JPWO2020027209A1 - Base material for jigs for transporting electronic components - Google Patents

Base material for jigs for transporting electronic components Download PDF

Info

Publication number
JPWO2020027209A1
JPWO2020027209A1 JP2020534711A JP2020534711A JPWO2020027209A1 JP WO2020027209 A1 JPWO2020027209 A1 JP WO2020027209A1 JP 2020534711 A JP2020534711 A JP 2020534711A JP 2020534711 A JP2020534711 A JP 2020534711A JP WO2020027209 A1 JPWO2020027209 A1 JP WO2020027209A1
Authority
JP
Japan
Prior art keywords
oxidation
plating film
jig
base material
treated plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020534711A
Other languages
Japanese (ja)
Other versions
JP7401436B2 (en
Inventor
陽平 吉松
陽平 吉松
隆広 吉田
隆広 吉田
哲平 黒川
哲平 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Kohan Co Ltd
Original Assignee
Toyo Kohan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Kohan Co Ltd filed Critical Toyo Kohan Co Ltd
Publication of JPWO2020027209A1 publication Critical patent/JPWO2020027209A1/en
Application granted granted Critical
Publication of JP7401436B2 publication Critical patent/JP7401436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材であって、前記電子部品搬送用冶具用の基材は、前記樹脂吸着部を支持するために用いられ、金属板と、前記金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜と、を備え、前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNi2O3の状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnO2の状態割合が、1%以上である、電子部品搬送用冶具用の基材を提供する。A base material for an electronic parts transporting jig used for an electronic parts transporting jig, which is provided with a resin adsorbing portion for adsorbing an electronic part, and the base material for the electronic parts transporting jig is the resin adsorption. The oxidation-treated plating comprises a metal plate used to support the portion and an oxidation-treated plating film formed on the metal plate and containing at least one element selected from Ni, Sn and P. The state ratio of Ni2O3 as Ni in the oxidized state in all Ni elements on the outermost surface of the film, or the state ratio of SnO2 as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidation-treated plating film. Provided is a base material for a jig for transporting electronic parts, which is 1% or more.

Description

本発明は、電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材に関する。 The present invention relates to a base material for an electronic component transporting jig, which is used for an electronic component transporting jig and includes a resin adsorbing portion for adsorbing the electronic component.

従来、半導体チップを持ち上げて、所定の位置まで搬送するための冶具として、搬送用冶具が用いられている。このような搬送用冶具においては、先端部を半導体チップ中央部付近に接触させ、吸着穴を真空状態とすることで、半導体チップを吸着しつつ搬送することを可能とするものである。 Conventionally, a transfer jig has been used as a jig for lifting a semiconductor chip and transporting it to a predetermined position. In such a transfer jig, the tip portion is brought into contact with the vicinity of the central portion of the semiconductor chip and the suction hole is evacuated, so that the semiconductor chip can be transported while being sucked.

一方、近年は半導体チップの多機能・高速化とそれに伴う高密度実装化を実現するために、チップ内に貫通電極を形成してバンプ接続によるフリップチップ実装を行うチップオンチップ技術が開発されつつある。このような貫通電極を有する半導体チップは、チップ表面に接続用バンプパッドを備えるものであるが、上下に積層される半導体チップのバンプパッドと接合するために従来の半導体チップの接続パッドより高く突出した構造をとる場合が多い。 On the other hand, in recent years, in order to realize multi-functionality and high speed of semiconductor chips and high-density mounting accompanying them, chip-on-chip technology has been developed in which through electrodes are formed in the chip and flip-chip mounting is performed by bump connection. be. A semiconductor chip having such a through electrode is provided with a bump pad for connection on the chip surface, but protrudes higher than the connection pad of a conventional semiconductor chip in order to join with the bump pad of the semiconductor chips stacked one above the other. In many cases, it has a structure that is similar to that of a semiconductor.

そのため、真空状態を利用して搬送を行う搬送用冶具は、このような貫通電極を有する半導体チップの搬送に適さない場合があり、これに代替する搬送冶具として、樹脂などの粘着物を利用した吸着方式が提案されている(たとえば、特許文献1参照)。しかしながら、この特許文献1の技術では、吸着用の樹脂を支持するための基材の強度や硬度、さらには、樹脂との密着性について、検討はなされていない。 Therefore, a transport jig that transports using a vacuum state may not be suitable for transporting a semiconductor chip having such a through electrode, and as an alternative transport jig, an adhesive substance such as resin is used. An adsorption method has been proposed (see, for example, Patent Document 1). However, in the technique of Patent Document 1, the strength and hardness of the base material for supporting the resin for adsorption, and the adhesion to the resin have not been studied.

特開2010−287679号公報Japanese Unexamined Patent Publication No. 2010-287679

本発明の目的は、強度および硬度が高く、電子部品を吸着するための樹脂吸着部を構成する樹脂に対して適切な密着強度を示す電子部品搬送用冶具用の基材を提供することにある。 An object of the present invention is to provide a base material for a jig for transporting electronic components, which has high strength and hardness and exhibits appropriate adhesion strength to a resin constituting a resin adsorption portion for adsorbing electronic components. ..

本発明者等は、上記目的を達成すべく鋭意検討を行った結果、電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具用の基材として、金属板と、この金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜とを備え、かつ、酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上に制御されたものを用いることにより、上記目的を達成することができることを見出し、本発明を完成させるに至った。As a result of diligent studies to achieve the above object, the present inventors have conducted a metal plate and this metal plate as a base material for a jig for transporting electronic parts, which is provided with a resin adsorption portion for adsorbing electronic parts. As Ni formed above and provided with an oxidation-treated plating film containing at least one element selected from Ni, Sn and P, and in an oxidized state among all Ni elements on the outermost surface of the oxidation-treated plating film. state ratio of Ni 2 O 3, or the state ratio of SnO 2 as Sn in the oxidation state in all Sn element in the outermost surface of the oxidized plating film, by using what is controlled to 1% or more , The present invention has been completed by finding that the above object can be achieved.

すなわち、本発明によれば、電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材であって、
前記電子部品搬送用冶具用の基材は、前記樹脂吸着部を支持するために用いられ、
金属板と、前記金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜と、を備え、
前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上である、電子部品搬送用冶具用の基材が提供される。
なお、前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合は、5%超であることが好ましい。
That is, according to the present invention, it is a base material for an electronic component transporting jig used for an electronic component transporting jig, which is provided with a resin adsorbing portion for adsorbing the electronic component.
The base material for the jig for transporting electronic components is used to support the resin adsorption portion.
A metal plate and an oxidation-treated plating film formed on the metal plate and containing at least one element selected from Ni, Sn and P are provided.
As the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidation-treated plating film, or as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidation-treated plating film. A base material for a jig for transporting electronic parts is provided, wherein the state ratio of SnO 2 is 1% or more.
It should be noted that the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidation-treated plating film, or the oxidized state in all Sn elements on the outermost surface of the oxidation-treated plating film. The state ratio of SnO 2 as Sn is preferably more than 5%.

本発明の電子部品搬送用冶具用の基材において、前記酸化処理めっき皮膜の最表面における酸素元素の存在割合が40atom%以上であることがより好ましい。
好ましくは、前記酸化処理めっき皮膜が、Niを少なくとも含有する酸化処理めっき皮膜であり、前記酸化処理めっき皮膜の最表面のNiにおける、NiOと、Niの状態比が、「NiO:Ni」の比で、11.0:1.0〜1.0:99.0であることが好ましく、より好ましくは7.0:1.8〜23.8:76.2、さらに好ましくは7.0:1.8〜27.4:72.6である。
好ましくは、前記酸化処理めっき皮膜が、Ni−P合金を少なくとも含有する酸化処理めっき皮膜である。
好ましくは、前記酸化処理めっき皮膜中における、全P元素中における酸化状態にあるPの酸化物の状態割合が21%以上である。
好ましくは、前記酸化処理めっき皮膜の厚みが、1〜40μmである。
好ましくは、前記金属板が、アルミニウム板である。
本発明の電子部品搬送用冶具用の基材は、前記金属板上に、亜鉛を含有する下地層をさらに備え、前記酸化処理めっき皮膜が、前記下地層に形成されていることが好ましい。
In the base material for the jig for transporting electronic components of the present invention, it is more preferable that the abundance ratio of the oxygen element on the outermost surface of the oxidation-treated plating film is 40 atom% or more.
Preferably, the oxidation-treated plating film is an oxidation-treated plating film containing at least Ni, and the state ratio of NiO and Ni 2 O 3 in Ni on the outermost surface of the oxidation-treated plating film is "NiO: Ni". The ratio of "2 O 3 " is preferably 11.0: 1.0 to 1.0: 99.0, more preferably 7.0: 1.8 to 23.8: 76.2, and even more preferably. Is 7.0: 1.8 to 27.4: 72.6.
Preferably, the oxidation-treated plating film is an oxidation-treated plating film containing at least a Ni-P alloy.
Preferably, the state ratio of the oxide of P in the oxidized state in all P elements in the oxidation-treated plating film is 21% or more.
Preferably, the thickness of the oxidation-treated plating film is 1 to 40 μm.
Preferably, the metal plate is an aluminum plate.
It is preferable that the base material for the jig for transporting electronic parts of the present invention further includes a zinc-containing base layer on the metal plate, and the oxidation-treated plating film is formed on the base layer.

また、本発明によれば、上記の電子部品搬送用冶具用の基材上に、電子部品を吸着するための樹脂吸着部を備える電子部品搬送用冶具が提供される。 Further, according to the present invention, there is provided an electronic component transporting jig provided with a resin adsorption portion for adsorbing electronic components on the base material for the electronic component transporting jig.

本発明によれば、強度および硬度が高く、電子部品を吸着するための樹脂吸着部を構成する樹脂に対して適切な密着強度を示す電子部品搬送用冶具用の基材、ならびに、このような電子部品搬送用冶具用の基材を用いて得られる電子部品搬送用冶具を提供することができる。 According to the present invention, a base material for a jig for transporting electronic components, which has high strength and hardness and exhibits appropriate adhesion strength to a resin constituting a resin adsorption portion for adsorbing electronic components, and such a base material. It is possible to provide a jig for transporting electronic components obtained by using a base material for a jig for transporting electronic components.

図1は、本実施形態に係る電子部品搬送用冶具用の基材の断面図である。FIG. 1 is a cross-sectional view of a base material for a jig for transporting electronic components according to the present embodiment. 図2は、本実施形態に係る電子部品搬送用冶具の製造方法を示す図である。FIG. 2 is a diagram showing a method of manufacturing a jig for transporting electronic components according to the present embodiment. 図3は、本実施形態に係る電子部品搬送用冶具を使用した電子部品の搬送方法を示す図である。FIG. 3 is a diagram showing a method of transporting electronic components using the jig for transporting electronic components according to the present embodiment.

図1は、本実施形態に係る電子部品搬送用冶具用の基材10の構成を示す断面図である。図1に示すように、本実施形態の電子部品搬送用冶具用の基材10は、金属板11上に、最表層として酸化処理めっき皮膜12が形成されてなる。酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素を含み、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%以上であるものである。FIG. 1 is a cross-sectional view showing the configuration of a base material 10 for a jig for transporting electronic components according to the present embodiment. As shown in FIG. 1, the base material 10 for the jig for transporting electronic components of the present embodiment has an oxidation-treated plating film 12 formed as the outermost layer on the metal plate 11. The oxidation-treated plating film 12 contains at least one element selected from Ni, Sn, and P, and has a state ratio of Ni 2 O 3 as Ni in an oxidized state among all Ni elements on the outermost surface, or the outermost surface. The state ratio of SnO 2 as Sn in the oxidized state in all Sn elements in the above is 1% or more.

<電子部品搬送用冶具の製造方法>
まず、本実施形態の電子部品搬送用冶具用の基材10について詳細に説明する前に、本実施形態の電子部品搬送用冶具用の基材10を用いて得られる電子部品搬送用冶具の製造方法を、図2を参照して、説明する。
<Manufacturing method of jigs for transporting electronic parts>
First, before the base material 10 for the electronic component transporting jig 10 of the present embodiment is described in detail, the manufacture of the electronic component transporting jig obtained by using the base material 10 for the electronic component transporting jig 10 of the present embodiment. The method will be described with reference to FIG.

まず、図2(A)に示すように、本実施形態の電子部品搬送用冶具用の基材10(以下、適宜、「基材10」とする。)を準備する。次いで、図2(B)に示すように、吸着用樹脂からなる樹脂層20を形成する。樹脂層20は、基材10の酸化処理めっき皮膜12(図1参照)が形成されている面側に、形成する。 First, as shown in FIG. 2A, the base material 10 for the jig for transporting electronic components of the present embodiment (hereinafter, appropriately referred to as “base material 10”) is prepared. Next, as shown in FIG. 2B, a resin layer 20 made of an adsorption resin is formed. The resin layer 20 is formed on the surface side of the base material 10 on which the oxidation-treated plating film 12 (see FIG. 1) is formed.

次いで、図2(C)に示すように、複数のキャビティ31を有する賦形用金型30を、基材10上に形成された樹脂層20に押し付け、圧力を加えながら加熱することで、樹脂層20を構成する吸着用樹脂を、キャビティ31に対応する形状に成形し、これにより、図2(D)に示すように、基材10上に、吸着用樹脂からなる樹脂吸着部21が複数形成されてなる電子部品搬送用冶具40が製造される。 Next, as shown in FIG. 2C, the shaping mold 30 having the plurality of cavities 31 is pressed against the resin layer 20 formed on the base material 10 and heated while applying pressure to the resin. The adsorption resin constituting the layer 20 is formed into a shape corresponding to the cavity 31, and as a result, as shown in FIG. 2D, a plurality of resin adsorption portions 21 made of the adsorption resin are formed on the base material 10. The formed electronic component transporting jig 40 is manufactured.

なお、このようにして得られた電子部品搬送用冶具40について、電子部品の搬送性能をより高めるという観点より、複数の樹脂吸着部21が形成されている領域(すなわち、中央部付近)の周囲に残存する、不要な吸着用樹脂については、基材10から剥離させる等することで、除去することが好適である。 Regarding the electronic component transporting jig 40 thus obtained, from the viewpoint of further improving the transporting performance of the electronic component, the periphery of the region where the plurality of resin adsorption portions 21 are formed (that is, near the central portion). It is preferable to remove the unnecessary adsorption resin remaining in the above by peeling it from the base material 10 or the like.

そして、このようにして製造される電子部品搬送用冶具40は、図3(A)に示すように、ストッカ50に載置された複数の電子部品60に対し、押し付けられることで、複数の樹脂吸着部21によって、複数の電子部品60を吸着し、図3(B)に示すように、複数の電子部品60を、これを実装するための回路基板70上に搬送し、次いで、回路基板70上に押し付けられることで、複数の電子部品60を、回路基板70上に実装するために使用される。 Then, as shown in FIG. 3A, the electronic component transporting jig 40 manufactured in this manner is pressed against the plurality of electronic components 60 placed on the stocker 50 to form a plurality of resins. A plurality of electronic components 60 are attracted by the suction unit 21, and as shown in FIG. 3B, the plurality of electronic components 60 are conveyed onto a circuit board 70 for mounting the electronic components 60, and then the circuit board 70 is mounted. By being pressed onto, a plurality of electronic components 60 are used to mount on the circuit board 70.

樹脂層20を形成するための吸着用樹脂としては、特に限定されないが、適切な粘着性を有し、これにより、電子部品の搬送をより好適に行うことができるという観点より、ポリジメチルシロキサン(PDMS)などのシリコーン系樹脂を用いることができる。シリコーン系樹脂としては、ポリジメチルシロキサン以外にも、主骨格として、シロキサン結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものを好適に用いることができる。 The adsorption resin for forming the resin layer 20 is not particularly limited, but is polydimethylsiloxane (from the viewpoint of having appropriate adhesiveness, which makes it possible to more preferably transport electronic components. A silicone-based resin such as PDMS) can be used. In addition to polydimethylsiloxane, the silicone-based resin has a siloxane bond as the main skeleton and any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. Those containing can be preferably used.

あるいは、シリコーン系樹脂に代えて、非シリコーン系樹脂を用いてもよく、非シリコーン系樹脂としては、ポリエーテル系樹脂や、ポリエステル系樹脂などが挙げられ、これらのなかでも、ポリエーテル系樹脂が好適である。ポリエーテル系樹脂としては、主骨格として、エーテル結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適であり、また、ポリエステル系樹脂としては、主骨格として、エステル結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適である。また、非シリコーン系樹脂としては、ウレタン系樹脂や、ポリ乳酸系樹脂、フッ素系樹脂を用いることもできる。ウレタン系樹脂、ポリ乳酸系樹脂、およびフッ素系樹脂としては、たとえば、主骨格として、ウレタン結合、エステル結合、エーテル結合、およびアミド結合のいずれか1つを含み、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適に用いられる。 Alternatively, a non-silicone resin may be used instead of the silicone resin, and examples of the non-silicon resin include a polyether resin and a polyester resin. Among these, the polyether resin is used. Suitable. The polyether resin preferably has an ether bond as a main skeleton and contains any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. Further, as the polyester-based resin, one having an ester bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group is preferable. Is. Further, as the non-silicone resin, a urethane resin, a polylactic acid resin, or a fluororesin can also be used. The urethane-based resin, polylactic acid-based resin, and fluorine-based resin include, for example, any one of a urethane bond, an ester bond, an ether bond, and an amide bond as a main skeleton, and a hydroxy group as a functional group. , Amine group, methyl group, carboxy group, and ketone group are preferably used.

これら吸着用樹脂は、硬化性樹脂(熱硬化性樹脂または紫外線硬化性樹脂)あるいは熱可塑性樹脂のいずれであってもよい。たとえば、吸着用樹脂として、熱硬化性樹脂を用いる場合には、図2(C)に示す工程において、複数のキャビティ31を有する賦形用金型30を、基材10上に形成された樹脂層20に押し付け、圧力を加えながら加熱する際に、樹脂吸着部21に対応する形状に成形するとともに硬化させることができる。 These adsorption resins may be either a curable resin (thermosetting resin or ultraviolet curable resin) or a thermoplastic resin. For example, when a thermosetting resin is used as the adsorption resin, in the step shown in FIG. 2C, a molding die 30 having a plurality of cavities 31 is formed on the base material 10. When it is pressed against the layer 20 and heated while applying pressure, it can be molded into a shape corresponding to the resin adsorption portion 21 and cured.

<電子部品搬送用冶具用の基材10>
上述したように、本実施形態の電子部品搬送用冶具用の基材10は、図2(A)〜図2(D)に示すように、電子部品搬送用冶具40を得るために用いられるものである。具体的には、本実施形態の電子部品搬送用冶具用の基材10は、樹脂吸着部21を支持するための支持基材として用いられる。
<Base material 10 for jigs for transporting electronic components>
As described above, the base material 10 for the electronic component transporting jig 10 of the present embodiment is used to obtain the electronic component transporting jig 40 as shown in FIGS. 2 (A) to 2 (D). Is. Specifically, the base material 10 for the jig for transporting electronic components of the present embodiment is used as a support base material for supporting the resin adsorption portion 21.

本実施形態の電子部品搬送用冶具用の基材10は、図1に示すように、金属板11上に、最表層として酸化処理めっき皮膜12が形成されてなる。 As shown in FIG. 1, the base material 10 for the jig for transporting electronic components of the present embodiment has an oxidation-treated plating film 12 formed as the outermost layer on the metal plate 11.

金属板11としては、特に限定されないが、鋼板、ステンレス鋼板、銅板、アルミニウム板、アルミニウム合金板、またはニッケル板などが挙げられる。これらのなかでも、価格が安いことから、鋼板またはアルミニウム板、アルミニウム合金板が好ましい。さらに、電子部品搬送用冶具40の軽量化が可能となり、これにより、電子部品搬送に必要となるエネルギーを低減できるという観点より、アルミニウム板、またはアルミニウム合金板が好ましい。金属板11の厚みは、特に限定されないが、電子部品を搬送する際における取り扱い性の観点より、好ましくは0.3〜2mm、より好ましくは0.5〜0.8mmである。 The metal plate 11 is not particularly limited, and examples thereof include a steel plate, a stainless steel plate, a copper plate, an aluminum plate, an aluminum alloy plate, and a nickel plate. Among these, a steel plate, an aluminum plate, or an aluminum alloy plate is preferable because of its low price. Further, an aluminum plate or an aluminum alloy plate is preferable from the viewpoint that the weight of the jig 40 for transporting electronic components can be reduced, and thus the energy required for transporting electronic components can be reduced. The thickness of the metal plate 11 is not particularly limited, but is preferably 0.3 to 2 mm, more preferably 0.5 to 0.8 mm from the viewpoint of handleability when transporting electronic components.

酸化処理めっき皮膜12は、金属板11上に形成されるめっき被膜であって、少なくともその表面が酸化処理されたものであり、基材10の最表層を構成する。本実施形態において、酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素を含み(好適には、NiおよびSnから選択される少なくとも1種の元素を含み)、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合(すなわち、Ni単体や、NiOなどのNi以外の酸化状態の酸化物と、Niの酸化物以外のNi化合物と、Niとの合計に対する、Ni元素換算でのNiの状態割合。)、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合(すなわち、Sn単体や、SnOなどのSnO以外の酸化状態の酸化物と、Snの酸化物以外のSn化合物と、SnOとの合計に対する、Sn元素換算でのSnOの状態割合。)が、1%以上であるものである。The oxidation-treated plating film 12 is a plating film formed on the metal plate 11, at least the surface of which is oxidation-treated, and constitutes the outermost layer of the base material 10. In the present embodiment, the oxidation-treated plating film 12 contains at least one element selected from Ni, Sn and P (preferably containing at least one element selected from Ni and Sn), and the most. State ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the surface (that is, an oxide in an oxidized state other than Ni 2 O 3 such as Ni alone or Ni O, and an oxide other than Ni oxide The state ratio of Ni 2 O 3 in terms of Ni element to the total of Ni compound and Ni 2 O 3 ), or the state ratio of Sn O 2 as Sn in the oxidized state in all Sn elements on the outermost surface ( That is, the state ratio of SnO 2 in terms of Sn element to the total of Sn alone, an oxide in an oxidized state other than SnO 2 such as SnO, a Sn compound other than Sn oxide, and SnO 2). It is 1% or more.

本実施形態によれば、金属板11上に、最表層として酸化処理めっき皮膜12を形成し、酸化処理めっき皮膜12をこのような構成とすることにより、電子部品搬送用冶具用の基材10を、強度および硬度が高く、樹脂吸着部21を構成する吸着用樹脂に対して適切な密着強度を示すものとすることができるものである。特に、電子部品搬送用冶具40を製造する際においては、図2(C)に示す工程のように、賦形用金型30を、電子部品搬送用冶具用の基材10上に所定の圧力にて押し付ける必要があるため、電子部品搬送用冶具用の基材10には、賦形用金型30の押し付けによる変形や破損、傷付きが有効に抑制されたものであることが求められる。加えて、電子部品搬送用冶具用の基材10は、樹脂吸着部21を支持するものであることから、樹脂吸着部21を構成する吸着用樹脂との密着性に優れていること、その一方で、樹脂吸着部21以外の部分に残存する不要な吸着用樹脂(たとえば、複数の樹脂吸着部21が形成されている領域(すなわち、中央部付近)の周囲に残存する吸着用樹脂)については、剥離等により除去される場合もあるため、これらを適切に除去できる程度の密着性を示すものであること(すなわち、密着力が高すぎないこと)が求められる。さらには、工程内でのキズ付きが起こると、平滑度が悪化し、搬送性能が低下するという課題もある。 According to the present embodiment, the oxidation-treated plating film 12 is formed on the metal plate 11 as the outermost layer, and the oxidation-treated plating film 12 has such a configuration, whereby the base material 10 for a jig for transporting electronic parts 10 is formed. Is high in strength and hardness, and can exhibit an appropriate adhesion strength to the adsorption resin constituting the resin adsorption portion 21. In particular, when manufacturing the electronic component transporting jig 40, the shaping mold 30 is placed on the base material 10 for the electronic component transporting jig 10 at a predetermined pressure as in the step shown in FIG. 2 (C). Therefore, it is required that the base material 10 for the jig for transporting electronic parts is effectively suppressed from being deformed, damaged, or damaged by pressing the shaping die 30. In addition, since the base material 10 for the jig for transporting electronic components supports the resin adsorption portion 21, it is excellent in adhesion to the adsorption resin constituting the resin adsorption portion 21, on the other hand. The unnecessary adsorption resin remaining in the portion other than the resin adsorption portion 21 (for example, the adsorption resin remaining around the region where the plurality of resin adsorption portions 21 are formed (that is, near the central portion)) Since it may be removed by peeling or the like, it is required that the adhesiveness is such that these can be appropriately removed (that is, the adhesive force is not too high). Further, if scratches occur in the process, there is a problem that the smoothness deteriorates and the transport performance deteriorates.

これに対し、本実施形態によれば、電子部品搬送用冶具用の基材10を、上記構成を有するものとすることにより、強度および硬度が高く、樹脂吸着部21を構成する吸着用樹脂に対して適切な密着強度を示すものとすることができるものであり、これにより、本実施形態によれば、このような問題を適切に解決するものである。 On the other hand, according to the present embodiment, the base material 10 for the jig for transporting electronic parts has the above-mentioned structure, so that the adsorbing resin has high strength and hardness and constitutes the resin adsorbing portion 21. On the other hand, it is possible to show an appropriate adhesion strength, thereby appropriately solving such a problem according to the present embodiment.

酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素を含み、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上であるものであればよいが、樹脂吸着部21を形成するための吸着用樹脂として、シリコーン系樹脂を用いる場合には、Niの状態割合、又はSnOの状態割合は、1.75〜72.6%の範囲であることがより好ましく、5%超、72.6%以下の範囲であることがさらに好ましく、7.5〜49.4%の範囲であることがさらにより好ましい。また、樹脂吸着部21を形成するための吸着用樹脂として、ポリエーテル系樹脂、ポリエステル系樹脂、フッ素系樹脂、ウレタン系樹脂、あるいは、ポリ乳酸系樹脂を用いる場合には、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合は、7.5〜100%の範囲であることがより好ましく、7.97〜72.6%の範囲であることがさらに好ましく、7.97〜30%の範囲であることがさらにより好ましい。最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が低すぎると、吸着用樹脂に対する密着性が不十分となってしまう。The oxidation-treated plating film 12 contains at least one element selected from Ni, Sn and P, and has a state ratio of Ni 2 O 3 as Ni in an oxidized state among all Ni elements on the outermost surface, or the outermost surface. The state ratio of SnO 2 as Sn in the oxidized state in all Sn elements in the above may be 1% or more, but a silicone-based resin is used as the adsorption resin for forming the resin adsorption portion 21. When used, the state ratio of Ni 2 O 3 or the state ratio of Sn O 2 is more preferably in the range of 1.75 to 72.6%, in the range of more than 5% and 72.6% or less. It is even more preferably in the range of 7.5 to 49.4%. When a polyether resin, a polyester resin, a fluorine resin, a urethane resin, or a polylactic acid resin is used as the adsorption resin for forming the resin adsorption portion 21, all Ni on the outermost surface is used. state ratio of Ni 2 O 3 as Ni in an oxidized state during elements, or state ratio of SnO 2 as Sn in the oxidation state in all Sn element in the outermost surface in the range of 7.5 to 100% It is more preferably in the range of 7.97 to 72.6%, further preferably in the range of 7.97 to 30%. If the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface or the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface is too low, it is adsorbed. Adhesion to the resin is insufficient.

酸化処理めっき皮膜12が、Niを少なくとも含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、酸化処理めっき皮膜の最表面のNiにおける、NiOと、Niの状態比が、「NiO:Ni」の比で、11.0:1.0〜1.0:99.0であることが好ましく、7.0:1.8〜23.8:76.2であることがより好ましく、7.0:1.8〜27.4:72.6であることがさらに好ましい。NiOと、Niとの状態比は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、Ni単体のピークの積分値と、NiOのピークの積分値と、Niのピークの積分値とを求め、これらより、最表面における全Ni元素におけるNiOおよびNiの状態割合を算出し、NiOと、Niとの状態比を求めることができる。When the oxidation-treated plating film 12 is an oxidation-treated plating film containing at least Ni, it is oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption portion 21. in Ni of the outermost surface of the treated plated film, and NiO, state ratio of Ni 2 O 3 is: a ratio of "NiO Ni 2 O 3", 11.0: 1.0 to 1.0: 99.0 It is preferably 7.0: 1.8 to 23.8: 76.2, more preferably 7.0: 1.8 to 27.4: 72.6. The state ratio of NiO and Ni 2 O 3 is determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the oxidation-treated plating film 12, and determining the integrated value of the peak of Ni alone, the integrated value of the peak of NiO, and the integrated value of the peak of NiO. obtains an integration value of the peak of Ni 2 O 3, from these, determining and calculating the state ratio of NiO and Ni 2 O 3 in the total Ni element in the outermost surface, and NiO, the state ratio of Ni 2 O 3 Can be done.

また、酸化処理めっき皮膜12は、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が上記範囲であればよいが、最表面における酸素元素の存在割合が、40.0atom%以上であることが好ましく、より好ましくは40.6atom%以上であり、さらに好ましくは43.0atom%以上である。最表面における酸素元素の存在割合の上限は、特に限定されないが、好ましくは53atom%以下、より好ましくは45atom%以下である。最表面における酸素元素の存在割合を上記範囲とすることにより、吸着用樹脂に対する密着性をより高めることができる。本実施形態においては、酸化処理めっき皮膜12の、最表面における酸素元素の存在割合は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、酸化処理めっき皮膜12を構成する各酸化物のピーク積分値を求め、求めたピーク積分値から、酸素元素の存在割合(atom%)を算出することにより、求めることができる。 Further, the oxidation-treated plating film 12 has a state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface. The state ratio may be in the above range, but the abundance ratio of the oxygen element on the outermost surface is preferably 40.0 atom% or more, more preferably 40.6 atom% or more, and further preferably 43.0 atom. % Or more. The upper limit of the abundance ratio of the oxygen element on the outermost surface is not particularly limited, but is preferably 53 atom% or less, more preferably 45 atom% or less. By setting the abundance ratio of the oxygen element on the outermost surface within the above range, the adhesion to the adsorption resin can be further enhanced. In the present embodiment, the abundance ratio of oxygen elements on the outermost surface of the oxidation-treated plating film 12 is determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the oxidation-treated plating film 12 to form the oxidation-treated plating film 12. It can be obtained by obtaining the peak integrated value of each oxide and calculating the abundance ratio (atom%) of the oxygen element from the obtained peak integrated value.

また、酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素に加えて、Znをさらに含有するものであってもよい。酸化処理めっき皮膜12が、Znをさらに含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、最表面における全Zn元素中における酸化状態にあるZnとしてのZnOの状態割合が19%以上であることが好ましい。また、最表面における全Zn元素中における酸化状態にあるZnとしてのZnOの状態割合は1%以上が好ましく、より好ましくは69%以上である。ZnOと、ZnOとの状態比は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、X線光電子分光(XPS)測定を行い、Zn単体のピークの積分値と、ZnOのピークの積分値と、ZnOのピークの積分値とを求め、これらより、最表面における全Zn元素におけるZnOおよびZnOの状態割合を算出し、ZnOと、ZnOとの状態比を求めることができる。Further, the oxidation-treated plating film 12 may further contain Zn in addition to at least one element selected from Ni, Sn and P. When the oxidation-treated plating film 12 is an oxidation-treated plating film further containing Zn, it is most suitable from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption portion 21. The state ratio of ZnO as Zn in the oxidized state in all Zn elements on the surface is preferably 19% or more. Further, the state ratio of ZnO 2 as Zn in the oxidized state in all Zn elements on the outermost surface is preferably 1% or more, more preferably 69% or more. The state ratio of ZnO to ZnO 2 is the integrated value of the peak of Zn alone after X-ray photoelectron spectroscopy (XPS) measurement and X-ray photoelectron spectroscopy (XPS) measurement are performed on the surface of the oxidation-treated plating film 12. , the integral value of the peak of ZnO, and the integral value of the peak of ZnO 2 determined, the state ratio of from calculates a state ratio of ZnO and ZnO 2 in total Zn elements in the outermost surface, and ZnO, and ZnO 2 Can be obtained.

酸化処理めっき皮膜12が、Snを少なくとも含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、酸化処理めっき皮膜12の最表面における、全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が19%以上であることが好ましい。また、酸化処理めっき皮膜12の最表面における、全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合は1%以上が好ましく、より好ましくは69%以上である。SnOと、SnOとの状態比は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、Sn単体のピークの積分値と、SnOのピークの積分値と、SnOのピークの積分値とを求め、これらより、最表面における全Sn元素におけるSnOおよびSnOの状態割合を算出し、SnOと、SnOとの状態比を求めることができる。When the oxidation-treated plating film 12 is an oxidation-treated plating film containing at least Sn, it is oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption portion 21. On the outermost surface of the treated plating film 12, the state ratio of SnO as Sn in the oxidized state in all Sn elements is preferably 19% or more. Further, the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidation-treated plating film 12 is preferably 1% or more, more preferably 69% or more. And SnO, state ratio of SnO 2, for surface oxidation treatment plating film 12, subjected to X-ray photoelectron spectroscopy (XPS) measurements, and the integral value of the Sn single peak, and the integral value of SnO peak, SnO 2 From these, the state ratios of SnO and SnO 2 in all Sn elements on the outermost surface can be calculated, and the state ratio of SnO and SnO 2 can be obtained.

酸化処理めっき皮膜12が、Pを少なくとも含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、酸化処理めっき皮膜12の最表面における、全P元素中における酸化状態にあるPの酸化物の状態割合が21%以上であり、より好ましくは24%以上である。全P元素中における酸化状態にあるPの酸化物の状態割合の上限は、特に限定されないが、好ましくは97%以下であり、より好ましくは60%以下である。Pの酸化物の状態割合は、上記と同様に、X線光電子分光(XPS)測定により求めることができる。 When the oxidation-treated plating film 12 is an oxidation-treated plating film containing at least P, it is oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption portion 21. On the outermost surface of the treated plating film 12, the state ratio of the oxide of P in the oxidized state in all P elements is 21% or more, more preferably 24% or more. The upper limit of the state ratio of the oxide of P in the oxidized state in all P elements is not particularly limited, but is preferably 97% or less, and more preferably 60% or less. The state ratio of the oxide of P can be determined by X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above.

また、酸化処理めっき皮膜12は、強度、硬度、および樹脂吸着部21を構成する吸着用樹脂に対する密着性をより高度にバランスさせることができ、しかも、酸化処理めっき皮膜12表面の平坦性をより高めることができ、これにより、より微細な電子部品を高精度に搬送することができるという観点より、Ni−P合金を少なくとも含有する酸化処理めっき皮膜であることがより好ましく、この場合における、酸化処理めっき皮膜12の最表面における、NiOと、Niとの状態比が、「NiO:Ni」の比で、11.0:1.0〜1.0:99.0である。より好ましくは7.0:1.8〜23.8:76.2、さらに好ましくは7.0:1.8〜27.4:72.6である。NiOと、Niとの状態比は、上記と同様に、X線光電子分光(XPS)測定の結果により算出することができる。また、Ni−P合金中における、Pの含有量が1〜13重量%が好ましく、より好ましくは5〜13重量%、さらに好ましくは8〜13重量%である。Ni‐P合金中におけるPの含有割合は、上記と同様に、X線光電子分光(XPS)測定により求めることができる。Further, the oxidation-treated plating film 12 can have a higher balance of strength, hardness, and adhesion to the adsorption resin constituting the resin adsorption portion 21, and moreover, the flatness of the surface of the oxidation-treated plating film 12 is further improved. It is more preferable that the oxidation-treated plating film contains at least a Ni-P alloy from the viewpoint that it can be enhanced and thereby transports finer electronic parts with high accuracy. In this case, oxidation The state ratio of NiO and Ni 2 O 3 on the outermost surface of the treated plating film 12 is the ratio of "NiO: Ni 2 O 3 ", which is 11.0: 1.0 to 1.0: 99.0. be. It is more preferably 7.0: 1.8 to 23.8: 76.2, and even more preferably 7.0: 1.8 to 27.4: 72.6. The state ratio of Ni O and Ni 2 O 3 can be calculated from the result of X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above. The P content in the Ni-P alloy is preferably 1 to 13% by weight, more preferably 5 to 13% by weight, and even more preferably 8 to 13% by weight. The content ratio of P in the Ni-P alloy can be determined by X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above.

酸化処理めっき皮膜12の厚みは、特に限定されないが、電子部品搬送用冶具用の基材10の強度および硬度をより十分なものとするという観点より、好ましくは1〜40μm、より好ましくは1〜20μm、さらに好ましくは1〜10μm、さらにより好ましくは5〜10μmである。 The thickness of the oxidation-treated plating film 12 is not particularly limited, but is preferably 1 to 40 μm, more preferably 1 to 1 from the viewpoint of making the strength and hardness of the base material 10 for the jig for transporting electronic components more sufficient. It is 20 μm, more preferably 1 to 10 μm, and even more preferably 5 to 10 μm.

金属板11上に、酸化処理めっき皮膜12を形成する方法としては特に限定されないが、たとえば、酸化処理めっき皮膜12を、Niを少なくとも含有する酸化処理めっき皮膜とする場合には、金属板11上に、Niめっきを施し、形成されたNiめっき膜について、酸化処理を行う方法などが挙げられる。酸化処理の方法としては、特に限定されないが、形成されたNiめっき膜について熱処理を行う方法や、過酸化水素水(H)、次亜塩素酸塩などの液体中に浸漬させる処理を行う方法、水蒸気処理を行う方法などが挙げられる。また、これらは組み合わせてもよい。熱処理を行う際の条件としては、特に限定されないが、熱処理温度は、好ましくは130〜300℃、熱処理時間は、好ましくは10〜30分である。また、過酸化水素水中に浸漬させる処理における条件としては、特に限定されないが、過酸化水素水の濃度は、好ましくは1〜35重量%、より好ましくは15〜35重量%、浸漬温度(過酸化水素水の温度)は、好ましくは25〜90℃、より好ましくは25〜70℃、浸漬時間は、好ましくは20秒〜120分、より好ましくは20秒〜60分である。さらに、水蒸気処理における条件としては、特に限定されないが、好ましくは40〜100%RH、より好ましくは65〜100%RHであり、水蒸気温度は、好ましくは40〜120℃、より好ましくは65〜85℃、処理時間は、好ましくは1分〜72時間、より好ましくは12〜24時間である。また、酸化処理めっき皮膜12を、NiおよびPを含有するものとする場合(すなわち、Ni−P合金を含有するものとする場合)には、Ni−Pめっきを行い、Ni−P合金めっき膜を形成した後、Ni−P合金めっき膜について、熱処理を行う方法や、過酸化水素水(H)、次亜塩素酸塩などの液体中に浸漬させる処理を行う方法、水蒸気処理を行う方法などが挙げられる。この場合においては、熱処理、過酸化水素水中に浸漬させる処理、および水蒸気処理における条件は、上記と同様とすることができる。The method for forming the oxidation-treated plating film 12 on the metal plate 11 is not particularly limited. For example, when the oxidation-treated plating film 12 is an oxidation-treated plating film containing at least Ni, it is on the metal plate 11. In addition, a method of performing an oxidation treatment on the Ni-plated film formed by performing Ni-plating can be mentioned. The method of oxidation treatment is not particularly limited, but a method of heat-treating the formed Ni plating film or a treatment of immersing the formed Ni plating film in a liquid such as hydrogen peroxide solution (H 2 O 2 ) or hypochlorite is performed. Examples thereof include a method of performing steam treatment and a method of performing steam treatment. Moreover, these may be combined. The conditions for performing the heat treatment are not particularly limited, but the heat treatment temperature is preferably 130 to 300 ° C., and the heat treatment time is preferably 10 to 30 minutes. The conditions for the treatment of immersing in the hydrogen peroxide solution are not particularly limited, but the concentration of the hydrogen peroxide solution is preferably 1 to 35% by weight, more preferably 15 to 35% by weight, and the immersion temperature (peroxidation). The temperature of hydrogen peroxide) is preferably 25 to 90 ° C., more preferably 25 to 70 ° C., and the immersion time is preferably 20 seconds to 120 minutes, more preferably 20 seconds to 60 minutes. Further, the conditions in the steam treatment are not particularly limited, but are preferably 40 to 100% RH, more preferably 65 to 100% RH, and the steam temperature is preferably 40 to 120 ° C., more preferably 65 to 85. The temperature and treatment time are preferably 1 minute to 72 hours, more preferably 12 to 24 hours. When the oxidation-treated plating film 12 contains Ni and P (that is, when it contains a Ni-P alloy), Ni-P plating is performed to obtain a Ni-P alloy plating film. A method of heat-treating the Ni-P alloy plating film, a method of immersing the Ni-P alloy plating film in a liquid such as hydrogen peroxide solution (H 2 O 2 ) or hypochlorite, and a steam treatment. The method of doing this can be mentioned. In this case, the conditions for the heat treatment, the treatment of immersing in hydrogen peroxide solution, and the steam treatment can be the same as described above.

また、酸化処理めっき皮膜12を、Znを少なくとも含有する酸化処理めっき皮膜とする場合、あるいは、Snを少なくとも含有する酸化処理めっき皮膜とする場合には、金属板11上に、Znめっき、あるいはSnめっきを施し、形成されたZnめっき膜、Snめっき膜について、酸化処理を行う方法などが挙げられる。酸化処理の方法としては、特に限定されないが、形成されたZnめっき膜、Snめっき膜について熱処理を行う方法や、過酸化水素水などの液体中に浸漬させる処理を行う方法、水蒸気処理を行う方法などが挙げられる。また、これらは組み合わせてもよい。熱処理、過酸化水素水中に浸漬させる処理、および水蒸気処理における条件は、上記と同様とすることができる。 Further, when the oxidation-treated plating film 12 is an oxidation-treated plating film containing at least Zn, or when it is an oxidation-treated plating film containing at least Sn, Zn plating or Sn is applied on the metal plate 11. Examples thereof include a method of performing an oxidation treatment on the Zn plating film and Sn plating film formed by plating. The method of oxidation treatment is not particularly limited, but is a method of heat-treating the formed Zn plating film and Sn plating film, a method of immersing in a liquid such as hydrogen peroxide solution, and a method of performing steam treatment. And so on. Moreover, these may be combined. The conditions for the heat treatment, the treatment of immersing in hydrogen peroxide solution, and the steam treatment can be the same as described above.

また、酸化処理めっき皮膜12を、Pを少なくとも含有する酸化処理めっき皮膜とする場合には、金属板11上に、必要に応じて、ZnめっきやSnめっきを施した後、リン酸塩を用いて、リン酸塩処理を行う方法などが挙げられる。 When the oxidation-treated plating film 12 is an oxidation-treated plating film containing at least P, the metal plate 11 is subjected to Zn plating or Sn plating as necessary, and then phosphate is used. Then, a method of performing phosphate treatment and the like can be mentioned.

また、本実施形態においては、金属板11上に、直接、酸化処理めっき皮膜12を設けるような構成としてもよいが、酸化処理めっき皮膜12を良好に形成するという観点より、予め金属板11上に下地層としての亜鉛を含有する下地層を形成した後、その亜鉛を含有する下地層上に酸化処理めっき皮膜12を形成することが好ましい。 Further, in the present embodiment, the oxidation-treated plating film 12 may be provided directly on the metal plate 11, but from the viewpoint of forming the oxidation-treated plating film 12 well, the metal plate 11 may be formed in advance. After forming a base layer containing zinc as a base layer, it is preferable to form an oxidation-treated plating film 12 on the base layer containing zinc.

亜鉛を含有する下地層を形成する方法としては、特に限定されないが、金属板11について、脱脂処理を行ない、次いで、必要に応じてエッチングや酸洗した後、亜鉛の置換めっきを行なう方法が挙げられる。亜鉛の置換めっきは、第一亜鉛置換処理(1stジンケート処理)、硝酸亜鉛剥離処理(脱ジンケート処理)、第二亜鉛置換処理(2ndジンケート)の各工程を経るダブルジンケート処理を施すことにより行なわれる。この場合、各工程の処理後には水洗処理を実施する。 The method for forming the base layer containing zinc is not particularly limited, and examples thereof include a method in which the metal plate 11 is subjected to a degreasing treatment, and then etched or pickled as necessary and then subjected to zinc replacement plating. Be done. Zinc replacement plating is performed by performing a double zincate treatment through each step of a first zinc substitution treatment (1st zincate treatment), a zinc nitrate stripping treatment (dezincating treatment), and a second zinc substitution treatment (2nd zincate). .. In this case, a washing treatment is carried out after each step.

以上のような本実施形態の電子部品搬送用冶具用の基材10によれば、強度および硬度が高く、樹脂吸着部21を構成する吸着用樹脂に対して適切な密着強度を示すものであることから、種々の電子部品を搬送するための電子部品搬送用冶具を構成するための支持基材として好適に用いることができ、特に、マイクロLED、コンデンサ、半導体素子などの微細な電子部品を搬送するための電子部品搬送用冶具用途に好適に用いることができる。 According to the base material 10 for the electronic component transporting jig of the present embodiment as described above, the strength and hardness are high, and the adhesive strength is appropriate for the adsorption resin constituting the resin adsorption portion 21. Therefore, it can be suitably used as a support base material for constructing a jig for transporting electronic components for transporting various electronic components, and in particular, it transports fine electronic components such as micro LEDs, capacitors, and semiconductor elements. It can be suitably used for a jig for transporting electronic parts.

以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
なお、各特性の評価方法は、以下のとおりである。
Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to these Examples.
The evaluation method of each characteristic is as follows.

<XPS測定>
実施例および比較例にて得られた酸化処理めっき板(比較例1においては、酸化処理を行っていないめっき板、比較例3,4においてはアルマイト処理板、以下、各測定、評価についての説明において同様。)の表面に形成した酸化処理めっき皮膜(比較例3,4においては、アルマイト処理面、以下、各測定、評価についての説明において同様。)の表面について、X線光電子分光装置(アルバック・ファイ社製、型番:VersaProbeII)を用いて、Ni2p3/2、Sn3d5/2、P2p、O1sのピークをそれぞれ測定した。
全元素中の酸素元素の存在割合は、アルゴンスパッタにより2nmエッチングした後、測定し、Ni2p3/2、Sn3d5/2、P2p、O1sのピーク面積の総和に占めるO1sピーク面積の割合から算出した(全元素中の酸素元素の存在割合の測定結果は、実施例7,8、比較例2、実施例9,10,16〜18について行った。)。
Pの酸化物の割合は、上記P2pのピークを各化学状態に対応する波形に分離し、P2pのピーク面積に占めるPの酸化物のピーク面積の割合から算出した。
NiOの状態割合、および、Niの状態割合は、Ni2p3/2のピークを各化学状態に対応する波形に分離し、Ni2p3/2のピーク面積に占めるNiOに対応するピーク面積、又は、Niに対応するピーク面積の割合から算出した。
SnOの状態割合、および、SnOの状態割合は、Sn3d5/2のピークを各化学状態に対応する波形に分離し、Sn3d5/2のピーク面積に占めるSnOに対応するピーク面積、又は、SnOに対応するピーク面積の割合から算出した。
<XPS measurement>
Oxidation-treated plating plates obtained in Examples and Comparative Examples (in Comparative Example 1, a plating plate not subjected to oxidation treatment, in Comparative Examples 3 and 4, an alumite-treated plate, each measurement and evaluation will be described below. The surface of the oxidation-treated plating film (in Comparative Examples 3 and 4, the alumite-treated surface, the same applies hereinafter in the description of each measurement and evaluation) formed on the surface of the X-ray photoelectron spectrometer (Albac). The peaks of Ni2p3 / 2, Sn3d5 / 2, P2p, and O1s were measured using Phi's model number: VersaProbeII).
The abundance ratio of oxygen element in all elements was measured after etching at 2 nm by argon sputtering, and calculated from the ratio of the O1s peak area to the total peak area of Ni2p3 / 2, Sn3d5 / 2, P2p, and O1s (total). The measurement results of the abundance ratio of the oxygen element in the element were carried out for Examples 7 and 8, Comparative Example 2 and Examples 9, 10, 16 to 18).
The ratio of the oxide of P was calculated from the ratio of the peak area of the oxide of P to the peak area of P2p by separating the peak of P2p into waveforms corresponding to each chemical state.
State ratio of NiO, and the state ratio of Ni 2 O 3 is separated into a waveform corresponding peaks Ni2p3 / 2 to each chemical state, peak area corresponding to NiO occupying the peak area of Ni2p3 / 2, or, It was calculated from the ratio of the peak area corresponding to Ni 2 O 3.
The state ratio of SnO and the state ratio of SnO 2 separate the peak of Sn3d5 / 2 into waveforms corresponding to each chemical state, and the peak area corresponding to SnO in the peak area of Sn3d5 / 2 or SnO 2 It was calculated from the ratio of the peak area corresponding to.

<3点曲げ試験>
実施例および比較例にて得られた酸化処理めっき板を、50mm×50mmのサイズに切断し、50mm×50mmのサイズの試料の向かい合う2辺を、一対の支持部材(支持端子径2mm、支持幅40mm)で支持した状態で、基準面より浮かせた状態で載置し、この状態にて、酸化処理めっき板の酸化処理めっき皮膜形成面の、向かい合う2辺の中央付近を、半径5mm、幅50mmの圧子により、60Nの荷重を2mm/分の条件にて付加することで、3点曲げ試験を行った。そして、3点曲げ試験前後の酸化処理めっき板について、光学干渉縞計(製品名「平面度検査器(FT‐M100P)」、株式会社溝尻光学工業所製)を用いて、干渉縞の変化を観測し、以下の基準で評価した。3点曲げ試験前後において、干渉縞の変化が観測されなければ、曲げ強度に優れると判断でき、一方、干渉縞の変化が観測された場合には、曲げ強度に劣ると判断できる。
〇:3点曲げ試験前後において、干渉縞の変化が観測されない。
×:3点曲げ試験前後において、干渉縞の変化が観測された。
<3-point bending test>
The oxidation-treated plating plates obtained in Examples and Comparative Examples are cut into a size of 50 mm × 50 mm, and two opposite sides of a sample having a size of 50 mm × 50 mm are formed by a pair of support members (support terminal diameter 2 mm, support width). It is placed in a state where it is supported by 40 mm) and floated above the reference surface. A three-point bending test was performed by applying a load of 60 N under the condition of 2 mm / min with the indenter of. Then, for the oxidation-treated plating plate before and after the three-point bending test, the change of the interference fringes is measured by using an optical interference fringe meter (product name "flatness tester (FT-M100P)", manufactured by Mizojiri Optical Co., Ltd.). It was observed and evaluated according to the following criteria. If no change in the interference fringes is observed before and after the three-point bending test, it can be judged that the bending strength is excellent, while if a change in the interference fringes is observed, it can be judged that the bending strength is inferior.
〇: No change in interference fringes is observed before and after the 3-point bending test.
X: Changes in interference fringes were observed before and after the 3-point bending test.

<キズ付け試験>
実施例および比較例にて得られた酸化処理めっき板の酸化処理めっき皮膜形成面に対し、鉛直方向に硬質合金針を載置し、荷重50g/kgfを印加した状態で引っ掻き試験を行い、レーザー顕微鏡(オリンパス社製、「LEXT(OLS3500)」)にて、キズ深さの測定を行った。キズ深さが浅いほど、硬度が高いと判断することができる。
〇:キズ深さが1μm以下
×:キズ深さが1μm超
<Scratch test>
A hard alloy needle was placed vertically on the oxidation-treated plating film-forming surface of the oxidation-treated plating plates obtained in Examples and Comparative Examples, and a scratch test was performed with a load of 50 g / kgf applied to the laser. The scratch depth was measured with a microscope (“LEXT (OLS3500)” manufactured by Olympus Corporation). It can be judged that the shallower the scratch depth, the higher the hardness.
〇: Scratch depth is 1 μm or less ×: Scratch depth is over 1 μm

<吸着用樹脂の密着性>
実施例および比較例にて得られた吸着用樹脂層を備える酸化処理めっき板の、吸着用樹脂層にシッカロール(アサヒグループ食品株式会社製)を塗布し、前記吸着用樹脂層をカッターにより幅20mmに切出し、端部より20mmの長さで剥離した。剥離部にガムテープ(日東電工CSシステム株式会社製、「スーパー布テープNo.757スーパー」)を両面に貼付し、テンシロン万能材料試験機RTC−1350A(株式会社オリエンテック製)を用いて180°方向に、50mm/分の速度で上記吸着樹脂層のピール強度(剥離荷重)の測定を行った。ピール強度の値が高いほど、酸化処理めっき板と、吸着用樹脂層との密着性が高いことを示している。なお、吸着用樹脂層との密着性の観点より、ピール強度の値は0.35N/20mm以上であることが望ましく、また、上述したように、電子部品搬送用冶具の製造工程において、不要な吸着用樹脂を剥離する場合もあるため、このような不要な吸着用樹脂を剥離する際における、剥離性の観点より、ピール強度の値は2N/20mm以下であることが望ましい。
<Adsorption of adsorption resin>
Siccarol (manufactured by Asahi Group Foods Co., Ltd.) is applied to the adsorption resin layer of the oxidation-treated plating plate provided with the adsorption resin layer obtained in Examples and Comparative Examples, and the adsorption resin layer is 20 mm wide with a cutter. It was cut out and peeled off at a length of 20 mm from the end. Gum tape (manufactured by Nitto Denko CS System Co., Ltd., "Super Cloth Tape No. 757 Super") is attached to both sides of the peeled part, and 180 ° direction is used using the Tencilon universal material testing machine RTC-1350A (manufactured by Orientec Co., Ltd.). In addition, the peel strength (peeling load) of the adsorption resin layer was measured at a speed of 50 mm / min. The higher the peel strength value, the higher the adhesion between the oxidation-treated plating plate and the adsorption resin layer. From the viewpoint of adhesion to the adsorption resin layer, it is desirable that the peel strength value is 0.35 N / 20 mm or more, and as described above, it is unnecessary in the manufacturing process of the electronic component transporting jig. Since the adsorption resin may be peeled off, it is desirable that the peel strength value is 2N / 20 mm or less from the viewpoint of peelability when peeling off such an unnecessary adsorption resin.

《実施例1》
厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni−Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni−Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi−P合金めっき層(Pの含有量:12.0〜12.5重量%)を形成した。次いで、Ni−P合金めっき層を形成したアルミニウム板について、30重量%のH水溶液に、浸漬温度25℃、浸漬時間30分の条件で浸漬することで酸化処理を行い、アルミニウム上に、亜鉛を含有する下地層を介して、厚さ10μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板について、上記方法に従って、XPS測定の結果より、全元素中の酸素元素の存在割合、Pの酸化物の状態割合、NiOの状態割合、および、Niの状態割合を算出するとともに、3点曲げ試験およびキズ付け試験を行った。結果を表1に示す。
<< Example 1 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 μm-thick Ni-P alloy plating layer (P content: 12.0-12. 5% by weight) was formed. Next, the aluminum plate on which the Ni-P alloy plating layer was formed was oxidized by immersing it in a 30% by weight H 2 O 2 aqueous solution under the conditions of a dipping temperature of 25 ° C. and a dipping time of 30 minutes. An oxidation-treated plating plate having a thickness of 10 μm formed through the base layer containing zinc was obtained. Then, with respect to the obtained oxidation-treated plating plate, according to the above method, from the results of XPS measurement, the abundance ratio of oxygen element in all elements, the state ratio of P oxide, the state ratio of NiO, and Ni 2 O 3 In addition to calculating the state ratio of, a three-point bending test and a scratching test were performed. The results are shown in Table 1.

次いで、上記にて得られた酸化処理めっき板の、酸化処理めっき層が形成された面に、吸着用樹脂として、非シリコーン系樹脂(ポリエーテル系の樹脂)からなる層を形成し、110℃、10分間の条件で加熱することで、非シリコーン系樹脂を硬化させることで、酸化処理めっき板上に、厚さ100μmの非シリコーン系樹脂層(吸着用樹脂層)を形成した。そして、非シリコーン系樹脂層を備える酸化処理めっき板について、上記方法にしたがって、ピール強度の測定を行った。結果を表1に示す。 Next, a layer made of a non-silicone resin (polyether resin) was formed as an adsorption resin on the surface of the oxidation-treated plating plate obtained above on which the oxidation-treated plating layer was formed, and the temperature was 110 ° C. A non-silicone resin layer (adsorption resin layer) having a thickness of 100 μm was formed on the oxidation-treated plating plate by curing the non-silicone resin by heating under the condition of 10 minutes. Then, the peel strength of the oxidation-treated plating plate provided with the non-silicone resin layer was measured according to the above method. The results are shown in Table 1.

《実施例2〜7》
水溶液を用いた酸化処理の条件を表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして、酸化処理めっき板、および非シリコーン系樹脂層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表1に示す。
<< Examples 2 to 7 >>
Oxidation-treated plating plate provided with an oxidation-treated plating plate and a non-silicone-based resin layer in the same manner as in Example 1 except that the conditions for oxidation treatment using the H 2 O 2 aqueous solution were changed to the conditions shown in Table 1. Was manufactured and evaluated in the same manner. The results are shown in Table 1.

《実施例8》
低炭素アルミキルド鋼の冷間圧延板(厚さ0.25mm)を焼鈍して得られた鋼板を準備した。そして、準備した鋼板を脱脂し、水洗し、酸洗し、水洗した後、下記の錫めっき浴を用い、下記のめっき条件にて、錫めっき層を形成した鋼板を得て、水酸化ナトリウム(NaOH)でpH13に調整した6重量%の次亜塩素酸ナトリウム(NaClO)水溶液に、浸漬温度70℃、浸漬時間20分の条件で浸漬することで酸化処理を行い、鋼板上に、厚さ1.0μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板を用いて、実施例1と同様に評価するとともに、得られた酸化処理めっき板を用いて、非シリコーン系樹脂層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表1に示す。
<錫めっき浴および錫めっき条件>
硫酸第一錫 80g/L
フェノールスルホン酸 60g/L
浴温 40℃
電流密度 10A/dm
<< Example 8 >>
A steel plate obtained by annealing a cold-rolled plate (thickness 0.25 mm) of low-carbon aluminum killed steel was prepared. Then, the prepared steel sheet is degreased, washed with water, pickled, and washed with water, and then a steel sheet having a tin-plated layer formed is obtained under the following plating conditions using the following tin plating bath, and sodium hydroxide (sodium hydroxide) ( It was oxidized by immersing it in a 6 wt% sodium hypochlorite (NaClO) aqueous solution adjusted to pH 13 with NaOH) under the conditions of an immersion temperature of 70 ° C. and an immersion time of 20 minutes. An oxidation-treated plating plate having a 0.0 μm oxidation-treated plating film formed was obtained. Then, the obtained oxidation-treated plating plate was evaluated in the same manner as in Example 1, and the obtained oxidation-treated plating plate was used to manufacture an oxidation-treated plating plate provided with a non-silicone resin layer. Was evaluated. The results are shown in Table 1.
<Tin plating bath and tin plating conditions>
Stannous sulfate 80g / L
Phenolic sulfonic acid 60g / L
Bath temperature 40 ℃
Current density 10A / dm 2

《比較例1》
水溶液を用いた酸化処理を行わなかった以外は、実施例1と同様にして、めっき板、および非シリコーン系樹脂層を備えるめっき板を製造し、同様に評価を行った。結果を表1に示す。
<< Comparative Example 1 >>
A plated plate and a plated plate provided with a non-silicone resin layer were produced in the same manner as in Example 1 except that the oxidation treatment using the H 2 O 2 aqueous solution was not performed, and the evaluation was performed in the same manner. The results are shown in Table 1.

《比較例2》
水溶液を用いた酸化処理に代えて、水酸化ナトリウム水溶液を用いた塩基処理を行った以外は、実施例1と同様にして、塩基処理めっき板、および非シリコーン系樹脂層を備える塩基処理めっき板を製造し、同様に評価を行った。なお、水酸化ナトリウム水溶液を用いた塩基処理は、pH=12の水酸化ナトリウム水溶液を使用し、95℃、30分の条件で行った。結果を表1に示す。
<< Comparative Example 2 >>
A base-treated plating plate and a non-silicone-based resin layer are provided in the same manner as in Example 1 except that the base treatment using an aqueous sodium hydroxide solution is performed instead of the oxidation treatment using the aqueous H 2 O 2 solution. A base-treated plating plate was manufactured and evaluated in the same manner. The base treatment using the sodium hydroxide aqueous solution was carried out under the conditions of 95 ° C. and 30 minutes using a sodium hydroxide aqueous solution having a pH of 12. The results are shown in Table 1.

《比較例3》
厚さ0.5mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、水洗した後、アルマイト処理を行うことで、アルマイト処理板を得た。そして、得られた、アルマイト処理板を用いて、実施例1と同様に評価を行うとともに、得られたアルマイト処理板を用いて、非シリコーン系樹脂層を備えるアルマイト処理板を製造し、同様に評価を行った。結果を表1に示す。
<< Comparative Example 3 >>
An aluminum plate (Al # 5000) having a thickness of 0.5 mm was prepared. Then, the prepared aluminum plate was degreased, washed with water, and then anodized to obtain an alumite-treated plate. Then, the obtained alumite-treated plate was used for evaluation in the same manner as in Example 1, and the obtained alumite-treated plate was used to manufacture an alumite-treated plate having a non-silicone resin layer, and similarly. Evaluation was performed. The results are shown in Table 1.

Figure 2020027209
なお、表1中において、「各元素のめっき皮膜最表面の酸化状態割合」は、各元素中における、酸化物の割合を示す(表2においても同様。)。すなわち、たとえば、「NiO」、「Ni」であれば、最表面における全Niの化学状態(Ni単体、Ni酸化物、Ni酸化物以外のNi化合物)を100%とした場合における、「NiO」の状態のNi、または、「Ni」の状態のNiの占める割合を示す(たとえば、実施例1では、「NiO」の状態、および「Ni」の状態以外の状態のNiが、80.20%の割合で存在していることとなる。)。また、「Pの酸化物」であれば、最表面における全Pの化学状態(P単体、P酸化物、P酸化物以外のP化合物)を100%とした場合における、「Pの酸化物」の状態のPの占める割合を示し、「SnO」、「SnO」であれば、最表面における全Snの化学状態(Sn単体、Sn酸化物、Sn酸化物以外のSn化合物)を100%とした場合における、「SnO」の状態のSn、または、「SnO」の状態のSnの占める割合を示す。
Figure 2020027209
In Table 1, "ratio of oxidation state on the outermost surface of the plating film of each element" indicates the ratio of oxides in each element (the same applies to Table 2). That is, for example, in the case of "Ni O " and "Ni 2 O 3 ", when the chemical state of all Ni on the outermost surface (Ni simple substance, Ni oxide, Ni compound other than Ni oxide) is 100%, Ni in the state of "NiO", or shows a ratio of Ni in the state of "Ni 2 O 3" (e.g., in example 1, the state of "NiO", and other than the state of "Ni 2 O 3" Ni in the state is present at a rate of 80.20%). Further, in the case of "P oxide", "P oxide" when the chemical state of all P on the outermost surface (P simple substance, P oxide, P compound other than P oxide) is 100%. Indicates the proportion of P in the state of , and if it is "SnO" or "SnO 2 ", the chemical state of all Sn on the outermost surface (Sn alone, Sn oxide, Sn compound other than Sn oxide) is 100%. In this case, the ratio of Sn in the "SnO" state or Sn in the "SnO 2 " state is shown.

表1に示すように、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜を備え、かつ、該酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%以上である場合には、3点曲げ試験による強度、およびキズ付け試験による硬度に優れ、吸着用樹脂に対する密着性(ピール強度)も適切な範囲内にあり、良好な結果であった(実施例1〜8)。
一方、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜を備える場合でも、該酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%未満である場合には、吸着用樹脂に対する密着性が不十分であり(比較例1,2)、また、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜に代えて、アルマイト処理を行った場合には、3点曲げ試験による強度、およびキズ付け試験による硬度が低く、さらには、吸着用樹脂に対する密着性(ピール強度)が高すぎるものとなる結果となった(比較例3)。
As shown in Table 1, it has an oxidation-treated plating film containing at least one element selected from Ni, Sn and P, and is in an oxidized state in all Ni elements on the outermost surface of the oxidation-treated plating film. state ratio of Ni 2 O 3 as Ni, or when the state ratio of SnO 2 as Sn in the oxidation state in all Sn element in the outermost surface is more than 1%, strength by three-point bending test, and The hardness of the scratch test was excellent, and the adhesion (peel strength) to the adsorption resin was also within an appropriate range, which was a good result (Examples 1 to 8).
On the other hand, even when an oxidation-treated plating film containing at least one element selected from Ni, Sn and P is provided, Ni 2 as Ni in an oxidized state among all Ni elements on the outermost surface of the oxidation-treated plating film. When the state ratio of O 3 or the state ratio of Sn O 2 as Sn in the oxidized state in all Sn elements on the outermost surface is less than 1%, the adhesion to the adsorption resin is insufficient (comparison). Examples 1 and 2), and when alumite treatment is performed instead of the oxidation-treated plating film containing at least one element selected from Ni, Sn and P, the strength and scratches obtained by the three-point bending test. The result was that the hardness by the attachment test was low, and the adhesion (peel strength) to the adsorption resin was too high (Comparative Example 3).

《実施例9》
厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni−Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni−Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi−P合金めっき層(P含有量:12.0〜12.5重量%)を形成した。次いで、Ni−P合金めっき層を形成したアルミニウム板について、15重量%のH水溶液に、浸漬温度70℃、浸漬時間10分の条件で浸漬することで酸化処理を行い、アルミニウム上に、亜鉛を含有する下地層を介して、厚さ10μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板について、上記方法に従って、XPS測定の結果より、全元素中の酸素元素の存在割合、Pの酸化物の状態割合、NiOの状態割合、および、Niの状態割合を算出するとともに、3点曲げ試験およびキズ付け試験を行った。結果を表2に示す。
<< Example 9 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and each pretreatment of etching, de-smut, 1st ginkate, dejinkate, and 2nd ginkate is performed in this order, and after washing with water between each step, a Ni-P plating bath (known). A 10 μm-thick Ni-P alloy plating layer (P content: 12.0 to 12.5) on a substrate by electroless plating using an electroless Ni-P plating bath based on malic acid-succinic acid. By weight%) was formed. Then, the aluminum plate to form a Ni-P alloy plating layer, a 15 wt% aqueous H 2 O 2 solution, the immersion temperature 70 ° C., subjected to oxidation treatment by immersing in the conditions of immersion time 10 minutes, on aluminum An oxidation-treated plating plate having a thickness of 10 μm formed through the base layer containing zinc was obtained. Then, with respect to the obtained oxidation-treated plating plate, according to the above method, from the results of XPS measurement, the abundance ratio of oxygen element in all elements, the state ratio of P oxide, the state ratio of NiO, and Ni 2 O 3 In addition to calculating the state ratio of, a three-point bending test and a scratching test were performed. The results are shown in Table 2.

次いで、上記にて得られた酸化処理めっき板の、酸化処理めっき層が形成された面に、吸着用樹脂として、ジメチルシロキサン(DMS)からなる層を形成し、85℃、10分間の条件で加熱することで、ジメチルシロキサン(DMS)からなる層を硬化させることで、酸化処理めっき板上に、厚さ100μmのポリジメチルシロキサン(PDMS)層(吸着用樹脂層)を形成した。そして、PDMS層を備える酸化処理めっき板について、上記方法にしたがって、ピール強度の測定を行った。結果を表2に示す。 Next, a layer made of dimethylsiloxane (DMS) was formed as an adsorption resin on the surface of the oxidation-treated plating plate obtained above on which the oxidation-treated plating layer was formed, and the temperature was 85 ° C. for 10 minutes. By curing the layer made of dimethylsiloxane (DMS) by heating, a 100 μm-thick polydimethylsiloxane (PDMS) layer (adsorption resin layer) was formed on the oxidation-treated plating plate. Then, the peel strength of the oxidation-treated plating plate provided with the PDMS layer was measured according to the above method. The results are shown in Table 2.

《実施例10〜17》
水溶液を用いた酸化処理の条件を表2に示す条件にそれぞれ変更した以外は、実施例9と同様にして、酸化処理めっき板、およびPDMS層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表2に示す。
<< Examples 10 to 17 >>
An oxidation-treated plating plate and an oxidation-treated plating plate provided with a PDMS layer were produced in the same manner as in Example 9 except that the conditions for the oxidation treatment using the H 2 O 2 aqueous solution were changed to the conditions shown in Table 2. , The same evaluation was performed. The results are shown in Table 2.

《実施例18》
低炭素アルミキルド鋼の冷間圧延板(厚さ0.25mm)を焼鈍して得られた鋼板を準備した。そして、準備した鋼板を脱脂し、水洗し、酸洗し、水洗した後、下記の錫めっき浴を用い、下記のめっき条件にて、錫めっき層を形成した鋼板を得て、6重量%の次亜塩素酸ナトリウム水溶液(NaClO)に、浸漬温度70℃、浸漬時間20分の条件で浸漬することで酸化処理を行い、鋼板上に、厚さ1.0μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板を用いて、実施例9と同様に評価するとともに、得られた酸化処理めっき板を用いて、PDMS層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表2に示す。
<錫めっき浴および錫めっき条件>
硫酸第一錫 80g/L
フェノールスルホン酸 60g/L
浴温 40℃
電流密度 10A/dm
<< Example 18 >>
A steel plate obtained by annealing a cold-rolled plate (thickness 0.25 mm) of low-carbon aluminum killed steel was prepared. Then, the prepared steel sheet is degreased, washed with water, pickled, and washed with water, and then a steel sheet having a tin-plated layer formed under the following plating conditions is obtained using the following tin plating bath, and 6% by weight is obtained. Oxidation treatment is performed by immersing in an aqueous sodium hypochlorite solution (NaClO) under the conditions of an immersion temperature of 70 ° C. and an immersion time of 20 minutes, and an oxidation-treated plating film having a thickness of 1.0 μm is formed on the steel sheet. An oxidation-treated plating plate was obtained. Then, the obtained oxidation-treated plating plate is used for evaluation in the same manner as in Example 9, and the obtained oxidation-treated plating plate is used to manufacture an oxidation-treated plating plate provided with a PDMS layer, and the same evaluation is performed. went. The results are shown in Table 2.
<Tin plating bath and tin plating conditions>
Stannous sulfate 80g / L
Phenolic sulfonic acid 60g / L
Bath temperature 40 ℃
Current density 10A / dm 2

《比較例4》
厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、水洗した後、アルマイト処理を行うことで、アルマイト処理板を得た。そして、得られた、アルマイト処理板を用いて、実施例10と同様に評価を行うとともに、得られたアルマイト処理板を用いて、PDMS層を備えるアルマイト処理板を製造し、同様に評価を行った。結果を表2に示す。
<< Comparative Example 4 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate was degreased, washed with water, and then anodized to obtain an alumite-treated plate. Then, the obtained alumite-treated plate is used for evaluation in the same manner as in Example 10, and the obtained alumite-treated plate is used to manufacture an alumite-treated plate having a PDMS layer and evaluated in the same manner. rice field. The results are shown in Table 2.

Figure 2020027209
Figure 2020027209

表2に示すように、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜を備え、かつ、該酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%以上である場合には、3点曲げ試験による強度、およびキズ付け試験による硬度に優れ、吸着用樹脂に対する密着性(ピール強度)も適切な範囲内にあり、良好な結果であった(実施例9〜18)。
一方、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜に代えて、アルマイト処理を行った場合には、吸着用樹脂に対する密着性(ピール強度)が良好であったものの、3点曲げ試験による強度、およびキズ付け試験による硬度が低い結果となった(比較例4)。
As shown in Table 2, it has an oxidation-treated plating film containing at least one element selected from Ni, Sn and P, and is in an oxidized state in all Ni elements on the outermost surface of the oxidation-treated plating film. state ratio of Ni 2 O 3 as Ni, or when the state ratio of SnO 2 as Sn in the oxidation state in all Sn element in the outermost surface is more than 1%, strength by three-point bending test, and The hardness of the scratch test was excellent, and the adhesion (peel strength) to the adsorption resin was also within an appropriate range, which was a good result (Examples 9 to 18).
On the other hand, when an alumite treatment was performed instead of the oxidation-treated plating film containing at least one element selected from Ni, Sn and P, the adhesion (peel strength) to the adsorption resin was good. However, the results of the three-point bending test and the hardness of the scratch test were low (Comparative Example 4).

10…電子部品搬送用冶具用の基材
11…金属板
12…酸化処理めっき皮膜
20…樹脂層
21…樹脂吸着部
30…賦形用金型
31…キャビティ
40…電子部品搬送用冶具
50…ストッカ
60…電子部品
70…回路基板
10 ... Base material for jigs for transporting electronic components 11 ... Metal plate 12 ... Oxidation-treated plating film 20 ... Resin layer 21 ... Resin adsorption part 30 ... Molding mold 31 ... Cavity 40 ... Jig for transporting electronic components 50 ... Stocker 60 ... Electronic components 70 ... Circuit board

Claims (9)

電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材であって、
前記電子部品搬送用冶具用の基材は、前記樹脂吸着部を支持するために用いられ、
金属板と、前記金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜と、を備え、
前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上である、電子部品搬送用冶具用の基材。
A base material for an electronic component transporting jig, which is used for an electronic component transporting jig and has a resin adsorption part for adsorbing electronic components.
The base material for the jig for transporting electronic components is used to support the resin adsorption portion.
A metal plate and an oxidation-treated plating film formed on the metal plate and containing at least one element selected from Ni, Sn and P are provided.
As the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidation-treated plating film, or as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidation-treated plating film. A base material for a jig for transporting electronic parts, wherein the state ratio of SnO 2 is 1% or more.
前記酸化処理めっき皮膜の最表面における酸素元素の存在割合が40atom%以上である、請求項1に記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic components according to claim 1, wherein the presence ratio of an oxygen element on the outermost surface of the oxidation-treated plating film is 40 atom% or more. 前記酸化処理めっき皮膜が、Niを少なくとも含有する酸化処理めっき皮膜であり、前記酸化処理めっき皮膜の最表面のNiにおける、NiOと、Niの状態比が、「NiO:Ni」の比で、11.0:1.0〜1.0:99.0である請求項1または2に記載の電子部品搬送用冶具用の基材。The oxidation-treated plating film is an oxidation-treated plating film containing at least Ni, and the state ratio of NiO and Ni 2 O 3 in Ni on the outermost surface of the oxidation-treated plating film is "NiO: Ni 2 O 3". The base material for a jig for transporting electronic parts according to claim 1 or 2, wherein the ratio is 11.0: 1.0 to 1.0: 99.0. 前記酸化処理めっき皮膜が、Ni−P合金を少なくとも含有する酸化処理めっき皮膜である請求項1〜3のいずれかに記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic components according to any one of claims 1 to 3, wherein the oxidation-treated plating film is an oxidation-treated plating film containing at least a Ni-P alloy. 前記酸化処理めっき皮膜中における、全P元素中における酸化状態にあるPの酸化物の状態割合が21%以上である請求項1〜4のいずれかに記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic parts according to any one of claims 1 to 4, wherein the state ratio of the oxide of P in the oxidized state in all P elements in the oxidation-treated plating film is 21% or more. .. 前記酸化処理めっき皮膜の厚みが、1〜40μmである請求項1〜5のいずれかに記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic components according to any one of claims 1 to 5, wherein the thickness of the oxidation-treated plating film is 1 to 40 μm. 前記金属板が、アルミニウム板である請求項1〜6のいずれかに記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic components according to any one of claims 1 to 6, wherein the metal plate is an aluminum plate. 前記金属板上に、亜鉛を含有する下地層をさらに備え、
前記酸化処理めっき皮膜が、前記下地層に形成されている請求項1〜7のいずれかに記載の電子部品搬送用冶具用の基材。
A zinc-containing base layer is further provided on the metal plate, and the metal plate is further provided with a zinc-containing base layer.
The base material for a jig for transporting electronic components according to any one of claims 1 to 7, wherein the oxidation-treated plating film is formed on the base layer.
請求項1〜8のいずれかに記載の電子部品搬送用冶具用の基材上に、電子部品を吸着するための樹脂吸着部を備える電子部品搬送用冶具。 A jig for transporting electronic components, which comprises a resin suction portion for adsorbing electronic components on a base material for the jig for transporting electronic components according to any one of claims 1 to 8.
JP2020534711A 2018-08-01 2019-07-31 Base material for electronic component transportation jigs Active JP7401436B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018145401 2018-08-01
JP2018145401 2018-08-01
PCT/JP2019/030049 WO2020027209A1 (en) 2018-08-01 2019-07-31 Base material for electronic parts transport jig

Publications (2)

Publication Number Publication Date
JPWO2020027209A1 true JPWO2020027209A1 (en) 2021-08-19
JP7401436B2 JP7401436B2 (en) 2023-12-19

Family

ID=69231839

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020534711A Active JP7401436B2 (en) 2018-08-01 2019-07-31 Base material for electronic component transportation jigs

Country Status (3)

Country Link
JP (1) JP7401436B2 (en)
TW (1) TWI705888B (en)
WO (1) WO2020027209A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060742A (en) * 1983-09-14 1985-04-08 Matsushita Electronics Corp Lead frame
JPH10230562A (en) * 1996-12-17 1998-09-02 Tokai Rubber Ind Ltd Metal product having rubber and/or resin peelable surface, and its production
JP2010287679A (en) * 2009-06-10 2010-12-24 Elpida Memory Inc Transfer tool
JP2018056247A (en) * 2016-09-27 2018-04-05 Ngkエレクトロデバイス株式会社 Electronic component housing package, electronic device and manufacturing method of electronic component housing package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056994A1 (en) * 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Metal Plating and Devices Formed
JP6060742B2 (en) 2013-03-08 2017-01-18 ライオン株式会社 Liquid composition for external use
JP2015053418A (en) * 2013-09-09 2015-03-19 株式会社東芝 Semiconductor manufacturing apparatus
CN104388920B (en) * 2014-11-12 2017-02-22 华南理工大学 Chromate-free passivation method for chemically-plated Ni-P coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060742A (en) * 1983-09-14 1985-04-08 Matsushita Electronics Corp Lead frame
JPH10230562A (en) * 1996-12-17 1998-09-02 Tokai Rubber Ind Ltd Metal product having rubber and/or resin peelable surface, and its production
JP2010287679A (en) * 2009-06-10 2010-12-24 Elpida Memory Inc Transfer tool
JP2018056247A (en) * 2016-09-27 2018-04-05 Ngkエレクトロデバイス株式会社 Electronic component housing package, electronic device and manufacturing method of electronic component housing package

Also Published As

Publication number Publication date
TW202015908A (en) 2020-05-01
TWI705888B (en) 2020-10-01
JP7401436B2 (en) 2023-12-19
WO2020027209A1 (en) 2020-02-06

Similar Documents

Publication Publication Date Title
JP5707709B2 (en) Manufacturing method of semiconductor device
JP5165840B2 (en) Spring structure made of intermetallic material and method of manufacturing spring structure
JP5392732B2 (en) Copper surface-to-resin adhesive layer, wiring board, and adhesive layer forming method
TWI606152B (en) Ultra-thin copper foil with carrier, and copper-clad laminate, printed circuit board, and coreless substrate made using the ultra-thin copper foil with carrier
TWI449809B (en) Electrical and electronic components for the use of composite materials and electrical and electronic components
CN1891018A (en) Printed-circuit board, its manufacturing method and semiconductor device
TW202035131A (en) Composite copper foil and method of fabricating the same
TW201108363A (en) Semiconductor device and method of manufacturing the same
US7688095B2 (en) Interposer structures and methods of manufacturing the same
JPWO2020027209A1 (en) Base material for jigs for transporting electronic components
JP6753721B2 (en) Metal-ceramic circuit board and its manufacturing method
WO2005096299A1 (en) Laminate for hdd suspension and process for producing the same
JP5824435B2 (en) Anisotropic conductive member and multilayer wiring board
JP5621570B2 (en) Conductive material with Sn plating and manufacturing method thereof
JP2011198977A (en) Manufacturing method of semiconductor device
JP2012057231A (en) Rolled copper foil for printed circuit board, and manufacturing method therefor
JP2006184081A (en) Probe pin for probe card
CN108738249B (en) Method for manufacturing wiring substrate
JP6532322B2 (en) Silver plating material and method for manufacturing the same
JP2016181615A (en) Shield material, substrate with shield material and manufacturing method of substrate with shield material
JP2008078061A (en) Elastic contactor and its manufacturing method, and connecting device and its manufacturing method using the above-elastic contactor
JP5174733B2 (en) Metal core substrate, conductive member for metal plate, and manufacturing method thereof
JPWO2017033713A1 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
JP5610450B2 (en) Lead frame manufacturing method
JP2020145056A (en) Manufacturing method of separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231207

R150 Certificate of patent or registration of utility model

Ref document number: 7401436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150