JP5824435B2 - Anisotropic conductive member and multilayer wiring board - Google Patents

Anisotropic conductive member and multilayer wiring board Download PDF

Info

Publication number
JP5824435B2
JP5824435B2 JP2012215256A JP2012215256A JP5824435B2 JP 5824435 B2 JP5824435 B2 JP 5824435B2 JP 2012215256 A JP2012215256 A JP 2012215256A JP 2012215256 A JP2012215256 A JP 2012215256A JP 5824435 B2 JP5824435 B2 JP 5824435B2
Authority
JP
Japan
Prior art keywords
conductive member
anisotropic conductive
resin
hole
wiring board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012215256A
Other languages
Japanese (ja)
Other versions
JP2014071962A (en
Inventor
堀田 吉則
吉則 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2012215256A priority Critical patent/JP5824435B2/en
Publication of JP2014071962A publication Critical patent/JP2014071962A/en
Application granted granted Critical
Publication of JP5824435B2 publication Critical patent/JP5824435B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Non-Insulated Conductors (AREA)

Description

本発明は、異方導電性部材および多層配線基板に関する。   The present invention relates to an anisotropic conductive member and a multilayer wiring board.

絶縁性基材に設けられた微細孔に金属が充填されてなる金属充填微細構造体(デバイス)は、近年ナノテクノロジーでも注目されている分野のひとつであり、例えば、異方導電部材としての用途が期待されている。
異方導電性部材は、半導体素子等の電子部品と回路基板との間に挿入し、加圧するだけで電子部品と回路基板間の電気的接続が得られるため、半導体素子等の電子部品等の電気的接続部材や機能検査を行う際の検査用コネクタ等として広く使用されている。
Metal-filled microstructures (devices) in which fine holes provided in an insulating substrate are filled with metal are one of the fields that have recently been attracting attention in nanotechnology. For example, they are used as anisotropic conductive members. Is expected.
An anisotropic conductive member is inserted between an electronic component such as a semiconductor element and a circuit board, and electrical connection between the electronic component and the circuit board can be obtained simply by applying pressure. It is widely used as an electrical connection member or a connector for inspection when performing functional inspection.

特に、半導体素子等の電子接続部材は、そのダウンサイジング化が顕著であり、従来のワイヤーボンディングのような直接配線基板を接続するような方式では、ワイヤーの径をこれ以上小さくすることが困難となってきている。
そこで、近年になり、絶縁素材の皮膜中に導電部材が貫通林立したタイプや金属球を配置したタイプの異方導電部材が注目されてきている。
In particular, the downsizing of electronic connection members such as semiconductor elements is remarkable, and it is difficult to further reduce the diameter of the wire in a method of directly connecting a wiring board such as conventional wire bonding. It has become to.
Therefore, in recent years, anisotropic conductive members of a type in which a conductive member penetrates in a film of an insulating material or a type in which a metal ball is arranged have been attracting attention.

また、半導体素子等の検査用コネクタは、半導体素子等の電子部品を回路基板に実装した後に機能検査を行うと、電子部品が不良であった場合に、回路基板もともに処分されることとなり、金額的な損失が大きくなってしまうという問題を回避するために使用される。
即ち、半導体素子等の電子部品を、実装時と同様のポジションで回路基板に異方導電性部材を介して接触させて機能検査を行うことで、電子部品を回路基板上に実装せずに、機能検査を実施でき、上記の問題を回避することができる。
In addition, the inspection connector such as the semiconductor element, when the electronic component such as the semiconductor element is mounted on the circuit board and the function inspection is performed, when the electronic component is defective, the circuit board is also disposed of together. It is used to avoid the problem of a large monetary loss.
That is, an electronic component such as a semiconductor element is brought into contact with the circuit board through an anisotropic conductive member at a position similar to that at the time of mounting, and a function test is performed, so that the electronic component is not mounted on the circuit board. Functional inspection can be performed, and the above problems can be avoided.

このような異方導電性部材に使用可能な微細構造体として、特許文献1には、「1×106〜1×1010/mm2の密度で、孔径10〜500nmの貫通孔を有する絶縁性基材からなる微細構造体であって、該貫通孔の総数の20%以上の貫通孔内部に金属が充填され、且つ、該貫通孔の総数の1〜80%の貫通孔内部にポリマーが充填されていることを特徴とする微細構造体。」が記載されている([請求項1])。 As a fine structure that can be used for such an anisotropic conductive member, Patent Document 1 discloses an insulating material having a through hole having a hole diameter of 10 to 500 nm at a density of 1 × 10 6 to 1 × 10 10 / mm 2. A fine structure made of a conductive substrate, wherein a metal is filled in 20% or more of the total number of the through holes, and a polymer is contained in 1-80% of the total number of the through holes. "A fine structure characterized by being filled" ([Claim 1]).

また、特許文献2には、「絶縁性基材に設けられた貫通孔の内部に金属および絶縁性物質を充填させた微細構造体であって、
前記絶縁性基材における、前記貫通孔の密度が1×106〜1×1010個/mm2であり、前記貫通孔の平均開口径が10〜5000nmであり、前記貫通孔の平均深さが10〜1000μmであり、
前記貫通孔の前記金属のみによる封孔率が80%以上であり、
前記貫通孔の前記金属および前記絶縁性物質による封孔率が99%以上であり、
前記絶縁性物質が、水酸化アルミニウム、二酸化ケイ素、金属アルコキシド、塩化リチウム、酸化チタン、酸化マグネシウム、酸化タンタル、酸化ニオブおよび酸化ジルコニウムからなる群から選択される少なくとも1種である微細構造体。」が記載されている([請求項1])。
Patent Document 2 states that “a fine structure in which a metal and an insulating substance are filled in a through hole provided in an insulating base material,
In the insulating base material, the density of the through holes is 1 × 10 6 to 1 × 10 10 holes / mm 2 , the average opening diameter of the through holes is 10 to 5000 nm, and the average depth of the through holes is Is 10 to 1000 μm,
The through hole has a sealing ratio of only 80% or more by the metal,
The sealing rate by the metal and the insulating substance of the through hole is 99% or more,
The microstructure in which the insulating substance is at least one selected from the group consisting of aluminum hydroxide, silicon dioxide, metal alkoxide, lithium chloride, titanium oxide, magnesium oxide, tantalum oxide, niobium oxide, and zirconium oxide. Is described ([Claim 1]).

特開2010−33753号公報JP 2010-33753 A 特開2012−9146号公報JP 2012-9146 A

本発明者は、特許文献1および2に記載の微細構造体について検討を行った結果、これらの微細構造体を異方導電性部材として使用すると、配線基板(特に、多層配線基板)の電極との安定的な接続の観点からアンダーフィルを用いる場合には、層間等へのアンダーフィルの充填が困難となり、電極の形状やピッチ等によっては配線基板との密着力が劣ったり、導通信頼性が劣ったりする場合があることを明らかとした。   As a result of studying the fine structures described in Patent Documents 1 and 2, the present inventor uses the electrodes of a wiring board (in particular, a multilayer wiring board) as a result of using these fine structures as anisotropic conductive members. In the case of using underfill from the viewpoint of stable connection, it becomes difficult to fill the underfill between layers, etc., and depending on the electrode shape and pitch, the adhesion to the wiring board may be inferior, and conduction reliability may be reduced. It was clarified that there are cases where it is inferior.

そこで、本発明は、配線基板との密着力が高く、優れた導通信頼性を達成することができる異方導電部材およびそれを用いた多層配線基板を提供することを目的とする。   Therefore, an object of the present invention is to provide an anisotropic conductive member that has high adhesion to a wiring board and can achieve excellent conduction reliability, and a multilayer wiring board using the anisotropic conductive member.

本発明者は、上記目的を達成すべく鋭意研究した結果、絶縁性基材に設けられた貫通孔の内部に金属とともに特定の樹脂を存在させた異方導電部材を用いることにより、配線不良を抑制することができることを見出し、本発明を完成させた。
すなわち、本発明は、以下の(1)〜()を提供する。
As a result of diligent research to achieve the above object, the present inventor has used a anisotropic conductive member in which a specific resin is present together with a metal inside a through hole provided in an insulating base material, thereby reducing wiring defects. The present invention has been completed by finding that it can be suppressed.
That is, the present invention provides the following (1) to ( 8 ).

(1) 絶縁性基材の厚み方向に設けられた複数の貫通孔の内部に導電性材料を有する異方導電性部材であって、
貫通孔の内部に、導電性材料とともに樹脂が存在し、
貫通孔が、導電性材料によって絶縁性基材の厚み方向に導通されており、
樹脂の熱膨張率が、100×10-6-1以上であり、
貫通孔の平均開口径が40nm以上10μm未満であり、かつ、アスペクト比(平均深さ/平均開口径)が100〜3000である異方導電性部材。
(1) An anisotropic conductive member having a conductive material inside a plurality of through holes provided in the thickness direction of the insulating substrate,
Resin is present inside the through hole along with the conductive material,
The through hole is conducted in the thickness direction of the insulating base material by the conductive material,
Thermal expansion coefficient of the resin is state, and are 100 × 10 -6 K -1 or higher,
An anisotropic conductive member having an average opening diameter of through-holes of 40 nm or more and less than 10 μm and an aspect ratio (average depth / average opening diameter) of 100 to 3000 .

(2) 導電性材料および樹脂が、貫通孔の孔径方向の断面においていずれも存在している(1)に記載の異方導電性部材。   (2) The anisotropic conductive member according to (1), wherein the conductive material and the resin are both present in a cross section in the hole diameter direction of the through hole.

) 貫通孔が設けられた絶縁性基材が、バルブ金属の陽極酸化皮膜である(1)または(2)に記載の異方導電性部材。 ( 3 ) The anisotropic conductive member according to (1) or (2) , wherein the insulating base material provided with the through hole is an anodized film of a valve metal.

) バルブ金属が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属である()に記載の異方導電性部材。 ( 4 ) The anisotropic conductivity according to ( 3 ), wherein the valve metal is at least one metal selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony. Element.

) 導電性材料が、銅、金、アルミニウム、ニッケル、銀およびタングステンからなる群から選択される少なくとも1種の金属、または、カーボンナノファイバーである(1)〜()のいずれかに記載の異方導電性部材。 ( 5 ) In any one of (1) to ( 4 ), the conductive material is at least one metal selected from the group consisting of copper, gold, aluminum, nickel, silver and tungsten, or carbon nanofibers The anisotropic conductive member as described.

) 樹脂が、少なくともシリコーン樹脂および/またはウレタン樹脂を含む(1)〜()のいずれかに記載の異方導電性部材。 ( 6 ) The anisotropic conductive member according to any one of (1) to ( 5 ), wherein the resin contains at least a silicone resin and / or a urethane resin.

) (1)〜()のいずれかに異方導電性部材と、異方導電性部材の導電性材料と電極を介して電気的に接続される配線基板とが積層された多層配線基板。 ( 7 ) Multilayer wiring in which an anisotropic conductive member, a conductive material of the anisotropic conductive member, and a wiring board electrically connected via an electrode are laminated in any one of (1) to ( 6 ) substrate.

) 半導体パッケージのインターポーザとして用いる()に記載の多層配線基板。 ( 8 ) The multilayer wiring board according to ( 7 ), which is used as an interposer for a semiconductor package.

以下に説明するように、本発明によれば、配線基板との密着力が高く、優れた導通信頼性を達成することができる異方導電部材およびそれを用いた多層配線基板を提供することができる。   As described below, according to the present invention, it is possible to provide an anisotropic conductive member that has high adhesion to a wiring board and can achieve excellent conduction reliability, and a multilayer wiring board using the anisotropic conductive member. it can.

図1は、本発明の異方導電性部材の好適な実施態様の一例を示す模式図であり、図1(A)は正面図、図1(B)は図1(A)の切断面線IB−IBからみた断面図である。FIG. 1 is a schematic view showing an example of a preferred embodiment of the anisotropic conductive member of the present invention, FIG. 1 (A) is a front view, and FIG. 1 (B) is a cut line of FIG. 1 (A). It is sectional drawing seen from IB-IB. 図2は、本発明の多層配線基板の好適な実施態様の一例を示す模式的な断面図であり、図2(A)は加熱圧着前の半製品を示し、図2(B)は加熱圧着後の多層配線基板を示す。FIG. 2 is a schematic cross-sectional view showing an example of a preferred embodiment of the multilayer wiring board of the present invention. FIG. 2 (A) shows a semi-finished product before thermocompression bonding, and FIG. 2 (B) is thermocompression bonding. The latter multilayer wiring board is shown.

〔異方導電性部材〕
以下に、本発明の異方導電性部材について詳細に説明する。
本発明の異方導電性部材は、絶縁性基材の厚み方向に設けられた複数の貫通孔の内部に導電性材料を有する異方導電性部材であって、上記貫通孔の内部に上記導電性材料とともに樹脂が存在し、上記貫通孔が上記導電性材料によって上記絶縁性基材の厚み方向に導通されており、上記樹脂の熱膨張率が100×10-6-1以上である異方導電性部材である。
次に、本発明の異方導電性部材の構造について、図面を用いて説明する。
[Anisotropic conductive member]
Hereinafter, the anisotropic conductive member of the present invention will be described in detail.
The anisotropic conductive member of the present invention is an anisotropic conductive member having a conductive material in a plurality of through holes provided in the thickness direction of the insulating base material, and the conductive material in the through holes. Resin is present together with the conductive material, the through hole is conducted in the thickness direction of the insulating base material by the conductive material, and the thermal expansion coefficient of the resin is 100 × 10 −6 K −1 or more. This is a conductive member.
Next, the structure of the anisotropic conductive member of the present invention will be described with reference to the drawings.

図1は、本発明の異方導電性部材の好適な実施態様の一例を示す模式図であり、図1(A)は正面図、図1(B)は図1(A)の切断面線IB−IBからみた断面図である。
図1に示すように、本発明の異方導電性部材1は、絶縁性基材2と、導電性材料3および樹脂4が存在する複数の貫通孔5とを具備するものである。
ここで、図1(B)においては、導電性材料3が貫通孔5の内壁を覆うように存在し、樹脂4が貫通孔5の中心付近に存在した好適態様が示されているが、本発明の異方導電性部材はこの態様に限定されず、導電性材料3が貫通孔5の中心付近に存在し、樹脂4が貫通孔5の隙間を埋めるように存在していてもよい。
FIG. 1 is a schematic view showing an example of a preferred embodiment of the anisotropic conductive member of the present invention, FIG. 1 (A) is a front view, and FIG. 1 (B) is a cut line of FIG. 1 (A). It is sectional drawing seen from IB-IB.
As shown in FIG. 1, the anisotropic conductive member 1 of the present invention includes an insulating base 2 and a plurality of through holes 5 in which a conductive material 3 and a resin 4 are present.
Here, FIG. 1B shows a preferred embodiment in which the conductive material 3 is present so as to cover the inner wall of the through-hole 5 and the resin 4 is present in the vicinity of the center of the through-hole 5. The anisotropic conductive member of the invention is not limited to this mode, and the conductive material 3 may be present near the center of the through hole 5, and the resin 4 may be present so as to fill the gap between the through holes 5.

図1に示すように、貫通孔5は、内部に存在する導電性材料3によって絶縁性基材2の厚み方向に導通し、導通路を形成しているため、互いに絶縁された状態となるよう絶縁性基材2の厚み方向に貫通して設けられる。
また、貫通孔5に存在する導電性材料3および樹脂4は、いずれも絶縁基材2の表面2aおよび裏面2bにおいて露出しているのが好ましく、突出していないのが好ましい。すなわち、異方導電性部材1は、その表面および裏面が平滑であるのが好ましい。
更に、貫通孔5は、絶縁性基材2の厚み方向Zと略平行(図1においては平行)となるように設けられるのが好ましい。具体的には、絶縁性基材2の厚みに対する貫通孔5の中心線の長さ(長さ/厚み)が、1.0〜1.2であるのが好ましく、1.0〜1.05であるのがより好ましい。
次に、本発明の異方導電性部材の絶縁性基材および貫通孔(導通路)について、材料、寸法、形成方法等について説明する。
As shown in FIG. 1, the through-holes 5 are electrically connected in the thickness direction of the insulating base material 2 by the conductive material 3 present inside to form a conduction path, so that they are insulated from each other. The insulating base 2 is provided so as to penetrate in the thickness direction.
Moreover, it is preferable that the conductive material 3 and the resin 4 existing in the through hole 5 are both exposed on the front surface 2a and the back surface 2b of the insulating base material 2, and preferably do not protrude. That is, the anisotropic conductive member 1 preferably has a smooth surface and back surface.
Furthermore, the through hole 5 is preferably provided so as to be substantially parallel to the thickness direction Z of the insulating substrate 2 (parallel in FIG. 1). Specifically, the length (length / thickness) of the center line of the through hole 5 with respect to the thickness of the insulating base material 2 is preferably 1.0 to 1.2, and preferably 1.0 to 1.05. It is more preferable that
Next, materials, dimensions, formation methods, and the like of the insulating base material and the through hole (conduction path) of the anisotropic conductive member of the present invention will be described.

<絶縁性基材>
本発明の異方導電性部材を構成する絶縁性基材は、従来公知の異方導電性フィルム等を構成する絶縁性基材(例えば、熱可塑性エラストマー等)と同程度の電気抵抗率(1014Ω・cm程度)を有するものであれば特に限定されない。
<Insulating base material>
The insulating base material constituting the anisotropic conductive member of the present invention has an electrical resistivity (10) comparable to that of an insulating base material (eg, thermoplastic elastomer) constituting a conventionally known anisotropic conductive film or the like. If it has about 14 ohm * cm), it will not specifically limit.

本発明においては、上記絶縁性基材は、所望の平均開口径を有するマイクロポアが貫通孔として形成され、かつ、高アスペクト比の貫通孔が形成される理由から、バルブ金属の陽極酸化皮膜であるのが好ましい。
ここで、上記バルブ金属としては、具体的には、例えば、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス、アンチモン等が挙げられる。
これらのうち、寸法安定性がよく、比較的安価であることからアルミニウムの陽極酸化皮膜(基材)であるのが好ましい。
In the present invention, the insulating base material is an anodized film of a valve metal because micropores having a desired average opening diameter are formed as through holes and high aspect ratio through holes are formed. Preferably there is.
Specific examples of the valve metal include aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth, and antimony.
Of these, an anodic oxide film (base material) of aluminum is preferable because it has good dimensional stability and is relatively inexpensive.

また、本発明においては、上記絶縁性基材における貫通孔の間隔(図1(B)においては符号6で表される部分)は、10nm以上であるのが好ましく、20〜100nmであるのがより好ましく、20〜50nmであるのが更に好ましい。
貫通孔の間隔が上記範囲であると、絶縁性基材が絶縁性の隔壁として十分に機能する。
Moreover, in this invention, it is preferable that the space | interval of the through-hole in the said insulating base material (part represented by the code | symbol 6 in FIG. 1 (B)) is 10 nm or more, and it is 20-100 nm. More preferably, it is 20-50 nm.
When the interval between the through holes is within the above range, the insulating base material sufficiently functions as an insulating partition.

<貫通孔(導通路)>
上記絶縁性基材に設けられる上記貫通孔は、本発明の異方導電性部材においては、後述する導電性材料および樹脂が存在し、それられ実質的に満たされるものである。
<Through hole (conduction path)>
In the anisotropic conductive member of the present invention, the through hole provided in the insulating base material is filled with the conductive material and resin described later.

本発明においては、上記貫通孔の密度は、1×106〜1×1010個/mm2であるのが好ましく、2×106〜8×109個/mm2であるのがより好ましく、5×106〜5×109個/mm2であるのが更に好ましい。
貫通孔の密度が上記範囲にあることにより、本発明の異方導電性部材を高集積化が一層進んだ現在においても半導体素子等の電子部品の検査用コネクタ等として使用することができる。
In the present invention, the density of the through holes is preferably 1 × 10 6 to 1 × 10 10 holes / mm 2 , more preferably 2 × 10 6 to 8 × 10 9 holes / mm 2. More preferably, it is 5 × 10 6 to 5 × 10 9 pieces / mm 2 .
When the density of the through holes is in the above range, the anisotropic conductive member of the present invention can be used as a connector for inspection of electronic parts such as semiconductor elements even at the present time when the integration is further advanced.

また、上記貫通孔の開口径(図1(B)においては符号7で表される部分)の平均値(平均開口径)は、40nm以上10μm未満であるのが好ましく、60nm以上5μm以下であるのがより好ましく、1μm以下であるのが更に好ましい。
貫通孔の平均開口径が上記範囲であると、電気信号を流した際に十分な応答を得ることができるため、本発明の異方導電性部材を電子部品の検査用コネクタとして好適に用いることができる。
In addition, the average value (average opening diameter) of the opening diameters of the through holes (portion represented by reference numeral 7 in FIG. 1B) is preferably 40 nm or more and less than 10 μm, and is 60 nm or more and 5 μm or less. Is more preferable, and it is still more preferable that it is 1 micrometer or less.
When the average opening diameter of the through holes is within the above range, a sufficient response can be obtained when an electric signal is passed. Therefore, the anisotropic conductive member of the present invention is preferably used as an inspection connector for electronic components. Can do.

更に、上記貫通孔の深さ(図1(B)においては符号8で表される部分)の平均値(平均深さ)は、10〜1000μmであり、50〜700μmであるのが好ましく、50〜200μmであるのがより好ましい。
貫通孔の平均深さ、すなわち、絶縁性基材の厚さが上記範囲であると、機械的強度が向上して絶縁性基材の取り扱い性が良好となる。
Furthermore, the average value (average depth) of the depth of the through hole (portion represented by reference numeral 8 in FIG. 1B) is 10 to 1000 μm, preferably 50 to 700 μm, More preferably, it is -200 micrometers.
When the average depth of the through holes, that is, the thickness of the insulating substrate is in the above range, the mechanical strength is improved and the handling property of the insulating substrate is improved.

本発明においては、後述するように、半導体素子等の配線基板における電極と異方導電性部材とを接続(接合)する際の加熱により、貫通孔に存在する樹脂が膨張し、効率よく配線基板と異方導電性部材との隙間を埋めることができ、配線基板との密着性がより高くなる理由から、上記貫通孔のアスペクト比(平均深さ/平均開口径)は、100〜3000であるのが好ましく、300〜3000であるのがより好ましく、1000〜3000であるのが更に好ましい。   In the present invention, as will be described later, the resin present in the through hole expands due to heating when connecting (bonding) the electrode and the anisotropic conductive member in the wiring substrate such as a semiconductor element, and the wiring substrate is efficiently formed. The aspect ratio (average depth / average opening diameter) of the through-holes is 100 to 3000 for the reason that the gap between the anisotropic conductive member and the anisotropic conductive member can be filled and the adhesion to the wiring board becomes higher. Is more preferable, 300 to 3000 is more preferable, and 1000 to 3000 is still more preferable.

また、隣接する上記貫通孔の中心間距離(図1(B)においては符号9で表される部分。以下、「周期」ともいう。)は、20〜5000nmであるのが好ましく、30〜500nmであるのがより好ましく、40〜200nmであるのがさらに好ましく、50〜140nmであるのが特に好ましい。
周期が上記範囲であると、貫通孔の平均開口径と貫通孔の間隔(絶縁性の隔壁厚)とのバランスがとりやすい。
Further, the distance between the centers of the adjacent through-holes (the portion represented by reference numeral 9 in FIG. 1B) (hereinafter also referred to as “period”) is preferably 20 to 5000 nm, and preferably 30 to 500 nm. More preferably, it is 40-200 nm, and it is especially preferable that it is 50-140 nm.
When the period is in the above range, it is easy to balance the average opening diameter of the through holes and the interval between the through holes (insulating partition wall thickness).

(導電性材料)
上記貫通孔に存在する導電性材料は、電気抵抗率が103Ω・cm以下の材料であれば特に限定されず、その具体例としては、金(Au)、銀(Ag)、銅(Cu)、アルミニウム(Al)、マグネシウム(Mg)、ニッケル(Ni)、モリブデン(Mo)、鉄(Fe)、パラジウム(Pd)、ベリリウム(Be)、レニウム(Re)、タングステン(W)などの金属;カーボンナノチューブなどのカーボンナノファイバー;等が好適に例示され、これらを1種単独の金属を存在させてもよく、2種以上の合金を存在させてもよい。
これらのうち、電気伝導性の観点から、銅、金、アルミニウム、ニッケル、銀およびタングステンならびにカーボンナノチューブが好ましく、銅、カーボンナノチューブがより好ましい。
(Conductive material)
The conductive material present in the through hole is not particularly limited as long as the electrical resistivity is 10 3 Ω · cm or less, and specific examples thereof include gold (Au), silver (Ag), copper (Cu ), Aluminum (Al), magnesium (Mg), nickel (Ni), molybdenum (Mo), iron (Fe), palladium (Pd), beryllium (Be), rhenium (Re), tungsten (W), and other metals; Carbon nanofibers such as carbon nanotubes are preferably exemplified, and one of these metals may be present, or two or more alloys may be present.
Among these, from the viewpoint of electrical conductivity, copper, gold, aluminum, nickel, silver and tungsten and carbon nanotubes are preferable, and copper and carbon nanotubes are more preferable.

(樹脂)
上記貫通孔に存在する樹脂は、熱膨張率が100×10-6-1以上の樹脂である。
ここで、熱膨張率は、JIS K 7197:1991の「プラスチックの熱機械分析による線膨脹率試験方法」に準じて測定した値をいい、2種以上の樹脂を併用した場合はこれらの混合物における測定値をいう。
このような樹脂を貫通孔に存在させることにより、配線基板との密着力が高く、優れた導通信頼性を達成することができる異方導電部材となる。
これは、半導体素子等の配線基板における電極と異方導電性部材とを接続(接合)する際に加熱することにより、貫通孔に存在する樹脂が膨張し、配線基板と異方導電性部材との隙間を埋めることができるためであると考えられる。
また、このような効果は、一般的なアンダーフィル剤として好適に用いられているエポキシ樹脂(熱膨張率:45×10-6-1〜65×10-6-1)のみを貫通孔に存在させた場合には得られない効果であるため、意外な効果であると言える。
(resin)
The resin present in the through hole is a resin having a thermal expansion coefficient of 100 × 10 −6 K −1 or more.
Here, the coefficient of thermal expansion is a value measured in accordance with “Method for testing linear expansion coefficient by plastic thermomechanical analysis” of JIS K 7197: 1991, and when two or more resins are used in combination, Refers to the measured value.
By making such a resin exist in the through hole, an anisotropic conductive member that has high adhesion to the wiring substrate and can achieve excellent conduction reliability is obtained.
This is because the resin existing in the through-hole expands by heating when connecting (bonding) the electrode and the anisotropic conductive member on the wiring board such as a semiconductor element, and the wiring board and the anisotropic conductive member It is thought that this is because the gap between the two can be filled.
In addition, such an effect is obtained only through an epoxy resin (thermal expansion coefficient: 45 × 10 −6 K −1 to 65 × 10 −6 K −1 ) that is suitably used as a general underfill agent. It is an unexpected effect because it is an effect that cannot be obtained when it is made to exist.

本発明においては、上記樹脂の熱膨張率は、電極との接続部分における樹脂のはみ出し等を抑制する観点から、300×10-6-1以下であるのが好ましい。
また、上記樹脂の熱膨張率は、配線基板との密着性がより高くなる理由から、200×10-6-1以上であるのが好ましい。
In the present invention, the thermal expansion coefficient of the resin is preferably 300 × 10 −6 K −1 or less from the viewpoint of suppressing the protrusion of the resin at the connection portion with the electrode.
Further, the thermal expansion coefficient of the resin is preferably 200 × 10 −6 K −1 or more because the adhesiveness to the wiring board is further increased.

上記樹脂としては、具体的には、例えば、シリコーン樹脂(熱膨張率:200×10-6-1〜300×10-6-1)、ウレタン樹脂(熱膨張率:100×10-6-1〜200×10-6-1)、ポリエチレン(熱膨張率:100×10-6-1〜120×10-6-1)、ポリブタジエン(熱膨張率:100×10-6-1〜120×10-6-1)等が挙げられ、これらを一種単独で用いてもよく、2種以上を併用してもよい。
これらのうち、貫通孔に存在する樹脂が膨張し、効率よく配線基板と異方導電性部材との隙間を埋めることができ、配線基板との密着性がより高くなる理由から、シリコーン樹脂および/またはウレタン樹脂を用いるのが好ましい。
なお、樹脂を2種以上併用する場合は、樹脂の全体(混合物)としての熱膨張率が100×10-6-1以上であればよく、併用割合によっては、上記熱膨張率を満たさない樹脂〔例えば、エポキシ樹脂(熱膨張率:45×10-6-1〜65×10-6-1)、アクリル樹脂(熱膨張率:70×10-6-1)等〕を併用していてもよい。
Specific examples of the resin include silicone resins (thermal expansion coefficient: 200 × 10 −6 K −1 to 300 × 10 −6 K −1 ), urethane resins (thermal expansion coefficient: 100 × 10 −6). K −1 to 200 × 10 −6 K −1 ), polyethylene (thermal expansion coefficient: 100 × 10 −6 K −1 to 120 × 10 −6 K −1 ), polybutadiene (thermal expansion coefficient: 100 × 10 −6) K −1 to 120 × 10 −6 K −1 ) and the like, and these may be used alone or in combination of two or more.
Among these, the resin existing in the through hole expands, and the gap between the wiring board and the anisotropic conductive member can be efficiently filled, and the adhesiveness with the wiring board becomes higher. Or it is preferable to use a urethane resin.
In addition, when using 2 or more types of resin together, the thermal expansion coefficient as the whole resin (mixture) should just be 100x10 < -6 > K < -1 > or more, and the said thermal expansion coefficient is not satisfy | filled depending on a combined use ratio. Resin [for example, epoxy resin (thermal expansion coefficient: 45 × 10 −6 K −1 to 65 × 10 −6 K −1 ), acrylic resin (thermal expansion coefficient: 70 × 10 −6 K −1 ), etc.] You may do it.

本発明においては、配線基板との密着力の観点や、熱膨張して配線基板と異方導電性部材との隙間に存在する樹脂(接着層)の強度の観点から、上記樹脂として、熱可塑性樹脂(例えば、シリコーン樹脂、ウレタン樹脂など)および熱硬化性樹脂(例えば、エポキシ樹脂)を併用するのが好ましい。   In the present invention, from the viewpoint of the adhesion strength with the wiring board and the strength of the resin (adhesive layer) present in the gap between the wiring board and the anisotropic conductive member due to thermal expansion, the above resin is thermoplastic. It is preferable to use together resin (for example, silicone resin, urethane resin, etc.) and thermosetting resin (for example, epoxy resin).

(存在形態)
上記貫通孔における上記導電性材料および上記樹脂の存在形態は、上記貫通孔が上記導電性材料によって上記絶縁性基材の厚み方向に導通されていれば特に限定されないが、上記樹脂については、上記貫通孔の開口部付近、例えば、貫通孔の開口部から貫通孔の深さ(上記絶縁性基材の厚み)の1/4程度の深さまで存在していることが好ましい。
(Existence form)
The presence form of the conductive material and the resin in the through hole is not particularly limited as long as the through hole is conducted in the thickness direction of the insulating base material by the conductive material. It is preferable that it exists from the opening part vicinity of a through-hole, for example to the depth of about 1/4 of the depth (thickness of the said insulating base material) of a through-hole from the opening part of a through-hole.

本発明においては、導通信頼性がより高くなる理由から、上記導電性材料および上記樹脂が、上記貫通孔の孔径方向の断面においていずれも存在している態様であるのが好ましく、具体的には、上記導電性材料(特に、銅などの金属)が上記貫通孔の内壁を覆うように存在し、かつ、上記樹脂が上記貫通孔の中心付近に存在する態様(図1(B)参照)や、上記導電性材料(特に、カーボンナノチューブ)が上記貫通孔の内部にファイバー状に存在し、上記樹脂がその隙間埋めるように存在する態様等が挙げられる。   In the present invention, it is preferable that the conductive material and the resin are both present in the cross-section in the radial direction of the through hole, specifically, because the conduction reliability is higher. The conductive material (particularly metal such as copper) is present so as to cover the inner wall of the through hole, and the resin is present in the vicinity of the center of the through hole (see FIG. 1B), The conductive material (particularly, carbon nanotube) is present in the form of a fiber inside the through hole, and the resin is present so as to fill the gap.

〔本発明の異方導電性部材の製造方法〕
以下に、本発明の異方導電性部材の製造方法について詳細に説明する。
本発明の異方導電性部材を製造する製造方法(以下、単に「本発明の製造方法」ともいう。)は、上記絶縁性基材に設けられた上記貫通孔に上記導電性材料を存在させる導電性材料充填工程と、上記導電性材料が存在する上記貫通孔に更に樹脂を存在させる樹脂充填工程とを有する製造方法である。
次に、本発明の製造方法における各工程等について説明する。
[Method for producing anisotropically conductive member of the present invention]
Below, the manufacturing method of the anisotropically conductive member of this invention is demonstrated in detail.
The manufacturing method for manufacturing the anisotropic conductive member of the present invention (hereinafter also simply referred to as “the manufacturing method of the present invention”) causes the conductive material to be present in the through-hole provided in the insulating base material. It is a manufacturing method which has an electroconductive material filling process and a resin filling process which makes resin exist in the said through-hole in which the said electroconductive material exists.
Next, each process etc. in the manufacturing method of this invention are demonstrated.

<絶縁性基材の作製>
上記絶縁性基材は、例えば、ガラス基板(Through Glass Via:TGV)をそのまま用いることができるが、上記貫通孔の平均開口径やアスペクト比を上述した範囲とする観点から、バルブ金属に対して陽極酸化処理を施す方法が好ましい。
上記陽極酸化処理としては、例えば、上記絶縁性基材がアルミニウムの陽極酸化皮膜である場合は、アルミニウム基板を陽極酸化する陽極酸化処理、および、上記陽極酸化処理の後に、上記陽極酸化により生じたマイクロポアによる孔を貫通化する貫通化処理をこの順に施すことにより作製することができる。
本発明においては、上記絶縁性基材の作製に用いられるアルミニウム基板ならびにアルミニウム基板に施す各処理工程については、特開2008−270158号公報の[0041]〜[0121]段落に記載したものと同様のものを採用することができる。
<Preparation of insulating substrate>
As the insulating base material, for example, a glass substrate (Through Glass Via: TGV) can be used as it is, but from the viewpoint of setting the average opening diameter and aspect ratio of the through holes to the above-described ranges, A method of applying an anodizing treatment is preferable.
As the anodizing treatment, for example, when the insulating base material is an aluminum anodized film, the anodizing treatment was performed by anodizing the aluminum substrate, and the anodizing treatment after the anodizing treatment. It can be manufactured by performing a penetration process in which holes are penetrated by micropores in this order.
In the present invention, the aluminum substrate used for the production of the insulating substrate and the treatment steps applied to the aluminum substrate are the same as those described in paragraphs [0041] to [0121] of JP-A-2008-270158. Can be adopted.

<導電性材料充填工程>
上記導電性材料充填工程は、上記絶縁性基材に設けられた上記貫通孔に上記導電性材料を存在させる工程であり、後述する樹脂を存在させる隙間を残し、かつ、上記絶縁性基材の厚み方向に導通されるように上記導電性材料を存在させる工程である。
例えば、上記貫通孔の内壁を覆うように上記導電性材料を存在させる場合は、無電解めっき処理の析出核となる金属触媒(例えば、パラジウム等)またはその前駆体(金属イオン)を上記貫通孔の内壁に析出させた後に、無電解めっき処理を施して、上記貫通孔の内壁に金属(例えば、銅、白金など)めっきを施す方法等が挙げられる。
また、上記貫通孔の内部(中心付近)にカーボンナノチューブ(CNT)を存在させる(成長させる)場合は、上記絶縁性基材の少なくとも上記貫通孔の内壁を含む表面にスパッタ等により酸化ケイ素膜を形成し、上記酸化ケイ素膜に金属微粒子触媒(例えば、Fe−Ti−Oナノ粒子)を担持させた後、アセチレンガスを吹き込む方法等が挙げられる。
<Conductive material filling process>
The conductive material filling step is a step of causing the conductive material to be present in the through hole provided in the insulating base material, leaving a gap in which a resin to be described later is present, and of the insulating base material. In this step, the conductive material is present so as to conduct in the thickness direction.
For example, in the case where the conductive material is present so as to cover the inner wall of the through hole, a metal catalyst (for example, palladium) or a precursor thereof (metal ion) serving as a deposition nucleus in electroless plating treatment is added to the through hole. For example, a method of performing electroless plating treatment on the inner wall of the through hole and plating a metal (for example, copper, platinum, etc.) on the inner wall of the through hole is exemplified.
When carbon nanotubes (CNT) are present (grown) inside the through-hole (near the center), a silicon oxide film is formed on the surface of the insulating base material including at least the inner wall of the through-hole by sputtering or the like. Examples thereof include a method of forming and supporting a metal fine particle catalyst (for example, Fe—Ti—O nanoparticles) on the silicon oxide film and then blowing acetylene gas.

<樹脂充填工程>
上記樹脂充填工程は、上記導電性材料が存在する上記貫通孔の隙間に更に上記樹脂を存在させる工程である。
上記樹脂を存在させる方法は特に限定されず、例えば、上記樹脂を溶媒(例えば、メチルエチルケトンなど)に溶解させた樹脂溶液中に上記導電性材料充填工程後の絶縁性基材を浸漬させ、その後に溶媒成分を除去する方法等が挙げられる。
<Resin filling process>
The resin filling step is a step of causing the resin to further exist in a gap between the through holes where the conductive material is present.
The method for allowing the resin to exist is not particularly limited. For example, the insulating base material after the conductive material filling step is immersed in a resin solution in which the resin is dissolved in a solvent (for example, methyl ethyl ketone), and thereafter Examples include a method for removing the solvent component.

<表面平滑化処理>
本発明の製造方法においては、上記貫通孔に上記導電性材料および上記樹脂を存在させた後に、上記絶縁性基材の表面を平滑化する表面平滑処理を行うことが好ましい。
上記表面平滑化処理については、特開2009−283431号公報の[0079]〜[0080]段落に記載したものと同様のものを採用することができる。
<Surface smoothing treatment>
In the production method of the present invention, after the conductive material and the resin are present in the through hole, it is preferable to perform a surface smoothing process for smoothing the surface of the insulating base material.
About the said surface smoothing process, the thing similar to what was described in [0079]-[0080] paragraph of Unexamined-Japanese-Patent No. 2009-283431 is employable.

〔多層配線基板〕
以下に、本発明の多層配線基板について詳細に説明する。
本発明の多層配線基板は、上述した本発明の異方導電性部材と、異方導電性部材の貫通孔に存在させた導電性材料(導通路)と電極を介して電気的に接続される配線基板とが積層された多層配線基板である。
次に、本発明の多層配線基板の構造について、図面を用いて説明する。
[Multilayer wiring board]
The multilayer wiring board of the present invention will be described in detail below.
The multilayer wiring board of the present invention is electrically connected to the above-described anisotropic conductive member of the present invention and a conductive material (conduction path) present in the through hole of the anisotropic conductive member via an electrode. A multilayer wiring board in which a wiring board is laminated.
Next, the structure of the multilayer wiring board of the present invention will be described with reference to the drawings.

図2は、本発明の多層配線基板の好適な実施態様の一例を示す模式的な断面図であり、図2(A)は加熱圧着前の半製品を示し、図2(B)は加熱圧着後の多層配線基板を示す。
図2(A)に示すように、多層配線基板の半製品10では、本発明の異方導電性部材1が、配線基板11aと配線基板11bとの間に設けられ、各基板の電極12aおよび12bと異方導電性部材1の貫通孔に存在させた導電性材料3とが接触されるように設けられている。
ここで、従来の異方導電性部材を用いた場合には、背景技術の欄にも記載した通り、電極との安定的な接続の観点から、図2(A)に示す隙間13に相当する部分にアンダーフィルを充填する場合がある。
一方、本発明の異方導電性部材を用いた場合には、図2(B)に示すように、半製品10を加熱圧着することにより、電極12aおよび12bと接していない貫通孔に存在させた樹脂4の少なくとも一部が熱膨張により貫通孔から溢れ出した(膨出した)樹脂4が隙間13を埋めることができるため、配線基板との密着力が高く、優れた導通信頼性を達成することができる。なお、図2(B)においては、電極と接続(接合)した貫通孔の内部の樹脂4についても膨出しているが、半製品10を加熱とともに圧着させているため、膨出した樹脂4が隙間13に押し出され、電極と貫通孔との接合は担保されている。
FIG. 2 is a schematic cross-sectional view showing an example of a preferred embodiment of the multilayer wiring board of the present invention. FIG. 2 (A) shows a semi-finished product before thermocompression bonding, and FIG. 2 (B) is thermocompression bonding. The latter multilayer wiring board is shown.
As shown in FIG. 2A, in the semi-finished product 10 of the multilayer wiring board, the anisotropic conductive member 1 of the present invention is provided between the wiring board 11a and the wiring board 11b, and the electrodes 12a and 12 b and the conductive material 3 present in the through hole of the anisotropic conductive member 1 are provided so as to be in contact with each other.
Here, when a conventional anisotropic conductive member is used, it corresponds to the gap 13 shown in FIG. 2A from the viewpoint of stable connection with the electrode as described in the background art. The part may be filled with underfill.
On the other hand, when the anisotropic conductive member of the present invention is used, as shown in FIG. 2 (B), the semi-finished product 10 is hot-pressed to be present in the through holes not in contact with the electrodes 12a and 12b. Since at least a part of the resin 4 overflowed from the through-hole due to thermal expansion (expanded), the gap 13 can be filled, so that the adhesive strength with the wiring board is high and excellent conduction reliability is achieved. can do. In FIG. 2B, the resin 4 inside the through-hole connected (joined) to the electrode also swells, but since the semi-finished product 10 is pressure-bonded with heating, the swelled resin 4 Extruded into the gap 13, the bonding between the electrode and the through hole is secured.

このような本発明の多層配線基板は、半導体パッケージのインターポーザとして好適に用いることができる。   Such a multilayer wiring board of the present invention can be suitably used as an interposer for a semiconductor package.

以下に実施例を示して本発明を具体的に説明する。ただし、本発明はこれらに限定されない。   The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.

(実施例1)
<絶縁性基材の作製>
(1)鏡面仕上げ処理(電解研磨処理)
高純度アルミニウム基板(日本軽金属社製、純度99.98質量%、厚さ0.2mm)を10cm四方の面積で陽極酸化処理できるようカットし、以下組成の電解研磨液を用い、電圧25V、液温度65℃、液流速3.0m/minの条件で電解研磨処理を施した。
陰極はカーボン電極とし、電源は、GP0110−30R(高砂製作所社製)を用いた。また、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
Example 1
<Preparation of insulating substrate>
(1) Mirror finish (electropolishing)
A high-purity aluminum substrate (manufactured by Nippon Light Metal Co., Ltd., purity 99.98% by mass, thickness 0.2 mm) was cut so that it could be anodized in an area of 10 cm square, using an electropolishing liquid having the following composition, voltage 25 V, liquid The electropolishing treatment was performed under conditions of a temperature of 65 ° C. and a liquid flow rate of 3.0 m / min.
The cathode was a carbon electrode, and GP0110-30R (manufactured by Takasago Seisakusho) was used as the power source. The flow rate of the electrolytic solution was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(電解研磨液組成)
・85質量%リン酸(和光純薬社製試薬) 660mL
・純水 160mL
・硫酸 150mL
・エチレングリコール 30mL
(Electrolytic polishing liquid composition)
-660 mL of 85% by mass phosphoric acid (reagent manufactured by Wako Pure Chemical Industries)
・ Pure water 160mL
・ Sulfuric acid 150mL
・ Ethylene glycol 30mL

(2)陽極酸化処理
次いで、電解研磨処理後のアルミニウム基板に、特開2007−204802号公報に記載の手順にしたがって自己規則化法による陽極酸化処理を施した。
電解研磨処理後のアルミニウム基板に、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、5時間のプレ陽極酸化処理を施した。
その後、プレ陽極酸化処理後のアルミニウム基板を、0.2mol/L無水クロム酸、0.6mol/Lリン酸の混合水溶液(液温:50℃)に12時間浸漬させる脱膜処理を施した。
その後、0.50mol/Lシュウ酸の電解液で、電圧40V、液温度16℃、液流速3.0m/minの条件で、16時間の再陽極酸化処理を施し、膜厚130μmの酸化皮膜を得た。
なお、プレ陽極酸化処理および再陽極酸化処理は、いずれも陰極はステンレス電極とし、電源はGP0110−30R(高砂製作所社製)を用いた。また、冷却装置にはNeoCool BD36(ヤマト科学社製)、かくはん加温装置にはペアスターラー PS−100(EYELA社製)を用いた。更に、電解液の流速は渦式フローモニターFLM22−10PCW(AS ONE製)を用いて計測した。
(2) Anodizing treatment Next, the aluminum substrate after the electrolytic polishing treatment was subjected to anodizing treatment by a self-regulating method according to the procedure described in JP-A-2007-204802.
The aluminum substrate after the electropolishing treatment was subjected to a pre-anodization treatment for 5 hours with an electrolyte solution of 0.50 mol / L oxalic acid at a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min. .
Thereafter, a film removal treatment was performed in which the aluminum substrate after the pre-anodizing treatment was immersed in a mixed aqueous solution (liquid temperature: 50 ° C.) of 0.2 mol / L chromic anhydride and 0.6 mol / L phosphoric acid for 12 hours.
Then, re-anodization treatment was performed for 16 hours with a 0.50 mol / L oxalic acid electrolyte solution under conditions of a voltage of 40 V, a liquid temperature of 16 ° C., and a liquid flow rate of 3.0 m / min. Obtained.
In both the pre-anodizing treatment and the re-anodizing treatment, the cathode was a stainless electrode, and the power source was GP0110-30R (manufactured by Takasago Seisakusho). Moreover, NeoCool BD36 (made by Yamato Kagaku) was used for the cooling device, and Pear Stirrer PS-100 (made by EYELA) was used for the stirring and heating device. Furthermore, the flow rate of the electrolyte was measured using a vortex flow monitor FLM22-10PCW (manufactured by AS ONE).

(3)貫通化処理
次いで、20質量%塩化水銀水溶液(昇汞)に20℃、3時間浸漬させることによりアルミニウム基板を溶解し、更に、5質量%リン酸に30℃、30分間浸漬させることにより酸化皮膜の底部を除去し、貫通孔としてのマイクロポアを有する酸化皮膜を作製した。
ここで、貫通孔としてのマイクロポアの平均孔径は、40nmであった。平均孔径は、FE−SEMにより表面写真(倍率50000倍)を撮影し、50点測定した平均値として算出した。
また、貫通化処理後の酸化皮膜の厚みは110μmであった。酸化皮膜の厚みは、ダイヤルゲージを用いて測定した。
(3) Penetration treatment Next, the aluminum substrate was dissolved by dipping in a 20% by mass mercury chloride aqueous solution (raised) at 20 ° C. for 3 hours, and further immersed in 5% by mass phosphoric acid at 30 ° C. for 30 minutes. The bottom of the oxide film was removed, and an oxide film having micropores as through holes was produced.
Here, the average pore diameter of the micropores as the through holes was 40 nm. The average pore diameter was calculated as an average value obtained by taking a surface photograph (magnification 50000 times) with FE-SEM and measuring 50 points.
Moreover, the thickness of the oxide film after the penetration treatment was 110 μm. The thickness of the oxide film was measured using a dial gauge.

(4)加熱処理
次いで、得られた酸化皮膜に、温度400℃で1時間の加熱処理を施し、絶縁性基材を作製した。
(4) Heat treatment Next, the obtained oxide film was subjected to a heat treatment at a temperature of 400 ° C for 1 hour to produce an insulating substrate.

<導電性材料の充填>
作製した絶縁性基材〔厚さ(貫通孔の平均深さ):100μm、貫通孔の平均開口径:60nm,アスペクト比:1667〕を50℃の塩化パラジウム溶液〔塩化パラジウム(0.028M)/塩酸(0.036M)〕に5分間浸漬し、後述する無電解めっき処理の析出核となるPd微粒子を貫通孔の内壁表面に析出させた。
次いで、以下に示す組成の無電解銅めっき液(pH=12.5)に25℃で3分浸漬し、パラジウムを核として、貫通孔の内壁表面に銅めっきを施した。
(無電解銅めっき液)
・硫酸銅 ・・・0.04M
・ロッシェル塩 ・・・0.1M
・HCHO ・・・0.4M
・ラウリル硫酸ナトリウム ・・・0.2mg/l
<Filling with conductive material>
The insulating base material [thickness (average depth of through-holes): 100 μm, average opening diameter of through-holes: 60 nm, aspect ratio: 1667] was added to a 50 ° C. palladium chloride solution [palladium chloride (0.028 M) / Then, it was immersed in hydrochloric acid (0.036M)] for 5 minutes, and Pd fine particles that became the precipitation nuclei of the electroless plating process described later were deposited on the inner wall surface of the through hole.
Next, it was immersed in an electroless copper plating solution (pH = 12.5) having the following composition at 25 ° C. for 3 minutes, and copper plating was applied to the inner wall surface of the through hole using palladium as a nucleus.
(Electroless copper plating solution)
・ Copper sulfate: 0.04M
・ Rochelle salt ・ ・ ・ 0.1M
・ HCHO: 0.4M
・ Sodium lauryl sulfate: 0.2 mg / l

<樹脂の充填>
貫通孔の内壁表面に銅めっきを施した絶縁性基材を下記組成の樹脂溶液中に浸漬し、30分静置した。
その後、樹脂溶液から取り出し、表面に付着した溶液をスキーザーで掻き取った後、30℃で30分乾燥させることにより、内壁に銅めっきを施した貫通孔の内部に樹脂を存在させた。
(樹脂溶液)
・シリコーン樹脂〔KR251(溶剤:トルエン)、信越シリコーン社製〕70質量部
・エポキシ樹脂〔YD−8125、新日鐵化学社製〕25質量部
・硬化剤〔エステル樹脂:EPICLON HPC-8000-65T(DIC社製)〕2質量部
・硬化触媒〔ジメチルアミノピリジン〕0.5質量部
・溶剤〔メチルエチルケトン〕残部
<Resin filling>
The insulating base material which gave the copper plating to the inner wall surface of the through-hole was immersed in the resin solution of the following composition, and left still for 30 minutes.
Thereafter, the resin solution was taken out from the resin solution and scraped off with a squeezer, and then dried at 30 ° C. for 30 minutes, so that the resin was present inside the through hole in which the inner wall was plated with copper.
(Resin solution)
・ Silicone resin [KR251 (solvent: toluene), manufactured by Shin-Etsu Silicone] 70 parts by mass ・ Epoxy resin [YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.] 25 parts by mass ・ Curing agent [Ester resin: EPICLON HPC-8000-65T (Manufactured by DIC)] 2 parts by mass ・ Curing catalyst [dimethylaminopyridine] 0.5 part by mass ・ Solvent [methyl ethyl ketone] remainder

<表面平滑化処理>
貫通孔の内部に樹脂を存在させた後の絶縁性基材の表面および裏面に機械的研磨処理を施し、厚さ100μmの異方導電性部材を作製した。
ここで、機械的研磨処理に用いる試料台としては、セラミック製冶具(ケメット・ジャパン株式会社製)を用い、試料台に貼り付ける材料としては、アルコワックス(日化精工株式会社製)を用いた。また、研磨剤としては、DP−懸濁液P−6μm・3μm・1μm・1/4μm(ストルアス製)を順に用いた。
<Surface smoothing treatment>
A mechanical polishing process was performed on the front and back surfaces of the insulating base material after the resin was present inside the through-holes to produce anisotropic conductive members having a thickness of 100 μm.
Here, as a sample table used for the mechanical polishing treatment, a ceramic jig (manufactured by Kemet Japan Co., Ltd.) was used, and as a material to be attached to the sample table, an alcohol wax (manufactured by Nikka Seiko Co., Ltd.) was used. . Further, as the abrasive, DP-suspension P-6 μm · 3 μm · 1 μm · ¼ μm (manufactured by Struers) was used in this order.

(実施例2)
下記組成の樹脂溶液を用いた以外は、実施例1と同様の方法により、異方導電性部材を作製した。
(樹脂溶液)
・ウレタン樹脂〔オレスターUD−350、固形分38質量%、三井化学社製〕70質量部
・エポキシ樹脂〔YD−8125、新日鐵化学社製〕25質量部
・硬化剤〔エステル樹脂:EPICLON HPC-8000-65T(DIC社製)〕2質量部
・硬化触媒〔ジメチルアミノピリジン〕0.5質量部
・溶剤〔メチルエチルケトン〕残部
(Example 2)
An anisotropic conductive member was produced in the same manner as in Example 1 except that a resin solution having the following composition was used.
(Resin solution)
-Urethane resin [Olestar UD-350, solid content 38% by mass, manufactured by Mitsui Chemicals Co., Ltd.] 70 parts by mass-Epoxy resin [YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.] 25 parts by mass-Curing agent [Ester resin: EPICLON HPC-8000-65T (manufactured by DIC)] 2 parts by mass-Curing catalyst [dimethylaminopyridine] 0.5 parts by mass-Solvent [methyl ethyl ketone] remainder

(実施例3)
以下に示す陽極酸化処理を施して絶縁性基材を作製した以外は、実施例1と同様の方法により、異方導電性部材を作製した。
<陽極酸化処理>
0.1mol/Lリン酸の電解液を用い、電圧200V、液温度4℃、液流速3.0m/minの条件でプレ陽極酸化処理および再陽極酸化処理を施した以外は、実施例1と同様の方法により陽極酸化処理を施し、膜厚60μmの酸化皮膜を得た。なお、プレ陽極酸化処理および再陽極酸化処理は、それぞれ実施例1と同様の処理時間で施した。
(Example 3)
An anisotropic conductive member was produced in the same manner as in Example 1 except that an insulating base material was produced by performing the following anodizing treatment.
<Anodizing treatment>
Example 1 except that a 0.1 mol / L phosphoric acid electrolyte was used, and the pre-anodizing treatment and re-anodizing treatment were performed under the conditions of a voltage of 200 V, a liquid temperature of 4 ° C., and a liquid flow rate of 3.0 m / min. Anodization treatment was performed by the same method to obtain an oxide film having a thickness of 60 μm. Note that the pre-anodizing treatment and re-anodizing treatment were performed in the same treatment time as in Example 1.

(実施例4)
以下に示す方法により導電性材料を存在させた以外は、実施例1と同様の方法により、異方導電性部材を作製した。
<導電性材料の充填>
(1)触媒分散液の調製
Feアセチルアセトナート、TiOアセチルアセトナート、1,2−ヘキサデカンジオール、オレイン酸、オレイルアミンおよびオクチルエーテルを不活性ガス雰囲気下において混合し、これを300℃で30分間反応させた。
反応終了後、室温に冷却し、遠心分離により触媒微粒子(Fe−Ti−Oナノ粒子)を得た。これをヘキサンに加えて触媒分散液を調製した。
(2)CNT成長用基板の作製
作製した絶縁性基材〔厚さ(貫通孔の平均深さ):100μm、貫通孔の平均開口径:60nm,アスペクト比:1667〕上に、スパッタ法によりSiO2膜(膜厚:50nm)を形成した。出力は300Wとし、スパッタ時間は20分として行った。なお、スパッタした表面を観察すると、陽極酸化皮膜のハニカム上に配置したマイクロポアの形状が確認でき、貫通孔の内壁までSiO2膜が形成されていることが確認できた。
次いで、このSiO2膜の表面(貫通孔の内壁面を含む)に上記(1)で調製した触媒分散液を塗布し、Fe−Ti−Oナノ粒子を担持させた。
(3)CNTの合成(成長)
CNT成長用チャンバ内に、Fe−Ti−Oナノ粒子を担持させた絶縁性基材を設置し、水素気流中、3kPaで700℃まで昇温した。次いで、チャンバ内にアセチレンを導入し、120分間保持することにより、貫通孔の内部にファイバー状のカーボンナノチューブを成長させた。
Example 4
An anisotropic conductive member was produced by the same method as in Example 1 except that the conductive material was present by the method described below.
<Filling with conductive material>
(1) Preparation of catalyst dispersion Fe acetylacetonate, TiO acetylacetonate, 1,2-hexadecanediol, oleic acid, oleylamine and octyl ether were mixed in an inert gas atmosphere and reacted at 300 ° C. for 30 minutes. I let you.
After completion of the reaction, the reaction mixture was cooled to room temperature, and catalyst fine particles (Fe—Ti—O nanoparticles) were obtained by centrifugation. This was added to hexane to prepare a catalyst dispersion.
(2) Production of substrate for CNT growth On the produced insulating substrate [thickness (average depth of through-hole): 100 μm, average opening diameter of through-hole: 60 nm, aspect ratio: 1667], SiO 2 is sputtered. Two films (film thickness: 50 nm) were formed. The output was 300 W and the sputtering time was 20 minutes. When the sputtered surface was observed, the shape of the micropores disposed on the honeycomb of the anodized film was confirmed, and it was confirmed that the SiO 2 film was formed up to the inner wall of the through hole.
Next, the catalyst dispersion prepared in the above (1) was applied to the surface of the SiO 2 film (including the inner wall surface of the through hole) to support Fe—Ti—O nanoparticles.
(3) Synthesis (growth) of CNT
An insulating base material carrying Fe—Ti—O nanoparticles was placed in the CNT growth chamber, and the temperature was raised to 700 ° C. at 3 kPa in a hydrogen stream. Next, acetylene was introduced into the chamber and held for 120 minutes to grow fiber-like carbon nanotubes in the through holes.

(実施例5)
以下に示す陽極酸化処理を施して絶縁性基材を作製した以外は、実施例4と同様の方法により、異方導電性部材を作製した。
<陽極酸化処理>
1mol/L硫酸の電解液を用い、電圧16V、液温度20℃、液流速10.0m/minの条件でプレ陽極酸化処理および再陽極酸化処理を施した以外は、実施例1と同様の方法により陽極酸化処理を施し、膜厚130μmの酸化皮膜を得た。なお、プレ陽極酸化処理および再陽極酸化処理は、それぞれ実施例1と同様の処理時間で施した。
(Example 5)
An anisotropic conductive member was produced in the same manner as in Example 4 except that an insulating base material was produced by performing the following anodizing treatment.
<Anodizing treatment>
A method similar to that of Example 1 except that an electrolytic solution of 1 mol / L sulfuric acid was used, and pre-anodization treatment and re-anodization treatment were performed under conditions of a voltage of 16 V, a liquid temperature of 20 ° C., and a liquid flow rate of 10.0 m / min. An anodizing treatment was performed to obtain an oxide film having a thickness of 130 μm. Note that the pre-anodizing treatment and re-anodizing treatment were performed in the same treatment time as in Example 1.

参考例6)
絶縁性基材として、以下の方法で作製したガラス基板(貫通孔の平均開口径:60000nm、アスペクト比:1.7)を用いた以外は、実施例4と同様の方法により、異方導電性部材を作製した。なお、以下の説明においては、参考例6を実施例6と表記する。
<ガラス基板の作製方法>
石英ガラス表面に表裏に金属マスクを設け、上記サイズの貫通孔に相当するパターンを作成した後、F(フッ素)を含むエッチング液で両面からエッチングすることで、貫通孔を有するガラス基板を作製した。
( Reference Example 6)
An anisotropic conductivity was obtained in the same manner as in Example 4 except that a glass substrate (average opening diameter of through holes: 60000 nm, aspect ratio: 1.7) produced by the following method was used as the insulating base material. A member was prepared. In the following description, Reference Example 6 is referred to as Example 6.
<Production method of glass substrate>
After providing a metal mask on the front and back of the quartz glass surface to create a pattern corresponding to the above-mentioned size of the through hole, etching was performed from both sides with an etching solution containing F (fluorine) to produce a glass substrate having a through hole. .

(比較例1および2)
以下に示す方法により導電性材料を存在させ、樹脂を存在させなかった以外は、実施例1と同様の方法により、異方導電性部材を作製した。
<導電性材料の充填>
(1)電極膜形成処理
作製した絶縁性基材〔厚さ(貫通孔の平均深さ):100μm、貫通孔の平均開口径:60nm,アスペクト比:1667〕の一方の表面に電極膜を形成する処理を施した。
具体的には、スパッタ装置を用いて絶縁性基材の片面に20nm厚みの金膜を形成した。
その後、無電解めっき液としてプレシャスファブACG2000基本液/還元液(日本エレクトロプレイティング・エンジニヤース(株)製)を用いて、60℃/30分浸漬処理し、表面との空隙のない電極膜を形成した。
(2)銅の充填処理
上記電極膜を形成した面に銅電極を密着させ、該銅電極を陰極にし、白金を正極にして電解めっき処理を施した。
以下に示す組成の銅めっき液またはニッケルめっき液を使用し、定電流電解を施すことにより、貫通孔の内部に銅を存在させた。
ここで、定電流電解は、山本鍍金社製のめっき装置を用い、北斗電工社製の電源(HZ−3000)を用い、めっき液中でサイクリックボルタンメトリを行って析出電位を確認した後に、以下に示す条件で処理を施した。
(Comparative Examples 1 and 2)
An anisotropic conductive member was produced by the same method as in Example 1 except that the conductive material was present by the following method and the resin was not present.
<Filling with conductive material>
(1) Electrode film formation treatment An electrode film is formed on one surface of the produced insulating substrate [thickness (average depth of through-hole): 100 μm, average opening diameter of through-hole: 60 nm, aspect ratio: 1667]. The processing to be performed.
Specifically, a 20 nm-thick gold film was formed on one side of the insulating substrate using a sputtering apparatus.
Then, using an electroless plating solution as a precious fab ACG2000 basic solution / reducing solution (manufactured by Nippon Electroplating Engineers Co., Ltd.), an immersion treatment is performed at 60 ° C. for 30 minutes to form an electrode film having no gap with the surface. Formed.
(2) Copper filling treatment A copper electrode was brought into close contact with the surface on which the electrode film was formed, and an electrolytic plating treatment was performed using the copper electrode as a cathode and platinum as a positive electrode.
Using a copper plating solution or a nickel plating solution having the following composition and performing constant current electrolysis, copper was present inside the through hole.
Here, constant current electrolysis is performed after confirming the deposition potential by performing cyclic voltammetry in a plating solution using a power supply (HZ-3000) manufactured by Hokuto Denko using a plating apparatus manufactured by Yamamoto Sekin Co., Ltd. The treatment was performed under the following conditions.

<銅めっき液組成>
・硫酸銅 100g/L
・硫酸 50g/L
・塩酸 15g/L
・温度 25℃
・電流密度 10A/dm2
<Copper plating composition>
・ Copper sulfate 100g / L
・ Sulfuric acid 50g / L
・ Hydrochloric acid 15g / L
・ Temperature 25 ℃
・ Current density 10A / dm 2

(比較例3)
樹脂を存在させなかった以外は、実施例4と同様の方法により、異方導電性部材を作製した。
(Comparative Example 3)
An anisotropic conductive member was produced in the same manner as in Example 4 except that no resin was present.

(比較例4)
絶縁性基材として、実施例6と同様の方法で作製したガラス基板(貫通孔の平均開口径:60000nm、アスペクト比:1.7)を用いた以外は、比較例1と同様の方法により、異方導電性部材を作製した。
(Comparative Example 4)
As an insulating substrate, except that a glass substrate (average opening diameter of through-holes: 60000 nm, aspect ratio: 1.7) produced by the same method as in Example 6 was used, the same method as in Comparative Example 1 was used. An anisotropic conductive member was produced.

(比較例5)
下記組成の樹脂溶液を用いた以外は、実施例1と同様の方法により、異方導電性部材を作製した。
(樹脂溶液)
・エポキシ樹脂〔YD−8125、新日鐵化学社製〕40質量部
・フェノール樹脂〔TD-2093-60M(固形分60%MEK溶液)、DIC社製〕50質量部
・硬化剤〔エステル樹脂:EPICLON HPC-8000-65T(DIC社製)〕2質量部
・硬化触媒〔ジメチルアミノピリジン〕2量部
・溶剤〔メチルエチルケトン〕残部
(Comparative Example 5)
An anisotropic conductive member was produced in the same manner as in Example 1 except that a resin solution having the following composition was used.
(Resin solution)
-Epoxy resin [YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.] 40 parts by mass-Phenol resin [TD-2093-60M (solid content 60% MEK solution), manufactured by DIC] 50 parts by mass-Curing agent [Ester resin: EPICLON HPC-8000-65T (manufactured by DIC)] 2 parts by mass ・ Curing catalyst [dimethylaminopyridine] 2 parts ・ Solvent [methyl ethyl ketone] remainder

(比較例6)
下記組成の樹脂溶液を用いた以外は、実施例4と同様の方法により、異方導電性部材を作製した。
(樹脂溶液)
・エポキシ樹脂〔YD−8125、新日鐵化学社製〕40質量部
・フェノール樹脂〔TD-2093-60M(固形分60%MEK溶液)、DIC社製〕50質量部
・硬化剤〔エステル樹脂:EPICLON HPC-8000-65T(DIC社製)〕2質量部
・硬化触媒〔ジメチルアミノピリジン〕2量部
・溶剤〔メチルエチルケトン〕残部
(Comparative Example 6)
An anisotropic conductive member was produced in the same manner as in Example 4 except that a resin solution having the following composition was used.
(Resin solution)
-Epoxy resin [YD-8125, manufactured by Nippon Steel Chemical Co., Ltd.] 40 parts by mass-Phenol resin [TD-2093-60M (solid content 60% MEK solution), manufactured by DIC] 50 parts by mass-Curing agent [Ester resin: EPICLON HPC-8000-65T (manufactured by DIC)] 2 parts by mass ・ Curing catalyst [dimethylaminopyridine] 2 parts ・ Solvent [methyl ethyl ketone] remainder

<熱膨張率>
作製した各異方導電性部材の貫通孔に存在させた樹脂の熱膨張率は、JIS K 7197:1991の「プラスチックの熱機械分析による線膨脹率試験方法」に準じて測定した。
具体的には、貫通孔に存在させた各樹脂材料(上述した樹脂溶液)と同様のものを金属基板上に塗布し、成膜したものから試験片を作製し、TMA(サーマルメカニカルアナリシス)測定装置(TMA−60、島津製作所社製)を用い、薄膜材料用の引張モードで測定を行った。その結果を下記第1表に示す。
<Coefficient of thermal expansion>
The thermal expansion coefficient of the resin present in the through hole of each anisotropically conductive member produced was measured in accordance with JIS K 7197: 1991 “Method of testing linear expansion coefficient by thermomechanical analysis of plastics”.
Specifically, the same resin material (resin solution described above) that was present in the through hole was applied onto a metal substrate, a test piece was prepared from the film, and TMA (thermal mechanical analysis) measurement was performed. Using an apparatus (TMA-60, manufactured by Shimadzu Corporation), measurement was performed in a tensile mode for a thin film material. The results are shown in Table 1 below.

<密着性>
(1)多層配線基板サンプル
作製した各異方導電性部材の表面および裏面にTEGチップ(デイジーチェインパターン,金電極高さ:8μm)を配置し、アライメントを確認した後、ハイソル社製フリップチップボンダー(model6000)を用いて圧着し、多層配線基板のサンプルを作製した。ステージ温度は240℃とし、圧着時間は40秒、圧着圧力は200MPaとし、圧力解除後は自然放冷した。
なお、アンダーフィルを併用して加熱圧着する場合(比較例2〜4)は、上記と同様の方法で圧着させた後、フリップチップ用アンダーフィル剤(低粘度液状封止用、U8443、ナミックス社製)を用い、キャピラリーフロータイプでTEGチップと異方導電性部材との間に注入した。その後、150℃以上の温度で2時間かけて硬化処理を施すことにより、多層配線基板のサンプルを作製した。
(2)評価
万能型ボンドテスター(DAGE4000、デイジ社製)を用い、作製した多層配線基板サンプルの表面および裏面に配置したTEGチップに荷重を加えて剥離強度〔シェア強度(gf)〕を測定した。
測定の結果、シェア強度が50gf以上であるものを配線基板との密着性が極めて高いものとして「A」と評価し、シェア強度が45gf以上50gf未満であるものを配線基板との密着性が十分に高いものとして「B」と評価し、シェア強度が40gf超45gf未満であるものを配線基板との密着性が高いものとして「C」と評価し、シェア強度が35gf超40gf未満であるものを配線基板との密着性が実用上問題ないものとして「D」と評価し、シェア強度が35gf未満であるものを配線基板との密着性が劣るものとして「E」と評価し、シェア強度が測定できないほど低いものを「F」と評価した。これらの結果を下記第2表に示す。
<Adhesion>
(1) Multilayer Wiring Board Sample TEG chips (daisy chain pattern, gold electrode height: 8 μm) are arranged on the front and back surfaces of each anisotropically conductive member produced, and after confirming the alignment, a flip chip bonder manufactured by HiSOL (Model 6000) was used for pressure bonding to produce a multilayer wiring board sample. The stage temperature was 240 ° C., the pressure bonding time was 40 seconds, the pressure bonding pressure was 200 MPa, and the product was naturally cooled after the pressure was released.
In addition, when thermocompression bonding is performed using an underfill in combination (Comparative Examples 2 to 4), after crimping by the same method as described above, an underfill agent for flip chip (for low-viscosity liquid sealing, U8443, NAMICS) And was injected between the TEG chip and the anisotropic conductive member in a capillary flow type. Then, the sample of the multilayer wiring board was produced by performing a hardening process over 2 hours at the temperature of 150 degreeC or more.
(2) Evaluation Using a universal bond tester (DAGE 4000, manufactured by Daisy), a peel strength [share strength (gf)] was measured by applying a load to the TEG chips placed on the front and back surfaces of the produced multilayer wiring board sample. .
As a result of the measurement, those having a shear strength of 50 gf or more were evaluated as “A” as having extremely high adhesion to the wiring substrate, and those having a shear strength of 45 gf or more and less than 50 gf had sufficient adhesion to the wiring substrate. Evaluated as “B” as a high value, and evaluated as “C” as having high adhesive strength to a wiring board with a shear strength of more than 40 gf and less than 45 gf, and a shear strength of more than 35 gf and less than 40 gf Evaluated as “D” as having no problem in practical use with the wiring board, and evaluated as “E” when the shear strength was less than 35 gf, and “E” as the poor adhesion with the wiring board. Those that were too low were rated as “F”. These results are shown in Table 2 below.

<導通信頼性>
密着性の評価で作製した多層配線基板サンプルを用いて導通信頼性を評価した。
ここで、設置したTEGチップのデイジーチェイン(DC)は、20サイクルパターンを連続して10段形成したものとなっており、トータルで200サイクルまでの接続を確認できるよう設計されているものを使用し、断線が発生するまでのサイクルを測定した。
また、−60℃と130℃とのDCサイクル(22分周期)を繰返し、断線の有無を確認し、更にHHBT(High Humidity Bias Test)を行い、試験前後の抵抗率からその低減率(悪化率)を測定した。HHBTは温度85℃、湿度85%の条件で60時間の条件で実施した。
これらの測定の結果、200サイクルまで断線がなく、抵抗悪化率が5%未満であったものを導通信頼性が高いものとして「A」と評価し、100〜200サイクルの間に断線が確認され、抵抗悪化率が5%以上10%未満であったものを導通信頼性が良好ものとして「B」と評価し、50〜100サイクルの間に断線が確認され、抵抗悪化率が10%以上20%未満であったものを導通信頼性が実用上問題ないものとして「C」と評価し、断線の有無を問わず、抵抗悪化率が20%以上であったものを導通信頼性が劣るものとして「D」と評価し、抵抗圧下率が測定できないほど高いものを「E」と評価した。これらの結果を下記第2表に示す。
<Conduction reliability>
The conduction reliability was evaluated using the multilayer wiring board sample produced in the adhesion evaluation.
Here, the daisy chain (DC) of the installed TEG chip is a 20-cycle pattern that is continuously formed in 10 stages, and is designed so that connections up to 200 cycles can be confirmed in total. The cycle until the disconnection occurred was measured.
Also, the DC cycle (22 minute period) at -60 ° C and 130 ° C was repeated, the presence or absence of disconnection was confirmed, HHBT (High Humidity Bias Test) was performed, and the reduction rate (deterioration rate) from the resistivity before and after the test. ) Was measured. HHBT was performed under conditions of a temperature of 85 ° C. and a humidity of 85% for 60 hours.
As a result of these measurements, a case where there was no disconnection up to 200 cycles and the resistance deterioration rate was less than 5% was evaluated as “A” as having high conduction reliability, and disconnection was confirmed between 100 and 200 cycles. When the resistance deterioration rate was 5% or more and less than 10%, the conduction reliability was evaluated as “B”, and disconnection was confirmed during 50 to 100 cycles, and the resistance deterioration rate was 10% or more 20 If it was less than 20%, it was evaluated as “C” as having no problem in practical use, and the resistance deterioration rate was 20% or more, regardless of the presence or absence of disconnection. Evaluation was made as “D”, and the resistance reduction rate that was so high that it could not be measured was evaluated as “E”. These results are shown in Table 2 below.

第1表および第2表に示す結果から、貫通孔に樹脂を存在させずに作製した異方導電性部材を用いた場合には、アンダーフィルの使用の有無を問わず、電極との密着性に劣り、導通信頼性も劣ることが分かった(比較例1〜4)。
また、貫通孔に導電性材料とともに熱硬化性樹脂(エポキシ樹脂およびフェノール樹脂)を存在させて作製した異方導電性部材を用いた場合には、比較例1〜4よりも導通信頼性は改善するが、電極との密着性は劣ることが分かった(比較例5〜6)。
これに対し、貫通孔に導電性材料とともに所定の熱膨張率を有する樹脂を存在させて作製した異方導電性部材を用いた場合には、電極との密着力が高く、導通信頼性も高くなることが分かった(実施例1〜6)。
From the results shown in Tables 1 and 2, when an anisotropic conductive member prepared without the presence of resin in the through hole is used, the adhesion to the electrode regardless of whether or not an underfill is used. It was found that the conduction reliability was also poor (Comparative Examples 1 to 4).
In addition, when using an anisotropic conductive member made by making a thermosetting resin (epoxy resin and phenol resin) exist together with a conductive material in the through hole, the conduction reliability is improved as compared with Comparative Examples 1 to 4. However, it turned out that the adhesiveness with an electrode is inferior (Comparative Examples 5-6).
On the other hand, when an anisotropic conductive member prepared by making a resin having a predetermined thermal expansion coefficient together with a conductive material in the through hole is used, the adhesion with the electrode is high and the conduction reliability is also high. (Examples 1 to 6).

1 異方導電性部材
2 絶縁性基材
3 導電性材料
4 樹脂
5 貫通孔
6 貫通孔の間隔
7 貫通孔の開口径
8 貫通孔の深さ(絶縁性基材の厚み)
9 貫通孔の中心間距離(ピッチ)
10 半製品
11a、11b 配線基板
12a、12b 電極
13 隙間
20 多層配線基板
DESCRIPTION OF SYMBOLS 1 Anisotropic conductive member 2 Insulating base material 3 Conductive material 4 Resin 5 Through-hole 6 Through-hole space | interval 7 Opening diameter of a through-hole 8 Depth of a through-hole (thickness of an insulating base material)
9 Center distance between through holes (pitch)
10 Semi-finished product 11a, 11b Wiring board 12a, 12b Electrode 13 Gap 20 Multilayer wiring board

Claims (8)

絶縁性基材の厚み方向に設けられた複数の貫通孔の内部に導電性材料を有する異方導電性部材であって、
前記貫通孔の内部に、前記導電性材料とともに樹脂が存在し、
前記貫通孔が、前記導電性材料によって前記絶縁性基材の厚み方向に導通されており、
前記樹脂の熱膨張率が、100×10-6-1以上であり、
前記貫通孔の平均開口径が40nm以上10μm未満であり、かつ、アスペクト比(平均深さ/平均開口径)が100〜3000である異方導電性部材。
An anisotropic conductive member having a conductive material inside a plurality of through holes provided in the thickness direction of the insulating substrate,
Resin is present with the conductive material inside the through hole,
The through hole is conducted in the thickness direction of the insulating base material by the conductive material,
The thermal expansion coefficient of the resin is state, and are 100 × 10 -6 K -1 or higher,
The anisotropic conductive member whose average opening diameter of the said through-hole is 40 nm or more and less than 10 micrometers, and whose aspect-ratio (average depth / average opening diameter) is 100-3000 .
前記導電性材料および前記樹脂が、前記貫通孔の孔径方向の断面においていずれも存在している請求項1に記載の異方導電性部材。   The anisotropic conductive member according to claim 1, wherein both the conductive material and the resin are present in a cross-section in the hole diameter direction of the through hole. 前記貫通孔が設けられた前記絶縁性基材が、バルブ金属の陽極酸化皮膜である請求項1または2に記載の異方導電性部材。 The through hole is the insulating base material provided with an anisotropic conductive member according to claim 1 or 2 which is anodized film of the valve metal. 前記バルブ金属が、アルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマスおよびアンチモンからなる群から選択される少なくとも1種の金属である請求項に記載の異方導電性部材。 The anisotropic conductive member according to claim 3 , wherein the valve metal is at least one metal selected from the group consisting of aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth and antimony. 前記導電性材料が、銅、金、アルミニウム、ニッケル、銀およびタングステンからなる群から選択される少なくとも1種の金属、または、カーボンナノファイバーである請求項1〜のいずれか1項に記載の異方導電性部材。 Wherein the conductive material is copper, gold, aluminum, nickel, of at least one selected from the group consisting of silver and tungsten metal or, according to any one of claims 1 to 4, carbon nanofibers, Anisotropic conductive member. 前記樹脂が、少なくともシリコーン樹脂および/またはウレタン樹脂を含む請求項1〜のいずれか1項に記載の異方導電性部材。 Wherein the resin is an anisotropic conductive member according to any one of claims 1 to 5 including at least a silicone resin and / or urethane resins. 請求項1〜のいずれか1項に異方導電性部材と、前記異方導電性部材の前記導電性材料と電極を介して電気的に接続される配線基板とが積層された多層配線基板。 A multilayer wiring board in which the anisotropic conductive member according to any one of claims 1 to 6 , and the wiring board electrically connected to the conductive material of the anisotropic conductive member via an electrode are stacked. . 半導体パッケージのインターポーザとして用いる請求項に記載の多層配線基板。 The multilayer wiring board according to claim 7, which is used as an interposer for a semiconductor package.
JP2012215256A 2012-09-27 2012-09-27 Anisotropic conductive member and multilayer wiring board Expired - Fee Related JP5824435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012215256A JP5824435B2 (en) 2012-09-27 2012-09-27 Anisotropic conductive member and multilayer wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012215256A JP5824435B2 (en) 2012-09-27 2012-09-27 Anisotropic conductive member and multilayer wiring board

Publications (2)

Publication Number Publication Date
JP2014071962A JP2014071962A (en) 2014-04-21
JP5824435B2 true JP5824435B2 (en) 2015-11-25

Family

ID=50747010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012215256A Expired - Fee Related JP5824435B2 (en) 2012-09-27 2012-09-27 Anisotropic conductive member and multilayer wiring board

Country Status (1)

Country Link
JP (1) JP5824435B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489195A (en) * 2014-07-11 2017-03-08 富士胶片株式会社 Anisotropic conductive component and multi-layered wiring board

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017003702A (en) * 2015-06-08 2017-01-05 日本放送協会 Double side wiring board, display and display device
JP7190426B2 (en) * 2017-04-11 2022-12-15 信越ポリマー株式会社 Electrical connector and manufacturing method thereof
JP7080879B2 (en) * 2017-05-18 2022-06-06 信越ポリマー株式会社 Electrical connector and its manufacturing method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04294006A (en) * 1991-03-22 1992-10-19 Ricoh Co Ltd Anisotropic conductive film and manufacture thereof
JP3829359B2 (en) * 1996-05-30 2006-10-04 Jsr株式会社 Anisotropic conductive sheet and manufacturing method thereof
JP4910747B2 (en) * 2007-02-13 2012-04-04 富士通株式会社 Capacitor manufacturing method
JP5145110B2 (en) * 2007-12-10 2013-02-13 富士フイルム株式会社 Method for manufacturing anisotropic conductive junction package
JP5435493B2 (en) * 2010-06-22 2014-03-05 富士フイルム株式会社 Fine structure and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106489195A (en) * 2014-07-11 2017-03-08 富士胶片株式会社 Anisotropic conductive component and multi-layered wiring board

Also Published As

Publication number Publication date
JP2014071962A (en) 2014-04-21

Similar Documents

Publication Publication Date Title
JP5435493B2 (en) Fine structure and manufacturing method thereof
JP6166826B2 (en) Method for manufacturing anisotropic conductive member
JP5164878B2 (en) Anisotropic conductive member and manufacturing method thereof
JP6084709B2 (en) MICROSTRUCTURE, MULTILAYER WIRING BOARD, SEMICONDUCTOR PACKAGE, AND MICROSTRUCTURE MANUFACTURING METHOD
KR20100101598A (en) Anisotropic conductive joint package
JP5824435B2 (en) Anisotropic conductive member and multilayer wiring board
JP6818707B2 (en) Metal film, structure, composite material, method of manufacturing structure, and method of manufacturing composite material
WO2017057150A1 (en) Method for manufacturing metal-filled microstructure device
JP6412587B2 (en) Multilayer wiring board
JP5363131B2 (en) Anisotropic conductive member and manufacturing method thereof
JP2016058545A (en) Substrate for printed wiring board, printed wiring board and method of manufacturing printed wiring board
JP5694888B2 (en) Anisotropic conductive member and manufacturing method thereof
JP5435484B2 (en) Method for producing metal-filled microstructure
TW202341303A (en) Metal filled microstructure
JP7343706B2 (en) Manufacturing method of anisotropically conductive member
JPWO2016104391A1 (en) Printed wiring board substrate, printed wiring board, and printed wiring board manufacturing method
WO2022044585A1 (en) Method for manufacturing metal-filled microstructure
JP2011080139A (en) Metal-filled fine structure and method for producing the same
JP2018037509A (en) Method for manufacturing multilayer wiring board
WO2020021800A1 (en) Method for manufacturing electroconductive pillars using electroconductive paste
JP2016107290A (en) Metal material joining method
JP2014043382A (en) Semiconductor device and method of manufacturing the same
JP2010033753A (en) Microstructure and method of manufacturing same
JP2009287115A (en) Electrolytic plating method and method of manufacturing metal-filled microstructure using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150929

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151009

R150 Certificate of patent or registration of utility model

Ref document number: 5824435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees