JP2006184081A - Probe pin for probe card - Google Patents

Probe pin for probe card Download PDF

Info

Publication number
JP2006184081A
JP2006184081A JP2004376416A JP2004376416A JP2006184081A JP 2006184081 A JP2006184081 A JP 2006184081A JP 2004376416 A JP2004376416 A JP 2004376416A JP 2004376416 A JP2004376416 A JP 2004376416A JP 2006184081 A JP2006184081 A JP 2006184081A
Authority
JP
Japan
Prior art keywords
plating
probe pin
ptfe
hardness
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004376416A
Other languages
Japanese (ja)
Inventor
Yoshio Kimori
義夫 木森
Yoshinobu Kageyama
喜信 陰山
Tetsuhisa Himeno
哲久 姫野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004376416A priority Critical patent/JP2006184081A/en
Publication of JP2006184081A publication Critical patent/JP2006184081A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a probe pin capable of improving shock resistance by heightening the hardness of a tip part of a probe pin needle, and adjusting the hardness. <P>SOLUTION: In this probe pin 10 wherein the needle tip part 3a forms a contact part to an integrated circuit chip on a semiconductor wafer as a measuring object, at least the surface of the needle tip part 3a is coated with electroless PTFE-including nickel plating 5, to thereby heighten the surface hardness of the needle tip part 3a and improve shock resistance, and the surface hardness of the needle tip part 3a can be adjusted by adjusting the PTFE content rate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、半導体ウエハ上の集積回路チップの通電検査をするためのプローブカード用プローブピン(以下「プローブピン」と略称する)に関する。   The present invention relates to probe pins for probe cards (hereinafter abbreviated as “probe pins”) for conducting energization inspection of integrated circuit chips on a semiconductor wafer.

半導体ウエハの製造工程において、集積回路チップの通電検査(ウエハテスト)をするためのプローブピンには、硬くて弾力性のあるタングステン、レニウムタングステン、ベリリウム銅合金などが使用されており、特に耐磨耗性および強靱性に優れたタングステンが多用されている。   Hard and elastic tungsten, rhenium tungsten, beryllium copper alloy, etc. are used as probe pins for conducting energization inspection (wafer test) of integrated circuit chips in the manufacturing process of semiconductor wafers. Tungsten having excellent wear and toughness is often used.

タングステンは、耐磨耗性、弾性力、強靱性、硬度などに優れているので、直径数十ミクロンという極めて細い線材で構成されるプローブピンに適した材料であるが、酸化しやすくて、集積回路の電極にコンタクトして通電が行われたときの摩擦熱や接触抵抗による発熱により、針先部の温度が上昇して酸化が進み、また集積回路に蒸着されているアルミニウムと反応して、数千回〜数万回のコンタクトで(被測定物としての半導体ウエハ上の集積回路チップに対する接触部としての)針先部に酸化アルミニウムが発生付着する。   Tungsten is excellent for wear resistance, elastic force, toughness, hardness, etc., so it is a suitable material for probe pins composed of extremely thin wires with a diameter of several tens of microns. Due to frictional heat and heat generated by contact resistance when energized in contact with the circuit electrodes, the temperature of the needle tip rises and oxidation proceeds, and reacts with aluminum deposited on the integrated circuit, Aluminum oxide is generated and adhered to the needle tip portion (as a contact portion with respect to the integrated circuit chip on the semiconductor wafer as the object to be measured) by thousands to tens of thousands of contacts.

酸化アルミニウムが付着すると、針先部の接触抵抗が大きくなり、導電性が低下してウエハテストに支障を来すため、針先部を研磨するなどのメンテナンス(クリーニング)を行う必要がある。そして、このクリーニング工程中はウエハテストが中断されるため、ウエハテストの効率が悪くなるという問題点がある。   When aluminum oxide adheres, the contact resistance of the needle tip portion increases, and the electrical conductivity is lowered to hinder the wafer test. Therefore, it is necessary to perform maintenance (cleaning) such as polishing the needle tip portion. Further, since the wafer test is interrupted during the cleaning process, there is a problem that the efficiency of the wafer test is deteriorated.

このような問題点を解決するための一手段として、特許文献1に記載されているような、電気メッキによりプローブピンの針先部を含む先端よりの部分にPTFE(テトラフルオロエチレン、商品名「テフロン」)含有Niメッキを施したプローブピンが開発されている。特許文献1に記載のプローブピンも、同公報に記載の通りの目的を達することはできるものの、メッキ皮膜の割れ、窪みあるいは剥離などが生じやすく、集積回路チップとの繰り返しコンタクトにより電気特性が影響を受け耐久性に劣り、さらに後に述べるように、耐衝撃性にも問題がある。
特開2001−74777号公報
As one means for solving such a problem, PTFE (tetrafluoroethylene, trade name “ Probe pins with Ni plating containing Teflon ") have been developed. Although the probe pin described in Patent Document 1 can also achieve the purpose as described in the same publication, the plating film is easily cracked, recessed, or peeled off, and the electrical characteristics are affected by repeated contact with the integrated circuit chip. Inferior in durability, and as described later, there is also a problem in impact resistance.
JP 2001-74777 A

本発明は、特許文献1に記載のプローブピンの有する上記の問題点を解決し、針先部の耐衝撃性を向上させてメッキ皮膜の長寿命性を量ることにより、プローブピンの集積回路チップとの多数回数の繰り返しコンタクトに耐え、しかも耐磨耗性において従来のプローブピンに劣ることのないプローブピンを提供することを目的とする。   The present invention solves the above-mentioned problems of the probe pin described in Patent Document 1, improves the impact resistance of the needle tip, and measures the long life of the plating film, thereby providing an integrated circuit for the probe pin. An object of the present invention is to provide a probe pin that can withstand repeated contact with a chip many times and that is not inferior to a conventional probe pin in wear resistance.

上記目的を達成するため、本発明は、針先部が被測定物としての半導体ウエハ上の集積回路チップに対する接触部を形成するプローブピンにおいて、少なくとも上記針先部の表面を無電解PTFE含有Niメッキで被覆することで課題解決の手段としている。   In order to achieve the above object, the present invention provides a probe pin in which a needle tip portion forms a contact portion with respect to an integrated circuit chip on a semiconductor wafer as an object to be measured. It is a means of solving the problem by covering with plating.

このような構成を採用してことにより、つまりプローブピンの少なくとも針先部の表面を無電解PTFE含有Niメッキで被覆したことにより、プローブピン針先部の表面硬度が高くなって耐衝撃性に優れたプローブピンを得ることが可能となる。それにも係わらず針先部の摩擦係数を従来のプローブピンと殆ど変わらない値に保つことができるので、プローブピンの耐磨耗性において従来のプローブピンに劣ることのないプローブピンを得ることができる。   By adopting such a configuration, that is, at least the surface of the probe tip portion of the probe pin is coated with the electroless PTFE-containing Ni plating, the surface hardness of the probe pin tip portion is increased and the impact resistance is improved. An excellent probe pin can be obtained. Nevertheless, the friction coefficient of the tip of the needle can be kept at a value that is almost the same as that of the conventional probe pin, so that it is possible to obtain a probe pin that is not inferior to the conventional probe pin in terms of wear resistance. .

また、上記無電解PTFE含有Niメッキの硬度をHv300〜900に設定することにより、耐衝撃性に極めて優れたプローブピンを得ることができた。無電解PTFE含有Niメッキの硬度をこの数値に設定するとき、後述の通り、30万回以上の使用が可能なプローブピンを得ることができる。   Moreover, by setting the hardness of the electroless PTFE-containing Ni plating to Hv 300 to 900, it was possible to obtain a probe pin with extremely excellent impact resistance. When the hardness of the electroless PTFE-containing Ni plating is set to this value, a probe pin that can be used 300,000 times or more can be obtained as described later.

母材に無電解PTFE含有Niメッキを施してHv200〜500の析出硬度を有するメッキ層を形成した後、これを熱処理することにより、硬度Hv300〜900の無電解PTFE含有Niメッキを得るようにして課題解決の手段としている。   An electroless PTFE-containing Ni plating is applied to the base material to form a plating layer having a precipitation hardness of Hv 200 to 500, and then heat treated to obtain an electroless PTFE-containing Ni plating with a hardness of Hv 300 to 900. As a means to solve the problem.

さらに、上記無電解PTFE含有Niメッキの析出硬度を、同無電解PTFE含有Niメッキ中のPTFE粒子含有量を調節するにより行うことで課題解決の手段としている。   Furthermore, the precipitation hardness of the electroless PTFE-containing Ni plating is controlled by adjusting the PTFE particle content in the electroless PTFE-containing Ni plating, thereby providing a means for solving the problems.

無電解PTFE含有Niメッキの析出硬度を無電解PTFEメッキ中のPTFE粒子含有量を調節するにより行うことができ、さらにこれを熱処理することにより無電解PTFE含有Niメッキの硬度を高めることにができるので、硬度が高く、かつ任意の硬度を有するPTFEメッキ(皮膜)をプローブピンの針先部の表面に、簡単に形成することができる。   The deposition hardness of the electroless PTFE-containing Ni plating can be adjusted by adjusting the content of PTFE particles in the electroless PTFE plating, and the hardness of the electroless PTFE-containing Ni plating can be increased by heat treatment. Therefore, PTFE plating (film) having high hardness and arbitrary hardness can be easily formed on the surface of the probe tip portion of the probe pin.

本発明により得られたプローブピンは、プローブピンの少なくとも針先部の表面が無電解PTFE含有Niメッキで被覆されており、このことにより、プローブピン針先部の表面硬度を高めることができる。その結果耐衝撃性において優れたプローブピンを得ることができ、後に述べるように、約10000回以上の使用に耐え得るプローブピンを得ることが可能となる。
それにも係わらず、針先部の滑り性、つまり摩擦係数が従来のプローブピンとほとんど変わらないので、プローブピンの集積回路チップとのコンタクト時に、プローブピンの針先部に集積回路チップのアルミニウム酸化皮膜が付着するのを軽減することが可能となる。その結果、安定した接触抵抗値の維持が可能となるほか、クリーニング回数の減少化の点は従来のプローブピンとほぼ同様に保持したプローブピンを得ることが可能となる。
In the probe pin obtained according to the present invention, at least the surface of the probe tip portion of the probe pin is coated with the electroless PTFE-containing Ni plating, whereby the surface hardness of the probe pin needle tip portion can be increased. As a result, a probe pin excellent in impact resistance can be obtained, and as will be described later, it is possible to obtain a probe pin that can endure use about 10,000 times or more.
Nevertheless, since the slipperiness of the needle tip, that is, the coefficient of friction is almost the same as that of a conventional probe pin, the aluminum oxide film of the integrated circuit chip is placed on the needle tip of the probe pin when contacting the probe pin with the integrated circuit chip. Can be reduced. As a result, it is possible to maintain a stable contact resistance value, and it is possible to obtain a probe pin that is held in substantially the same manner as a conventional probe pin in terms of reducing the number of cleanings.

また、無電解PTFE含有NiメッキのPTFE粒子含有量を調節することにより、メッキの硬度を調節でき、さらに必要ならば熱処理を追加することにより、メッキの硬度のさらなる調節を行うことができるので、使用態様に適した硬度の針先部を備えたプローブピンを得ることができる。   Moreover, by adjusting the PTFE particle content of the electroless PTFE-containing Ni plating, the hardness of the plating can be adjusted, and if necessary, by further adding a heat treatment, the plating hardness can be further adjusted. A probe pin having a needle tip having a hardness suitable for the use mode can be obtained.

以下、本発明を図に示す実施形態により具体的に説明する。
図1はプローブピンの断面図、図2は図1のA部を拡大して示す断面図である。
Hereinafter, the present invention will be specifically described with reference to embodiments shown in the drawings.
1 is a cross-sectional view of the probe pin, and FIG. 2 is an enlarged cross-sectional view of a portion A in FIG.

図1、2は、いわゆる「(特許文献1のプローブピンと同じ形式の)カンチレバー型プローブピン」を示しており、図1、2において、符号10はプローブピンを示している。
プローブピン10は半導体ウエハ上の集積回路チップの通電検査のためのプローブカードのプリント配線基板(図示せず)に数十本から数百本が配設されるものであって、例えば、W、Re−W合金、ベリリウム同合金を母材としている。
1 and 2 show a so-called “cantilever type probe pin (of the same type as the probe pin of Patent Document 1)”, and in FIGS. 1 and 2, reference numeral 10 denotes a probe pin.
Tens to hundreds of probe pins 10 are arranged on a printed wiring board (not shown) of a probe card for energization inspection of an integrated circuit chip on a semiconductor wafer. Re-W alloy and beryllium alloy are used as base materials.

プローブピン10は、本体部1と本体部1の一端部(先端側)に形成された所定長さの先細状の直線テーパー状部2とで形成され、この直線テーパー状部2の尖頭端3には小径の針先部3aが形成されている。   The probe pin 10 is formed of a main body portion 1 and a tapered linear taper portion 2 having a predetermined length formed at one end portion (tip side) of the main body portion 1, and a pointed end of the linear taper portion 2. 3 has a small-diameter needle tip portion 3a.

寸法の一例を示すと、本体部1は線径が0.07〜0.7mm,全長が25〜100mmであり、直線テーパー状部2の長さが0.3mm〜6mmであり、また針先部3aはその径を0.02mm以下に形成されている。   As an example of dimensions, the main body 1 has a wire diameter of 0.07 to 0.7 mm, an overall length of 25 to 100 mm, a length of the linear tapered portion 2 of 0.3 to 6 mm, and a needle tip. The portion 3a has a diameter of 0.02 mm or less.

このような形状に加工されたプローブピン10の全表面に、無電解PTFE含有Niメッキの付着性を向上させるため、電気メッキによって、下地Niメッキ皮膜4が形成される。   In order to improve the adhesion of the electroless PTFE-containing Ni plating to the entire surface of the probe pin 10 processed into such a shape, the base Ni plating film 4 is formed by electroplating.

下地Niメッキ皮膜4を形成されたプローブピン10は、次に、尖頭端3を含む直線テーパー状部2の全表面に、無電解PTFE含有Niメッキにより、無電解PTFE含有Niメッキ(皮膜)5が形成される。
この無電解PTFE含有Niメッキ5は、例えばPTFE粒子を含むほぼ87°C〜90°Cの溶液中に本体部1の先端側を約30分漬けておくことにより、形成することができる。溶液中のPTFE粒子の含有量を調節することで、無電解PTFE含有Niメッキ5の析出硬度を調節することができる(この点については後記の表1を参照、表1中の「硬度Hv熱処理前」の数値がおれに相当する)。
なお、理屈上は、尖頭端3に形成された針先部3aのみを無電解PTFE含有Niメッキ5で被覆することで初期の目的を達成することができるのであるが、このような極めて小面積の箇所のみを無電解PTFE含有Niメッキ5で被覆することは、技術的に極めて困難であるので、この実施形態では、本体部1の先端側約40%までをメッキ溶液中に漬けて、メッキ溶液中に漬けられている箇所全体にメッキを施すことにより、針先部3aを無電解PTFE含有Niメッキ5で被覆するようにしている。
The probe pin 10 on which the base Ni plating film 4 is formed is then subjected to electroless PTFE-containing Ni plating (film) by electroless PTFE-containing Ni plating on the entire surface of the linear tapered portion 2 including the pointed end 3. 5 is formed.
The electroless PTFE-containing Ni plating 5 can be formed, for example, by immersing the tip side of the main body 1 in a solution of approximately 87 ° C. to 90 ° C. containing PTFE particles for about 30 minutes. By adjusting the content of PTFE particles in the solution, the precipitation hardness of the electroless PTFE-containing Ni plating 5 can be adjusted (see Table 1 below for this point, “Hardness Hv heat treatment in Table 1). The value in front is equivalent to me).
Theoretically, the initial purpose can be achieved by covering only the needle tip portion 3a formed at the tip end 3 with the electroless PTFE-containing Ni plating 5. Since it is extremely technically difficult to coat only the area portion with the electroless PTFE-containing Ni plating 5, in this embodiment, up to about 40% of the tip side of the main body 1 is immersed in the plating solution, By plating the entire portion soaked in the plating solution, the needle tip portion 3a is covered with the electroless PTFE-containing Ni plating 5.

無電解PTFE含有Niメッキ5を施されたプローブピン10は、表1に示す通り、PTFE粒子の含有量に応じた析出硬度を有する。必要ならば、これに熱処理を施すことにより、無電解PTFE含有Niメッキ5の硬度をさらに高めることができる。この熱処理は、例えば、慣用的な、300°Cの雰囲気中に約1時間晒す方法により行うことができる。   As shown in Table 1, the probe pin 10 to which the electroless PTFE-containing Ni plating 5 is applied has a precipitation hardness corresponding to the content of PTFE particles. If necessary, the hardness of the electroless PTFE-containing Ni plating 5 can be further increased by subjecting it to a heat treatment. This heat treatment can be performed, for example, by a conventional method of exposing in an atmosphere of 300 ° C. for about 1 hour.

次に、この実施形態のプローブピン10の、溶液中のPTFE粒子の含有量と無電解PTFE含有Niメッキ5の析出硬度との関係、さらに熱処理の効果についての実験結果を表1に示す。
実験に供したテストピースの態様は次の通りである。
全体形状:図1、2に示す形状(従来例、本発明品1、2、3のいずれも)
全長:100mm(従来例、本発明品1、2、3のいずれも)
線径:0.10mm(従来例、本発明品1、2、3のいずれも)
直線テーパー状部の長さ:3mm(従来例、本発明品1、2、3のいずれも)
メッキの種類:従来例;電気メッキによるPTFE含有Niメッキ
本発明品1、2、3;無電解PTFE含有Niメッキ
メッキの長さ:5mm(従来例、本発明品1、2、3のいずれも)
メッキ厚:5μm(従来例、本発明品1、2、3のいずれも)
母材:W
メッキ溶液(本発明品1、2、3の場合)は、ニッケル塩、還元剤、錯化剤、pH調整剤、安定剤およびPTFE−Ni粒子分散剤からなる。
Next, Table 1 shows the relationship between the content of PTFE particles in the solution of the probe pin 10 of this embodiment and the precipitation hardness of the electroless PTFE-containing Ni plating 5, and the experimental results on the effect of heat treatment.
The aspect of the test piece subjected to the experiment is as follows.
Overall shape: the shape shown in FIGS.
Total length: 100 mm (conventional example, any of the present invention products 1, 2, 3)
Wire diameter: 0.10 mm (conventional example, products 1, 2, and 3 of the present invention)
Length of linear taper portion: 3 mm (conventional example, products of the present invention 1, 2, 3)
Type of plating: conventional example; PTFE-containing Ni plating by electroplating
Invention products 1, 2, and 3; electroless PTFE-containing Ni plating Plating length: 5 mm (conventional example, both of the invention products 1, 2, and 3)
Plating thickness: 5 μm (conventional example, any of the present invention products 1, 2 and 3)
Base material: W
The plating solution (in the case of the present invention products 1, 2, and 3) comprises a nickel salt, a reducing agent, a complexing agent, a pH adjuster, a stabilizer, and a PTFE-Ni particle dispersant.


表1に示す通り、PTFE粒子含有量が3%の場合、硬度Hv400の析出硬度を有する無電解PTFE含有Niメッキ(皮膜)5が得られた。
これに熱処理を施すことにより、メッキ(皮膜)の硬度をHv750程度に高めることができた。
As shown in Table 1, when the PTFE particle content was 3%, an electroless PTFE-containing Ni plating (film) 5 having a precipitation hardness of hardness Hv400 was obtained.
By subjecting this to heat treatment, the hardness of the plating (film) could be increased to about Hv750.

さにまた、上述の工程で製造されたプローブピン10は、尖頭端3の針先部3aに形成されている無電解PTFE含有Niメッキ5はPTFE粒子を含有しており、このPTFE粒子が、表1の摩擦係数の数値が示すように、参照プローブピン10の尖頭端3の針先部3aの、集積回路チップとのコンタクト時の滑り性を良好にするよう作用するので、プローブピン10の滑り性を従来例とほぼ同一に保つことができ、その結果、プローブピン10の針先部3aへのアルミニウムの付着を軽減でき、クリーニング回数の減少および安定した接触抵抗の維持が可能となる。同時に耐磨耗性も向上する。   Furthermore, in the probe pin 10 manufactured in the above-described process, the electroless PTFE-containing Ni plating 5 formed on the needle tip portion 3a of the pointed end 3 contains PTFE particles. As indicated by the numerical values of the friction coefficients in Table 1, the probe pin 3 acts to improve the slipping property when the tip 3a of the tip 3 of the reference probe pin 10 contacts the integrated circuit chip. As a result, the adhesion of aluminum to the needle tip 3a of the probe pin 10 can be reduced, and the number of cleanings can be reduced and stable contact resistance can be maintained. Become. At the same time, wear resistance is improved.

また、表1に示す通り、無電解PTFE含有Niメッキ5中のPTFE粒子含有量の調節により、無電解PTFE含有Niメッキ5の硬度の調節が可能となり、さらに熱処理によりメッキ硬度を高めることも可能であるので、使用態様に適した硬度を有する針先部3aを備えたプローブピン10を得ることができる。しかもこのプローブピンは、従来の電気メッキ法のものに較べプローブピン10の針先部3aの耐衝撃性の点において優れているにも係わらず、耐磨耗性の点において劣ることのないプローブピンを得ることができる。
上述の説明は、カンチレバー型のプローブピンを例にしているが、垂直型プローブピンについても同様の効果が得られることはいうまでもない。
Moreover, as shown in Table 1, it is possible to adjust the hardness of the electroless PTFE-containing Ni plating 5 by adjusting the PTFE particle content in the electroless PTFE-containing Ni plating 5, and it is also possible to increase the plating hardness by heat treatment. Therefore, it is possible to obtain the probe pin 10 including the needle tip portion 3a having a hardness suitable for the usage mode. In addition, the probe pin is superior to the conventional electroplating method in terms of the impact resistance of the probe tip 10a, but is not inferior in terms of wear resistance. You can get a pin.
In the above description, a cantilever type probe pin is taken as an example, but it goes without saying that the same effect can be obtained with a vertical type probe pin.

本発明の一実施形態のプローブピンの断面図である。It is sectional drawing of the probe pin of one Embodiment of this invention. 図2は図1のA矢部を拡大して示す断面図である。FIG. 2 is an enlarged cross-sectional view showing an arrow A portion in FIG.

符号の説明Explanation of symbols

1:本体部
2:直線テーパー状部
3:尖頭端
3a:針先部
4:Niメッキ皮膜
5:無電解PTFE含有Niメッキ(皮膜)
10:プローブピン


1: Body part 2: Linear taper part 3: Pointed end 3a: Needle tip part
4: Ni plating film 5: Electroless PTFE-containing Ni plating (film)
10: Probe pin


Claims (5)

針先部が被測定物としての半導体ウエハ上の集積回路チップに対する接触部を形成するプローブピンにおいて、少なくとも上記針先部の表面が無電解PTFE含有Niメッキで被覆されていることを特徴とするプローブカード用プローブピン。   In the probe pin in which the needle tip portion forms a contact portion with respect to the integrated circuit chip on the semiconductor wafer as the object to be measured, at least the surface of the needle tip portion is covered with electroless PTFE-containing Ni plating Probe pin for probe card. 上記プローブピンの母材が、タングステンまたはレニウムタングステンであることを特徴とする請求項1に記載のプローブカード用プローブピン。   2. The probe pin for a probe card according to claim 1, wherein a base material of the probe pin is tungsten or rhenium tungsten. 上記無電解PTFE含有Niメッキ皮膜の硬度がHv300〜900であることを特徴とする請求項1または請求項2のいずれか1項に記載のプローブカード用プローブピン。   3. The probe pin for a probe card according to claim 1, wherein the electroless PTFE-containing Ni plating film has a hardness of Hv 300 to 900. 4. 上記硬度Hv300〜900の無電解PTFE含有Niメッキが、母材に無電解PTFE含有Niメッキを施してHv200〜500の析出硬度を有するメッキ層を形成した後、これを熱処理することにより形成されることを特徴とする請求項3に記載のプローブカード用プローブピン。   The electroless PTFE-containing Ni plating having the hardness Hv of 300 to 900 is formed by subjecting the base material to electroless PTFE-containing Ni plating to form a plating layer having a precipitation hardness of Hv200 to 500, and then heat-treating this. The probe pin for a probe card according to claim 3. 上記析出硬度の調整が、上記無電解PTFE含有Niメッキ中のPTFE粒子含有量の調節により行われることを特徴とする請求項4に記載のプローブカード用プローブピン。

5. The probe pin for a probe card according to claim 4, wherein the precipitation hardness is adjusted by adjusting the content of PTFE particles in the electroless PTFE-containing Ni plating.

JP2004376416A 2004-12-27 2004-12-27 Probe pin for probe card Pending JP2006184081A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004376416A JP2006184081A (en) 2004-12-27 2004-12-27 Probe pin for probe card

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004376416A JP2006184081A (en) 2004-12-27 2004-12-27 Probe pin for probe card

Publications (1)

Publication Number Publication Date
JP2006184081A true JP2006184081A (en) 2006-07-13

Family

ID=36737315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004376416A Pending JP2006184081A (en) 2004-12-27 2004-12-27 Probe pin for probe card

Country Status (1)

Country Link
JP (1) JP2006184081A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249449A (en) * 2007-03-30 2008-10-16 Kanai Hiroaki Probe needle and its manufacturing method
US8287653B2 (en) 2007-09-17 2012-10-16 Rave, Llc Debris removal in high aspect structures
US10330581B2 (en) 2007-09-17 2019-06-25 Rave Llc Debris removal from high aspect structures
US10384238B2 (en) 2007-09-17 2019-08-20 Rave Llc Debris removal in high aspect structures
US10618080B2 (en) 2007-09-17 2020-04-14 Bruker Nano, Inc. Debris removal from high aspect structures
KR102165174B1 (en) * 2019-08-23 2020-10-13 이용민 Barrel of probe with enhanced surface strength

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102383A (en) * 1993-10-01 1995-04-18 Fuji Electric Co Ltd Mechanism element
JPH11350163A (en) * 1998-06-03 1999-12-21 Mitsubishi Electric Corp Slidable contacting member and breaker using it
JP2001074777A (en) * 1999-08-31 2001-03-23 Kanai Hiroaki Probe for probe card
JP2003167003A (en) * 2001-11-30 2003-06-13 Kanai Hiroaki Probe needle for probe card
JP2006098274A (en) * 2004-09-30 2006-04-13 Tokusen Kogyo Co Ltd Probe pin for probe card

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102383A (en) * 1993-10-01 1995-04-18 Fuji Electric Co Ltd Mechanism element
JPH11350163A (en) * 1998-06-03 1999-12-21 Mitsubishi Electric Corp Slidable contacting member and breaker using it
JP2001074777A (en) * 1999-08-31 2001-03-23 Kanai Hiroaki Probe for probe card
JP2003167003A (en) * 2001-11-30 2003-06-13 Kanai Hiroaki Probe needle for probe card
JP2006098274A (en) * 2004-09-30 2006-04-13 Tokusen Kogyo Co Ltd Probe pin for probe card

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008249449A (en) * 2007-03-30 2008-10-16 Kanai Hiroaki Probe needle and its manufacturing method
US10384238B2 (en) 2007-09-17 2019-08-20 Rave Llc Debris removal in high aspect structures
US20130037053A1 (en) * 2007-09-17 2013-02-14 Rave, Llc Debris Removal in High Aspect Structures
US8696818B2 (en) * 2007-09-17 2014-04-15 Rave Llc Debris removal in high aspect structures
TWI460773B (en) * 2007-09-17 2014-11-11 瑞弗股份有限公司 Debris removal in high aspect structures
US10330581B2 (en) 2007-09-17 2019-06-25 Rave Llc Debris removal from high aspect structures
US8287653B2 (en) 2007-09-17 2012-10-16 Rave, Llc Debris removal in high aspect structures
US10618080B2 (en) 2007-09-17 2020-04-14 Bruker Nano, Inc. Debris removal from high aspect structures
US11040379B2 (en) 2007-09-17 2021-06-22 Bruker Nano, Inc. Debris removal in high aspect structures
US11391664B2 (en) 2007-09-17 2022-07-19 Bruker Nano, Inc. Debris removal from high aspect structures
US11577286B2 (en) 2007-09-17 2023-02-14 Bruker Nano, Inc. Debris removal in high aspect structures
US11964310B2 (en) 2007-09-17 2024-04-23 Bruker Nano, Inc. Debris removal from high aspect structures
KR102165174B1 (en) * 2019-08-23 2020-10-13 이용민 Barrel of probe with enhanced surface strength

Similar Documents

Publication Publication Date Title
KR101427506B1 (en) Contact probe
TWI239402B (en) Electrical test probes and methods of making the same
US6359337B1 (en) Composite electrical contact structure and method for manufacturing the same
TWI411786B (en) Electric contact member
TW201122496A (en) Contact probe pin
JP3551411B2 (en) Contact member and method of manufacturing the same
JP2004093355A (en) Pd ALLOY SERIES PROBE PIN AND PROBE PIN DEVICE USING IT
TW201241440A (en) Contact probe pin
US9359665B2 (en) Method of manufacturing swage mount having a mixture of conductive material and a coating material
JP2006184081A (en) Probe pin for probe card
US6366106B1 (en) Probe needle for probe card
US9459282B2 (en) Electrical contact member
JP2003167003A (en) Probe needle for probe card
TW201237423A (en) Contact probe pin and test method
JP2008249449A (en) Probe needle and its manufacturing method
JP2006064511A (en) Metallic structure
JP2007256088A (en) Probe pin
JP4343735B2 (en) Probe needle
JP2006098274A (en) Probe pin for probe card
JP2009008487A (en) Probe needle for probe card
JP2018072283A (en) Probe needle, and manufacturing method for insulation-coated probe needle
JP2005241362A (en) Probe needle and its manufacturing method
JPWO2004057054A1 (en) Electroless nickel plating bath for anisotropic growth bump formation, method for forming anisotropic growth bump, article on which anisotropic growth bump is formed, and anisotropic growth accelerator for electroless nickel plating bath
TW201541086A (en) Electrode structure, inspection jig, and method of manufacturing electrode structure
JP2007232704A (en) Contact probe

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Effective date: 20071031

Free format text: JAPANESE INTERMEDIATE CODE: A625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100413

A131 Notification of reasons for refusal

Effective date: 20100419

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100811