JP2012057231A - Rolled copper foil for printed circuit board, and manufacturing method therefor - Google Patents

Rolled copper foil for printed circuit board, and manufacturing method therefor Download PDF

Info

Publication number
JP2012057231A
JP2012057231A JP2010203401A JP2010203401A JP2012057231A JP 2012057231 A JP2012057231 A JP 2012057231A JP 2010203401 A JP2010203401 A JP 2010203401A JP 2010203401 A JP2010203401 A JP 2010203401A JP 2012057231 A JP2012057231 A JP 2012057231A
Authority
JP
Japan
Prior art keywords
nickel
plating layer
copper foil
cobalt
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010203401A
Other languages
Japanese (ja)
Inventor
Chizuru Goto
千鶴 後藤
Katsutoshi Taga
勝俊 多賀
Yasuyuki Ito
保之 伊藤
Tsuneji Nukaga
恒次 額賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2010203401A priority Critical patent/JP2012057231A/en
Publication of JP2012057231A publication Critical patent/JP2012057231A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a rolled copper foil for a printed circuit board with improved solder dip resistance of a CCL (copper-clad laminate) in which a roller copper foil is stuck on a surface of a base material for a printed circuit board, and a manufacturing method therefor.SOLUTION: The rolled copper foil 1 for a printed circuit board is formed by sequentially laminating a roughened copper plating layer 4, a nickel-cobalt alloy plating layer 5, zinc plating layer 6, a chromate treatment layer 7 and a silane coupling layer 8 on the sticking surface of the base material side in a copper foil 2. The total plating amount of nickel and cobalt in the nickel-cobalt alloy plating layer 5 is ≥20 μg/cmand ≤45 μg/cm.

Description

本発明は、プリント基板用圧延銅箔、及びその製造方法に係り、特に、フレキシブルプリント基板用圧延銅箔、及びその製造方法に関するものである。   The present invention relates to a rolled copper foil for printed circuit boards and a method for producing the same, and more particularly to a rolled copper foil for flexible printed circuit boards and a method for producing the same.

プリント基板の導電体としては、銅箔又は銅合金箔(以下、単に「銅箔」という。)を用いるのが一般的である。この銅箔は、ポリイミドやガラスエポキシなどの樹脂材料からなる絶縁性のプリント基板用基材の表面に貼り合わせてCCL(copper clad laminate)である銅張積層板を形成する工程、エッチングによりCCLに回路配線を形成する工程、回路配線上に表面処理を行う工程などを経て、プリント基板の導電体として形成される。   In general, a copper foil or a copper alloy foil (hereinafter simply referred to as “copper foil”) is used as the conductor of the printed circuit board. This copper foil is bonded to the surface of an insulating printed circuit board substrate made of a resin material such as polyimide or glass epoxy to form a copper clad laminate which is a CCL (copper clad laminate). It is formed as a conductor of a printed circuit board through a process of forming circuit wiring, a process of performing surface treatment on the circuit wiring, and the like.

このCCLの形成では、銅箔とプリント基板用基材との間には高い密着強度が要求される。銅箔とプリント基板用基材との密着性を向上させるため、銅箔の密着面に粗化処理を施し、表面粗度を上げることでアンカー効果を大きくさせることが一般的に行われている。粗化処理された銅箔とプリント基板用基材とを接着させる工程では、加熱時間はプリント基板用基材の種類によって異なるけれども、200℃又はそれ以上の温度で加熱する必要がある。この温度は、銅箔にとって高温の領域であり、銅箔には耐熱性が要求される。   In the formation of this CCL, a high adhesion strength is required between the copper foil and the printed circuit board substrate. In order to improve the adhesion between the copper foil and the substrate for the printed circuit board, it is generally performed to increase the anchor effect by increasing the surface roughness by subjecting the adhesion surface of the copper foil to a roughening treatment. . In the step of adhering the roughened copper foil and the substrate for printed circuit board, the heating time needs to be heated at a temperature of 200 ° C. or higher although the heating time varies depending on the type of substrate for printed circuit board. This temperature is a high temperature region for the copper foil, and the copper foil is required to have heat resistance.

銅箔とプリント基板用基材とを接着させた後の工程では、CCLに電子部品を実装するためのはんだ付けを行うので、銅箔のはんだ耐熱性も要求される。銅箔のはんだ耐熱性を向上させるためには、防錆処理として、銅箔の表面にニッケルめっきを施すことが一般的に行われている(例えば、特許文献1参照。)。このニッケルめっきは、銅原子の拡散バリアの働きを有する。安定したニッケルめっきを施すためには、処理液のpHの変動を抑制することが重要であり、pH緩衝剤としてはホウ酸やクエン酸などが使用される。   In the process after bonding the copper foil and the substrate for the printed circuit board, soldering for mounting electronic components on the CCL is performed, so that the soldering heat resistance of the copper foil is also required. In order to improve the solder heat resistance of the copper foil, nickel plating is generally performed on the surface of the copper foil as a rust prevention treatment (see, for example, Patent Document 1). This nickel plating functions as a diffusion barrier for copper atoms. In order to perform stable nickel plating, it is important to suppress fluctuations in the pH of the treatment liquid, and boric acid or citric acid is used as a pH buffer.

特開2007−119902号公報JP 2007-119902 A

ところで、粗化処理された銅箔の採用が進んでいく中で、CCLのはんだ耐熱性の要求も高くなってきている。はんだ耐熱性が低いと、銅箔とプリント基板用基材との間に膨れ(気泡)及び剥がれが発生してしまう。はんだ耐熱性の評価方法としては、CCLを一定温度(例えば、200℃以上)のはんだ浴に一定時間(例えば、数秒〜数十秒)浸漬させることで、銅箔とプリント基板用基材との間に気泡や剥がれを発生する現象が起きないか否かを観察する手法がある。   By the way, as the adoption of the roughened copper foil progresses, the requirement for solder heat resistance of CCL is also increasing. If the solder heat resistance is low, swelling (bubbles) and peeling occur between the copper foil and the printed circuit board substrate. As an evaluation method of solder heat resistance, the CCL is immersed in a solder bath at a constant temperature (for example, 200 ° C. or more) for a certain time (for example, several seconds to several tens of seconds), so that the copper foil and the substrate for printed circuit boards are There is a method of observing whether or not a phenomenon that generates bubbles or peeling occurs between them.

CCLのはんだ耐熱性を向上させるためには、銅箔にニッケル−コバルト合金めっきを施し、そのめっき量を増量させることが考えられるが、銅箔の生産ラインの速度を低下させることなく、生産能力の低下を回避するためにニッケル−コバルト合金めっきの電流値を上げる必要がある。しかしながら、ニッケル−コバルト合金めっきは、pHが重要であり、不溶性陽極を使用する場合は、特に、電流値を上げる程、陽極で酸素が発生しやすく、pHは低下しやすくなる。pHの変動を抑制するため、pH緩衝剤の適正な濃度の検討も必要となる。   In order to improve the solder heat resistance of CCL, it is conceivable to apply a nickel-cobalt alloy plating to the copper foil and increase the plating amount, but without reducing the speed of the copper foil production line, the production capacity Therefore, it is necessary to increase the current value of the nickel-cobalt alloy plating in order to avoid the decrease in the thickness. However, the pH of nickel-cobalt alloy plating is important. When an insoluble anode is used, oxygen is more likely to be generated at the anode and the pH is likely to decrease, particularly as the current value is increased. In order to suppress fluctuations in pH, it is necessary to study an appropriate concentration of the pH buffer.

本発明の目的は、プリント基板用基材の表面に圧延銅箔を貼り合わせたCCL(copper clad laminate)である銅張積層板のはんだ耐熱性を向上させたプリント基板用圧延銅箔、及びその製造方法を提供することにある。   An object of the present invention is to provide a rolled copper foil for a printed circuit board with improved solder heat resistance of a copper clad laminate which is a CCL (copper clad laminate) obtained by bonding a rolled copper foil to the surface of a substrate for a printed circuit board, and its It is to provide a manufacturing method.

[1]本発明は、基材と貼り合わせて用いる圧延銅箔の前記基材側の表面上に順次積層して形成され、少なくとも粗化銅めっき層と、ニッケル−コバルト合金めっき層を含む1以上の層からなる防錆処理層とを有し、前記ニッケル−コバルト合金めっき層のニッケルとコバルトとのめっき量の合計が、20μg/cm以上45μg/cm以下であることを特徴とするプリント基板用圧延銅箔にある。 [1] The present invention is formed by sequentially laminating a rolled copper foil used to be bonded to a base material on the surface on the base material side, and includes at least a roughened copper plating layer and a nickel-cobalt alloy plating layer. And a total of the plating amount of nickel and cobalt in the nickel-cobalt alloy plating layer is 20 μg / cm 2 or more and 45 μg / cm 2 or less. It is in rolled copper foil for printed circuit boards.

[2]上記[1]記載のプリント基板用圧延銅箔は、前記粗化銅めっき層の基材側の表面には、下地銅めっき層が更に形成され、前記粗化銅めっき層の基材側とは反対側の表面には、カプセル銅めっき層が更に形成され、前記防錆処理層は、前記下地銅めっき層から順に、前記ニッケル−コバルト合金めっき層、亜鉛めっき層、クロメート処理層、及びシランカップリング層からなる多層めっき層により構成されていることを特徴とする。 [2] In the rolled copper foil for printed circuit board according to [1], a base copper plating layer is further formed on the surface of the roughened copper plating layer on the base material side, and the base material of the roughened copper plating layer On the surface opposite to the side, a capsule copper plating layer is further formed. And a multilayer plating layer comprising a silane coupling layer.

[3]上記[1]又は[2]記載のプリント基板用圧延銅箔は、前記ニッケルとコバルトとのめっき量のコバルト/(ニッケル+コバルト)の比を0.4以上0.6以下の値に調整することを特徴とする。 [3] The rolled copper foil for printed circuit board according to [1] or [2], wherein the ratio of cobalt / (nickel + cobalt) in the plating amount of nickel and cobalt is a value of 0.4 or more and 0.6 or less. It is characterized by adjusting to.

[4]本発明は更に、基材と貼り合わせて用いる圧延銅箔の前記基材側の表面上に、少なくとも粗化銅めっき層、及びニッケル−コバルト合金めっき層を含む1以上の層からなる防錆処理層を順次積層して形成するにあたり、硫酸ニッケルを100g/L以上200g/L未満、硫酸コバルトを15g/L以上35g/L未満、及びクエン酸ナトリウムを20g/L以上40g/L未満含有し、pH(水素イオン濃度)値が、2以上4以下であるめっき液を用い、前記ニッケル−コバルト合金めっき層を形成することを特徴とするプリント基板用圧延銅箔の製造方法を提供する。 [4] The present invention further includes one or more layers including at least a roughened copper plating layer and a nickel-cobalt alloy plating layer on the surface of the rolled copper foil used by being bonded to the substrate. In order to sequentially form the rust-proofing layer, nickel sulfate is 100 g / L or more and less than 200 g / L, cobalt sulfate is 15 g / L or more and less than 35 g / L, and sodium citrate is 20 g / L or more and less than 40 g / L. Provided is a method for producing a rolled copper foil for a printed circuit board, characterized in that the nickel-cobalt alloy plating layer is formed using a plating solution containing and having a pH (hydrogen ion concentration) value of 2 or more and 4 or less. .

[5]上記[4]記載の製造方法にあって、前記めっき液は、液温を35℃以上55℃以下とし、めっき時の電流密度を3.5A/dm以上5.5A/dm以下とすることを特徴とする。 [5] In the production method of the above-mentioned [4], wherein the plating solution, the liquid temperature to 35 ° C. 55 ℃ or more or less, the current density during plating 3.5A / dm 2 or more 5.5A / dm 2 It is characterized as follows.

銅箔における基材と密着する面のニッケルとコバルトのめっき量の合計を20μg/cm以上45μg/cm以下に調整することで、例えばポリイミド樹脂材料からなる絶縁性のプリント基板用基材の表面に圧延銅箔を貼り合わせたCCLのはんだ耐熱性を向上させることができる。 By adjusting the total plating amount of nickel and cobalt on the surface in close contact with the base material in the copper foil to 20 μg / cm 2 or more and 45 μg / cm 2 or less, for example, an insulating base material for printed circuit boards made of a polyimide resin material The solder heat resistance of CCL which bonded the rolled copper foil on the surface can be improved.

めっき液中に含まれるクエン酸ナトリウム濃度を20g/L以上40g/L以下に調整することで、電流密度3.5A/dm以上5.5A/dm以下の条件でpHの変動を抑制し、安定した製造が可能となる。 Sodium citrate concentration in the plating solution by adjusting below 20 g / L or more 40 g / L, to suppress the fluctuation of the pH at a current density of 3.5A / dm 2 or more 5.5A / dm 2 following conditions , Stable production becomes possible.

本発明の実施の形態に係るプリント基板用圧延銅箔の断面を模式的に示す図である。It is a figure which shows typically the cross section of the rolled copper foil for printed circuit boards which concerns on embodiment of this invention.

以下、本発明の好適な実施の形態を添付図面に基づいて具体的に説明する。   Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings.

(プリント基板用圧延銅箔の構造)
図1において、全体を示す符号1は、プリント基板用の圧延銅箔である。この圧延銅箔1は、フレキシブルプリント基板の導電体となる銅箔として好適に用いられるものであり、銅箔2の基材接着面側(基材側)に粗化銅めっき層(粗化箔)4、及び防錆処理層(粗化箔)3を順次積層形成した薄膜積層構造となっている。
(Structure of rolled copper foil for printed circuit boards)
In FIG. 1, the code | symbol 1 which shows the whole is the rolled copper foil for printed circuit boards. This rolled copper foil 1 is suitably used as a copper foil that becomes a conductor of a flexible printed circuit board, and a roughened copper plating layer (roughened foil) is formed on the base material adhesion surface side (base material side) of the copper foil 2. 4) and a rust prevention treatment layer (roughened foil) 3 are sequentially laminated to form a thin film laminated structure.

この銅箔2としては、例えばタフピッチ銅(TPC)や無酸素銅(OFC)からなる圧延銅箔が用いられる。銅箔2の厚さとしては、例えば32μm程度、好ましくは8〜18μmの範囲が好適である。一方、銅箔2と貼り合わせて用いる図示しない基材としては、例えばポリイミド樹脂材料やガラスエポキシ樹脂材料等からなるシート状又はフィルム状をなす絶縁性のフレキシブルプリント基板が用いられる。   As the copper foil 2, for example, a rolled copper foil made of tough pitch copper (TPC) or oxygen-free copper (OFC) is used. The thickness of the copper foil 2 is, for example, about 32 μm, preferably 8 to 18 μm. On the other hand, as a base material (not shown) used by being bonded to the copper foil 2, for example, an insulating flexible printed circuit board made of a polyimide resin material, a glass epoxy resin material, or the like is used.

(粗化銅めっき層)
この粗化銅めっき層4は、図1に示すように、銅箔2に粗化銅めっきされることで層状に形成されている。粗化銅めっき層4は、例えば十点平均粗さRzが1.0μm程度の粗化処理が施されており、表面全域にわたって均一な粗面化形状を有している。圧延銅箔1、即ち粗化銅めっき層4の表面粗度を上げることで、防錆処理層3に対するアンカー効果が得られる。粗化銅めっき層の膜厚としては、例えば0.4〜0.5μmの範囲が好適である。
(Roughened copper plating layer)
As shown in FIG. 1, the roughened copper plating layer 4 is formed in a layer shape by roughening copper plating on the copper foil 2. For example, the roughened copper plating layer 4 is subjected to a roughening treatment with a ten-point average roughness Rz of about 1.0 μm, and has a uniform roughened shape over the entire surface. By increasing the surface roughness of the rolled copper foil 1, that is, the roughened copper plating layer 4, an anchor effect for the antirust treatment layer 3 can be obtained. As a film thickness of a roughening copper plating layer, the range of 0.4-0.5 micrometer is suitable, for example.

この粗化銅めっき層4の基材側の表面には、図示しない下地銅めっき層が形成されるとともに、粗化銅めっき層4の基材側とは反対側の表面には、図示しないカプセル銅めっき層が形成されていることが好適である。下地銅めっき層の膜厚としては、例えば0.4μm程度が好適であり、カプセル銅めっき層としては、例えば0.4μm程度が好適である。この下地銅めっき層、及びカプセル銅めっき層の存在により、めっき欠陥のない粗化銅めっき層4を形成することができるようになり、良好なアンカー効果が得られるので、防錆処理層3との密着性が向上する。   A base copper plating layer (not shown) is formed on the surface of the roughened copper plating layer 4 on the base material side, and a capsule (not shown) is formed on the surface of the roughened copper plating layer 4 opposite to the base material side. It is preferable that a copper plating layer is formed. The film thickness of the base copper plating layer is preferably about 0.4 μm, for example, and the capsule copper plating layer is preferably about 0.4 μm, for example. Because of the presence of the base copper plating layer and the capsule copper plating layer, the roughened copper plating layer 4 without plating defects can be formed, and a good anchor effect can be obtained. Improved adhesion.

(防錆処理層)
この防錆処理層3は、図1に示すように、ニッケル−コバルト合金めっき層5、亜鉛めっき層6、クロメート処理層7、及びシランカップリング層8からなる多層のめっき層により構成されている。ニッケル−コバルト合金めっき層5、亜鉛めっき層6、クロメート処理層7、及びシランカップリング層8の全膜厚としては、35〜55μmの範囲が望ましい。
(Anti-rust treatment layer)
As shown in FIG. 1, the rust prevention treatment layer 3 is composed of a multilayer plating layer including a nickel-cobalt alloy plating layer 5, a zinc plating layer 6, a chromate treatment layer 7, and a silane coupling layer 8. . The total film thickness of the nickel-cobalt alloy plating layer 5, the zinc plating layer 6, the chromate treatment layer 7, and the silane coupling layer 8 is preferably in the range of 35 to 55 μm.

(ニッケル−コバルト合金めっき層)
図示例の圧延銅箔1は、防錆処理層3のニッケル−コバルト合金めっき層5に主要な特徴部を有している。このニッケル−コバルト合金めっき層5としては、粗化処理を施した銅箔2にニッケル−コバルト合金めっきを施すことで、銅原子の拡散バリア性や耐酸化変色性を向上させることができる。結果的として、フレキシブルプリント基板用基材であるポリイミド系樹脂との接着性(接着強度)を高めることができる。
(Nickel-cobalt alloy plating layer)
The rolled copper foil 1 in the illustrated example has a main characteristic part in the nickel-cobalt alloy plating layer 5 of the antirust treatment layer 3. As this nickel-cobalt alloy plating layer 5, the diffusion barrier property of copper atoms and oxidation discoloration resistance can be improved by performing nickel-cobalt alloy plating on the roughened copper foil 2. As a result, the adhesiveness (adhesive strength) with the polyimide resin that is the base material for the flexible printed circuit board can be enhanced.

ニッケル−コバルト合金めっき液としては、硫酸ニッケル濃度を100g/L以上200g/L未満、硫酸コバルト濃度を15g/L以上35g/L未満に調整することが最適である。硫酸ニッケル濃度が100g/L未満であり、硫酸コバルト濃度が15g/L未満であると、接着性が大きく低下するので好ましくない。一方、硫酸ニッケル濃度200g/L以上、及び硫酸コバルト濃度35g/L以上では、製造工程で使用される酸(例えば硫酸、硝酸、塩酸、もしくは過酸化水素などの酸化性酸)によりコバルトが溶解し、いわゆる「染み込み現象」が発生することがあるので好ましくない。   As the nickel-cobalt alloy plating solution, it is optimal to adjust the nickel sulfate concentration to 100 g / L or more and less than 200 g / L and the cobalt sulfate concentration to 15 g / L or more and less than 35 g / L. If the nickel sulfate concentration is less than 100 g / L and the cobalt sulfate concentration is less than 15 g / L, the adhesiveness is greatly reduced, which is not preferable. On the other hand, at a nickel sulfate concentration of 200 g / L or more and a cobalt sulfate concentration of 35 g / L or more, cobalt is dissolved by an acid used in the manufacturing process (for example, an oxidizing acid such as sulfuric acid, nitric acid, hydrochloric acid, or hydrogen peroxide). This is not preferable because a so-called “penetration phenomenon” may occur.

pH緩衝剤としては、クエン酸ナトリウムを用いることが好適である。クエン酸ナトリウム濃度としては、20g/L以上40g/L未満が最適である。クエン酸ナトリウム濃度が20g/L未満であると、必要なpH緩衝力が得られない。一方、クエン酸ナトリウム濃度が40g/L以上であると、クエン酸の錯体化による電流効率の低下によりニッケル−コバルト合金めっき層5が減少してしまうので好ましくない。   It is preferable to use sodium citrate as the pH buffer. The optimal sodium citrate concentration is 20 g / L or more and less than 40 g / L. If the sodium citrate concentration is less than 20 g / L, the necessary pH buffering power cannot be obtained. On the other hand, a sodium citrate concentration of 40 g / L or more is not preferable because the nickel-cobalt alloy plating layer 5 is reduced due to a decrease in current efficiency due to complexation of citric acid.

pH(水素イオン濃度)値としては、2以上4以下とするのが好適である。pH2未満ではニッケル−コバルト合金めっき以前に施した粗化処理によって銅箔表面に付着した銅めっきの凹凸がニッケル−コバルト合金めっき液中で再溶解してしまうことがある。一方、pH4を超えると、クエン酸ナトリウムのpH緩衝力が弱くなり、pH変動が大きくなりやすいので好ましくない。   The pH (hydrogen ion concentration) value is preferably 2 or more and 4 or less. If the pH is less than 2, the unevenness of the copper plating adhering to the copper foil surface due to the roughening treatment performed before the nickel-cobalt alloy plating may be redissolved in the nickel-cobalt alloy plating solution. On the other hand, if it exceeds pH 4, the pH buffering power of sodium citrate becomes weak and the pH fluctuation tends to increase, which is not preferable.

ニッケル−コバルト合金のめっき量の合計としては、20μg/cm以上45μg/cm以下であることが特に望ましい。めっき量の合計が20μg/cm未満であると、銅箔2とポリイミド系樹脂との間に気泡や剥がれが発生し、初期の目的とする接着強度が得られないので好ましくない。一方、めっき量の合計が45μg/cmを超えると、高い濃度のコバルトを添加しても、ポリイミド系樹脂との接着性はほとんど変化せず、しかもニッケルに比べてコバルトが非常に高価であるため、コスト面で不利になり、実用的ではない。更に、CCLに回路配線を形成するときのエッチング性が低下するので好ましくない。 The total plating amount of the nickel-cobalt alloy is particularly preferably 20 μg / cm 2 or more and 45 μg / cm 2 or less. If the total plating amount is less than 20 μg / cm 2 , bubbles and peeling occur between the copper foil 2 and the polyimide resin, and the initial desired adhesive strength cannot be obtained, which is not preferable. On the other hand, if the total amount of plating exceeds 45 μg / cm 2 , even if a high concentration of cobalt is added, the adhesiveness with the polyimide resin hardly changes, and cobalt is very expensive compared to nickel. Therefore, it becomes disadvantageous in terms of cost and is not practical. Furthermore, the etching property when forming circuit wiring on the CCL is not preferable.

めっき量のコバルト/(ニッケル+コバルト)の比を0.4以上0.6以下の値に調整することが好適である。コバルト/(ニッケル+コバルト)の比が0.4未満では付着するコバルト量が少なく、ニッケル−コバルト合金めっきにおける接着強度を優先する効果が得られない。コバルト/(ニッケル+コバルト)の比が0.6より過大に添加しても、ニッケル−コバルト合金めっきを施した銅箔2とポリイミド系樹脂との間の接着力は変化せず、しかもニッケルに比べてコバルトが非常に高価であるため、実用的ではない。更に、CCLに回路配線を形成するときのエッチング性が低下する。   It is preferable to adjust the plating amount cobalt / (nickel + cobalt) ratio to a value of 0.4 to 0.6. If the ratio of cobalt / (nickel + cobalt) is less than 0.4, the amount of adhering cobalt is small, and the effect of giving priority to the adhesive strength in nickel-cobalt alloy plating cannot be obtained. Even if the ratio of cobalt / (nickel + cobalt) is added more than 0.6, the adhesive force between the copper foil 2 plated with nickel-cobalt alloy and the polyimide resin does not change, and the nickel Compared to cobalt, which is very expensive, it is not practical. Furthermore, the etching property when forming circuit wiring on the CCL is lowered.

ニッケル−コバルト合金めっき層5を形成するにあたっては、硫酸ニッケルを100g/L以上200g/L未満、硫酸コバルトを15g/L以上35g/L未満、及びクエン酸ナトリウムを20g/L以上40g/L未満含有し、pH値が2以上4以下であるめっき液を用い、液温35℃以上55℃以下、及び電流密度3.5A/dm以上5.5A/dm以下とした処理条件で、ニッケル−コバルト合金めっきを行うことが好ましい。 In forming the nickel-cobalt alloy plating layer 5, nickel sulfate is 100 g / L or more and less than 200 g / L, cobalt sulfate is 15 g / L or more and less than 35 g / L, and sodium citrate is 20 g / L or more and less than 40 g / L. containing, using a plating solution pH value is 2 to 4, a liquid temperature 35 ° C. 55 ℃ or more or less, and at a current density of 3.5A / dm 2 or more 5.5A / dm 2 or less and the process conditions, nickel -It is preferable to perform cobalt alloy plating.

この処理条件で、ニッケル−コバルト合金めっきを行うことで、ニッケル−コバルト合金のめっき量の合計が20μg/cm以上45μg/cm以下であり、ニッケルとコバルトとのめっき量のコバルト/(ニッケル+コバルト)の比が0.4以上0.6以下であるニッケル−コバルト合金めっき層5が効果的に得られる。 By performing nickel-cobalt alloy plating under these processing conditions, the total plating amount of the nickel-cobalt alloy is 20 μg / cm 2 or more and 45 μg / cm 2 or less, and the plating amount of nickel and cobalt is cobalt / (nickel The nickel-cobalt alloy plating layer 5 having a ratio of + cobalt) of 0.4 to 0.6 is effectively obtained.

(亜鉛めっき層)
ニッケル−コバルト合金めっきを施した銅箔2に防錆処理層3として亜鉛めっき層6を形成することが一般的である。亜鉛の付着金属量としては、0.5μg/cm以上3μg/cm以下であることが好ましい。0.5μg/cm未満では、防錆層としての役割を果たさないばかりでなく、クロメート処理層7におけるクロム付着量の制御が困難になる。一方、亜鉛の付着金属量が3μg/cmより大きいと、ポリイミド系樹脂と接着させてエッチングにより回路を作製する際に、回路面に露出した亜鉛がフレキシブルプリント配線板の製造工程中の酸などによって溶出しやすくなり、ポリイミド系樹脂との接着面積が減少して接着強度が低下するので好ましくない。
(Zinc plating layer)
In general, a galvanized layer 6 is formed as a rust-proofing layer 3 on a copper foil 2 subjected to nickel-cobalt alloy plating. The amount of zinc deposited metal is preferably 0.5 μg / cm 2 or more and 3 μg / cm 2 or less. If it is less than 0.5 μg / cm 2 , it not only plays a role as a rust preventive layer, but also makes it difficult to control the amount of chromium deposited on the chromate treatment layer 7. On the other hand, when the amount of adhered metal of zinc is larger than 3 μg / cm 2 , zinc exposed on the circuit surface is exposed to acid during the manufacturing process of the flexible printed wiring board when bonded to the polyimide resin and manufacturing a circuit by etching. It is not preferable because it is easy to elute and the adhesion area with the polyimide resin decreases and the adhesive strength decreases.

(クロメート処理層)
亜鉛めっき層6にクロメート化成処理を施すことが一般的である。3価クロムを使用した3価クロム化成処理方法を用いる。クロムの付着金属量としては、0.5μg/cm以上2.5μg/cm以下とするのが望ましい。クロムの付着金属量が0.5μg/cm未満では、耐酸化変色性、耐湿変色性といった防錆能力が不足する。一方、クロムの付着金属量が2.5μg/cmを超えると、クロム層自体が厚く脆弱な層となり、銅箔2としての接着力が低下してしまうので好ましくない。
(Chromate treatment layer)
In general, the galvanized layer 6 is subjected to a chromate conversion treatment. A trivalent chromium chemical conversion treatment method using trivalent chromium is used. The amount of chromium deposited metal is preferably 0.5 μg / cm 2 or more and 2.5 μg / cm 2 or less. If the amount of chromium deposited metal is less than 0.5 μg / cm 2 , the antirust ability such as oxidation discoloration resistance and moisture discoloration resistance is insufficient. On the other hand, if the amount of deposited metal of chromium exceeds 2.5 μg / cm 2 , the chromium layer itself becomes a thick and fragile layer and the adhesive strength as the copper foil 2 is reduced, which is not preferable.

(シランカップリング層)
クロメート処理層7にシランカップリング処理を行うことが一般的である。これにより、銅箔2の接着力を向上させることができる。このシランカップリング処理は、銅箔2をシランカップリング処理剤の水溶液に浸漬させることで行う。
(Silane coupling layer)
In general, the chromate treatment layer 7 is subjected to a silane coupling treatment. Thereby, the adhesive force of the copper foil 2 can be improved. This silane coupling treatment is performed by immersing the copper foil 2 in an aqueous solution of a silane coupling treatment agent.

以上のように構成された実施の形態に係る圧延銅箔1によれば、銅箔2に粗化銅めっき処理、ニッケル−コバルト合金めっき処理、亜鉛めっき処理、クロメート処理、及びシランカップリング処理を順次施すことで、フレキシブルプリント基板用基材との接着性が良好であり、均一で安定した箔膜が得られる。   According to the rolled copper foil 1 according to the embodiment configured as described above, the copper foil 2 is subjected to roughening copper plating treatment, nickel-cobalt alloy plating treatment, zinc plating treatment, chromate treatment, and silane coupling treatment. By applying sequentially, the adhesiveness with the base material for flexible printed circuit boards is favorable, and a uniform and stable foil film is obtained.

以下に、図1を参照しながら、本発明の更に具体的な実施の形態として、実施例を挙げて詳細に説明する。なお、この実施例では、上記実施の形態である圧延銅箔1の典型的な一例を挙げており、本発明は、この実施例に限定されるものではないことは勿論である。   Hereinafter, examples will be described in detail as specific embodiments of the present invention with reference to FIG. In this example, a typical example of the rolled copper foil 1 according to the above embodiment is given, and the present invention is of course not limited to this example.

この実施例では、厚さ10.5μmの銅箔2に、厚さ0.4μmの下地銅めっき、厚さ0.5μmの粗化銅めっき、及び厚さ0.4μmのカプセル銅めっきを施し、防錆処理として、厚さ20〜25μmのニッケル−コバルト合金めっき、厚さ1μmの亜鉛めっき、厚さ1μm以下のクロメート処理、及び厚さ1μm以下のシランカップリング処理を順次施した。ニッケル−コバルト合金めっき以外は定法に従い製作した。   In this embodiment, a copper foil 2 having a thickness of 10.5 μm is subjected to a base copper plating having a thickness of 0.4 μm, a rough copper plating having a thickness of 0.5 μm, and a capsule copper plating having a thickness of 0.4 μm, As rust prevention treatment, nickel-cobalt alloy plating with a thickness of 20 to 25 μm, zinc plating with a thickness of 1 μm, chromate treatment with a thickness of 1 μm or less, and silane coupling treatment with a thickness of 1 μm or less were sequentially performed. Except for nickel-cobalt alloy plating, it was manufactured according to a standard method.

ここで、ニッケル−コバルト合金めっき条件としては、電流密度を4.5A/dmとし、めっき時間を8秒とした。ニッケル−コバルト合金めっき液の組成としては、硫酸ニッケル175g/L、硫酸コバルト25g/L、及びクエン酸ナトリウム30g/Lで、液温40℃、及びpH3の条件で行った。 Here, as nickel-cobalt alloy plating conditions, the current density was 4.5 A / dm 2 and the plating time was 8 seconds. The composition of the nickel-cobalt alloy plating solution was 175 g / L of nickel sulfate, 25 g / L of cobalt sulfate, and 30 g / L of sodium citrate, at a liquid temperature of 40 ° C. and pH 3.

上記条件で施したニッケル−コバルト合金めっき層5のニッケル−コバルトのめっき量の合計は、硫酸ニッケル16.5μg/cm、及び硫酸コバルト15.5μg/cmであり、コバルト/(ニッケル+コバルト)の比の百分率は48%であった。 The total nickel-cobalt plating amount of the nickel-cobalt alloy plating layer 5 applied under the above conditions is nickel sulfate 16.5 μg / cm 2 and cobalt sulfate 15.5 μg / cm 2 , and cobalt / (nickel + cobalt). ) Ratio was 48%.

CCLの耐熱性の試験条件としては、はんだ加熱温度を300℃とし、浸漬時間を10秒とした。この試験後、銅箔2とポリイミド系樹脂との間に膨れや剥がれが発生したか否かを調査した。CCLのはんだ耐熱性と、ニッケル−コバルト合金めっき層5の(ニッケル+コバルト)のめっき合計量との関係を下記の表1に示す。   As test conditions for heat resistance of CCL, the solder heating temperature was 300 ° C., and the immersion time was 10 seconds. After this test, it was investigated whether swelling or peeling occurred between the copper foil 2 and the polyimide resin. The relationship between the solder heat resistance of CCL and the total amount of (nickel + cobalt) plating of the nickel-cobalt alloy plating layer 5 is shown in Table 1 below.

銅箔2とポリイミド系樹脂との間に膨れや剥がれが発生した場合をNG判定とした。これを表1に×印で表した。ニッケル−コバルト合金めっきを過剰にすると、CCLに回路配線を形成するときのエッチング性が低下したため、この場合もNG判定とした。これを×印、及び△印で表1に表した。   A case where swelling or peeling occurred between the copper foil 2 and the polyimide resin was determined as NG determination. This is shown in Table 1 with a cross. When the nickel-cobalt alloy plating was excessive, the etching property when forming the circuit wiring on the CCL was lowered. This is shown in Table 1 with x marks and Δ marks.

表1から明らかなように、ニッケル−コバルト合金のめっき量としては、20μg/cm以上45μg/cm以下の許容規定範囲に調整することが望ましいということが分かる。 As is clear from Table 1, it can be seen that the nickel-cobalt alloy plating amount is preferably adjusted to an allowable specified range of 20 μg / cm 2 or more and 45 μg / cm 2 or less.

ニッケル−コバルト合金のめっき量の合計(ニッケル+コバルト)、コバルト/(ニッケル+コバルト)の比、及びめっき液中のクエン酸ナトリウム濃度を上記特許文献1のものより増量させても、銅箔2におけるフレキシブルプリント基板用基材と貼り合わせる側の接着面の黒味が増すことになる。つまり、銅原子の拡散バリア性や耐酸化変色性が向上することとなる。その結果、ポリイミド樹脂材料からなる絶縁性のプリント基板用基材の表面に圧延銅箔1を貼り合わせたCCLのはんだ耐熱性を大幅に向上させることが可能になる。   Even if the total plating amount of nickel-cobalt alloy (nickel + cobalt), the ratio of cobalt / (nickel + cobalt), and the sodium citrate concentration in the plating solution were increased from those of Patent Document 1, the copper foil 2 In this case, the blackness of the adhesive surface on the side to be bonded to the flexible printed circuit board substrate is increased. That is, the diffusion barrier property and oxidation discoloration resistance of copper atoms are improved. As a result, it becomes possible to greatly improve the solder heat resistance of the CCL in which the rolled copper foil 1 is bonded to the surface of the insulating substrate for printed circuit board made of polyimide resin material.

Figure 2012057231
Figure 2012057231

1 圧延銅箔
2 銅箔
3 防錆処理層
4 粗化銅めっき層
5 ニッケル−コバルト合金めっき層
6 亜鉛めっき層
7 クロメート処理層
8 シランカップリング層
DESCRIPTION OF SYMBOLS 1 Rolled copper foil 2 Copper foil 3 Rust prevention treatment layer 4 Roughening copper plating layer 5 Nickel-cobalt alloy plating layer 6 Zinc plating layer 7 Chromate treatment layer 8 Silane coupling layer

Claims (5)

基材と貼り合わせて用いる圧延銅箔の前記基材側の表面上に順次積層して形成され、少なくとも粗化銅めっき層と、ニッケル−コバルト合金めっき層を含む1以上の層からなる防錆処理層とを有し、
前記ニッケル−コバルト合金めっき層のニッケルとコバルトとのめっき量の合計が、20μg/cm以上45μg/cm以下であることを特徴とするプリント基板用圧延銅箔。
Rust prevention formed by laminating sequentially on the surface of the base material side of the rolled copper foil used by bonding to the base material, and comprising at least a roughened copper plating layer and a nickel-cobalt alloy plating layer. A treatment layer,
The rolled copper foil for printed circuit boards, wherein the total nickel and cobalt plating amount of the nickel-cobalt alloy plating layer is 20 μg / cm 2 or more and 45 μg / cm 2 or less.
前記粗化銅めっき層の基材側の表面には、下地銅めっき層が更に形成され、
前記粗化銅めっき層の基材側とは反対側の表面には、カプセル銅めっき層が更に形成され、
前記防錆処理層は、前記下地銅めっき層から順に、前記ニッケル−コバルト合金めっき層、亜鉛めっき層、クロメート処理層、及びシランカップリング層からなる多層めっき層により構成されていることを特徴とする請求項1記載のプリント基板用圧延銅箔。
On the surface of the roughened copper plating layer on the substrate side, a base copper plating layer is further formed,
A capsule copper plating layer is further formed on the surface opposite to the substrate side of the roughened copper plating layer,
The rust prevention treatment layer is composed of a multilayer plating layer composed of the nickel-cobalt alloy plating layer, the zinc plating layer, the chromate treatment layer, and the silane coupling layer in order from the base copper plating layer. The rolled copper foil for printed circuit boards according to claim 1.
前記ニッケルとコバルトとのめっき量のコバルト/(ニッケル+コバルト)の比を0.4以上0.6以下の値に調整することを特徴とする請求項1又は2記載のプリント基板用圧延銅箔。   3. The rolled copper foil for printed circuit boards according to claim 1, wherein the ratio of cobalt / (nickel + cobalt) of the plating amount of nickel and cobalt is adjusted to a value of 0.4 or more and 0.6 or less. . 基材と貼り合わせて用いる圧延銅箔の前記基材側の表面上に、少なくとも粗化銅めっき層、及びニッケル−コバルト合金めっき層を含む1以上の層からなる防錆処理層を順次積層して形成するにあたり、
硫酸ニッケルを100g/L以上200g/L未満、硫酸コバルトを15g/L以上35g/L未満、及びクエン酸ナトリウムを20g/L以上40g/L未満含有し、pH(水素イオン濃度)値が、2以上4以下であるめっき液を用い、前記ニッケル−コバルト合金めっき層を形成することを特徴とするプリント基板用圧延銅箔の製造方法。
On the surface of the rolled copper foil used by laminating the substrate, the rust-proofing layer comprising at least a roughened copper plating layer and one or more layers including a nickel-cobalt alloy plating layer is sequentially laminated. In forming
Contains nickel sulfate 100 g / L or more and less than 200 g / L, cobalt sulfate 15 g / L or more and less than 35 g / L, and sodium citrate 20 g / L or more and less than 40 g / L, pH (hydrogen ion concentration) value is 2 A method for producing a rolled copper foil for printed circuit boards, wherein the nickel-cobalt alloy plating layer is formed using a plating solution of 4 or less.
前記めっき液は、液温を35℃以上55℃以下とし、めっき時の電流密度を3.5A/dm以上5.5A/dm以下とすることを特徴とする請求項4記載のプリント基板用圧延銅箔の製造方法。 The plating solution, a printed circuit board according to claim 4, wherein the liquid temperature and 35 ° C. 55 ℃ or more or less, the current density during plating to 3.5A / dm 2 or more 5.5A / dm 2 or less For producing rolled copper foils.
JP2010203401A 2010-09-10 2010-09-10 Rolled copper foil for printed circuit board, and manufacturing method therefor Pending JP2012057231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010203401A JP2012057231A (en) 2010-09-10 2010-09-10 Rolled copper foil for printed circuit board, and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010203401A JP2012057231A (en) 2010-09-10 2010-09-10 Rolled copper foil for printed circuit board, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2012057231A true JP2012057231A (en) 2012-03-22

Family

ID=46054674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010203401A Pending JP2012057231A (en) 2010-09-10 2010-09-10 Rolled copper foil for printed circuit board, and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2012057231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702881B1 (en) * 2014-06-23 2015-04-15 株式会社Shカッパープロダクツ Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil
JP5728117B1 (en) * 2014-09-22 2015-06-03 株式会社Shカッパープロダクツ Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
KR101799177B1 (en) * 2015-01-09 2017-12-12 제이엑스금속주식회사 Metal substrate with plating

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119902A (en) * 2005-09-27 2007-05-17 Hitachi Cable Ltd Nickel plating solution and its preparation method, nickel plating method, and printed wiring board copper foil
JP2009164488A (en) * 2008-01-09 2009-07-23 Hitachi Cable Ltd Copper foil for a printed wiring board
JP2010141227A (en) * 2008-12-15 2010-06-24 Hitachi Cable Ltd Rolled copper foil for printed wiring board

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007119902A (en) * 2005-09-27 2007-05-17 Hitachi Cable Ltd Nickel plating solution and its preparation method, nickel plating method, and printed wiring board copper foil
JP2009164488A (en) * 2008-01-09 2009-07-23 Hitachi Cable Ltd Copper foil for a printed wiring board
JP2010141227A (en) * 2008-12-15 2010-06-24 Hitachi Cable Ltd Rolled copper foil for printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5702881B1 (en) * 2014-06-23 2015-04-15 株式会社Shカッパープロダクツ Surface-treated copper foil and copper-clad laminate using the surface-treated copper foil
JP5728117B1 (en) * 2014-09-22 2015-06-03 株式会社Shカッパープロダクツ Surface-treated copper foil, method for producing the surface-treated copper foil, and copper-clad laminate using the surface-treated copper foil
KR101799177B1 (en) * 2015-01-09 2017-12-12 제이엑스금속주식회사 Metal substrate with plating

Similar Documents

Publication Publication Date Title
US7691487B2 (en) Electrodeposited copper foil with carrier foil
JP5512273B2 (en) Copper foil and copper clad laminate for printed circuit
JP3977790B2 (en) Manufacturing method of ultra-thin copper foil with carrier, ultra-thin copper foil manufactured by the manufacturing method, printed wiring board using the ultra-thin copper foil, multilayer printed wiring board, chip-on-film wiring board
JP2005344174A (en) Surface-treated copper foil, flexible copper-clad laminate manufactured using the same, and film carrier tape
JP2007186797A (en) Method for producing ultrathin copper foil with carrier, ultrathin copper foil produced by the production method, and printed circuit board, multilayer printed circuit board and wiring board for chip on film using the ultrathin copper foil
JP5859155B1 (en) Composite metal foil, method for producing the same, and printed wiring board
JP5358586B2 (en) Rolled copper foil or electrolytic copper foil for electronic circuit and method for forming electronic circuit using these
WO2010147013A1 (en) Copper foil and a method for producing same
JP6722452B2 (en) Surface-treated copper foil, copper-clad laminate obtained by using the surface-treated copper foil, and printed wiring board
JPWO2015122258A1 (en) Ultra-thin copper foil with carrier, and copper-clad laminate, printed wiring board and coreless board manufactured using the same
JP4824828B1 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2015124426A (en) Surface-treated copper foil and laminate
JP4978456B2 (en) Copper foil for printed circuit
JP2008132757A (en) Surface treated copper foil for manufacturing flexible copper clad laminate, and flexible copper clad laminate obtained by using surface treated copper foil
JPWO2010074054A1 (en) Method for forming an electronic circuit
WO2010074061A1 (en) Rolled copper foil or electrolytic copper foil for electronic circuit, and method for forming electronic circuit using the rolled copper foil or electrolytic copper foil
JP2012057231A (en) Rolled copper foil for printed circuit board, and manufacturing method therefor
KR20090084517A (en) Copper foil for printed circuit improved in thermal resistance and chemical resistance property and fabrication method thereof
KR100504518B1 (en) Copper alloy foil for laminated sheet
JP5254491B2 (en) Copper foil for printed circuit board and copper clad laminate for printed circuit board
JP6054523B2 (en) Copper foil with carrier, method for producing copper foil with carrier, copper-clad laminate obtained using copper foil with carrier, and method for producing printed wiring board
JP4593331B2 (en) Multilayer circuit board and manufacturing method thereof
JPWO2015099156A1 (en) Composite metal foil, composite metal foil with carrier, metal-clad laminate and printed wiring board obtained using these
JP5628106B2 (en) Composite metal foil, method for producing the same, and printed wiring board
JP2016008343A (en) Surface-treated copper foil, copper-clad laminate using the surface-treated copper foil, and production method of the surface-treated copper foil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121116

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130628

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140422