭ピッチ部または広ピッチ部のような特異な部分を除いた部分(複数の電極指27の大部分)のピッチをいうものとする。また、特異な部分を除いた大部分の複数の電極指27においても、ピッチが変化しているような場合においては、大部分の複数の電極指27のピッチの平均値をピッチpの値として用いてよい。
複数の電極指27の長さは、例えば、互いに同等である。なお、IDT電極19は、複数の電極指27の長さ(別の観点では交差幅)が伝搬方向の位置に応じて変化する、いわゆるアポダイズが施されていてもよい。
ダミー電極29は、例えば、概ね一定の幅で弾性波の伝搬方向に直交する方向に突出している。また、一方の櫛歯電極23のダミー電極29の先端は、他方の櫛歯電極23の電極指27の先端とギャップを介して対向している。なお、IDT電極19は、ダミー電極29を含まないものであってもよい。
1対の反射器21は、弾性波の伝搬方向において複数のIDT電極19の両側に位置している。各反射器21は、例えば、格子状に形成されている。すなわち、反射器21は、互いに対向する1対のバスバー31と、1対のバスバー31間において延びる複数のストリップ電極33とを含んでいる。複数のストリップ電極33のピッチ、および互いに隣接する電極指27とストリップ電極33とのピッチは、基本的には複数の電極指27のピッチと同等である。
そして、圧電層7の上面は導電層9の上から保護膜37によって覆われている。保護膜37は、圧電層7よりも音速の遅い材料で構成する。そのような材料としては例えば、SiO2やSi34,Si等がある。保護膜37は、導電層9直上のみに設けてもよいし、導電層9で構成される電極指27間にも設けてもよい。保護膜37を電極指27間にも設ける場合には、保護膜37を絶縁材料としてもよい。また、保護膜37はこれらの材料からなる複数層の積層体としてもよい。
保護膜37は、単に導電層9の腐食を抑制するためのものであってもよいし、温度補償に寄与するものであってもよい。導電層9と保護膜37との音響的境界を明瞭にするために、IDT電極19および反射器21の上面または下面には、弾性波の反射係数を向上させるために、絶縁体または金属からなる付加膜が設けられてもよい。
このような保護膜37の厚さは、直列共振子15Sの直上と並列共振子15Pの直上とで異なる。具体的には、並列共振子15Pの直上における厚さは直列共振子15Sの直上における厚さに比べて厚くなっている。なお、以後、「保護膜37の厚さ」とは、断りがない限り、共振子を構成する電極指の上における厚さを指すものとする。保護膜37の厚さについては後述する。
この例では、保護膜37は電極指27間にも位置しており、電極指27間における保護膜37の上面は導体層9の上面よりも下側に位置する。また、保護膜37の電極指27上における厚さは、電極指27の厚さに比べ十分に薄く(例えば1/2以下と)なっている。
図1および図2に示した構成は、適宜にパッケージされてよい。パッケージは、例えば、不図示の基板上に隙間を介し圧電層7の上面を対向させるように図示の構成を実装し、その上から樹脂封止するものであってもよいし、圧電層7上に箱型のカバーを設けるウェハレベルパッケージ型のものであってもよい。
(スラブモードの利用)
1対の櫛歯電極23に電圧が印加されると、複数の電極指27によって圧電層7に電圧が印加され、圧電体である圧電層7が振動する。これにより、D1軸方向に伝搬する弾性波が励振される。弾性波は、複数の電極指27によって反射される。そして、複数の電極指27のピッチpを概ね半波長(λ/2)とする定在波が立つ。定在波によって圧電層7に生じる電気信号は、複数の電極指27によって取り出される。このような原理により、弾性波装置1は、ピッチpを半波長とする弾性波の周波数を共振周波数とする共振子として機能する。なお、λは、通常、波長を示す記号であり、また、実際の弾性波の波長は2pからずれることもあるが、以下でλの記号を用いる場合、特に断りがない限り、λは2pを意味するものとする。
ここで、上述のように、圧電層7は、比較的薄くされ、かつそのオイラー角が(0°±10°,0°〜55°,0°±10°)とされていることから、スラブモードの弾性波を利用可能になっている。スラブモードの弾性波の伝搬速度(音速)は、一般的なSAW(Surface Acoustic Wave)の伝搬速度よりも速い。例えば、一般的なSAWの伝搬速度が3000〜4000m/sであるのに対して、スラブモードの弾性波の伝搬速度は10000m/s以上である。従って、従来と同等のピッチpで、従来よりも高周波領域での共振を実現することができる。例えば、1μm以上のピッチpで5GHz以上の共振周波数を実現することができる。
(各層の材料および厚さの設定)
スラブモードの弾性波を利用して比較的高い周波数領域(例えば5GHz以上)の共振を実現するためには、多層膜5の材料および厚さ、圧電体層(本実施形態では圧電層7)のオイラー角、材料および厚さ、ならびに導電層9の厚さの組み合わせに条件がある。
例えば、以下の条件としたときに、共振周波数および反共振周波数近傍にスプリアスが存在しない状態で5GHzの共振を得ることができた。
圧電層:
材料:LiTaO3
厚さ:0.2λ
オイラー角:(0,24,0)
多層膜:
材料:2種(SiO2,Ta25
厚さ:SiO2層 0.10λ,Ta25層 0.98λ
積層数:8層
導電層:
材料:Al
厚さ:0.06λ
ピッチp:1μm(λ=2μm)
なお、積層数は、2種の層の数の合計(例えば図2の例では4)である。また、以降のシミュレーションはピッチpを1μmとして行なったが、ピッチを変化させた場合も、λ=2pで表される波長にしたがって実際の膜厚を変化させれば、共振特性は周波数依存性が全体的にシフトするだけで同様の結果となる。すなわち、波長またはピッチで規格化した場合も同様の結果を得ることができる。
上記の例の他にも、例えば、以下の条件としたときにピッチが0.9μm〜1.4μmの場合であっても、5GHz以上の共振を得ることができ、かつ、共振周波数および反共振周波数近傍にリップルのない状態を得ることができた。なお、以下の条件は、圧電層7の材料、圧電層7の厚さ、低音響インピーダンス層11の材料、厚さ、高音響インピーダンス層13の材料、厚さの順に各条件を/で区切って示している。
他条件1:LT/0.175λ/SiO2/0.09λ/Ta25/0.07λ
他条件2:LT/0.2λ/SiO2/0.1λ/HfO2/0.08λ
他条件3:LN/0.19λ/SiO2/0.1λ/Ta25/0.07λ
他条件4:LN/0.2λ/SiO2/0.06λ/HfO2/0.095λ
なお、保護膜37の厚さは、断りがない限り、直列共振子15Sと並列共振子15Pとの間で同一の厚さとしてシミュレーションを行なった。
(スラブモードにおける共振周波数制御について)
弾性波装置1において、互いに異なる共振周波数を有する共振子15を含む場合には、保護膜37の厚さを異ならせることで、周波数特性を維持した状態で、周波数の調整を行なう。この例であれば、直列共振子15Sと並列共振子15Pとを有し、低い共振周波数を有する並列共振子15Pを覆う保護膜37の厚さを、直列共振子15Sに比べて小さくしている。
一般的に、共振子15の周波数を変化させるためには電極指27のピッチを変更させる。図3に、共振子15の電極指27のピッチを異ならせたときの共振周波数の変化率を測定した。図3において、横軸はピッチ(単位:μm)、縦軸はピッチが1μmとした場合に対する共振周波数の変化率を示している。また、比較例として、圧電層7の厚さを0.2mmとした弾性波装置を作製し、同様に周波数特性を測定した。なお、比較例におけるピッチは1μmとした。ここで、比較例の共振周波数と実施例の共振周波数とは異なるため、図3の縦軸は、共振周波数で規格化して表示している。ここで、保護膜37の厚さは一定としている。
その結果、本実施形態の弾性波装置1はピッチが0.1μm変化すると共振周波数は6000MHzから6150MHzに変化した。すなわち、基準となる共振周波数に対する変化率は2.5%となる。同様に、比較例に係る弾性波装置の場合には、ピッチ0.1μmの変化に対して共振周波数は変化率10%であった。すなわち、共振周波数を6000MHzとすると6600MHzに変化したことになる。このように、本実施形態の弾性波装置1は比較例に比べてピッチを変化させても共振周波数が変化しにくいことが確認された。このように、ピッチの変化に対する共振周波数の変化率が小さくなる現象は、圧電層7の厚さが0.6λ以下、より顕著になるのは0.5λ以下となった場合である。
また、スラブモードでの共振特性発現には圧電層7,多層膜5を構成する低音響インピーダンス層11,高音響インピーダンス層13の、λに対する厚さを特定の組み合わせにすることが求められており、そこから外れると、大きなリップルが発生してしまう。すなわち、同じ固着基板2に周波数の異なる共振子15を構成すると、少なくとも一方の共振子15は、圧電層7,多層膜5の相対膜厚が適正値からずれてしまい、結果として共振特性の波形が崩れリップルを生じてしまう。
具体的に、共振周波数の高い方の共振子15H(第2共振子)と共振周波数の低い方の共振子15L(第1共振子)とを例に検討する。共振子15Hのピッチに合わせた固着基板2を用いる場合には、共振子15Lの共振周波数を低くするために、共振子15Hに比べピッチを大きくする。その場合には、λが大きくなり共振周波数は低周波数側に変化する。そして、圧電層7のλに対する相対膜厚は、λの増大とともに小さくなる。ここで、圧電層7の波長λに対する相対厚さは小さいほど共振周波数が高周波数側にシフトする。このため、共振子15Lの共振周波数はピッチで設計した想定周波数よりも高くなってしまう。これを補正するために、さらに共振子15Lのピッチを大きくすると、多層膜5を構成する各層との波長比が大きくずれ、共振子15Lの共振波形にリップルが発生してしまう。
なお、共振子15Lに合せた固着基板2を用いる場合には、逆に共振子15Hの共振周波数が低下することとなり、高周波化を目指す場合には適さない。
このように、本実施形態の弾性波素子1の場合には、ピッチを変化させても共振周波数の変化率が低い上に、ピッチの変化により周波数特性(インピーダンス特性)の波形が崩れ、リップルが発生してしまうことが分かった。
共振周波数を変化させるためには、他にも導電層9の厚さを変化させたり、共振子15のデューティーを変化させたりする手法が知られているが、いずれもλに対する厚さまたは寸法を制御するものである。このため、ピッチの場合と同様に、λに対する相対比率を調整すると周波数特性の波形が崩れ、リップルが発生する。
このため、保護膜37の厚さを調整することで、共振子15の共振周波数を調整するものとする。また、固着基板2の設計は、共振子15Hよりの条件にすれば、高周波数化に有利である。
図4に保護膜37の膜厚を異ならせたときの共振子の周波数特性を示す。図4(a)はインピーダンス特性を示すものであり、横軸は周波数(単位:MHz)、縦軸はインピーダンス(単位:ohm)である。図4(b)は位相特性を示すものであり、横軸は周波数(単位:MHz)、縦軸は位相(単位:deg)である。図4に示す通り、保護膜37の膜厚を0.005μm〜0.025μmまで変化させたとき、膜厚が厚くなるにつれて共振周波数が低周波数側にシフトすることを確認した。具体的には、保護膜厚を100Å(すなわち0.01p)変化させることで共振周波数を44MHz低周波数側にシフトさせることができた。また、保護膜37の厚さを変化させても波形が崩れることがないことも確認できた。言い換えると、保護膜37の厚さを異ならせても新たなリップルは発生しないことを確認した。
一方、保護膜37の厚さを厚くしていくと、ロスが大きくなる(最大位相が小さくなる)。図5は、保護膜37の厚さと最大位相との相関を示す線図である。図5において、横軸は保護膜37の厚さ(単位:μm)であり、縦軸は最大位相(単位:deg)である。図5からも明らかなように、保護膜37の厚さが0.04μm(すなわち、ピッチpに換算すると0.04p)を超えると急激に最大位相が小さくなることを確認した。以上より、保護膜37は、共振子H(図1に示す例では、直列共振子15S)の電極指27上よりも共振子L(図1に示す例では、並列共振子15P)の電極指27上において厚さが厚く、かつその厚さを0.04p以下とすることで、共振子15H,共振子15Lともに所望の共振周波数に調整可能とし、さらにロスの発生を抑制することができる。さらに、0.025p以下とする場合には、二次関数的に最大位相が小さくなることがないので、よりロスの低減を抑制することができる。
<変形例1>
上述の実施形態によれば、共振子15の周波数調整を保護膜37の厚さのみで調整した場合を説明したが、他の周波数調整法と組み合わせてもよい。
まず、ピッチpによる周波数調整について検討する。図6(図6A,図6B)に、共振子15において、ピッチpを変化させたときのインピーダンス特性および位相特性を示す。図6Aには、ピッチを0.8μm,0.9μm,1.0μmとしたときの(すなわち1.0μmの場合を基準としたときに0.8p,0.9p,pとしたときの)特性を示し、図6Bには、ピッチを1.1μm,1.2μmとしたときの(1.1p,1.2pとしたときの)特性を示す。
図6において、横軸は規格化周波数、縦軸は、左側がインピーダンス(単位:ohm)を、右側が位相(単位:deg)である。図6からも明らかなように、ピッチpが1.0pから0.9pになると共振周波数の低周波数側にスプリアスが発現し始め、0.8pになると波形自体が崩れることを確認した。これより、ピッチpの下限値を0.9p以上とする。一方、ピッチpが1.0pから1.2pとなると、反共振周波数の近傍にスプリアスが発現し始める。このことから、ピッチpの上限値は1.2p以上とする。
前述の通り、ピッチpの変化に対しては、周波数変化率が低く、かつ、波形が崩れてしまう。しかしながら、ピッチpを0.9p以上1.2p以下とすることで波形を維持しつつ、周波数調整を補うことができる。
ここで、一方の共振子15のピッチをp1,共振周波数をfr1、他方の共振子15のピッチをp2、共振周波数をfr2とするときに、以下の関係を満たす上で、かつ、保護膜37の厚さを上述の実施形態の通りとしてもよい。
0.9p1≦p2≦1.2p1
|p2/p1−1|≧|fr2/fr1−1|
すなわち、波形が崩れない範囲で共振周波数の変化率以上にピッチを変化させた上で、保護膜37の厚さを調整することで、保護膜37の厚さ調整の効果とピッチ調整による効果との効果を効率的に奏することができる。
なお、図1(b)に示すように、直列共振子15sが複数あり、個々の共振周波数をずらしている場合には、直列共振子15sのうち平均値近傍の共振周波数を発現する共振子15のピッチを基準としてもよい。
次に、導電層9の厚さによる周波数調整について検討する。図7(a),図7(b)は共振子15において、導電層9の厚さを0.02μm刻み(波長比で1%刻み)で変化させたときのインピーダンス特性および位相特性を示す。図7において、横軸は周波数(単位:MHz)、縦軸は、図7(a)ではインピーダンス(単位:ohm)を、図7(b)では位相(単位:deg)をそれぞれ示している。図7からも明らかなように、導電層9の厚さを変化させることで共振周波数をシフトさせることができるが、導電層9の厚さを厚くしていくと共振周波数と反共振周波数との間にリップルが発生することを確認した。このことから、導電層9の膜厚は、共振子15Hと共振子15Lとで、波長比で±1%以内(ピッチ比で±2%以内)の違いに抑えてもよい。その場合には、スプリアスの影響を低減することができる。
次に、電極指27のDutyによる周波数調整について検討する。図8(a),図8(b)は、共振子15においてDutyを変化させたときのインピーダンス特性および位相特性を示す。図8からも明らかなように、Dutyを大きくするにつれて共振周波数は低周波数側にシフトしていくことが確認された。具体的には、Dutyを0.1大きくすることで、共振周波数を60MHz低周波数側にシフトさせることができた。なお、Dutyを0.4とした場合には、反共振周波数近傍にリップルが発生することを確認した。このことから、保護膜37の厚さを変化させるのに加え、Dutyを0.5〜0.55の範囲で調整してもよい。
以上のように、電極膜厚,ピッチ,Dutyを変化させる場合には、スプリアスの影響を低減させるための調整が必要となる。もしくは、スプリアスの影響を低減させるための調整を行なわずに、電極膜厚,ピッチ,Dutyを変化させる場合には、変化させることのできる範囲が小さくなる。これに対して、保護膜37の厚さを変化させる場合にはスプリアスへの影響が小さいため、設計が容易となる。
<変形例2>
上述の例では、ラダー型フィルタの構成について特に限定はしていないが、通過帯域の広いフィルタを構成する場合に、弾性波装置1を適用してもよい。具体的には、直列共振子15Sの反共振周波数が、並列共振子15P共振周波数よりも低周波数側に位置するようなフィルタに適用する。この場合には、ピッチpのみの周波数調整では周波数調整を行なうことが困難であるためである。
また、ピッチpを10%変化させたときの周波数変化率が10%以下となるような固着基板2上にIDT電極19を形成する場合には、弾性波装置1を適用してもよい。さらに、ピッチpを10%変化させたときの周波数変化率が5%以下となるような固着基板2上にIDT電極19を形成する場合には、弾性波装置1を適用してもよい。
また、上述の例では、ラダー型フィルタの直列共振子と並列共振子との間で保護膜37の厚さを異ならせたが、それに限定されない。例えば、異なる通過帯域を形成する2つのフィルタ間で異ならせてもよいし、フィルタとそれに接続される共振子との間で異ならせてもよい。
<変形例3>
上述の例では、圧電層7としてLTを用いた場合を例に説明したが、LNを用いてもよい。圧電層7としてLNを用いたときも同様に保護膜37の厚さを変更することで周波数調整を行なえることを確認した。また、LTの場合と同様に、保護膜37の厚さを異ならせても波形の崩れはないことも確認した。
図11(図11A,図11B)に、圧電層7としてLNを用いて、電極指27のピッチを異ならせたときの周波数特性を示した。すなわち、図6に相当する図である。図11Aは、ピッチを0.8μm(1.0μmを基準としたときに0.8p),0.9μm(すなわち0.9p),1.0μm(すなわちp)としたときの特性を示す。図11Bは、ピッチを1.1μm(1.0μmを基準としたときに1.1p),1.2μm(すなわち1.2p)としたときの特性を示す。
図11からも明らかなように、圧電層7としてLNを用いた場合には、電極指27のピッチによる周波数調整がさらにLTを用いた場合に比べ困難となる。すなわち、0.9p〜1.0pまでの範囲で調整が可能であるが、これを超えてピッチを変化させるとリップルが多数発生し、波形が崩れることを確認できた。
(弾性波装置の利用例:分波器)
図9は、弾性波装置1の利用例としての分波器101の構成を模式的に示す回路図である。この図の紙面左上に示された符号から理解されるように、この図では、櫛歯電極23・反射器21を簡略化して表わされている。
分波器101は、例えば、送信端子105からの送信信号をフィルタリングしてアンテナ端子103へ出力する送信フィルタ109と、アンテナ端子103からの受信信号をフィルタリングして1対の受信端子107に出力する受信フィルタ111とを有している。
送信フィルタ109は、例えば、複数の共振子15がラダー型に接続されて構成された、ラダー型フィルタによって構成されている。すなわち、送信フィルタ109は、送信端子105とアンテナ端子103との間に直列に接続された複数(1つでも可)の共振子15と、その直列のライン(直列腕)と基準電位とを接続する複数(1つでも可)の共振子15(並列腕)とを有している。なお、送信フィルタ109を構成する複数の共振子15は、例えば、同一の固着基板2(3、5および7)に設けられている。
受信フィルタ111は、例えば、共振子15と、多重モード型フィルタ(ダブルモード型フィルタを含むものとする。)113とを含んで構成されている。多重モード型フィルタ113は、弾性波の伝搬方向に配列された複数(図示の例では3つ)のIDT電極19と、その両側に配置された1対の反射器21とを有している。なお、受信フィルタ111を構成する共振子15および多重モード型フィルタ113は、例えば、同一の固着基板2に設けられている。
なお、送信フィルタ109および受信フィルタ111は、同一の固着基板2に設けられていてもよいし、互いに異なる固着基板2に設けられていてもよい。図9は、あくまで分波器101の構成の一例であり、例えば、受信フィルタ111が送信フィルタ109と同様にラダー型フィルタによって構成されるなどしてもよい。
なお、分波器101として、送信フィルタ109と受信フィルタ111とを備える場合について説明したが、これに限定されない。例えば、ダイプレクサでもよいし、3以上のフィルタを含んだマルチプレクサであってもよい。
(弾性波装置の利用例:通信装置)
図10は、弾性波装置1(分波器101)の利用例としての通信装置151の要部を示すブロック図である。通信装置151は、電波を利用した無線通信を行うものであり、分波器101を含んでいる。
通信装置151において、送信すべき情報を含む送信情報信号TISは、RF−IC(Radio Frequency Integrated Circuit)153によって変調および周波数の引き上げ(搬送波周波数の高周波信号への変換)がなされて送信信号TSとされる。送信信号TSは、バンドパスフィルタ155によって送信用の通過帯以外の不要成分が除去され、増幅器157によって増幅されて分波器101(送信端子105)に入力される。そして、分波器101(送信フィルタ109)は、入力された送信信号TSから送信用の通過帯以外の不要成分を除去し、その除去後の送信信号TSをアンテナ端子103からアンテナ159に出力する。アンテナ159は、入力された電気信号(送信信号TS)を無線信号(電波)に変換して送信する。
また、通信装置151において、アンテナ159によって受信された無線信号(電波)は、アンテナ159によって電気信号(受信信号RS)に変換されて分波器101(アンテナ端子103)に入力される。分波器101(受信フィルタ111)は、入力された受信信号RSから受信用の通過帯以外の不要成分を除去して受信端子107から増幅器161へ出力する。出力された受信信号RSは、増幅器161によって増幅され、バンドパスフィルタ163によって受信用の通過帯以外の不要成分が除去される。そして、受信信号RSは、RF−IC153によって周波数の引き下げおよび復調がなされて受信情報信号RISとされる。
なお、送信情報信号TISおよび受信情報信号RISは、適宜な情報を含む低周波信号(ベースバンド信号)でよく、例えば、アナログの音声信号もしくはデジタル化された音声信号である。無線信号の通過帯は、適宜に設定されてよく、本実施形態では、比較的高周波の通過帯(例えば5GHz以上)も可能である。変調方式は、位相変調、振幅変調、周波数変調もしくはこれらのいずれか2つ以上の組み合わせのいずれであってもよい。回路方式は、図17では、ダイレクトコンバージョン方式を例示したが、それ以外の適宜なものとされてよく、例えば、ダブルスーパーヘテロダイン方式であってもよい。また、図10は、要部のみを模式的に示すものであり、適宜な位置にローパスフィルタやアイソレータ等が追加されてもよいし、また、増幅器等の位置が変更されてもよい。
本開示は、以上の実施形態に限定されず、種々の態様で実施されてよい。例えば、各層の厚さおよび圧電層のオイラー角は、実施形態で例示した範囲外の値とされてもよい。また、本開示では、ラダー型フィルタの例を示したがバンドエルミネーションフィルタに適用してもよい。その場合には、ロスが大きくなってもスプリアスがなければ特性を維持できるので、保護膜37をより自由に調整できるものとなる。そして、このバンドエルミネーションフィルタに他の帯域通過フィルタを組み合わせて、一つ帯域通過フィルタを提供してもよい。
1…弾性波装置、3…基板、5…多層膜、7…圧電層、19…IDT電極、11…低音響インピーダンス層、13…高音響インピーダンス層、37…保護膜。

Claims (9)

  1. 基板と、
    前記基板上に位置している低音響インピーダンス層と高音響インピーダンス層とが交互に積層されてなる多層膜と、
    前記多層膜上に位置している圧電層と、
    前記圧電層上に位置しているIDT電極を含む複数の共振子と、
    前記複数の共振子上に位置する保護膜と、
    を有しており、
    前記複数の共振子は、共振周波数の異なる第1共振子と第2共振子と備え、前記第1共振子は前記第2共振子に比べ共振周波数が低く、
    前記保護膜は、前記第1共振子上の厚さよりも前記第2共振子上の厚さが厚い、
    弾性波装置。
  2. 前記圧電層の厚さは、前記IDT電極の電極指のピッチをpとしたときに、0.6p以下である、
    請求項1に記載の弾性波装置。
  3. ラダー型フィルタの直列共振子に前記第2共振子を用い、並列共振子に前記第1共振子を用いている、
    請求項1または2に記載の弾性波装置。
  4. 前記第1共振子の反共振周波数は、前記第2共振子の共振周波数よりも低周波数側に位置している、
    請求項3に記載の弾性波装置。
  5. 前記IDT電極の前記電極指のピッチを10%変化させたときの共振周波数の変化率が10%以下である、
    請求項1〜4のいずれか1項に記載の弾性波装置。
  6. 前記保護膜の厚さは0.04p以下である、
    請求項1〜5のいずれか1項に記載の弾性波装置。
  7. 前記第1共振子の前記IDT電極の前記電極指のピッチと前記第2共振子の前記IDT電極の前記電極指のピッチとの変化率は、前記第1共振子と前記第2共振子との共振周波数の変化率よりも、大きい、請求項1〜6のいずれかに記載の弾性波装置。
  8. アンテナ端子と、
    前記アンテナ端子へ出力される信号をフィルタリングする送信フィルタと、
    前記アンテナ端子から入力される信号をフィルタリングする受信フィルタと、
    を有しており、
    前記送信フィルタおよび前記受信フィルタの少なくとも一方が請求項1〜7のいずれか1項に記載の弾性波装置を含んでいる
    分波器。
  9. アンテナと、
    前記アンテナに前記アンテナ端子が接続されている請求項8に記載の分波器と、
    前記送信フィルタおよび前記受信フィルタに対して信号経路に関して前記アンテナ端子とは反対側に接続されているICと、
    を有している通信装置。
JP2020556691A 2018-11-05 2019-10-03 弾性波装置、分波器および通信装置 Active JP7278305B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018208163 2018-11-05
JP2018208163 2018-11-05
PCT/JP2019/039104 WO2020095586A1 (ja) 2018-11-05 2019-10-03 弾性波装置、分波器および通信装置

Publications (2)

Publication Number Publication Date
JPWO2020095586A1 true JPWO2020095586A1 (ja) 2021-09-24
JP7278305B2 JP7278305B2 (ja) 2023-05-19

Family

ID=70612087

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020556691A Active JP7278305B2 (ja) 2018-11-05 2019-10-03 弾性波装置、分波器および通信装置

Country Status (4)

Country Link
US (1) US20210408999A1 (ja)
JP (1) JP7278305B2 (ja)
CN (1) CN113056873A (ja)
WO (1) WO2020095586A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021246447A1 (ja) * 2020-06-04 2021-12-09 株式会社村田製作所 弾性波装置
WO2022045086A1 (ja) * 2020-08-24 2022-03-03 株式会社村田製作所 弾性波装置
WO2022045087A1 (ja) * 2020-08-25 2022-03-03 株式会社村田製作所 弾性波装置
CN116711214A (zh) * 2020-12-28 2023-09-05 株式会社村田制作所 滤波器装置
WO2023136294A1 (ja) * 2022-01-14 2023-07-20 株式会社村田製作所 弾性波装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152299A (ja) * 1992-11-09 1994-05-31 Fujitsu Ltd 弾性表面波デバイス
JPH09270661A (ja) * 1996-03-29 1997-10-14 Mitsubishi Materials Corp 表面弾性波デバイス
JP2000196409A (ja) * 1998-12-28 2000-07-14 Kyocera Corp 弾性表面波フィルタ
WO2012176455A1 (ja) * 2011-06-23 2012-12-27 パナソニック株式会社 ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
WO2017131170A1 (ja) * 2016-01-29 2017-08-03 京セラ株式会社 弾性波共振子、弾性波フィルタ、分波器および通信装置
WO2018097201A1 (ja) * 2016-11-25 2018-05-31 株式会社村田製作所 弾性波フィルタ装置
WO2018139598A1 (ja) * 2017-01-30 2018-08-02 京セラ株式会社 弾性波フィルタ、分波器および通信装置
JP2018125725A (ja) * 2017-02-01 2018-08-09 太陽誘電株式会社 弾性波デバイス
WO2018154950A1 (ja) * 2017-02-21 2018-08-30 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
WO2018198654A1 (ja) * 2017-04-26 2018-11-01 株式会社村田製作所 弾性波装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1223743A (zh) * 1997-04-24 1999-07-21 三菱电机株式会社 薄膜压电元件和薄膜压电元件的制造方法以及电路元件
JP4039322B2 (ja) * 2002-07-23 2008-01-30 株式会社村田製作所 圧電フィルタ、デュプレクサ、複合圧電共振器および通信装置、並びに、圧電フィルタの周波数調整方法
JP2008211394A (ja) * 2007-02-23 2008-09-11 Matsushita Electric Works Ltd 共振装置
JP5080858B2 (ja) * 2007-05-17 2012-11-21 太陽誘電株式会社 圧電薄膜共振器およびフィルタ
JP5191762B2 (ja) * 2008-03-06 2013-05-08 太陽誘電株式会社 圧電薄膜共振器、フィルタ、および通信装置
US8854156B2 (en) * 2009-02-20 2014-10-07 Ube Industries, Ltd. Thin-film piezoelectric resonator and thin-film piezoelectric filter using the same
KR101944652B1 (ko) * 2015-01-23 2019-01-31 가부시키가이샤 무라타 세이사쿠쇼 필터 장치
JP6453913B2 (ja) * 2015-02-13 2019-01-16 京セラ株式会社 弾性波装置、分波器および通信装置
DE112016002335B4 (de) * 2015-06-24 2021-07-01 Murata Manufacturing Co., Ltd. Multiplexer, Sendevorrichtung, Empfangsvorrichtung, Hochfrequenz-Frontend-Schaltkreis, Kommunikationsvorrichtung und Impedanzanpassungsverfahren für einen Multiplexer
CN107852144B (zh) * 2015-10-30 2021-12-10 京瓷株式会社 弹性波谐振器、弹性波滤波器、分波器、通信装置以及弹性波谐振器的设计方法
JP6494545B2 (ja) * 2016-02-23 2019-04-03 太陽誘電株式会社 デュプレクサ
WO2018168836A1 (ja) * 2017-03-15 2018-09-20 株式会社村田製作所 弾性波素子、弾性波フィルタ装置およびマルチプレクサ

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152299A (ja) * 1992-11-09 1994-05-31 Fujitsu Ltd 弾性表面波デバイス
JPH09270661A (ja) * 1996-03-29 1997-10-14 Mitsubishi Materials Corp 表面弾性波デバイス
JP2000196409A (ja) * 1998-12-28 2000-07-14 Kyocera Corp 弾性表面波フィルタ
WO2012176455A1 (ja) * 2011-06-23 2012-12-27 パナソニック株式会社 ラダー型弾性波フィルタ及びこれを用いたアンテナ共用器
WO2017131170A1 (ja) * 2016-01-29 2017-08-03 京セラ株式会社 弾性波共振子、弾性波フィルタ、分波器および通信装置
WO2018097201A1 (ja) * 2016-11-25 2018-05-31 株式会社村田製作所 弾性波フィルタ装置
WO2018139598A1 (ja) * 2017-01-30 2018-08-02 京セラ株式会社 弾性波フィルタ、分波器および通信装置
JP2018125725A (ja) * 2017-02-01 2018-08-09 太陽誘電株式会社 弾性波デバイス
WO2018154950A1 (ja) * 2017-02-21 2018-08-30 株式会社村田製作所 弾性波装置、高周波フロントエンド回路及び通信装置
WO2018198654A1 (ja) * 2017-04-26 2018-11-01 株式会社村田製作所 弾性波装置

Also Published As

Publication number Publication date
WO2020095586A1 (ja) 2020-05-14
US20210408999A1 (en) 2021-12-30
CN113056873A (zh) 2021-06-29
JP7278305B2 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
JP6856820B2 (ja) 弾性波装置、分波器および通信装置
JP6856825B2 (ja) 弾性波装置、分波器および通信装置
JP7278305B2 (ja) 弾性波装置、分波器および通信装置
JP5163746B2 (ja) 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
US8564172B2 (en) Elastic wave element and electronic apparatus using same
JP2019186655A (ja) 弾性波デバイス、マルチプレクサおよび複合基板
JP6854891B2 (ja) 弾性波装置、分波器および通信装置
US10938376B2 (en) Acoustic wave device
US20210152153A1 (en) Acoustic wave element, acoustic wave filter, multiplexer, and communication apparatus
CN116488605A (zh) 弹性波装置、高频前端电路以及通信装置
US11196404B2 (en) Surface acoustic wave element
JP2019021997A (ja) 弾性波素子、分波器および通信装置
JP5158104B2 (ja) 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
JP5488680B2 (ja) 弾性表面波共振子、弾性表面波発振器および弾性表面波モジュール装置
WO2021020102A1 (ja) 弾性波装置及び通信装置
WO2024034528A1 (ja) 弾性波装置、複合フィルタ及び通信装置
WO2023176814A1 (ja) ラダー型フィルタ、モジュール及び通信装置
WO2023210524A1 (ja) 弾性波素子及び通信装置
JP2007325084A (ja) 弾性表面波素子片および弾性表面波デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221101

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20230208

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230418

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230509

R150 Certificate of patent or registration of utility model

Ref document number: 7278305

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150