WO2020027209A1 - Base material for electronic parts transport jig - Google Patents

Base material for electronic parts transport jig Download PDF

Info

Publication number
WO2020027209A1
WO2020027209A1 PCT/JP2019/030049 JP2019030049W WO2020027209A1 WO 2020027209 A1 WO2020027209 A1 WO 2020027209A1 JP 2019030049 W JP2019030049 W JP 2019030049W WO 2020027209 A1 WO2020027209 A1 WO 2020027209A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxidized
plating film
jig
resin
state
Prior art date
Application number
PCT/JP2019/030049
Other languages
French (fr)
Japanese (ja)
Inventor
陽平 吉松
隆広 吉田
哲平 黒川
Original Assignee
東洋鋼鈑株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋鋼鈑株式会社 filed Critical 東洋鋼鈑株式会社
Priority to JP2020534711A priority Critical patent/JP7401436B2/en
Publication of WO2020027209A1 publication Critical patent/WO2020027209A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/60Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/68Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous solutions with pH between 6 and 8
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • C25D5/42Pretreatment of metallic surfaces to be electroplated of light metals
    • C25D5/44Aluminium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components

Definitions

  • the present invention relates to a substrate for an electronic component transport jig, which is provided with a resin suction portion for absorbing an electronic component and is used for an electronic component transport jig.
  • a transfer jig has been used as a jig for lifting a semiconductor chip and transferring it to a predetermined position.
  • the tip is brought into contact with the vicinity of the center of the semiconductor chip, and the suction hole is made in a vacuum state, so that the semiconductor chip can be transferred while being sucked.
  • a semiconductor chip having such a through electrode has a bump pad for connection on the chip surface, but projects higher than a connection pad of a conventional semiconductor chip in order to bond with a bump pad of a semiconductor chip stacked vertically. In many cases, the structure is changed.
  • a transfer jig that performs transfer using a vacuum state may not be suitable for transfer of a semiconductor chip having such a through electrode, and an adhesive such as a resin is used as a transfer jig instead of this.
  • An adsorption method has been proposed (for example, see Patent Document 1).
  • Patent Document 1 the strength and hardness of a substrate for supporting a resin for adsorption and the adhesion to a resin have not been studied.
  • An object of the present invention is to provide a base material for a jig for transporting electronic components, which has high strength and hardness and exhibits appropriate adhesion strength to a resin constituting a resin suction portion for adsorbing electronic components. .
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, provided with a resin suction portion for sucking an electronic component, a metal plate as a base material for a jig for transporting an electronic component, An oxidized plating film containing at least one element selected from the group consisting of Ni, Sn, and P, and oxidized in all Ni elements on the outermost surface of the oxidized plating film.
  • a resin suction portion for sucking an electronic component a metal plate as a base material for a jig for transporting an electronic component
  • An oxidized plating film containing at least one element selected from the group consisting of Ni, Sn, and P, and oxidized in all Ni elements on the outermost surface of the oxidized plating film.
  • a resin suction portion for sucking an electronic component used for an electronic component transport jig, a substrate for an electronic component transport jig
  • the substrate for the electronic component transport jig is used to support the resin suction unit, A metal plate, and an oxidized plating film formed on the metal plate and containing at least one element selected from Ni, Sn and P, As the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidized plating film, or as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidized plating film And a substrate for electronic component conveying jigs, wherein the state ratio of SnO 2 is 1% or more.
  • the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidized plating film, or the oxidized state in all Sn elements on the outermost surface of the oxidized plating film is preferably more than 5%.
  • the proportion of the oxygen element present on the outermost surface of the oxidized plating film is 40 atom% or more.
  • the oxidized plating film is an oxidized plating film containing at least Ni, and the state ratio between NiO and Ni 2 O 3 in Ni on the outermost surface of the oxidized plating film is “NiO: Ni”.
  • a ratio of 2 O 3 ", 11.0 1.0 to 1.0: is preferably 99.0, more preferably 7.0: 1.8 to 23.8: 76.2, more preferably Is from 7.0: 1.8 to 27.4: 72.6.
  • the oxidized plating film is an oxidized plating film containing at least a Ni—P alloy.
  • the oxidized P oxide state in all P elements in the oxidized plating film has a state ratio of 21% or more.
  • the thickness of the oxidized plating film is 1 to 40 ⁇ m.
  • the metal plate is an aluminum plate. It is preferable that the base material for a jig for transporting electronic components of the present invention further includes an underlayer containing zinc on the metal plate, and the oxidized plating film is formed on the underlayer.
  • an electronic component conveying jig provided with a resin sucking portion for adsorbing an electronic component on the electronic component conveying jig base material.
  • the strength and hardness are high, a base material for an electronic component transport jig that exhibits an appropriate adhesion strength to a resin constituting a resin suction portion for absorbing an electronic component, and An electronic component transport jig obtained using a substrate for an electronic component transport jig can be provided.
  • FIG. 1 is a sectional view of a base material for a jig for transporting electronic components according to the present embodiment.
  • FIG. 2 is a diagram illustrating a method of manufacturing the electronic component conveying jig according to the present embodiment.
  • FIG. 3 is a diagram illustrating a method for transporting electronic components using the electronic component transport jig according to the present embodiment.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a substrate 10 for a jig for transporting electronic components according to the present embodiment.
  • a substrate 10 for a jig for transporting electronic components of the present embodiment has a metal plate 11 on which an oxidized plating film 12 is formed as an outermost layer.
  • the oxidized plating film 12 includes at least one element selected from Ni, Sn, and P, and the state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or the outermost surface
  • the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements is 1% or more.
  • a substrate 10 (hereinafter, appropriately referred to as “substrate 10”) for an electronic component conveying jig of the present embodiment is prepared.
  • a resin layer 20 made of a resin for adsorption is formed. The resin layer 20 is formed on the surface of the substrate 10 on which the oxidized plating film 12 (see FIG. 1) is formed.
  • the shaping mold 30 having the plurality of cavities 31 is pressed against the resin layer 20 formed on the base material 10, and heated while applying pressure, so that the resin is heated.
  • the resin for adsorption forming the layer 20 is molded into a shape corresponding to the cavity 31, whereby a plurality of resin adsorption portions 21 made of the resin for adsorption are formed on the substrate 10 as shown in FIG.
  • the formed electronic component conveying jig 40 is manufactured.
  • the electronic component transfer jig 40 obtained in this manner is provided around the region where the plurality of resin suction portions 21 are formed (that is, near the center). It is preferable to remove unnecessary adsorption resin remaining on the substrate 10 by peeling it off from the substrate 10 or the like.
  • the electronic component conveying jig 40 manufactured as described above is pressed against a plurality of electronic components 60 placed on the stocker 50 as shown in FIG.
  • the plurality of electronic components 60 are sucked by the suction unit 21, and as shown in FIG. 3B, the plurality of electronic components 60 are transported onto a circuit board 70 on which the electronic components 60 are mounted.
  • the plurality of electronic components 60 are used for mounting on the circuit board 70.
  • the adsorption resin for forming the resin layer 20 is not particularly limited. However, from the viewpoint that the resin has appropriate tackiness, and thus can more suitably transport electronic components, polydimethylsiloxane ( Silicone resin such as PDMS) can be used. As the silicone resin, in addition to polydimethylsiloxane, a siloxane bond as a main skeleton, and any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. What contains is preferably used.
  • silicone resin in addition to polydimethylsiloxane, a siloxane bond as a main skeleton, and any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. What contains is preferably used.
  • a non-silicone resin may be used instead of the silicone resin, and examples of the non-silicone resin include a polyether resin and a polyester resin. It is suitable.
  • the polyether-based resin those having an ether bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group are preferable.
  • the polyester-based resin those having an ester bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group are preferable. It is.
  • non-silicone resin a urethane resin, a polylactic acid resin, or a fluorine resin
  • urethane-based resin, polylactic acid-based resin, and fluorine-based resin include, for example, any one of a urethane bond, an ester bond, an ether bond, and an amide bond as a main skeleton, and a hydroxy group as a functional group.
  • An amine group, a methyl group, a carboxy group, and a ketone group are preferably used.
  • adsorption resins may be either curable resins (thermosetting resins or ultraviolet-curing resins) or thermoplastic resins.
  • thermosetting resins thermosetting resins or ultraviolet-curing resins
  • thermoplastic resins thermoplastic resins
  • the substrate 10 for the electronic component transport jig of the present embodiment is used for obtaining the electronic component transport jig 40 as shown in FIGS. 2 (A) to 2 (D). It is.
  • the base material 10 for the electronic component conveying jig of the present embodiment is used as a support base material for supporting the resin suction unit 21.
  • the base material 10 for a jig for transporting electronic components according to the present embodiment has a metal plate 11 on which an oxidized plating film 12 is formed as an outermost layer, as shown in FIG.
  • the metal plate 11 is not particularly limited, and examples thereof include a steel plate, a stainless steel plate, a copper plate, an aluminum plate, an aluminum alloy plate, and a nickel plate. Among them, a steel plate, an aluminum plate, and an aluminum alloy plate are preferable because of their low price. Further, an aluminum plate or an aluminum alloy plate is preferable from the viewpoint that the weight of the electronic component transport jig 40 can be reduced, thereby reducing the energy required for transporting the electronic component.
  • the thickness of the metal plate 11 is not particularly limited, but is preferably 0.3 to 2 mm, and more preferably 0.5 to 0.8 mm, from the viewpoint of handleability when transporting the electronic component.
  • the oxidized plating film 12 is a plating film formed on the metal plate 11, at least the surface of which is oxidized, and forms the outermost layer of the substrate 10.
  • the oxidized plating film 12 includes at least one element selected from Ni, Sn and P (preferably includes at least one element selected from Ni and Sn).
  • the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the surface namely, Ni alone, an oxide in an oxidized state other than Ni 2 O 3 such as NiO, and an oxide other than the oxide of Ni
  • State ratio of Ni 2 O 3 in terms of Ni element with respect to the total of Ni compound and Ni 2 O 3 ) or state state of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface That, Sn alone and the oxide of states other than SnO 2, such as SnO, and Sn compounds other than oxides of Sn, to the sum of SnO 2, S in the Sn terms of elemental State ratio of O 2.
  • the oxidized plating film 12 is formed as the outermost layer on the metal plate 11 and the oxidized plating film 12 has such a configuration, whereby the base material 10 for the jig for transporting electronic components is formed.
  • the base material 10 for the jig for transporting electronic components can have high strength and hardness, and can exhibit appropriate adhesion strength to the resin for adsorption constituting the resin adsorption section 21.
  • the molding die 30 is placed on the electronic component transport jig base 10 at a predetermined pressure. Therefore, it is required that the substrate 10 for the electronic component conveying jig should be one in which deformation, breakage, and scratches due to the pressing of the shaping mold 30 are effectively suppressed.
  • the base material 10 for the electronic component conveying jig supports the resin suction portion 21, it has excellent adhesion to the resin for suction forming the resin suction portion 21.
  • Unnecessary suction resin remaining in portions other than the resin suction portion 21 for example, a suction resin remaining around a region where a plurality of resin suction portions 21 are formed (that is, near the center)
  • it is removed by peeling or the like, and therefore, it is required to exhibit sufficient adhesiveness to remove them properly (that is, the adhesive strength is not too high).
  • the scratches occur in the process, there is a problem that the smoothness is deteriorated and the transport performance is deteriorated.
  • the base material 10 for the electronic component conveying jig having the above-described configuration, the strength and hardness are high, and the resin for suction forming the resin suction portion 21 is used. In this case, it is possible to exhibit appropriate adhesion strength, and according to the present embodiment, such a problem is appropriately solved.
  • the oxidized plating film 12 includes at least one element selected from Ni, Sn, and P, and the state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or the outermost surface It is sufficient that the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements is 1% or more, but a silicone resin is used as an adsorption resin for forming the resin adsorption section 21. When used, the state ratio of Ni 2 O 3 or the state ratio of SnO 2 is more preferably in the range of 1.75 to 72.6%, and more than 5% and 72.6% or less. More preferably, it is even more preferably in the range of 7.5-49.4%.
  • a polyether-based resin When a polyether-based resin, a polyester-based resin, a fluorine-based resin, a urethane-based resin, or a polylactic acid-based resin is used as an adsorption resin for forming the resin adsorption section 21, all Ni on the outermost surface is used.
  • the state ratio of Ni 2 O 3 as Ni in an oxidized state in the element or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface is in the range of 7.5 to 100%. More preferably, it is more preferably in the range of 7.97 to 72.6%, and even more preferably in the range of 7.97 to 30%.
  • the oxidized plating film 12 is an oxidized plating film containing at least Ni, from the viewpoint that it can exhibit more appropriate adhesion strength to the resin for adsorption constituting the resin adsorption portion 21,
  • the state ratio between NiO and Ni 2 O 3 in Ni on the outermost surface of the treated plating film is 11.0: 1.0 to 1.0: 99.0 in the ratio of “NiO: Ni 2 O 3 ”.
  • the ratio is preferably 7.0: 1.8 to 23.8: 76.2, more preferably 7.0: 1.8 to 27.4: 72.6.
  • the state ratio between NiO and Ni 2 O 3 is determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the oxidized plating film 12 and calculating the integrated value of the peak of Ni alone, the integrated value of the NiO peak, obtains an integration value of the peak of Ni 2 O 3, from these, determining and calculating the state ratio of NiO and Ni 2 O 3 in the total Ni element in the outermost surface, and NiO, the state ratio of Ni 2 O 3 Can be.
  • XPS X-ray photoelectron spectroscopy
  • the oxidized plating film 12 has a state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface. May be in the above range, but the proportion of the oxygen element on the outermost surface is preferably 40.0 atom% or more, more preferably 40.6 atom% or more, and still more preferably 43.0 atom%. % Or more.
  • the upper limit of the proportion of the oxygen element in the outermost surface is not particularly limited, but is preferably 53 atom% or less, more preferably 45 atom% or less.
  • the ratio of the oxygen element on the outermost surface of the oxidized plating film 12 is determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the oxidized plating film 12. It can be obtained by calculating the peak integrated value of each oxide to be obtained and calculating the abundance ratio (atom%) of the oxygen element from the obtained peak integrated value.
  • XPS X-ray photoelectron spectroscopy
  • the oxidized plating film 12 may further contain Zn in addition to at least one element selected from Ni, Sn and P.
  • the oxidized plating film 12 is an oxidized plating film further containing Zn, from the viewpoint that it can exhibit more appropriate adhesion strength to the resin for adsorption constituting the resin adsorption section 21, It is preferable that the state ratio of ZnO as Zn in an oxidized state in all Zn elements on the surface is 19% or more.
  • the state ratio of ZnO 2 as Zn in an oxidized state in all Zn elements on the outermost surface is preferably 1% or more, and more preferably 69% or more.
  • the state ratio between ZnO and ZnO 2 was determined by measuring the surface of the oxidized plating film 12 by X-ray photoelectron spectroscopy (XPS) measurement, X-ray photoelectron spectroscopy (XPS) measurement, and the integrated value of the peak of Zn alone. , ZnO peak integrated value and ZnO 2 peak integrated value are calculated, and from these, the state ratio of ZnO and ZnO 2 in all Zn elements on the outermost surface is calculated, and the state ratio between ZnO and ZnO 2 is calculated. Can be requested.
  • XPS X-ray photoelectron spectroscopy
  • XPS X-ray photoelectron spectroscopy
  • the oxidized plating film 12 is an oxidized plating film containing at least Sn
  • the oxidized plating film 12 is preferably oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption section 21. It is preferable that the state ratio of SnO as oxidized Sn in all Sn elements on the outermost surface of the treated plating film 12 is 19% or more. Further, the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidized plating film 12 is preferably 1% or more, and more preferably 69% or more.
  • the state ratio between SnO and SnO 2 As for the state ratio between SnO and SnO 2 , X-ray photoelectron spectroscopy (XPS) measurement was performed on the surface of the oxidized plating film 12, and the integrated value of the peak of Sn alone, the integrated value of the SnO peak, and SnO 2 From these values, the state ratio of SnO and SnO 2 in all Sn elements on the outermost surface is calculated, and the state ratio between SnO and SnO 2 can be obtained.
  • XPS X-ray photoelectron spectroscopy
  • the oxidized plating film 12 is an oxidized plating film containing at least P
  • the oxidized plating film 12 is preferably oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption section 21.
  • the state ratio of the oxide of P in the oxidized state in all P elements on the outermost surface of the treated plating film 12 is 21% or more, and more preferably 24% or more.
  • the upper limit of the state ratio of the oxide of P in the oxidized state in all P elements is not particularly limited, but is preferably 97% or less, and more preferably 60% or less.
  • the state ratio of the oxide of P can be determined by X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above.
  • the oxidized plating film 12 can balance the strength, hardness, and adhesion to the resin for adsorption constituting the resin adsorption portion 21 to a higher degree, and furthermore, the flatness of the surface of the oxidized plating film 12 can be improved.
  • the plating film is an oxidized plating film containing at least a Ni—P alloy.
  • the state ratio between NiO and Ni 2 O 3 at the outermost surface of the treated plating film 12 is 11.0: 1.0 to 1.0: 99.0 in the ratio of “NiO: Ni 2 O 3 ”. is there.
  • the ratio is 7.0: 1.8 to 23.8: 76.2, and further preferably, the ratio is 7.0: 1.8 to 27.4: 72.6.
  • the state ratio between NiO and Ni 2 O 3 can be calculated based on the result of X-ray photoelectron spectroscopy (XPS) measurement, similarly to the above.
  • the content of P in the Ni—P alloy is preferably 1 to 13% by weight, more preferably 5 to 13% by weight, and still more preferably 8 to 13% by weight.
  • the content ratio of P in the Ni-P alloy can be determined by X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above.
  • the thickness of the oxidized plating film 12 is not particularly limited, but is preferably from 1 to 40 ⁇ m, more preferably from 1 to 40 ⁇ m, from the viewpoint of making the strength and hardness of the substrate 10 for a jig for transporting electronic components more sufficient.
  • the thickness is 20 ⁇ m, more preferably 1 to 10 ⁇ m, and still more preferably 5 to 10 ⁇ m.
  • the method for forming the oxidized plating film 12 on the metal plate 11 is not particularly limited.
  • the oxidized plating film 12 is an oxidized plating film containing at least Ni
  • the method of the oxidation treatment is not particularly limited, but a method of performing a heat treatment on the formed Ni plating film or a treatment of immersing the Ni plating film in a liquid such as a hydrogen peroxide solution (H 2 O 2 ) or hypochlorite is used. And a method of performing steam treatment. These may be combined.
  • the conditions for the heat treatment are not particularly limited, but the heat treatment temperature is preferably 130 to 300 ° C., and the heat treatment time is preferably 10 to 30 minutes.
  • the conditions for the immersion in the hydrogen peroxide solution are not particularly limited, but the concentration of the hydrogen peroxide solution is preferably 1 to 35% by weight, more preferably 15 to 35% by weight, and the immersion temperature (peroxide The temperature of hydrogen water) is preferably 25 to 90 ° C, more preferably 25 to 70 ° C, and the immersion time is preferably 20 seconds to 120 minutes, more preferably 20 seconds to 60 minutes.
  • the conditions for the steam treatment are not particularly limited, but are preferably 40 to 100% RH, more preferably 65 to 100% RH, and the steam temperature is preferably 40 to 120 ° C, more preferably 65 to 85%.
  • the temperature and the treatment time are preferably 1 minute to 72 hours, more preferably 12 to 24 hours.
  • a method of performing a heat treatment After forming the Ni—P alloy plating film, a method of performing a heat treatment, a method of immersing the Ni—P alloy plating film in a liquid such as a hydrogen peroxide solution (H 2 O 2 ), hypochlorite, or a steam treatment And the like.
  • a liquid such as a hydrogen peroxide solution (H 2 O 2 ), hypochlorite, or a steam treatment And the like.
  • the conditions for the heat treatment, the treatment for immersion in the hydrogen peroxide solution, and the steam treatment can be the same as those described above.
  • the oxidized plating film 12 is an oxidized plating film containing at least Zn, or an oxidized plating film containing at least Sn, Zn plating or Sn plating is formed on the metal plate 11.
  • the method of the oxidation treatment is not particularly limited, but a method of performing a heat treatment on the formed Zn plating film and the Sn plating film, a method of performing a treatment of dipping in a liquid such as a hydrogen peroxide solution, and a method of performing a steam treatment And the like. These may be combined.
  • the conditions for the heat treatment, the treatment for immersion in a hydrogen peroxide solution, and the steam treatment can be the same as those described above.
  • the metal plate 11 is subjected to Zn plating or Sn plating, if necessary, and then phosphate is used. And a method of performing a phosphate treatment.
  • a configuration in which the oxidized plating film 12 is directly provided on the metal plate 11 may be adopted, but from the viewpoint of forming the oxidized plating film 12 well, the After forming a zinc-containing base layer as a base layer, it is preferable to form an oxidized plating film 12 on the zinc-containing base layer.
  • the method of forming the zinc-containing base layer is not particularly limited, but a method of performing a degreasing treatment on the metal plate 11, and then performing etching or pickling as needed, and then performing zinc displacement plating.
  • Can be The displacement plating of zinc is performed by performing a double zincate process through a first zinc displacement process (1st zincate process), a zinc nitrate stripping process (dezincate process), and a second zinc displacement process (2nd zincate process). . In this case, a water washing process is performed after each process.
  • the base material 10 for an electronic component conveying jig of the present embodiment as described above, the strength and the hardness are high, and the base material 10 exhibits an appropriate adhesion strength to the resin for suction constituting the resin suction portion 21. Therefore, it can be suitably used as a support base for forming an electronic component transport jig for transporting various electronic components, and in particular, transports fine electronic components such as micro LEDs, capacitors, and semiconductor elements. It can be suitably used for a jig for transporting electronic parts.
  • the presence ratio of the oxygen element in all the elements was measured after etching by 2 nm by argon sputtering, and was calculated from the ratio of the O1s peak area to the sum of the peak areas of Ni2p3 / 2, Sn3d5 / 2, P2p, and O1s (total).
  • the measurement results of the proportion of the oxygen element in the element were measured for Examples 7 and 8, Comparative Example 2, and Examples 9, 10, 16 to 18.
  • the ratio of the P oxide was calculated from the ratio of the peak area of the P oxide to the peak area of the P2p by separating the peak of P2p into a waveform corresponding to each chemical state.
  • the peak of Ni 2 p 3/2 is separated into waveforms corresponding to the respective chemical states, and the peak area corresponding to NiO occupying the peak area of Ni 2 p 3/2, or It was calculated from the ratio of the peak area corresponding to Ni 2 O 3 .
  • the state ratio of SnO and the state ratio of SnO 2 can be obtained by separating the peak of Sn3d5 / 2 into a waveform corresponding to each chemical state, and the peak area corresponding to SnO occupying the peak area of Sn3d5 / 2 or SnO 2. was calculated from the ratio of the peak area corresponding to.
  • ⁇ Three-point bending test> The oxidized plating plates obtained in Examples and Comparative Examples were cut into a size of 50 mm ⁇ 50 mm, and two opposing sides of a sample having a size of 50 mm ⁇ 50 mm were connected to a pair of support members (support terminal diameter 2 mm, support width). 40 mm), and placed in a state of being lifted from the reference surface. In this state, the vicinity of the center of two opposite sides of the oxidation-treated plating film forming surface of the oxidation-treated plating plate is a radius of 5 mm and a width of 50 mm.
  • a three-point bending test was performed by applying a load of 60 N under the condition of 2 mm / min.
  • the change in the interference fringes was measured for the oxidized plated plate before and after the three-point bending test. It was observed and evaluated according to the following criteria. If no change in interference fringes is observed before and after the three-point bending test, it can be determined that the bending strength is excellent. On the other hand, if a change in interference fringes is observed, it can be determined that the bending strength is poor. ⁇ : No change in interference fringes was observed before and after the three-point bending test. ⁇ : Changes in interference fringes were observed before and after the three-point bending test.
  • ⁇ Scratch test> A hard alloy needle was placed vertically on the oxidized plating film-formed surface of the oxidized plating plates obtained in Examples and Comparative Examples, and a scratch test was performed with a load of 50 g / kgf applied. The scratch depth was measured with a microscope (Olympus Corp., “LEX (OLS3500)”). It can be determined that the smaller the scratch depth, the higher the hardness. ⁇ : The scratch depth is 1 ⁇ m or less ⁇ : The scratch depth exceeds 1 ⁇ m
  • the peel strength (peeling load) of the adsorption resin layer was measured at a speed of 50 mm / min.
  • the higher the peel strength value the higher the adhesion between the oxidized plating plate and the resin layer for adsorption.
  • the value of the peel strength is desirably 0.35 N / 20 mm or more, and as described above, unnecessary in the manufacturing process of the electronic component conveying jig. Since the adsorption resin may be peeled off, the peel strength is desirably 2 N / 20 mm or less from the viewpoint of the releasability when the unnecessary adsorption resin is peeled off.
  • Example 1 An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, each pretreatment of etching, desmutting, 1st zincate, dezinkate, 2nd zincate is performed in this order, and water washing is performed between each step. Using a malic acid-succinic acid-based electroless Ni-P plating bath), a 10- ⁇ m-thick Ni-P alloy plating layer (P content: 12.0 to 12. 5% by weight). Next, the aluminum plate on which the Ni—P alloy plating layer is formed is oxidized by immersing it in a 30% by weight aqueous H 2 O 2 solution at an immersion temperature of 25 ° C.
  • a layer made of a non-silicone resin (polyether resin) is formed as a resin for adsorption on the surface of the oxidized plating plate obtained above on which the oxidized plating layer is formed.
  • the non-silicone resin was cured by heating for 10 minutes to form a non-silicone resin layer (adsorption resin layer) having a thickness of 100 ⁇ m on the oxidized plating plate.
  • the peel strength of the oxidized plating plate having the non-silicone resin layer was measured according to the above method. Table 1 shows the results.
  • Embodiment 8 A steel sheet obtained by annealing a cold-rolled low-carbon aluminum-killed steel sheet (0.25 mm thick) was prepared. Then, the prepared steel sheet is degreased, washed with water, pickled, and washed with water. Then, using the following tin plating bath, under the following plating conditions, a steel sheet having a tin plating layer formed thereon is obtained, and sodium hydroxide ( NaOH) to a pH of 13 and immersed in a 6% by weight aqueous solution of sodium hypochlorite (NaClO) at an immersion temperature of 70 ° C. and an immersion time of 20 minutes to perform oxidation treatment.
  • NaOH sodium hydroxide
  • NaClO sodium hypochlorite
  • Comparative Example 1 A plated plate and a plated plate having a non-silicone resin layer were manufactured and evaluated in the same manner as in Example 1, except that the oxidation treatment using the H 2 O 2 aqueous solution was not performed. Table 1 shows the results.
  • Comparative Example 2 A base-treated plating plate and a non-silicone resin layer are provided in the same manner as in Example 1, except that a base treatment using an aqueous sodium hydroxide solution is performed instead of the oxidation treatment using an H 2 O 2 aqueous solution.
  • a base-treated plating plate was manufactured and similarly evaluated. The base treatment using an aqueous solution of sodium hydroxide was performed at 95 ° C. for 30 minutes using an aqueous solution of sodium hydroxide having a pH of 12. Table 1 shows the results.
  • Comparative Example 3 An aluminum plate (Al # 5000) having a thickness of 0.5 mm was prepared. Then, the prepared aluminum plate was degreased, washed with water, and then anodized to obtain an alumite-treated plate. Using the obtained alumite-treated plate, evaluation was performed in the same manner as in Example 1. Using the obtained alumite-treated plate, an alumite-treated plate provided with a non-silicone resin layer was manufactured. An evaluation was performed. Table 1 shows the results.
  • the oxidation state ratio of the outermost surface of the plating film of each element indicates the ratio of the oxide in each element (the same applies to Table 2). That is, for example, if “NiO” or “Ni 2 O 3 ”, the chemical state of all Ni on the outermost surface (Ni alone, Ni oxide, Ni compound other than Ni oxide) is 100%.
  • Ni in the state of “NiO” or Ni in the state of “Ni 2 O 3 ” (for example, in Example 1, the state other than the state of “NiO” and the state of “Ni 2 O 3 ”) This means that Ni in the state exists at a ratio of 80.20%.)
  • “oxide of P” when the chemical state of all P on the outermost surface (simple P, P oxide, P compound other than P oxide) is 100%.
  • SnO or “SnO 2 ” the chemical state of all Sn (Sn alone, Sn oxide, Sn compound other than Sn oxide) on the outermost surface is 100%. In this case, the ratio of Sn in the “SnO” state or Sn in the “SnO 2 ” state is shown.
  • an oxidized plating film containing at least one element selected from Ni, Sn and P is provided, and the outermost surface of the oxidized plating film is in an oxidized state in all Ni elements.
  • state ratio of Ni 2 O 3 as Ni or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface is 1% or more, strength by a three-point bending test, and The hardness was excellent in the scratching test, and the adhesion to the resin for adsorption (peel strength) was within an appropriate range, and good results were obtained (Examples 1 to 8).
  • Ni 2 as an oxidized Ni in all Ni elements on the outermost surface of the oxidized plating film
  • the state ratio of O 3 or the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface is less than 1%, the adhesion to the adsorption resin is insufficient (comparative).
  • Example 9 An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and pretreatments of etching, desmutting, first zincate, dezincate, and second zincate are performed in this order, and water washing is performed between each step, and then a Ni—P plating bath (known in the art) Using a malic acid-succinic acid-based electroless Ni-P plating bath), a 10 ⁇ m-thick Ni—P alloy plating layer (P content: 12.0 to 12.5 % By weight).
  • the aluminum plate on which the Ni—P alloy plating layer is formed is oxidized by immersing it in a 15% by weight H 2 O 2 aqueous solution at an immersion temperature of 70 ° C. for an immersion time of 10 minutes. Then, an oxidation-treated plated plate having an oxidation-treated plating film having a thickness of 10 ⁇ m was obtained via an underlayer containing zinc. Then, for the obtained oxidized plating sheet, according to the above-described method, the results of XPS measurement show that the proportion of the oxygen element in all the elements, the proportion of the P oxide, the proportion of the NiO, and the proportion of Ni 2 O 3 were determined. And a three-point bending test and a scratching test were performed. Table 2 shows the results.
  • a layer made of dimethylsiloxane (DMS) is formed as a resin for adsorption on the surface of the oxidized plating plate obtained above on which the oxidized plating layer is formed, and the layer is formed at 85 ° C. for 10 minutes.
  • the layer made of dimethylsiloxane (DMS) was cured to form a 100 ⁇ m-thick polydimethylsiloxane (PDMS) layer (adsorption resin layer) on the oxidized plating plate.
  • PDMS polydimethylsiloxane
  • Table 2 shows the results.
  • Examples 10 to 17 An oxidized plating plate and an oxidized plating plate having a PDMS layer were manufactured in the same manner as in Example 9 except that the conditions of the oxidation treatment using the H 2 O 2 aqueous solution were changed to the conditions shown in Table 2, respectively. The evaluation was performed in the same manner. Table 2 shows the results.
  • Example 18 A steel sheet obtained by annealing a cold-rolled low-carbon aluminum-killed steel sheet (0.25 mm thick) was prepared. Then, the prepared steel sheet is degreased, washed with water, pickled, and washed with water. Then, using the following tin plating bath, under the following plating conditions, a steel sheet having a tin plating layer formed thereon is obtained. Oxidation treatment is performed by immersion in an aqueous solution of sodium hypochlorite (NaClO) at an immersion temperature of 70 ° C. and an immersion time of 20 minutes, and an oxidation-treated plating film having a thickness of 1.0 ⁇ m is formed on the steel sheet.
  • NaClO sodium hypochlorite
  • Comparative Example 4 An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate was degreased, washed with water, and then anodized to obtain an alumite-treated plate. Then, the obtained alumite-treated plate was evaluated in the same manner as in Example 10, and the obtained alumite-treated plate was used to produce an alumite-treated plate having a PDMS layer, and the evaluation was performed in the same manner.
  • Table 2 shows the results.
  • an oxidized plating film containing at least one element selected from Ni, Sn and P is provided, and the outermost surface of the oxidized plating film is in an oxidized state in all Ni elements.
  • state ratio of Ni 2 O 3 as Ni or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface is 1% or more, strength by a three-point bending test, and The hardness was excellent in the flaw test, and the adhesion (peel strength) to the resin for adsorption was within an appropriate range, and good results were obtained (Examples 9 to 18).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Chemically Coating (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Supply And Installment Of Electrical Components (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided is a base material for an electronic parts transport jig, the base material being for use in an electronic parts transport jig and comprising a resin suction portion for suctioning an electronic part, wherein: the base material for the electronic parts transport jig comprises a metal plate and an oxidation plating film that is formed on the metal plate and includes at least one element selected from Ni, Sn, and P, the metal plate and oxidation plating film being used to support the resin suction portion; and the state ratio of Ni2O3 as Ni in an oxidized state among all Ni elements in the outermost surface of the oxidation plating film, or the state ratio of SnO2 as Sn in an oxidized state among all Sn elements in the outermost surface of the oxidation plating film, is 1% or higher.

Description

電子部品搬送用冶具用の基材Substrates for jigs for transporting electronic components
 本発明は、電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材に関する。 The present invention relates to a substrate for an electronic component transport jig, which is provided with a resin suction portion for absorbing an electronic component and is used for an electronic component transport jig.
 従来、半導体チップを持ち上げて、所定の位置まで搬送するための冶具として、搬送用冶具が用いられている。このような搬送用冶具においては、先端部を半導体チップ中央部付近に接触させ、吸着穴を真空状態とすることで、半導体チップを吸着しつつ搬送することを可能とするものである。 Conventionally, a transfer jig has been used as a jig for lifting a semiconductor chip and transferring it to a predetermined position. In such a transfer jig, the tip is brought into contact with the vicinity of the center of the semiconductor chip, and the suction hole is made in a vacuum state, so that the semiconductor chip can be transferred while being sucked.
 一方、近年は半導体チップの多機能・高速化とそれに伴う高密度実装化を実現するために、チップ内に貫通電極を形成してバンプ接続によるフリップチップ実装を行うチップオンチップ技術が開発されつつある。このような貫通電極を有する半導体チップは、チップ表面に接続用バンプパッドを備えるものであるが、上下に積層される半導体チップのバンプパッドと接合するために従来の半導体チップの接続パッドより高く突出した構造をとる場合が多い。 On the other hand, in recent years, chip-on-chip technology for flip-chip mounting by forming through electrodes in the chip and bump connection has been developed in order to realize multifunctional and high speed of the semiconductor chip and accompanying high density mounting. is there. A semiconductor chip having such a through electrode has a bump pad for connection on the chip surface, but projects higher than a connection pad of a conventional semiconductor chip in order to bond with a bump pad of a semiconductor chip stacked vertically. In many cases, the structure is changed.
 そのため、真空状態を利用して搬送を行う搬送用冶具は、このような貫通電極を有する半導体チップの搬送に適さない場合があり、これに代替する搬送冶具として、樹脂などの粘着物を利用した吸着方式が提案されている(たとえば、特許文献1参照)。しかしながら、この特許文献1の技術では、吸着用の樹脂を支持するための基材の強度や硬度、さらには、樹脂との密着性について、検討はなされていない。 Therefore, a transfer jig that performs transfer using a vacuum state may not be suitable for transfer of a semiconductor chip having such a through electrode, and an adhesive such as a resin is used as a transfer jig instead of this. An adsorption method has been proposed (for example, see Patent Document 1). However, in the technique of Patent Document 1, the strength and hardness of a substrate for supporting a resin for adsorption and the adhesion to a resin have not been studied.
特開2010-287679号公報JP 2010-287679 A
 本発明の目的は、強度および硬度が高く、電子部品を吸着するための樹脂吸着部を構成する樹脂に対して適切な密着強度を示す電子部品搬送用冶具用の基材を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a base material for a jig for transporting electronic components, which has high strength and hardness and exhibits appropriate adhesion strength to a resin constituting a resin suction portion for adsorbing electronic components. .
 本発明者等は、上記目的を達成すべく鋭意検討を行った結果、電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具用の基材として、金属板と、この金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜とを備え、かつ、酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上に制御されたものを用いることにより、上記目的を達成することができることを見出し、本発明を完成させるに至った。 The present inventors have conducted intensive studies to achieve the above object, and as a result, provided with a resin suction portion for sucking an electronic component, a metal plate as a base material for a jig for transporting an electronic component, An oxidized plating film containing at least one element selected from the group consisting of Ni, Sn, and P, and oxidized in all Ni elements on the outermost surface of the oxidized plating film. By controlling the state ratio of Ni 2 O 3 or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface of the oxidized plating film to 1% or more. The inventors have found that the above object can be achieved, and have completed the present invention.
 すなわち、本発明によれば、電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材であって、
 前記電子部品搬送用冶具用の基材は、前記樹脂吸着部を支持するために用いられ、
 金属板と、前記金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜と、を備え、
 前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上である、電子部品搬送用冶具用の基材が提供される。
 なお、前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合は、5%超であることが好ましい。
That is, according to the present invention, provided with a resin suction portion for sucking an electronic component, used for an electronic component transport jig, a substrate for an electronic component transport jig,
The substrate for the electronic component transport jig is used to support the resin suction unit,
A metal plate, and an oxidized plating film formed on the metal plate and containing at least one element selected from Ni, Sn and P,
As the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidized plating film, or as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidized plating film And a substrate for electronic component conveying jigs, wherein the state ratio of SnO 2 is 1% or more.
The state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidized plating film, or the oxidized state in all Sn elements on the outermost surface of the oxidized plating film The state ratio of SnO 2 as Sn is preferably more than 5%.
 本発明の電子部品搬送用冶具用の基材において、前記酸化処理めっき皮膜の最表面における酸素元素の存在割合が40atom%以上であることがより好ましい。
 好ましくは、前記酸化処理めっき皮膜が、Niを少なくとも含有する酸化処理めっき皮膜であり、前記酸化処理めっき皮膜の最表面のNiにおける、NiOと、Niの状態比が、「NiO:Ni」の比で、11.0:1.0~1.0:99.0であることが好ましく、より好ましくは7.0:1.8~23.8:76.2、さらに好ましくは7.0:1.8~27.4:72.6である。
 好ましくは、前記酸化処理めっき皮膜が、Ni-P合金を少なくとも含有する酸化処理めっき皮膜である。
 好ましくは、前記酸化処理めっき皮膜中における、全P元素中における酸化状態にあるPの酸化物の状態割合が21%以上である。
 好ましくは、前記酸化処理めっき皮膜の厚みが、1~40μmである。
 好ましくは、前記金属板が、アルミニウム板である。
 本発明の電子部品搬送用冶具用の基材は、前記金属板上に、亜鉛を含有する下地層をさらに備え、前記酸化処理めっき皮膜が、前記下地層に形成されていることが好ましい。
In the substrate for a jig for transporting electronic components of the present invention, it is more preferable that the proportion of the oxygen element present on the outermost surface of the oxidized plating film is 40 atom% or more.
Preferably, the oxidized plating film is an oxidized plating film containing at least Ni, and the state ratio between NiO and Ni 2 O 3 in Ni on the outermost surface of the oxidized plating film is “NiO: Ni”. a ratio of 2 O 3 ", 11.0 1.0 to 1.0: is preferably 99.0, more preferably 7.0: 1.8 to 23.8: 76.2, more preferably Is from 7.0: 1.8 to 27.4: 72.6.
Preferably, the oxidized plating film is an oxidized plating film containing at least a Ni—P alloy.
Preferably, the oxidized P oxide state in all P elements in the oxidized plating film has a state ratio of 21% or more.
Preferably, the thickness of the oxidized plating film is 1 to 40 μm.
Preferably, the metal plate is an aluminum plate.
It is preferable that the base material for a jig for transporting electronic components of the present invention further includes an underlayer containing zinc on the metal plate, and the oxidized plating film is formed on the underlayer.
 また、本発明によれば、上記の電子部品搬送用冶具用の基材上に、電子部品を吸着するための樹脂吸着部を備える電子部品搬送用冶具が提供される。 According to the present invention, there is also provided an electronic component conveying jig provided with a resin sucking portion for adsorbing an electronic component on the electronic component conveying jig base material.
 本発明によれば、強度および硬度が高く、電子部品を吸着するための樹脂吸着部を構成する樹脂に対して適切な密着強度を示す電子部品搬送用冶具用の基材、ならびに、このような電子部品搬送用冶具用の基材を用いて得られる電子部品搬送用冶具を提供することができる。 According to the present invention, the strength and hardness are high, a base material for an electronic component transport jig that exhibits an appropriate adhesion strength to a resin constituting a resin suction portion for absorbing an electronic component, and An electronic component transport jig obtained using a substrate for an electronic component transport jig can be provided.
図1は、本実施形態に係る電子部品搬送用冶具用の基材の断面図である。FIG. 1 is a sectional view of a base material for a jig for transporting electronic components according to the present embodiment. 図2は、本実施形態に係る電子部品搬送用冶具の製造方法を示す図である。FIG. 2 is a diagram illustrating a method of manufacturing the electronic component conveying jig according to the present embodiment. 図3は、本実施形態に係る電子部品搬送用冶具を使用した電子部品の搬送方法を示す図である。FIG. 3 is a diagram illustrating a method for transporting electronic components using the electronic component transport jig according to the present embodiment.
 図1は、本実施形態に係る電子部品搬送用冶具用の基材10の構成を示す断面図である。図1に示すように、本実施形態の電子部品搬送用冶具用の基材10は、金属板11上に、最表層として酸化処理めっき皮膜12が形成されてなる。酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素を含み、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%以上であるものである。 FIG. 1 is a cross-sectional view illustrating a configuration of a substrate 10 for a jig for transporting electronic components according to the present embodiment. As shown in FIG. 1, a substrate 10 for a jig for transporting electronic components of the present embodiment has a metal plate 11 on which an oxidized plating film 12 is formed as an outermost layer. The oxidized plating film 12 includes at least one element selected from Ni, Sn, and P, and the state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or the outermost surface In the above, the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements is 1% or more.
<電子部品搬送用冶具の製造方法>
 まず、本実施形態の電子部品搬送用冶具用の基材10について詳細に説明する前に、本実施形態の電子部品搬送用冶具用の基材10を用いて得られる電子部品搬送用冶具の製造方法を、図2を参照して、説明する。
<Manufacturing method of electronic component conveying jig>
First, before the substrate 10 for an electronic component transport jig of the present embodiment is described in detail, the manufacture of the electronic component transport jig obtained using the electronic component transport jig 10 of the present embodiment is described. The method will be described with reference to FIG.
 まず、図2(A)に示すように、本実施形態の電子部品搬送用冶具用の基材10(以下、適宜、「基材10」とする。)を準備する。次いで、図2(B)に示すように、吸着用樹脂からなる樹脂層20を形成する。樹脂層20は、基材10の酸化処理めっき皮膜12(図1参照)が形成されている面側に、形成する。 First, as shown in FIG. 2A, a substrate 10 (hereinafter, appropriately referred to as “substrate 10”) for an electronic component conveying jig of the present embodiment is prepared. Next, as shown in FIG. 2B, a resin layer 20 made of a resin for adsorption is formed. The resin layer 20 is formed on the surface of the substrate 10 on which the oxidized plating film 12 (see FIG. 1) is formed.
 次いで、図2(C)に示すように、複数のキャビティ31を有する賦形用金型30を、基材10上に形成された樹脂層20に押し付け、圧力を加えながら加熱することで、樹脂層20を構成する吸着用樹脂を、キャビティ31に対応する形状に成形し、これにより、図2(D)に示すように、基材10上に、吸着用樹脂からなる樹脂吸着部21が複数形成されてなる電子部品搬送用冶具40が製造される。 Next, as shown in FIG. 2C, the shaping mold 30 having the plurality of cavities 31 is pressed against the resin layer 20 formed on the base material 10, and heated while applying pressure, so that the resin is heated. The resin for adsorption forming the layer 20 is molded into a shape corresponding to the cavity 31, whereby a plurality of resin adsorption portions 21 made of the resin for adsorption are formed on the substrate 10 as shown in FIG. The formed electronic component conveying jig 40 is manufactured.
 なお、このようにして得られた電子部品搬送用冶具40について、電子部品の搬送性能をより高めるという観点より、複数の樹脂吸着部21が形成されている領域(すなわち、中央部付近)の周囲に残存する、不要な吸着用樹脂については、基材10から剥離させる等することで、除去することが好適である。 In addition, from the viewpoint of further improving the electronic component transfer performance, the electronic component transfer jig 40 obtained in this manner is provided around the region where the plurality of resin suction portions 21 are formed (that is, near the center). It is preferable to remove unnecessary adsorption resin remaining on the substrate 10 by peeling it off from the substrate 10 or the like.
 そして、このようにして製造される電子部品搬送用冶具40は、図3(A)に示すように、ストッカ50に載置された複数の電子部品60に対し、押し付けられることで、複数の樹脂吸着部21によって、複数の電子部品60を吸着し、図3(B)に示すように、複数の電子部品60を、これを実装するための回路基板70上に搬送し、次いで、回路基板70上に押し付けられることで、複数の電子部品60を、回路基板70上に実装するために使用される。 Then, the electronic component conveying jig 40 manufactured as described above is pressed against a plurality of electronic components 60 placed on the stocker 50 as shown in FIG. The plurality of electronic components 60 are sucked by the suction unit 21, and as shown in FIG. 3B, the plurality of electronic components 60 are transported onto a circuit board 70 on which the electronic components 60 are mounted. By being pressed upward, the plurality of electronic components 60 are used for mounting on the circuit board 70.
 樹脂層20を形成するための吸着用樹脂としては、特に限定されないが、適切な粘着性を有し、これにより、電子部品の搬送をより好適に行うことができるという観点より、ポリジメチルシロキサン(PDMS)などのシリコーン系樹脂を用いることができる。シリコーン系樹脂としては、ポリジメチルシロキサン以外にも、主骨格として、シロキサン結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものを好適に用いることができる。 The adsorption resin for forming the resin layer 20 is not particularly limited. However, from the viewpoint that the resin has appropriate tackiness, and thus can more suitably transport electronic components, polydimethylsiloxane ( Silicone resin such as PDMS) can be used. As the silicone resin, in addition to polydimethylsiloxane, a siloxane bond as a main skeleton, and any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group. What contains is preferably used.
 あるいは、シリコーン系樹脂に代えて、非シリコーン系樹脂を用いてもよく、非シリコーン系樹脂としては、ポリエーテル系樹脂や、ポリエステル系樹脂などが挙げられ、これらのなかでも、ポリエーテル系樹脂が好適である。ポリエーテル系樹脂としては、主骨格として、エーテル結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適であり、また、ポリエステル系樹脂としては、主骨格として、エステル結合を有し、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適である。また、非シリコーン系樹脂としては、ウレタン系樹脂や、ポリ乳酸系樹脂、フッ素系樹脂を用いることもできる。ウレタン系樹脂、ポリ乳酸系樹脂、およびフッ素系樹脂としては、たとえば、主骨格として、ウレタン結合、エステル結合、エーテル結合、およびアミド結合のいずれか1つを含み、かつ、官能基として、ヒドロキシ基、アミン基、メチル基、カルボキシ基、およびケトン基のいずれか1つを含むものが好適に用いられる。 Alternatively, a non-silicone resin may be used instead of the silicone resin, and examples of the non-silicone resin include a polyether resin and a polyester resin. It is suitable. As the polyether-based resin, those having an ether bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group are preferable. As the polyester-based resin, those having an ester bond as a main skeleton and containing any one of a hydroxy group, an amine group, a methyl group, a carboxy group, and a ketone group as a functional group are preferable. It is. Further, as the non-silicone resin, a urethane resin, a polylactic acid resin, or a fluorine resin can be used. Examples of the urethane-based resin, polylactic acid-based resin, and fluorine-based resin include, for example, any one of a urethane bond, an ester bond, an ether bond, and an amide bond as a main skeleton, and a hydroxy group as a functional group. , An amine group, a methyl group, a carboxy group, and a ketone group are preferably used.
 これら吸着用樹脂は、硬化性樹脂(熱硬化性樹脂または紫外線硬化性樹脂)あるいは熱可塑性樹脂のいずれであってもよい。たとえば、吸着用樹脂として、熱硬化性樹脂を用いる場合には、図2(C)に示す工程において、複数のキャビティ31を有する賦形用金型30を、基材10上に形成された樹脂層20に押し付け、圧力を加えながら加熱する際に、樹脂吸着部21に対応する形状に成形するとともに硬化させることができる。 These adsorption resins may be either curable resins (thermosetting resins or ultraviolet-curing resins) or thermoplastic resins. For example, when a thermosetting resin is used as the resin for adsorption, in the step shown in FIG. 2C, a molding die 30 having a plurality of cavities 31 is formed on the resin formed on the base material 10. When pressed against the layer 20 and heated while applying pressure, it can be formed into a shape corresponding to the resin adsorption portion 21 and cured.
<電子部品搬送用冶具用の基材10>
 上述したように、本実施形態の電子部品搬送用冶具用の基材10は、図2(A)~図2(D)に示すように、電子部品搬送用冶具40を得るために用いられるものである。具体的には、本実施形態の電子部品搬送用冶具用の基材10は、樹脂吸着部21を支持するための支持基材として用いられる。
<Base 10 for jig for transporting electronic components>
As described above, the substrate 10 for the electronic component transport jig of the present embodiment is used for obtaining the electronic component transport jig 40 as shown in FIGS. 2 (A) to 2 (D). It is. Specifically, the base material 10 for the electronic component conveying jig of the present embodiment is used as a support base material for supporting the resin suction unit 21.
 本実施形態の電子部品搬送用冶具用の基材10は、図1に示すように、金属板11上に、最表層として酸化処理めっき皮膜12が形成されてなる。 基材 The base material 10 for a jig for transporting electronic components according to the present embodiment has a metal plate 11 on which an oxidized plating film 12 is formed as an outermost layer, as shown in FIG.
 金属板11としては、特に限定されないが、鋼板、ステンレス鋼板、銅板、アルミニウム板、アルミニウム合金板、またはニッケル板などが挙げられる。これらのなかでも、価格が安いことから、鋼板またはアルミニウム板、アルミニウム合金板が好ましい。さらに、電子部品搬送用冶具40の軽量化が可能となり、これにより、電子部品搬送に必要となるエネルギーを低減できるという観点より、アルミニウム板、またはアルミニウム合金板が好ましい。金属板11の厚みは、特に限定されないが、電子部品を搬送する際における取り扱い性の観点より、好ましくは0.3~2mm、より好ましくは0.5~0.8mmである。 The metal plate 11 is not particularly limited, and examples thereof include a steel plate, a stainless steel plate, a copper plate, an aluminum plate, an aluminum alloy plate, and a nickel plate. Among them, a steel plate, an aluminum plate, and an aluminum alloy plate are preferable because of their low price. Further, an aluminum plate or an aluminum alloy plate is preferable from the viewpoint that the weight of the electronic component transport jig 40 can be reduced, thereby reducing the energy required for transporting the electronic component. The thickness of the metal plate 11 is not particularly limited, but is preferably 0.3 to 2 mm, and more preferably 0.5 to 0.8 mm, from the viewpoint of handleability when transporting the electronic component.
 酸化処理めっき皮膜12は、金属板11上に形成されるめっき被膜であって、少なくともその表面が酸化処理されたものであり、基材10の最表層を構成する。本実施形態において、酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素を含み(好適には、NiおよびSnから選択される少なくとも1種の元素を含み)、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合(すなわち、Ni単体や、NiOなどのNi以外の酸化状態の酸化物と、Niの酸化物以外のNi化合物と、Niとの合計に対する、Ni元素換算でのNiの状態割合。)、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合(すなわち、Sn単体や、SnOなどのSnO以外の酸化状態の酸化物と、Snの酸化物以外のSn化合物と、SnOとの合計に対する、Sn元素換算でのSnOの状態割合。)が、1%以上であるものである。 The oxidized plating film 12 is a plating film formed on the metal plate 11, at least the surface of which is oxidized, and forms the outermost layer of the substrate 10. In the present embodiment, the oxidized plating film 12 includes at least one element selected from Ni, Sn and P (preferably includes at least one element selected from Ni and Sn). The state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the surface (namely, Ni alone, an oxide in an oxidized state other than Ni 2 O 3 such as NiO, and an oxide other than the oxide of Ni) State ratio of Ni 2 O 3 in terms of Ni element with respect to the total of Ni compound and Ni 2 O 3 ) or state state of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface ( That, Sn alone and the oxide of states other than SnO 2, such as SnO, and Sn compounds other than oxides of Sn, to the sum of SnO 2, S in the Sn terms of elemental State ratio of O 2.) Are those wherein at least 1%.
 本実施形態によれば、金属板11上に、最表層として酸化処理めっき皮膜12を形成し、酸化処理めっき皮膜12をこのような構成とすることにより、電子部品搬送用冶具用の基材10を、強度および硬度が高く、樹脂吸着部21を構成する吸着用樹脂に対して適切な密着強度を示すものとすることができるものである。特に、電子部品搬送用冶具40を製造する際においては、図2(C)に示す工程のように、賦形用金型30を、電子部品搬送用冶具用の基材10上に所定の圧力にて押し付ける必要があるため、電子部品搬送用冶具用の基材10には、賦形用金型30の押し付けによる変形や破損、傷付きが有効に抑制されたものであることが求められる。加えて、電子部品搬送用冶具用の基材10は、樹脂吸着部21を支持するものであることから、樹脂吸着部21を構成する吸着用樹脂との密着性に優れていること、その一方で、樹脂吸着部21以外の部分に残存する不要な吸着用樹脂(たとえば、複数の樹脂吸着部21が形成されている領域(すなわち、中央部付近)の周囲に残存する吸着用樹脂)については、剥離等により除去される場合もあるため、これらを適切に除去できる程度の密着性を示すものであること(すなわち、密着力が高すぎないこと)が求められる。さらには、工程内でのキズ付きが起こると、平滑度が悪化し、搬送性能が低下するという課題もある。 According to the present embodiment, the oxidized plating film 12 is formed as the outermost layer on the metal plate 11 and the oxidized plating film 12 has such a configuration, whereby the base material 10 for the jig for transporting electronic components is formed. Can have high strength and hardness, and can exhibit appropriate adhesion strength to the resin for adsorption constituting the resin adsorption section 21. In particular, when manufacturing the electronic component transport jig 40, as shown in FIG. 2C, the molding die 30 is placed on the electronic component transport jig base 10 at a predetermined pressure. Therefore, it is required that the substrate 10 for the electronic component conveying jig should be one in which deformation, breakage, and scratches due to the pressing of the shaping mold 30 are effectively suppressed. In addition, since the base material 10 for the electronic component conveying jig supports the resin suction portion 21, it has excellent adhesion to the resin for suction forming the resin suction portion 21. Unnecessary suction resin remaining in portions other than the resin suction portion 21 (for example, a suction resin remaining around a region where a plurality of resin suction portions 21 are formed (that is, near the center)) In some cases, it is removed by peeling or the like, and therefore, it is required to exhibit sufficient adhesiveness to remove them properly (that is, the adhesive strength is not too high). Further, if the scratches occur in the process, there is a problem that the smoothness is deteriorated and the transport performance is deteriorated.
 これに対し、本実施形態によれば、電子部品搬送用冶具用の基材10を、上記構成を有するものとすることにより、強度および硬度が高く、樹脂吸着部21を構成する吸着用樹脂に対して適切な密着強度を示すものとすることができるものであり、これにより、本実施形態によれば、このような問題を適切に解決するものである。 On the other hand, according to the present embodiment, by using the base material 10 for the electronic component conveying jig having the above-described configuration, the strength and hardness are high, and the resin for suction forming the resin suction portion 21 is used. In this case, it is possible to exhibit appropriate adhesion strength, and according to the present embodiment, such a problem is appropriately solved.
 酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素を含み、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上であるものであればよいが、樹脂吸着部21を形成するための吸着用樹脂として、シリコーン系樹脂を用いる場合には、Niの状態割合、又はSnOの状態割合は、1.75~72.6%の範囲であることがより好ましく、5%超、72.6%以下の範囲であることがさらに好ましく、7.5~49.4%の範囲であることがさらにより好ましい。また、樹脂吸着部21を形成するための吸着用樹脂として、ポリエーテル系樹脂、ポリエステル系樹脂、フッ素系樹脂、ウレタン系樹脂、あるいは、ポリ乳酸系樹脂を用いる場合には、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合は、7.5~100%の範囲であることがより好ましく、7.97~72.6%の範囲であることがさらに好ましく、7.97~30%の範囲であることがさらにより好ましい。最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が低すぎると、吸着用樹脂に対する密着性が不十分となってしまう。 The oxidized plating film 12 includes at least one element selected from Ni, Sn, and P, and the state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or the outermost surface It is sufficient that the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements is 1% or more, but a silicone resin is used as an adsorption resin for forming the resin adsorption section 21. When used, the state ratio of Ni 2 O 3 or the state ratio of SnO 2 is more preferably in the range of 1.75 to 72.6%, and more than 5% and 72.6% or less. More preferably, it is even more preferably in the range of 7.5-49.4%. When a polyether-based resin, a polyester-based resin, a fluorine-based resin, a urethane-based resin, or a polylactic acid-based resin is used as an adsorption resin for forming the resin adsorption section 21, all Ni on the outermost surface is used. The state ratio of Ni 2 O 3 as Ni in an oxidized state in the element or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface is in the range of 7.5 to 100%. More preferably, it is more preferably in the range of 7.97 to 72.6%, and even more preferably in the range of 7.97 to 30%. If the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface or the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface is too low, adsorption is caused. Adhesion to resin for use becomes insufficient.
 酸化処理めっき皮膜12が、Niを少なくとも含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、酸化処理めっき皮膜の最表面のNiにおける、NiOと、Niの状態比が、「NiO:Ni」の比で、11.0:1.0~1.0:99.0であることが好ましく、7.0:1.8~23.8:76.2であることがより好ましく、7.0:1.8~27.4:72.6であることがさらに好ましい。NiOと、Niとの状態比は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、Ni単体のピークの積分値と、NiOのピークの積分値と、Niのピークの積分値とを求め、これらより、最表面における全Ni元素におけるNiOおよびNiの状態割合を算出し、NiOと、Niとの状態比を求めることができる。 When the oxidized plating film 12 is an oxidized plating film containing at least Ni, from the viewpoint that it can exhibit more appropriate adhesion strength to the resin for adsorption constituting the resin adsorption portion 21, The state ratio between NiO and Ni 2 O 3 in Ni on the outermost surface of the treated plating film is 11.0: 1.0 to 1.0: 99.0 in the ratio of “NiO: Ni 2 O 3 ”. The ratio is preferably 7.0: 1.8 to 23.8: 76.2, more preferably 7.0: 1.8 to 27.4: 72.6. The state ratio between NiO and Ni 2 O 3 is determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the oxidized plating film 12 and calculating the integrated value of the peak of Ni alone, the integrated value of the NiO peak, obtains an integration value of the peak of Ni 2 O 3, from these, determining and calculating the state ratio of NiO and Ni 2 O 3 in the total Ni element in the outermost surface, and NiO, the state ratio of Ni 2 O 3 Can be.
 また、酸化処理めっき皮膜12は、最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が上記範囲であればよいが、最表面における酸素元素の存在割合が、40.0atom%以上であることが好ましく、より好ましくは40.6atom%以上であり、さらに好ましくは43.0atom%以上である。最表面における酸素元素の存在割合の上限は、特に限定されないが、好ましくは53atom%以下、より好ましくは45atom%以下である。最表面における酸素元素の存在割合を上記範囲とすることにより、吸着用樹脂に対する密着性をより高めることができる。本実施形態においては、酸化処理めっき皮膜12の、最表面における酸素元素の存在割合は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、酸化処理めっき皮膜12を構成する各酸化物のピーク積分値を求め、求めたピーク積分値から、酸素元素の存在割合(atom%)を算出することにより、求めることができる。 The oxidized plating film 12 has a state ratio of Ni 2 O 3 as Ni in an oxidized state in all Ni elements on the outermost surface, or SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface. May be in the above range, but the proportion of the oxygen element on the outermost surface is preferably 40.0 atom% or more, more preferably 40.6 atom% or more, and still more preferably 43.0 atom%. % Or more. The upper limit of the proportion of the oxygen element in the outermost surface is not particularly limited, but is preferably 53 atom% or less, more preferably 45 atom% or less. By setting the proportion of the oxygen element on the outermost surface within the above range, the adhesion to the resin for adsorption can be further improved. In the present embodiment, the ratio of the oxygen element on the outermost surface of the oxidized plating film 12 is determined by performing X-ray photoelectron spectroscopy (XPS) measurement on the surface of the oxidized plating film 12. It can be obtained by calculating the peak integrated value of each oxide to be obtained and calculating the abundance ratio (atom%) of the oxygen element from the obtained peak integrated value.
 また、酸化処理めっき皮膜12は、Ni、SnおよびPから選択される少なくとも1種の元素に加えて、Znをさらに含有するものであってもよい。酸化処理めっき皮膜12が、Znをさらに含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、最表面における全Zn元素中における酸化状態にあるZnとしてのZnOの状態割合が19%以上であることが好ましい。また、最表面における全Zn元素中における酸化状態にあるZnとしてのZnOの状態割合は1%以上が好ましく、より好ましくは69%以上である。ZnOと、ZnOとの状態比は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、X線光電子分光(XPS)測定を行い、Zn単体のピークの積分値と、ZnOのピークの積分値と、ZnOのピークの積分値とを求め、これらより、最表面における全Zn元素におけるZnOおよびZnOの状態割合を算出し、ZnOと、ZnOとの状態比を求めることができる。 Further, the oxidized plating film 12 may further contain Zn in addition to at least one element selected from Ni, Sn and P. In the case where the oxidized plating film 12 is an oxidized plating film further containing Zn, from the viewpoint that it can exhibit more appropriate adhesion strength to the resin for adsorption constituting the resin adsorption section 21, It is preferable that the state ratio of ZnO as Zn in an oxidized state in all Zn elements on the surface is 19% or more. The state ratio of ZnO 2 as Zn in an oxidized state in all Zn elements on the outermost surface is preferably 1% or more, and more preferably 69% or more. The state ratio between ZnO and ZnO 2 was determined by measuring the surface of the oxidized plating film 12 by X-ray photoelectron spectroscopy (XPS) measurement, X-ray photoelectron spectroscopy (XPS) measurement, and the integrated value of the peak of Zn alone. , ZnO peak integrated value and ZnO 2 peak integrated value are calculated, and from these, the state ratio of ZnO and ZnO 2 in all Zn elements on the outermost surface is calculated, and the state ratio between ZnO and ZnO 2 is calculated. Can be requested.
  酸化処理めっき皮膜12が、Snを少なくとも含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、酸化処理めっき皮膜12の最表面における、全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が19%以上であることが好ましい。また、酸化処理めっき皮膜12の最表面における、全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合は1%以上が好ましく、より好ましくは69%以上である。SnOと、SnOとの状態比は、酸化処理めっき皮膜12の表面について、X線光電子分光(XPS)測定を行い、Sn単体のピークの積分値と、SnOのピークの積分値と、SnOのピークの積分値とを求め、これらより、最表面における全Sn元素におけるSnOおよびSnOの状態割合を算出し、SnOと、SnOとの状態比を求めることができる。 When the oxidized plating film 12 is an oxidized plating film containing at least Sn, the oxidized plating film 12 is preferably oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption section 21. It is preferable that the state ratio of SnO as oxidized Sn in all Sn elements on the outermost surface of the treated plating film 12 is 19% or more. Further, the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidized plating film 12 is preferably 1% or more, and more preferably 69% or more. As for the state ratio between SnO and SnO 2 , X-ray photoelectron spectroscopy (XPS) measurement was performed on the surface of the oxidized plating film 12, and the integrated value of the peak of Sn alone, the integrated value of the SnO peak, and SnO 2 From these values, the state ratio of SnO and SnO 2 in all Sn elements on the outermost surface is calculated, and the state ratio between SnO and SnO 2 can be obtained.
 酸化処理めっき皮膜12が、Pを少なくとも含有する酸化処理めっき皮膜である場合には、樹脂吸着部21を構成する吸着用樹脂に対してより適切な密着強度を示すことができるという観点より、酸化処理めっき皮膜12の最表面における、全P元素中における酸化状態にあるPの酸化物の状態割合が21%以上であり、より好ましくは24%以上である。全P元素中における酸化状態にあるPの酸化物の状態割合の上限は、特に限定されないが、好ましくは97%以下であり、より好ましくは60%以下である。Pの酸化物の状態割合は、上記と同様に、X線光電子分光(XPS)測定により求めることができる。 When the oxidized plating film 12 is an oxidized plating film containing at least P, the oxidized plating film 12 is preferably oxidized from the viewpoint that it can exhibit more appropriate adhesion strength to the adsorption resin constituting the resin adsorption section 21. The state ratio of the oxide of P in the oxidized state in all P elements on the outermost surface of the treated plating film 12 is 21% or more, and more preferably 24% or more. The upper limit of the state ratio of the oxide of P in the oxidized state in all P elements is not particularly limited, but is preferably 97% or less, and more preferably 60% or less. The state ratio of the oxide of P can be determined by X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above.
 また、酸化処理めっき皮膜12は、強度、硬度、および樹脂吸着部21を構成する吸着用樹脂に対する密着性をより高度にバランスさせることができ、しかも、酸化処理めっき皮膜12表面の平坦性をより高めることができ、これにより、より微細な電子部品を高精度に搬送することができるという観点より、Ni-P合金を少なくとも含有する酸化処理めっき皮膜であることがより好ましく、この場合における、酸化処理めっき皮膜12の最表面における、NiOと、Niとの状態比が、「NiO:Ni」の比で、11.0:1.0~1.0:99.0である。より好ましくは7.0:1.8~23.8:76.2、さらに好ましくは7.0:1.8~27.4:72.6である。NiOと、Niとの状態比は、上記と同様に、X線光電子分光(XPS)測定の結果により算出することができる。また、Ni-P合金中における、Pの含有量が1~13重量%が好ましく、より好ましくは5~13重量%、さらに好ましくは8~13重量%である。Ni‐P合金中におけるPの含有割合は、上記と同様に、X線光電子分光(XPS)測定により求めることができる。 Further, the oxidized plating film 12 can balance the strength, hardness, and adhesion to the resin for adsorption constituting the resin adsorption portion 21 to a higher degree, and furthermore, the flatness of the surface of the oxidized plating film 12 can be improved. From the viewpoint that finer electronic components can be transported with high precision, it is more preferable that the plating film is an oxidized plating film containing at least a Ni—P alloy. The state ratio between NiO and Ni 2 O 3 at the outermost surface of the treated plating film 12 is 11.0: 1.0 to 1.0: 99.0 in the ratio of “NiO: Ni 2 O 3 ”. is there. More preferably, the ratio is 7.0: 1.8 to 23.8: 76.2, and further preferably, the ratio is 7.0: 1.8 to 27.4: 72.6. The state ratio between NiO and Ni 2 O 3 can be calculated based on the result of X-ray photoelectron spectroscopy (XPS) measurement, similarly to the above. Further, the content of P in the Ni—P alloy is preferably 1 to 13% by weight, more preferably 5 to 13% by weight, and still more preferably 8 to 13% by weight. The content ratio of P in the Ni-P alloy can be determined by X-ray photoelectron spectroscopy (XPS) measurement in the same manner as described above.
 酸化処理めっき皮膜12の厚みは、特に限定されないが、電子部品搬送用冶具用の基材10の強度および硬度をより十分なものとするという観点より、好ましくは1~40μm、より好ましくは1~20μm、さらに好ましくは1~10μm、さらにより好ましくは5~10μmである。 The thickness of the oxidized plating film 12 is not particularly limited, but is preferably from 1 to 40 μm, more preferably from 1 to 40 μm, from the viewpoint of making the strength and hardness of the substrate 10 for a jig for transporting electronic components more sufficient. The thickness is 20 μm, more preferably 1 to 10 μm, and still more preferably 5 to 10 μm.
 金属板11上に、酸化処理めっき皮膜12を形成する方法としては特に限定されないが、たとえば、酸化処理めっき皮膜12を、Niを少なくとも含有する酸化処理めっき皮膜とする場合には、金属板11上に、Niめっきを施し、形成されたNiめっき膜について、酸化処理を行う方法などが挙げられる。酸化処理の方法としては、特に限定されないが、形成されたNiめっき膜について熱処理を行う方法や、過酸化水素水(H)、次亜塩素酸塩などの液体中に浸漬させる処理を行う方法、水蒸気処理を行う方法などが挙げられる。また、これらは組み合わせてもよい。熱処理を行う際の条件としては、特に限定されないが、熱処理温度は、好ましくは130~300℃、熱処理時間は、好ましくは10~30分である。また、過酸化水素水中に浸漬させる処理における条件としては、特に限定されないが、過酸化水素水の濃度は、好ましくは1~35重量%、より好ましくは15~35重量%、浸漬温度(過酸化水素水の温度)は、好ましくは25~90℃、より好ましくは25~70℃、浸漬時間は、好ましくは20秒~120分、より好ましくは20秒~60分である。さらに、水蒸気処理における条件としては、特に限定されないが、好ましくは40~100%RH、より好ましくは65~100%RHであり、水蒸気温度は、好ましくは40~120℃、より好ましくは65~85℃、処理時間は、好ましくは1分~72時間、より好ましくは12~24時間である。また、酸化処理めっき皮膜12を、NiおよびPを含有するものとする場合(すなわち、Ni-P合金を含有するものとする場合)には、Ni-Pめっきを行い、Ni-P合金めっき膜を形成した後、Ni-P合金めっき膜について、熱処理を行う方法や、過酸化水素水(H)、次亜塩素酸塩などの液体中に浸漬させる処理を行う方法、水蒸気処理を行う方法などが挙げられる。この場合においては、熱処理、過酸化水素水中に浸漬させる処理、および水蒸気処理における条件は、上記と同様とすることができる。 The method for forming the oxidized plating film 12 on the metal plate 11 is not particularly limited. For example, when the oxidized plating film 12 is an oxidized plating film containing at least Ni, In addition, there is a method in which Ni plating is performed, and an oxidation treatment is performed on the formed Ni plating film. The method of the oxidation treatment is not particularly limited, but a method of performing a heat treatment on the formed Ni plating film or a treatment of immersing the Ni plating film in a liquid such as a hydrogen peroxide solution (H 2 O 2 ) or hypochlorite is used. And a method of performing steam treatment. These may be combined. The conditions for the heat treatment are not particularly limited, but the heat treatment temperature is preferably 130 to 300 ° C., and the heat treatment time is preferably 10 to 30 minutes. The conditions for the immersion in the hydrogen peroxide solution are not particularly limited, but the concentration of the hydrogen peroxide solution is preferably 1 to 35% by weight, more preferably 15 to 35% by weight, and the immersion temperature (peroxide The temperature of hydrogen water) is preferably 25 to 90 ° C, more preferably 25 to 70 ° C, and the immersion time is preferably 20 seconds to 120 minutes, more preferably 20 seconds to 60 minutes. The conditions for the steam treatment are not particularly limited, but are preferably 40 to 100% RH, more preferably 65 to 100% RH, and the steam temperature is preferably 40 to 120 ° C, more preferably 65 to 85%. The temperature and the treatment time are preferably 1 minute to 72 hours, more preferably 12 to 24 hours. When the oxidized plating film 12 contains Ni and P (that is, when it contains a Ni—P alloy), Ni—P plating is performed, and the Ni—P alloy plating film is formed. After forming the Ni—P alloy plating film, a method of performing a heat treatment, a method of immersing the Ni—P alloy plating film in a liquid such as a hydrogen peroxide solution (H 2 O 2 ), hypochlorite, or a steam treatment And the like. In this case, the conditions for the heat treatment, the treatment for immersion in the hydrogen peroxide solution, and the steam treatment can be the same as those described above.
 また、酸化処理めっき皮膜12を、Znを少なくとも含有する酸化処理めっき皮膜とする場合、あるいは、Snを少なくとも含有する酸化処理めっき皮膜とする場合には、金属板11上に、Znめっき、あるいはSnめっきを施し、形成されたZnめっき膜、Snめっき膜について、酸化処理を行う方法などが挙げられる。酸化処理の方法としては、特に限定されないが、形成されたZnめっき膜、Snめっき膜について熱処理を行う方法や、過酸化水素水などの液体中に浸漬させる処理を行う方法、水蒸気処理を行う方法などが挙げられる。また、これらは組み合わせてもよい。熱処理、過酸化水素水中に浸漬させる処理、および水蒸気処理における条件は、上記と同様とすることができる。 When the oxidized plating film 12 is an oxidized plating film containing at least Zn, or an oxidized plating film containing at least Sn, Zn plating or Sn plating is formed on the metal plate 11. There is a method of performing an oxidation treatment on the Zn plating film and the Sn plating film formed by plating. The method of the oxidation treatment is not particularly limited, but a method of performing a heat treatment on the formed Zn plating film and the Sn plating film, a method of performing a treatment of dipping in a liquid such as a hydrogen peroxide solution, and a method of performing a steam treatment And the like. These may be combined. The conditions for the heat treatment, the treatment for immersion in a hydrogen peroxide solution, and the steam treatment can be the same as those described above.
 また、酸化処理めっき皮膜12を、Pを少なくとも含有する酸化処理めっき皮膜とする場合には、金属板11上に、必要に応じて、ZnめっきやSnめっきを施した後、リン酸塩を用いて、リン酸塩処理を行う方法などが挙げられる。 When the oxidized plating film 12 is an oxidized plating film containing at least P, the metal plate 11 is subjected to Zn plating or Sn plating, if necessary, and then phosphate is used. And a method of performing a phosphate treatment.
 また、本実施形態においては、金属板11上に、直接、酸化処理めっき皮膜12を設けるような構成としてもよいが、酸化処理めっき皮膜12を良好に形成するという観点より、予め金属板11上に下地層としての亜鉛を含有する下地層を形成した後、その亜鉛を含有する下地層上に酸化処理めっき皮膜12を形成することが好ましい。 Further, in the present embodiment, a configuration in which the oxidized plating film 12 is directly provided on the metal plate 11 may be adopted, but from the viewpoint of forming the oxidized plating film 12 well, the After forming a zinc-containing base layer as a base layer, it is preferable to form an oxidized plating film 12 on the zinc-containing base layer.
 亜鉛を含有する下地層を形成する方法としては、特に限定されないが、金属板11について、脱脂処理を行ない、次いで、必要に応じてエッチングや酸洗した後、亜鉛の置換めっきを行なう方法が挙げられる。亜鉛の置換めっきは、第一亜鉛置換処理(1stジンケート処理)、硝酸亜鉛剥離処理(脱ジンケート処理)、第二亜鉛置換処理(2ndジンケート)の各工程を経るダブルジンケート処理を施すことにより行なわれる。この場合、各工程の処理後には水洗処理を実施する。 The method of forming the zinc-containing base layer is not particularly limited, but a method of performing a degreasing treatment on the metal plate 11, and then performing etching or pickling as needed, and then performing zinc displacement plating. Can be The displacement plating of zinc is performed by performing a double zincate process through a first zinc displacement process (1st zincate process), a zinc nitrate stripping process (dezincate process), and a second zinc displacement process (2nd zincate process). . In this case, a water washing process is performed after each process.
 以上のような本実施形態の電子部品搬送用冶具用の基材10によれば、強度および硬度が高く、樹脂吸着部21を構成する吸着用樹脂に対して適切な密着強度を示すものであることから、種々の電子部品を搬送するための電子部品搬送用冶具を構成するための支持基材として好適に用いることができ、特に、マイクロLED、コンデンサ、半導体素子などの微細な電子部品を搬送するための電子部品搬送用冶具用途に好適に用いることができる。 According to the base material 10 for an electronic component conveying jig of the present embodiment as described above, the strength and the hardness are high, and the base material 10 exhibits an appropriate adhesion strength to the resin for suction constituting the resin suction portion 21. Therefore, it can be suitably used as a support base for forming an electronic component transport jig for transporting various electronic components, and in particular, transports fine electronic components such as micro LEDs, capacitors, and semiconductor elements. It can be suitably used for a jig for transporting electronic parts.
 以下に、実施例を挙げて、本発明についてより具体的に説明するが、本発明は、これら実施例に限定されない。
 なお、各特性の評価方法は、以下のとおりである。
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited to these Examples.
In addition, the evaluation method of each characteristic is as follows.
<XPS測定>
 実施例および比較例にて得られた酸化処理めっき板(比較例1においては、酸化処理を行っていないめっき板、比較例3,4においてはアルマイト処理板、以下、各測定、評価についての説明において同様。)の表面に形成した酸化処理めっき皮膜(比較例3,4においては、アルマイト処理面、以下、各測定、評価についての説明において同様。)の表面について、X線光電子分光装置(アルバック・ファイ社製、型番:VersaProbeII)を用いて、Ni2p3/2、Sn3d5/2、P2p、O1sのピークをそれぞれ測定した。
 全元素中の酸素元素の存在割合は、アルゴンスパッタにより2nmエッチングした後、測定し、Ni2p3/2、Sn3d5/2、P2p、O1sのピーク面積の総和に占めるO1sピーク面積の割合から算出した(全元素中の酸素元素の存在割合の測定結果は、実施例7,8、比較例2、実施例9,10,16~18について行った。)。
 Pの酸化物の割合は、上記P2pのピークを各化学状態に対応する波形に分離し、P2pのピーク面積に占めるPの酸化物のピーク面積の割合から算出した。
 NiOの状態割合、および、Niの状態割合は、Ni2p3/2のピークを各化学状態に対応する波形に分離し、Ni2p3/2のピーク面積に占めるNiOに対応するピーク面積、又は、Niに対応するピーク面積の割合から算出した。
 SnOの状態割合、および、SnOの状態割合は、Sn3d5/2のピークを各化学状態に対応する波形に分離し、Sn3d5/2のピーク面積に占めるSnOに対応するピーク面積、又は、SnOに対応するピーク面積の割合から算出した。
<XPS measurement>
Oxidized plating plates obtained in Examples and Comparative Examples (Plating plates not subjected to oxidation treatment in Comparative Example 1, alumite-treated plates in Comparative Examples 3 and 4, and description of each measurement and evaluation below) The surface of an oxidized plating film formed on the surface of (aluminum-treated surface in Comparative Examples 3 and 4, hereinafter the same in the description of each measurement and evaluation) was applied to an X-ray photoelectron spectrometer (ULVAC). The peaks of Ni2p3 / 2, Sn3d5 / 2, P2p, and O1s were measured using a model number (VersaProbe II, manufactured by Phi Corporation).
The presence ratio of the oxygen element in all the elements was measured after etching by 2 nm by argon sputtering, and was calculated from the ratio of the O1s peak area to the sum of the peak areas of Ni2p3 / 2, Sn3d5 / 2, P2p, and O1s (total). The measurement results of the proportion of the oxygen element in the element were measured for Examples 7 and 8, Comparative Example 2, and Examples 9, 10, 16 to 18.)
The ratio of the P oxide was calculated from the ratio of the peak area of the P oxide to the peak area of the P2p by separating the peak of P2p into a waveform corresponding to each chemical state.
As for the state ratio of NiO and the state ratio of Ni 2 O 3 , the peak of Ni 2 p 3/2 is separated into waveforms corresponding to the respective chemical states, and the peak area corresponding to NiO occupying the peak area of Ni 2 p 3/2, or It was calculated from the ratio of the peak area corresponding to Ni 2 O 3 .
The state ratio of SnO and the state ratio of SnO 2 can be obtained by separating the peak of Sn3d5 / 2 into a waveform corresponding to each chemical state, and the peak area corresponding to SnO occupying the peak area of Sn3d5 / 2 or SnO 2. Was calculated from the ratio of the peak area corresponding to.
<3点曲げ試験>
 実施例および比較例にて得られた酸化処理めっき板を、50mm×50mmのサイズに切断し、50mm×50mmのサイズの試料の向かい合う2辺を、一対の支持部材(支持端子径2mm、支持幅40mm)で支持した状態で、基準面より浮かせた状態で載置し、この状態にて、酸化処理めっき板の酸化処理めっき皮膜形成面の、向かい合う2辺の中央付近を、半径5mm、幅50mmの圧子により、60Nの荷重を2mm/分の条件にて付加することで、3点曲げ試験を行った。そして、3点曲げ試験前後の酸化処理めっき板について、光学干渉縞計(製品名「平面度検査器(FT‐M100P)」、株式会社溝尻光学工業所製)を用いて、干渉縞の変化を観測し、以下の基準で評価した。3点曲げ試験前後において、干渉縞の変化が観測されなければ、曲げ強度に優れると判断でき、一方、干渉縞の変化が観測された場合には、曲げ強度に劣ると判断できる。
  〇:3点曲げ試験前後において、干渉縞の変化が観測されない。
  ×:3点曲げ試験前後において、干渉縞の変化が観測された。
<Three-point bending test>
The oxidized plating plates obtained in Examples and Comparative Examples were cut into a size of 50 mm × 50 mm, and two opposing sides of a sample having a size of 50 mm × 50 mm were connected to a pair of support members (support terminal diameter 2 mm, support width). 40 mm), and placed in a state of being lifted from the reference surface. In this state, the vicinity of the center of two opposite sides of the oxidation-treated plating film forming surface of the oxidation-treated plating plate is a radius of 5 mm and a width of 50 mm. A three-point bending test was performed by applying a load of 60 N under the condition of 2 mm / min. Using an optical interference fringe meter (product name “Flatness tester (FT-M100P)”, manufactured by Mizojiri Optical Industrial Co., Ltd.), the change in the interference fringes was measured for the oxidized plated plate before and after the three-point bending test. It was observed and evaluated according to the following criteria. If no change in interference fringes is observed before and after the three-point bending test, it can be determined that the bending strength is excellent. On the other hand, if a change in interference fringes is observed, it can be determined that the bending strength is poor.
〇: No change in interference fringes was observed before and after the three-point bending test.
×: Changes in interference fringes were observed before and after the three-point bending test.
<キズ付け試験>
 実施例および比較例にて得られた酸化処理めっき板の酸化処理めっき皮膜形成面に対し、鉛直方向に硬質合金針を載置し、荷重50g/kgfを印加した状態で引っ掻き試験を行い、レーザー顕微鏡(オリンパス社製、「LEXT(OLS3500)」)にて、キズ深さの測定を行った。キズ深さが浅いほど、硬度が高いと判断することができる。
  〇:キズ深さが1μm以下
  ×:キズ深さが1μm超
<Scratch test>
A hard alloy needle was placed vertically on the oxidized plating film-formed surface of the oxidized plating plates obtained in Examples and Comparative Examples, and a scratch test was performed with a load of 50 g / kgf applied. The scratch depth was measured with a microscope (Olympus Corp., “LEX (OLS3500)”). It can be determined that the smaller the scratch depth, the higher the hardness.
〇: The scratch depth is 1 μm or less ×: The scratch depth exceeds 1 μm
<吸着用樹脂の密着性>
 実施例および比較例にて得られた吸着用樹脂層を備える酸化処理めっき板の、吸着用樹脂層にシッカロール(アサヒグループ食品株式会社製)を塗布し、前記吸着用樹脂層をカッターにより幅20mmに切出し、端部より20mmの長さで剥離した。剥離部にガムテープ(日東電工CSシステム株式会社製、「スーパー布テープNo.757スーパー」)を両面に貼付し、テンシロン万能材料試験機RTC-1350A(株式会社オリエンテック製)を用いて180°方向に、50mm/分の速度で上記吸着樹脂層のピール強度(剥離荷重)の測定を行った。ピール強度の値が高いほど、酸化処理めっき板と、吸着用樹脂層との密着性が高いことを示している。なお、吸着用樹脂層との密着性の観点より、ピール強度の値は0.35N/20mm以上であることが望ましく、また、上述したように、電子部品搬送用冶具の製造工程において、不要な吸着用樹脂を剥離する場合もあるため、このような不要な吸着用樹脂を剥離する際における、剥離性の観点より、ピール強度の値は2N/20mm以下であることが望ましい。
<Adhesion of adsorption resin>
In the oxidized plating plate provided with the resin layer for adsorption obtained in Examples and Comparative Examples, Sickerol (manufactured by Asahi Group Foods Co., Ltd.) was applied to the resin layer for adsorption, and the resin layer for adsorption was 20 mm wide with a cutter. And peeled off at a length of 20 mm from the end. Gum tape (Nitto Denko CS System Co., Ltd., “Super Cloth Tape No. 757 Super”) is stuck on both sides of the peeled part, and 180 ° direction using Tensilon Universal Material Testing Machine RTC-1350A (Orientec Co., Ltd.) Next, the peel strength (peeling load) of the adsorption resin layer was measured at a speed of 50 mm / min. The higher the peel strength value, the higher the adhesion between the oxidized plating plate and the resin layer for adsorption. In addition, from the viewpoint of adhesion to the adsorption resin layer, the value of the peel strength is desirably 0.35 N / 20 mm or more, and as described above, unnecessary in the manufacturing process of the electronic component conveying jig. Since the adsorption resin may be peeled off, the peel strength is desirably 2 N / 20 mm or less from the viewpoint of the releasability when the unnecessary adsorption resin is peeled off.
《実施例1》
 厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni-Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni-Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi-P合金めっき層(Pの含有量:12.0~12.5重量%)を形成した。次いで、Ni-P合金めっき層を形成したアルミニウム板について、30重量%のH水溶液に、浸漬温度25℃、浸漬時間30分の条件で浸漬することで酸化処理を行い、アルミニウム上に、亜鉛を含有する下地層を介して、厚さ10μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板について、上記方法に従って、XPS測定の結果より、全元素中の酸素元素の存在割合、Pの酸化物の状態割合、NiOの状態割合、および、Niの状態割合を算出するとともに、3点曲げ試験およびキズ付け試験を行った。結果を表1に示す。
<< Example 1 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, each pretreatment of etching, desmutting, 1st zincate, dezinkate, 2nd zincate is performed in this order, and water washing is performed between each step. Using a malic acid-succinic acid-based electroless Ni-P plating bath), a 10-μm-thick Ni-P alloy plating layer (P content: 12.0 to 12. 5% by weight). Next, the aluminum plate on which the Ni—P alloy plating layer is formed is oxidized by immersing it in a 30% by weight aqueous H 2 O 2 solution at an immersion temperature of 25 ° C. for an immersion time of 30 minutes. Then, an oxidation-treated plated plate having an oxidation-treated plating film having a thickness of 10 μm was formed via a zinc-containing base layer. Then, the obtained oxidized plated sheet was subjected to the XPS measurement according to the above-described method, and based on the results of the XPS measurement, the proportion of the oxygen element in all the elements, the proportion of the oxide of P, the proportion of the state of NiO, and the proportion of Ni 2 O 3 And a three-point bending test and a scratching test were performed. Table 1 shows the results.
 次いで、上記にて得られた酸化処理めっき板の、酸化処理めっき層が形成された面に、吸着用樹脂として、非シリコーン系樹脂(ポリエーテル系の樹脂)からなる層を形成し、110℃、10分間の条件で加熱することで、非シリコーン系樹脂を硬化させることで、酸化処理めっき板上に、厚さ100μmの非シリコーン系樹脂層(吸着用樹脂層)を形成した。そして、非シリコーン系樹脂層を備える酸化処理めっき板について、上記方法にしたがって、ピール強度の測定を行った。結果を表1に示す。 Next, a layer made of a non-silicone resin (polyether resin) is formed as a resin for adsorption on the surface of the oxidized plating plate obtained above on which the oxidized plating layer is formed. The non-silicone resin was cured by heating for 10 minutes to form a non-silicone resin layer (adsorption resin layer) having a thickness of 100 μm on the oxidized plating plate. Then, the peel strength of the oxidized plating plate having the non-silicone resin layer was measured according to the above method. Table 1 shows the results.
《実施例2~7》
 H水溶液を用いた酸化処理の条件を表1に示す条件にそれぞれ変更した以外は、実施例1と同様にして、酸化処理めっき板、および非シリコーン系樹脂層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表1に示す。
<< Examples 2 to 7 >>
Except that the conditions of the oxidation treatment using the H 2 O 2 aqueous solution were changed to the conditions shown in Table 1, respectively, the oxidation treatment plating plate and the oxidation treatment plating plate including the non-silicone resin layer were performed in the same manner as in Example 1. Was manufactured and evaluated similarly. Table 1 shows the results.
《実施例8》
 低炭素アルミキルド鋼の冷間圧延板(厚さ0.25mm)を焼鈍して得られた鋼板を準備した。そして、準備した鋼板を脱脂し、水洗し、酸洗し、水洗した後、下記の錫めっき浴を用い、下記のめっき条件にて、錫めっき層を形成した鋼板を得て、水酸化ナトリウム(NaOH)でpH13に調整した6重量%の次亜塩素酸ナトリウム(NaClO)水溶液に、浸漬温度70℃、浸漬時間20分の条件で浸漬することで酸化処理を行い、鋼板上に、厚さ1.0μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板を用いて、実施例1と同様に評価するとともに、得られた酸化処理めっき板を用いて、非シリコーン系樹脂層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表1に示す。
 <錫めっき浴および錫めっき条件>
  硫酸第一錫  80g/L
  フェノールスルホン酸  60g/L
  浴温  40℃
  電流密度  10A/dm
<< Embodiment 8 >>
A steel sheet obtained by annealing a cold-rolled low-carbon aluminum-killed steel sheet (0.25 mm thick) was prepared. Then, the prepared steel sheet is degreased, washed with water, pickled, and washed with water. Then, using the following tin plating bath, under the following plating conditions, a steel sheet having a tin plating layer formed thereon is obtained, and sodium hydroxide ( NaOH) to a pH of 13 and immersed in a 6% by weight aqueous solution of sodium hypochlorite (NaClO) at an immersion temperature of 70 ° C. and an immersion time of 20 minutes to perform oxidation treatment. An oxidized plating plate having a 0.0 μm oxidized plating film formed thereon was obtained. Then, using the obtained oxidized plating plate, evaluation was performed in the same manner as in Example 1, and using the obtained oxidized plating plate, an oxidized plating plate having a non-silicone resin layer was manufactured. Was evaluated. Table 1 shows the results.
<Tin plating bath and tin plating conditions>
Stannous sulfate 80g / L
Phenolsulfonic acid 60g / L
Bath temperature 40 ° C
Current density 10A / dm 2
《比較例1》
 H水溶液を用いた酸化処理を行わなかった以外は、実施例1と同様にして、めっき板、および非シリコーン系樹脂層を備えるめっき板を製造し、同様に評価を行った。結果を表1に示す。
<< Comparative Example 1 >>
A plated plate and a plated plate having a non-silicone resin layer were manufactured and evaluated in the same manner as in Example 1, except that the oxidation treatment using the H 2 O 2 aqueous solution was not performed. Table 1 shows the results.
《比較例2》
 H水溶液を用いた酸化処理に代えて、水酸化ナトリウム水溶液を用いた塩基処理を行った以外は、実施例1と同様にして、塩基処理めっき板、および非シリコーン系樹脂層を備える塩基処理めっき板を製造し、同様に評価を行った。なお、水酸化ナトリウム水溶液を用いた塩基処理は、pH=12の水酸化ナトリウム水溶液を使用し、95℃、30分の条件で行った。結果を表1に示す。
<< Comparative Example 2 >>
A base-treated plating plate and a non-silicone resin layer are provided in the same manner as in Example 1, except that a base treatment using an aqueous sodium hydroxide solution is performed instead of the oxidation treatment using an H 2 O 2 aqueous solution. A base-treated plating plate was manufactured and similarly evaluated. The base treatment using an aqueous solution of sodium hydroxide was performed at 95 ° C. for 30 minutes using an aqueous solution of sodium hydroxide having a pH of 12. Table 1 shows the results.
《比較例3》
 厚さ0.5mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、水洗した後、アルマイト処理を行うことで、アルマイト処理板を得た。そして、得られた、アルマイト処理板を用いて、実施例1と同様に評価を行うとともに、得られたアルマイト処理板を用いて、非シリコーン系樹脂層を備えるアルマイト処理板を製造し、同様に評価を行った。結果を表1に示す。
<< Comparative Example 3 >>
An aluminum plate (Al # 5000) having a thickness of 0.5 mm was prepared. Then, the prepared aluminum plate was degreased, washed with water, and then anodized to obtain an alumite-treated plate. Using the obtained alumite-treated plate, evaluation was performed in the same manner as in Example 1. Using the obtained alumite-treated plate, an alumite-treated plate provided with a non-silicone resin layer was manufactured. An evaluation was performed. Table 1 shows the results.
Figure JPOXMLDOC01-appb-T000001
 なお、表1中において、「各元素のめっき皮膜最表面の酸化状態割合」は、各元素中における、酸化物の割合を示す(表2においても同様。)。すなわち、たとえば、「NiO」、「Ni」であれば、最表面における全Niの化学状態(Ni単体、Ni酸化物、Ni酸化物以外のNi化合物)を100%とした場合における、「NiO」の状態のNi、または、「Ni」の状態のNiの占める割合を示す(たとえば、実施例1では、「NiO」の状態、および「Ni」の状態以外の状態のNiが、80.20%の割合で存在していることとなる。)。また、「Pの酸化物」であれば、最表面における全Pの化学状態(P単体、P酸化物、P酸化物以外のP化合物)を100%とした場合における、「Pの酸化物」の状態のPの占める割合を示し、「SnO」、「SnO」であれば、最表面における全Snの化学状態(Sn単体、Sn酸化物、Sn酸化物以外のSn化合物)を100%とした場合における、「SnO」の状態のSn、または、「SnO」の状態のSnの占める割合を示す。
Figure JPOXMLDOC01-appb-T000001
In addition, in Table 1, "the oxidation state ratio of the outermost surface of the plating film of each element" indicates the ratio of the oxide in each element (the same applies to Table 2). That is, for example, if “NiO” or “Ni 2 O 3 ”, the chemical state of all Ni on the outermost surface (Ni alone, Ni oxide, Ni compound other than Ni oxide) is 100%. Indicates the percentage of Ni in the state of “NiO” or Ni in the state of “Ni 2 O 3 ” (for example, in Example 1, the state other than the state of “NiO” and the state of “Ni 2 O 3 ”) This means that Ni in the state exists at a ratio of 80.20%.) Further, in the case of “oxide of P”, “oxide of P” when the chemical state of all P on the outermost surface (simple P, P oxide, P compound other than P oxide) is 100%. In the case of “SnO” or “SnO 2 ”, the chemical state of all Sn (Sn alone, Sn oxide, Sn compound other than Sn oxide) on the outermost surface is 100%. In this case, the ratio of Sn in the “SnO” state or Sn in the “SnO 2 ” state is shown.
 表1に示すように、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜を備え、かつ、該酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%以上である場合には、3点曲げ試験による強度、およびキズ付け試験による硬度に優れ、吸着用樹脂に対する密着性(ピール強度)も適切な範囲内にあり、良好な結果であった(実施例1~8)。
 一方、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜を備える場合でも、該酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%未満である場合には、吸着用樹脂に対する密着性が不十分であり(比較例1,2)、また、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜に代えて、アルマイト処理を行った場合には、3点曲げ試験による強度、およびキズ付け試験による硬度が低く、さらには、吸着用樹脂に対する密着性(ピール強度)が高すぎるものとなる結果となった(比較例3)。
As shown in Table 1, an oxidized plating film containing at least one element selected from Ni, Sn and P is provided, and the outermost surface of the oxidized plating film is in an oxidized state in all Ni elements. When the state ratio of Ni 2 O 3 as Ni or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface is 1% or more, strength by a three-point bending test, and The hardness was excellent in the scratching test, and the adhesion to the resin for adsorption (peel strength) was within an appropriate range, and good results were obtained (Examples 1 to 8).
On the other hand, even when an oxidized plating film containing at least one element selected from Ni, Sn and P is provided, Ni 2 as an oxidized Ni in all Ni elements on the outermost surface of the oxidized plating film When the state ratio of O 3 or the state ratio of SnO 2 as Sn in the oxidized state in all Sn elements on the outermost surface is less than 1%, the adhesion to the adsorption resin is insufficient (comparative). Examples 1 and 2) In addition, when anodizing treatment is performed instead of the oxidized plating film containing at least one element selected from Ni, Sn and P, the strength by the three-point bending test and the scratches The result was that the hardness by the attachment test was low, and the adhesion (peel strength) to the resin for adsorption was too high (Comparative Example 3).
《実施例9》
 厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、エッチング、脱スマット、1stジンケート、脱ジンケート、2ndジンケートの各前処理をこの順に行い、各工程間で水洗を実施した後、Ni-Pめっき浴(公知のリンゴ酸‐コハク酸系無電解Ni-Pめっき浴)を用いて、無電解めっきにより、基材上に、厚さ10μmのNi-P合金めっき層(P含有量:12.0~12.5重量%)を形成した。次いで、Ni-P合金めっき層を形成したアルミニウム板について、15重量%のH水溶液に、浸漬温度70℃、浸漬時間10分の条件で浸漬することで酸化処理を行い、アルミニウム上に、亜鉛を含有する下地層を介して、厚さ10μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板について、上記方法に従って、XPS測定の結果より、全元素中の酸素元素の存在割合、Pの酸化物の状態割合、NiOの状態割合、および、Niの状態割合を算出するとともに、3点曲げ試験およびキズ付け試験を行った。結果を表2に示す。
<< Example 9 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate is degreased, and pretreatments of etching, desmutting, first zincate, dezincate, and second zincate are performed in this order, and water washing is performed between each step, and then a Ni—P plating bath (known in the art) Using a malic acid-succinic acid-based electroless Ni-P plating bath), a 10 μm-thick Ni—P alloy plating layer (P content: 12.0 to 12.5 % By weight). Next, the aluminum plate on which the Ni—P alloy plating layer is formed is oxidized by immersing it in a 15% by weight H 2 O 2 aqueous solution at an immersion temperature of 70 ° C. for an immersion time of 10 minutes. Then, an oxidation-treated plated plate having an oxidation-treated plating film having a thickness of 10 μm was obtained via an underlayer containing zinc. Then, for the obtained oxidized plating sheet, according to the above-described method, the results of XPS measurement show that the proportion of the oxygen element in all the elements, the proportion of the P oxide, the proportion of the NiO, and the proportion of Ni 2 O 3 were determined. And a three-point bending test and a scratching test were performed. Table 2 shows the results.
 次いで、上記にて得られた酸化処理めっき板の、酸化処理めっき層が形成された面に、吸着用樹脂として、ジメチルシロキサン(DMS)からなる層を形成し、85℃、10分間の条件で加熱することで、ジメチルシロキサン(DMS)からなる層を硬化させることで、酸化処理めっき板上に、厚さ100μmのポリジメチルシロキサン(PDMS)層(吸着用樹脂層)を形成した。そして、PDMS層を備える酸化処理めっき板について、上記方法にしたがって、ピール強度の測定を行った。結果を表2に示す。 Next, a layer made of dimethylsiloxane (DMS) is formed as a resin for adsorption on the surface of the oxidized plating plate obtained above on which the oxidized plating layer is formed, and the layer is formed at 85 ° C. for 10 minutes. By heating, the layer made of dimethylsiloxane (DMS) was cured to form a 100 μm-thick polydimethylsiloxane (PDMS) layer (adsorption resin layer) on the oxidized plating plate. Then, the peel strength of the oxidized plating plate having the PDMS layer was measured according to the above method. Table 2 shows the results.
《実施例10~17》
 H水溶液を用いた酸化処理の条件を表2に示す条件にそれぞれ変更した以外は、実施例9と同様にして、酸化処理めっき板、およびPDMS層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表2に示す。
<< Examples 10 to 17 >>
An oxidized plating plate and an oxidized plating plate having a PDMS layer were manufactured in the same manner as in Example 9 except that the conditions of the oxidation treatment using the H 2 O 2 aqueous solution were changed to the conditions shown in Table 2, respectively. The evaluation was performed in the same manner. Table 2 shows the results.
《実施例18》
 低炭素アルミキルド鋼の冷間圧延板(厚さ0.25mm)を焼鈍して得られた鋼板を準備した。そして、準備した鋼板を脱脂し、水洗し、酸洗し、水洗した後、下記の錫めっき浴を用い、下記のめっき条件にて、錫めっき層を形成した鋼板を得て、6重量%の次亜塩素酸ナトリウム水溶液(NaClO)に、浸漬温度70℃、浸漬時間20分の条件で浸漬することで酸化処理を行い、鋼板上に、厚さ1.0μmの酸化処理めっき皮膜が形成されてなる酸化処理めっき板を得た。そして、得られた酸化処理めっき板を用いて、実施例9と同様に評価するとともに、得られた酸化処理めっき板を用いて、PDMS層を備える酸化処理めっき板を製造し、同様に評価を行った。結果を表2に示す。
 <錫めっき浴および錫めっき条件>
  硫酸第一錫  80g/L
  フェノールスルホン酸  60g/L
  浴温  40℃
  電流密度  10A/dm
<< Example 18 >>
A steel sheet obtained by annealing a cold-rolled low-carbon aluminum-killed steel sheet (0.25 mm thick) was prepared. Then, the prepared steel sheet is degreased, washed with water, pickled, and washed with water. Then, using the following tin plating bath, under the following plating conditions, a steel sheet having a tin plating layer formed thereon is obtained. Oxidation treatment is performed by immersion in an aqueous solution of sodium hypochlorite (NaClO) at an immersion temperature of 70 ° C. and an immersion time of 20 minutes, and an oxidation-treated plating film having a thickness of 1.0 μm is formed on the steel sheet. The resulting oxidized plated plate was obtained. Then, using the obtained oxidized plating plate, evaluation was performed in the same manner as in Example 9, and, using the obtained oxidized plating plate, an oxidized plating plate having a PDMS layer was manufactured. went. Table 2 shows the results.
<Tin plating bath and tin plating conditions>
Stannous sulfate 80g / L
Phenolsulfonic acid 60g / L
Bath temperature 40 ° C
Current density 10A / dm 2
《比較例4》
 厚さ0.68mmのアルミニウム板(Al#5000)を準備した。そして、準備したアルミニウム板を脱脂し、水洗した後、アルマイト処理を行うことで、アルマイト処理板を得た。そして、得られた、アルマイト処理板を用いて、実施例10と同様に評価を行うとともに、得られたアルマイト処理板を用いて、PDMS層を備えるアルマイト処理板を製造し、同様に評価を行った。結果を表2に示す。
<< Comparative Example 4 >>
An aluminum plate (Al # 5000) having a thickness of 0.68 mm was prepared. Then, the prepared aluminum plate was degreased, washed with water, and then anodized to obtain an alumite-treated plate. Then, the obtained alumite-treated plate was evaluated in the same manner as in Example 10, and the obtained alumite-treated plate was used to produce an alumite-treated plate having a PDMS layer, and the evaluation was performed in the same manner. Was. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜を備え、かつ、該酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が1%以上である場合には、3点曲げ試験による強度、およびキズ付け試験による硬度に優れ、吸着用樹脂に対する密着性(ピール強度)も適切な範囲内にあり、良好な結果であった(実施例9~18)。
 一方、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜に代えて、アルマイト処理を行った場合には、吸着用樹脂に対する密着性(ピール強度)が良好であったものの、3点曲げ試験による強度、およびキズ付け試験による硬度が低い結果となった(比較例4)。
As shown in Table 2, an oxidized plating film containing at least one element selected from Ni, Sn and P is provided, and the outermost surface of the oxidized plating film is in an oxidized state in all Ni elements. When the state ratio of Ni 2 O 3 as Ni or the state ratio of SnO 2 as Sn in an oxidized state in all Sn elements on the outermost surface is 1% or more, strength by a three-point bending test, and The hardness was excellent in the flaw test, and the adhesion (peel strength) to the resin for adsorption was within an appropriate range, and good results were obtained (Examples 9 to 18).
On the other hand, when the alumite treatment was performed instead of the oxidized plating film containing at least one element selected from Ni, Sn and P, the adhesion (peel strength) to the resin for adsorption was good. However, the strength was low in the three-point bending test and the hardness was low in the flaw test (Comparative Example 4).
10…電子部品搬送用冶具用の基材
 11…金属板
 12…酸化処理めっき皮膜
20…樹脂層
 21…樹脂吸着部
30…賦形用金型
 31…キャビティ
40…電子部品搬送用冶具
50…ストッカ
60…電子部品
70…回路基板
DESCRIPTION OF SYMBOLS 10 ... Substrate for electronic component conveyance jig 11 ... Metal plate 12 ... Oxidized plating film 20 ... Resin layer 21 ... Resin adsorption part 30 ... Molding die 31 ... Cavity 40 ... Electronic component conveyance jig 50 ... Stocker Reference numeral 60: electronic component 70: circuit board

Claims (9)

  1.  電子部品を吸着するための樹脂吸着部を備える、電子部品搬送用冶具に用いられる、電子部品搬送用冶具用の基材であって、
     前記電子部品搬送用冶具用の基材は、前記樹脂吸着部を支持するために用いられ、
     金属板と、前記金属板上に形成され、Ni、SnおよびPから選択される少なくとも1種の元素を含む酸化処理めっき皮膜と、を備え、
     前記酸化処理めっき皮膜の最表面における全Ni元素中における酸化状態にあるNiとしてのNiの状態割合、又は前記酸化処理めっき皮膜の最表面における全Sn元素中における酸化状態にあるSnとしてのSnOの状態割合が、1%以上である、電子部品搬送用冶具用の基材。
    A base for an electronic component transport jig, comprising a resin suction portion for absorbing an electronic component, used for an electronic component transport jig,
    The substrate for the electronic component transport jig is used to support the resin suction unit,
    A metal plate, and an oxidized plating film formed on the metal plate and containing at least one element selected from Ni, Sn and P,
    As the state ratio of Ni 2 O 3 as Ni in the oxidized state in all Ni elements on the outermost surface of the oxidized plating film, or as Sn in the oxidized state in all Sn elements on the outermost surface of the oxidized plating film The base material for a jig for transporting electronic components, wherein the state ratio of SnO 2 is 1% or more.
  2.  前記酸化処理めっき皮膜の最表面における酸素元素の存在割合が40atom%以上である、請求項1に記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic components according to claim 1, wherein the proportion of the oxygen element on the outermost surface of the oxidation-treated plating film is 40 atom% or more.
  3.  前記酸化処理めっき皮膜が、Niを少なくとも含有する酸化処理めっき皮膜であり、前記酸化処理めっき皮膜の最表面のNiにおける、NiOと、Niの状態比が、「NiO:Ni」の比で、11.0:1.0~1.0:99.0である請求項1または2に記載の電子部品搬送用冶具用の基材。 The oxidized plating film is an oxidized plating film containing at least Ni, and the state ratio between NiO and Ni 2 O 3 in Ni on the outermost surface of the oxidized plating film is “NiO: Ni 2 O 3”. 3. The base material for a jig for transporting electronic components according to claim 1, wherein the ratio is 11.0: 1.0 to 1.0: 99.0.
  4.  前記酸化処理めっき皮膜が、Ni-P合金を少なくとも含有する酸化処理めっき皮膜である請求項1~3のいずれかに記載の電子部品搬送用冶具用の基材。 (4) The substrate according to any one of (1) to (3), wherein the oxidized plating film is an oxidized plating film containing at least a Ni—P alloy.
  5.  前記酸化処理めっき皮膜中における、全P元素中における酸化状態にあるPの酸化物の状態割合が21%以上である請求項1~4のいずれかに記載の電子部品搬送用冶具用の基材。 The base material for a jig for transporting electronic components according to any one of claims 1 to 4, wherein a state ratio of an oxide of P in an oxidized state in all P elements in the oxidized plating film is 21% or more. .
  6.  前記酸化処理めっき皮膜の厚みが、1~40μmである請求項1~5のいずれかに記載の電子部品搬送用冶具用の基材。 (6) The base material for a jig for transporting electronic parts according to any one of (1) to (5), wherein the thickness of the oxidized plating film is 1 to 40 μm.
  7.  前記金属板が、アルミニウム板である請求項1~6のいずれかに記載の電子部品搬送用冶具用の基材。 (7) The base material for a jig for transporting electronic components according to any one of (1) to (6), wherein the metal plate is an aluminum plate.
  8.  前記金属板上に、亜鉛を含有する下地層をさらに備え、
     前記酸化処理めっき皮膜が、前記下地層に形成されている請求項1~7のいずれかに記載の電子部品搬送用冶具用の基材。
    Further comprising a zinc-containing base layer on the metal plate,
    The base material for a jig for transporting electronic components according to any one of claims 1 to 7, wherein the oxidized plating film is formed on the base layer.
  9.  請求項1~8のいずれかに記載の電子部品搬送用冶具用の基材上に、電子部品を吸着するための樹脂吸着部を備える電子部品搬送用冶具。 An electronic component conveying jig, comprising a resin sucking portion for adsorbing an electronic component on the electronic component conveying jig base according to any one of claims 1 to 8.
PCT/JP2019/030049 2018-08-01 2019-07-31 Base material for electronic parts transport jig WO2020027209A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020534711A JP7401436B2 (en) 2018-08-01 2019-07-31 Base material for electronic component transportation jigs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-145401 2018-08-01
JP2018145401 2018-08-01

Publications (1)

Publication Number Publication Date
WO2020027209A1 true WO2020027209A1 (en) 2020-02-06

Family

ID=69231839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/030049 WO2020027209A1 (en) 2018-08-01 2019-07-31 Base material for electronic parts transport jig

Country Status (3)

Country Link
JP (1) JP7401436B2 (en)
TW (1) TWI705888B (en)
WO (1) WO2020027209A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060742A (en) * 1983-09-14 1985-04-08 Matsushita Electronics Corp Lead frame
JPH10230562A (en) * 1996-12-17 1998-09-02 Tokai Rubber Ind Ltd Metal product having rubber and/or resin peelable surface, and its production
JP2010287679A (en) * 2009-06-10 2010-12-24 Elpida Memory Inc Transfer tool
JP2018056247A (en) * 2016-09-27 2018-04-05 Ngkエレクトロデバイス株式会社 Electronic component housing package, electronic device and manufacturing method of electronic component housing package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090056994A1 (en) * 2007-08-31 2009-03-05 Kuhr Werner G Methods of Treating a Surface to Promote Metal Plating and Devices Formed
JP6060742B2 (en) 2013-03-08 2017-01-18 ライオン株式会社 Liquid composition for external use
JP2015053418A (en) * 2013-09-09 2015-03-19 株式会社東芝 Semiconductor manufacturing apparatus
CN104388920B (en) * 2014-11-12 2017-02-22 华南理工大学 Chromate-free passivation method for chemically-plated Ni-P coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6060742A (en) * 1983-09-14 1985-04-08 Matsushita Electronics Corp Lead frame
JPH10230562A (en) * 1996-12-17 1998-09-02 Tokai Rubber Ind Ltd Metal product having rubber and/or resin peelable surface, and its production
JP2010287679A (en) * 2009-06-10 2010-12-24 Elpida Memory Inc Transfer tool
JP2018056247A (en) * 2016-09-27 2018-04-05 Ngkエレクトロデバイス株式会社 Electronic component housing package, electronic device and manufacturing method of electronic component housing package

Also Published As

Publication number Publication date
TWI705888B (en) 2020-10-01
JPWO2020027209A1 (en) 2021-08-19
TW202015908A (en) 2020-05-01
JP7401436B2 (en) 2023-12-19

Similar Documents

Publication Publication Date Title
JP4350263B2 (en) Metallized polyimide film and method for producing the same
JP3670186B2 (en) Method for producing surface-treated copper foil for printed wiring board
KR100859614B1 (en) Composite copper foil and method for production thereof
TWI606152B (en) Ultra-thin copper foil with carrier, and copper-clad laminate, printed circuit board, and coreless substrate made using the ultra-thin copper foil with carrier
JP2002076226A (en) Lead frame and its manufacturing method
WO2013031913A1 (en) Copper foil with carrier
KR20060049107A (en) Plating substrate, electroless plating method and method of manufacturing circuit pattern using the same method
JP2012094918A (en) To-resin adhesive layer on surface of copper, wiring board, and method for forming adhesive layer
TWI732471B (en) Composite copper foil and method of fabricating the same
JP2008274417A (en) Laminated copper foil and method of manufacturing the same
WO2014042412A1 (en) Method for surface-treating copper foil and copper foil surface-treated thereby
JP3661763B2 (en) Method for producing surface-treated copper foil for printed wiring board
JP3670185B2 (en) Method for producing surface-treated copper foil for printed wiring board
JPWO2013065730A1 (en) Copper foil for printed circuit
WO2020027209A1 (en) Base material for electronic parts transport jig
JP2010236072A (en) Stacked copper foil and method for manufacturing the same
WO2005096299A1 (en) Laminate for hdd suspension and process for producing the same
JP4492806B2 (en) Flexible printed wiring board
JP7366436B2 (en) Surface-treated copper foil, copper-clad laminates, and printed wiring boards
WO2012173178A1 (en) Conductive base for forming wiring pattern of collector sheet for solar cells, and method for producing collector sheet for solar cells
JP2012057231A (en) Rolled copper foil for printed circuit board, and manufacturing method therefor
JP2017014589A (en) Silver plated material and manufacturing method thereof
JP5174733B2 (en) Metal core substrate, conductive member for metal plate, and manufacturing method thereof
JP2012186211A (en) Copper foil for printed wiring board and laminate sheet using the same
TWI415742B (en) A method for manufacturing fine grain copper foil with high peel strength and environmental protection for printed circuit board tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844088

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020534711

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19844088

Country of ref document: EP

Kind code of ref document: A1