JP2016107290A - Metal material joining method - Google Patents

Metal material joining method Download PDF

Info

Publication number
JP2016107290A
JP2016107290A JP2014245757A JP2014245757A JP2016107290A JP 2016107290 A JP2016107290 A JP 2016107290A JP 2014245757 A JP2014245757 A JP 2014245757A JP 2014245757 A JP2014245757 A JP 2014245757A JP 2016107290 A JP2016107290 A JP 2016107290A
Authority
JP
Japan
Prior art keywords
metal
layer
plating layer
joining
nanoporous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014245757A
Other languages
Japanese (ja)
Other versions
JP6442688B2 (en
Inventor
西川 宏
Hiroshi Nishikawa
宏 西川
美紀子 齋藤
Mikiko Saito
美紀子 齋藤
水野 潤
Jun Mizuno
潤 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Osaka University NUC
Original Assignee
Waseda University
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Osaka University NUC filed Critical Waseda University
Priority to JP2014245757A priority Critical patent/JP6442688B2/en
Publication of JP2016107290A publication Critical patent/JP2016107290A/en
Application granted granted Critical
Publication of JP6442688B2 publication Critical patent/JP6442688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and simple metal material joining method capable of forming a joint part having high reliability and mechanical characteristics even at a low joining temperature by reducing a void or a residual organic component in a joint layer and eliminating the necessity of applying, e.g., a joining composition on a joint surface.SOLUTION: The metal material joining method includes: the first step of forming a plating layer on the joint surface of a first joint material and/or a second joint material; the second step of carrying out a dealloying processing for the plaiting layer to set it as a nano porous body metal layer; and the third step of heating the nano porous body metal layer to 50-400°C in the abutted state of the first joint material and the second joint material via the nano porous body metal layer and pressurizing the first joint material and the second joint material.SELECTED DRAWING: Figure 1

Description

本発明は金属材の低温接合方法に関し、より具体的には、接合層内のボイドや残留有機成分の低減によって、高い信頼性及び機械的特性を有する接合部の形成が低い接合温度でも可能であり、被接合界面への接合用組成物の塗布等が不要な、安価かつ簡便な金属材の接合方法に関する。   The present invention relates to a low-temperature bonding method for metal materials, and more specifically, by reducing voids and residual organic components in a bonding layer, it is possible to form a bonded portion having high reliability and mechanical characteristics at a low bonding temperature. In addition, the present invention relates to an inexpensive and simple method for joining metal materials, which does not require application of a bonding composition to a bonded interface.

銅材及び銅被覆された部品に代表される金属部品と金属部品とを機械的及び/又は電気的及び/又は熱的に接合するために、従来より、はんだ、導電性接着剤、銀ペースト及び異方導電性フィルム等が用いられている。   Conventionally, in order to mechanically and / or electrically and / or thermally bond metal parts and metal parts represented by copper materials and copper-coated parts, solder, conductive adhesive, silver paste and An anisotropic conductive film or the like is used.

特に、はんだ並びに金属からなる導電フィラーを含む接着剤、ペースト及びフィルムは、電気的な接続を必要とする部分の接合に用いられている。更には、金属は一般的に熱伝導性が高いため、これらはんだ並びに導電フィラーを含む接着剤、ペースト及びフィルムは、放熱性を上げるために使用される場合もある。   In particular, adhesives, pastes, and films containing conductive fillers made of solder and metal are used for joining parts that require electrical connection. Furthermore, since metals generally have high thermal conductivity, adhesives, pastes, and films containing these solders and conductive fillers may be used to increase heat dissipation.

一方、例えば、LED等の発光素子を用いて高輝度の照明デバイスや発光デバイスを作製する場合、或いは、パワーデバイスと言われる高温で高効率の動作をする半導体素子を用いて半導体デバイスを作製する場合等には、発熱量が上がる傾向にある。デバイスや素子の効率を向上させて発熱を減らす試みも行われているが、現状では十分な成果が出ておらず、デバイスや素子の使用温度が上がっているのが実情である。   On the other hand, for example, when a high-luminance lighting device or a light-emitting device is manufactured using a light-emitting element such as an LED, or a semiconductor device is manufactured using a semiconductor element that operates at a high temperature and is called a power device. In some cases, the amount of heat generation tends to increase. Attempts have been made to improve the efficiency of devices and elements to reduce heat generation. However, at present, sufficient results have not been achieved, and the operating temperature of devices and elements has risen.

また、接合時におけるデバイスの損傷を防ぐという観点からは、低い接合温度(例えば350℃以下)で十分な接合強度を確保できる接合材が求められている。したがって、デバイスや素子等を接合するための接合材に対しては、接合温度の低下とともに、接合後におけるデバイスの動作による使用温度の上昇に耐えて十分な接合強度を維持できる耐熱性が求められているが、従来からの接合材では十分な対応ができないことが多い。例えば、はんだは、金属を融点以上に加熱する工程(リフロー工程)を経て部材同士を接合するが、一般的に融点はその組成に固有であるため、耐熱温度を上げようとすると加熱(接合)温度も上がってしまう。   Further, from the viewpoint of preventing device damage during bonding, a bonding material that can ensure sufficient bonding strength at a low bonding temperature (for example, 350 ° C. or lower) is required. Therefore, the bonding material for bonding devices and elements is required to have heat resistance that can withstand the increase in operating temperature due to the operation of the device after bonding and maintain sufficient bonding strength as the bonding temperature decreases. However, there are many cases where conventional bonding materials are not sufficient. For example, solder joins members through a process of heating the metal to the melting point or higher (reflow process). Generally, the melting point is inherent to the composition, so heating (joining) when trying to increase the heat-resistant temperature. The temperature will rise.

更に、はんだを用いて素子や基板を数層重ね合わせて接合する場合、重ね合わせる層の数だけ加熱工程を経る必要であり、既に接合した部分の溶融を防ぐためには、次の接合に用いるはんだの融点(接合温度)を下げる必要があり、また、重ね合わせる層の数だけはんだ組成の種類が必要になり、取扱いが煩雑になる。   Furthermore, when several layers of elements and substrates are bonded using solder, it is necessary to go through the heating process for the number of layers to be overlapped. In order to prevent melting of the already bonded portion, the solder used for the next bonding It is necessary to lower the melting point (joining temperature) of the solder, and the number of types of solder composition is required by the number of layers to be overlaid, which makes handling complicated.

他方、導電性接着剤、銀ペースト及び異方導電性フィルムでは、含有するエポキシ樹脂等の熱硬化を利用して部材同士を接合するが、得られたデバイスや素子の使用温度が上がると樹脂成分が分解、劣化することがある。例えば、特許文献1(特開2008−63688号公報)においては、接合材の主材として用いて被接合部材同士を接合した時により高い接合強度が得られるようにした微粒子が提案されているが、使用温度上昇時における樹脂成分の分解、劣化の問題は解消されていない。   On the other hand, in the conductive adhesive, silver paste and anisotropic conductive film, the members are joined together by using thermosetting such as epoxy resin contained, but when the use temperature of the obtained device or element rises, the resin component May decompose and deteriorate. For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2008-63688) proposes fine particles that are used as a main material of a bonding material so that higher bonding strength can be obtained when bonded members are bonded to each other. The problem of decomposition and deterioration of the resin component at the time of use temperature rise has not been solved.

また、高い使用温度において用いられる高温はんだには、従来より鉛を含むはんだが用いられている。鉛は有毒性があるため、はんだは鉛フリー化への流れが顕著である。高温はんだには他に良い代替材料が存在しないため、依然として鉛はんだが使用されているが、環境問題の観点から、鉛を使用しない接合材が切望されている。   Conventionally, solder containing lead has been used as high-temperature solder used at high operating temperatures. Since lead is toxic, the trend toward solder-free solder is remarkable. Since there is no other good alternative material for high-temperature solder, lead solder is still used, but from the viewpoint of environmental problems, a bonding material that does not use lead is eagerly desired.

近年、高温はんだの代替材料として、銀、金などの貴金属を中心とする金属ナノ粒子を用いた接合材が開発されている(例えば、特許文献2:特開2012−046779号公報)。しかしながら、金属ナノ粒子は高価であるだけでなく、室温でも容易に凝集することから、分散状態を長期間維持するためには金属ナノ粒子の表面を有機層で被覆し、溶媒に適当な分散剤を添加する必要がある。   In recent years, as an alternative material for high-temperature solder, a bonding material using metal nanoparticles centered on noble metals such as silver and gold has been developed (for example, Patent Document 2: JP 2012-046779 A). However, since metal nanoparticles are not only expensive, but also easily aggregate at room temperature, in order to maintain a dispersed state for a long period of time, the surface of the metal nanoparticles is coated with an organic layer, and a suitable dispersant for the solvent. Need to be added.

金属ナノ粒子の焼結による接合層は当該金属の融点相当の耐熱温度を有する等、従来のはんだと比較して優れた特性を有する一方、上記有機層及び分散剤等が焼結段階で接合層に残存してしまい、ボイドが形成するという問題がある。加えて、接合温度が上記有機層及び分散剤等の分解温度に依存するという不可避的な問題点も存在する。   The bonding layer formed by sintering metal nanoparticles has superior characteristics compared to conventional solders, such as having a heat resistance temperature corresponding to the melting point of the metal, while the organic layer and the dispersing agent are bonded at the sintering stage. There is a problem that voids are formed. In addition, there is an unavoidable problem that the bonding temperature depends on the decomposition temperature of the organic layer and the dispersant.

特開2008−63688号公報JP 2008-63688 A 特開2012−046779号公報JP 2012-046779 A

以上のような状況に鑑み、本発明の目的は、接合層内のボイドや残留有機成分の低減によって高い信頼性及び機械的特性を有する接合部の形成が低い接合温度でも可能であると共に、被接合面への接合用組成物の塗布等が不要な、安価かつ簡便な金属材の接合方法を提供することにある。   In view of the above situation, the object of the present invention is to enable formation of a joint having high reliability and mechanical characteristics by reducing voids and residual organic components in the joining layer even at a low joining temperature. An object of the present invention is to provide an inexpensive and simple method for joining metal materials, which does not require application of a joining composition to a joining surface.

本発明者は、上記目的を達成すべく金属材の接合方法ついて鋭意研究を重ねた結果、金属ナノ粒子が三次元的に配列してなるナノ多孔体金属層を被接合面に形成させることが上記目的を達成する上で極めて有効であることを見出し、本発明に到達した。   As a result of earnest research on the method for joining metal materials to achieve the above-mentioned object, the present inventor can form a nanoporous metal layer in which metal nanoparticles are arranged in a three-dimensional manner on the surface to be joined. It has been found that it is extremely effective in achieving the above object, and has reached the present invention.

即ち、本発明は、
第一の被接合材及び/又は第二の被接合材の被接合面にめっき層を形成させる第一工程と、
前記めっき層に脱成分腐食処理を施してナノ多孔体金属層とする第二工程と、
前記ナノ多孔体金属層を介して前記第一の被接合材と前記第二の被接合材とを当接させた状態で、前記ナノ多孔体金属層を50〜400℃に加熱すると共に、前記第一の被接合材と前記第二の被接合材とを加圧する第三工程と、を含むこと、
を特徴とする金属材の接合方法、を提供する。
That is, the present invention
A first step of forming a plating layer on a bonded surface of the first bonded material and / or the second bonded material;
A second step in which the plating layer is subjected to decomponent corrosion treatment to form a nanoporous metal layer;
While heating the nanoporous metal layer to 50 to 400 ° C. in a state where the first bonded material and the second bonded material are brought into contact with each other through the nanoporous metal layer, Including a third step of pressurizing the first material to be joined and the second material to be joined,
A metal material joining method characterized by the above.

本発明の金属材の接合方法においては、被接合面に形成させためっき層に脱成分腐食処理(Dealloying)を施してナノ多孔体金属層を形成させ、当該ナノ多孔体金属層を利用して接合を達成するため、接合時のハンドリングが極めて容易であり、被接合面への接合用組成物ペーストの塗布や接合用組成物シート等の挿入を行う必要がない。   In the metal material joining method of the present invention, a deporous corrosion treatment (dealloying) is performed on the plating layer formed on the surface to be joined to form a nanoporous metal layer, and the nanoporous metal layer is used. In order to achieve the joining, handling at the time of joining is extremely easy, and it is not necessary to apply the joining composition paste to the joined surfaces or insert the joining composition sheet or the like.

個々に生成した金属ナノ粒子を三次元的に配列することは極めて困難であるが、めっき層の脱成分腐食を用いることで、ナノ多孔体金属層を容易に得ることができる。また、めっき層の脱成分腐食によって得られるナノ多孔体金属層は基本的に面状であるため、被接合材間の接合用組成物として好適に用いることができる。なお、ナノ多孔体金属層は被接合面の全面に形成させてもよく、一部に形成させてもよい。   Although it is extremely difficult to three-dimensionally arrange individually generated metal nanoparticles, a nanoporous metal layer can be easily obtained by using decomponent corrosion of the plating layer. In addition, since the nanoporous metal layer obtained by decomponent corrosion of the plating layer is basically planar, it can be suitably used as a composition for joining between materials to be joined. The nanoporous metal layer may be formed on the entire surface to be joined, or may be formed on a part thereof.

ここで、脱成分腐食とは、適当な腐食液を用いた合金元素の選択溶解を利用したものであり、例えば、J.ErlebacherらによってNature,410(2001),40で報告されており、その技術を用いて形成されるナノ多孔体金属層を本発明の接合方法で用いるのが好ましい。   Here, the decomponent corrosion is based on the selective dissolution of alloy elements using an appropriate corrosive solution. Reported by Erlebacher et al., Nature, 410 (2001), 40, and a nanoporous metal layer formed using this technique is preferably used in the bonding method of the present invention.

また、本発明の金属材の接合方法においては、更に、前記第一工程と前記第二工程の間に、前記めっき層にアニーリング処理を施す組織調整工程を有すること、が好ましい。アニーリング処理によってナノ多孔体金属層を構成する組織のサイズを任意に調整することができ、接合用途に対して最適化を図ることができる。   Moreover, in the joining method of the metal material of this invention, it is preferable to further have a structure | tissue adjustment process which anneals to the said plating layer between said 1st process and said 2nd process. The size of the tissue constituting the nanoporous metal layer can be arbitrarily adjusted by the annealing treatment, and can be optimized for bonding applications.

また、本発明の金属材の接合方法においては、前記アニーリング処理の温度を50〜150℃とすること、が好ましい。アニーリング処理の温度を50〜150℃とすることで、めっき層組織の適度な粗大化や原子の再配列が生じ、その後の脱成分腐食処理によって優れた低温焼結機能を有するナノ多孔体金属層を得ることができる。   Moreover, in the joining method of the metal material of this invention, it is preferable that the temperature of the said annealing process shall be 50-150 degreeC. By setting the temperature of the annealing treatment to 50 to 150 ° C., moderate coarsening of the plating layer structure and atomic rearrangement occur, and the nanoporous metal layer having an excellent low-temperature sintering function by the subsequent decomponent corrosion treatment Can be obtained.

また、本発明の金属材料の接合方法においては、前記ナノ多孔体金属層が、三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むこと、が好ましく、平均粒径が5〜50nmの金属粒子を含むことがより好ましい。金属ナノ粒子がこれらの平均粒径を有することで、接合温度においてナノ多孔体金属層が優れた低温焼結機能を発現する。加えて、 金属ナノ粒子が三次元的に配列してなるナノ多孔体金属層を用いることで、金属ナノ粒子の分散性確保等のために有機被覆層及び分散剤等を使用する必要がなく、接合層内のボイドや残留有機物を大幅に低減することができる。   Moreover, in the joining method of the metal material of this invention, it is preferable that the said nanoporous metal layer contains the metal nanoparticle with an average particle diameter of 5-500 nm arranged in three dimensions, and an average particle diameter is 5 More preferably, it contains metal particles of ˜50 nm. When the metal nanoparticles have these average particle diameters, the nanoporous metal layer exhibits an excellent low-temperature sintering function at the bonding temperature. In addition, by using a nanoporous metal layer in which metal nanoparticles are arranged three-dimensionally, there is no need to use an organic coating layer, a dispersant, etc. to ensure the dispersibility of the metal nanoparticles, Voids and residual organic substances in the bonding layer can be greatly reduced.

被接合界面には、本発明の効果を損なわない範囲で従来公知の種々の接合用組成物を更に塗布等してもよいが、ナノ多孔体金属層の低温焼結機能のみで接合を達成することが好ましい。有機溶媒や分散剤の使用を必要としないナノ多孔体金属層のみを接合用組成物として利用することで、有機層及び分散剤等が焼結段階で接合層に残存してしまい、ボイドが形成するという問題を効果的に解決することができる。加えて、接合温度が有機層及び分散剤等の分解温度に依存するという、金属ナノ粒子を用いた接合方法の不可避的な問題点を解決することができる。   Various conventionally known bonding compositions may be further applied to the bonded interface as long as the effects of the present invention are not impaired, but the bonding is achieved only by the low-temperature sintering function of the nanoporous metal layer. It is preferable. By using only the nanoporous metal layer that does not require the use of organic solvents or dispersants as the bonding composition, the organic layer and the dispersant remain in the bonding layer during the sintering stage, forming voids. Can be effectively solved. In addition, the inevitable problem of the joining method using metal nanoparticles, in which the joining temperature depends on the decomposition temperature of the organic layer and the dispersant or the like, can be solved.

本発明の金属材の接合方法においては、脱成分腐食処理を施すめっき層が二元系合金であることが好ましく、Au−Ag合金であることがより好ましい。二元系合金を脱成分腐食することで、主として一方の元素が溶解除去され、他の元素を主成分とする金属ナノ粒子で構成されるナノ多孔体金属層を効率的に得ることができる。また、Au−Ag合金を例えば硝酸(HNO)で脱成分腐食することで、主として金(Au)で構成されるナノ多孔体金属層を効率的に得ることができる。 In the metal material joining method of the present invention, the plating layer to be subjected to decomponent corrosion treatment is preferably a binary alloy, and more preferably an Au—Ag alloy. By decomponent corrosion of the binary alloy, one element is mainly dissolved and removed, and a nanoporous metal layer composed of metal nanoparticles mainly composed of the other element can be efficiently obtained. In addition, a nanoporous metal layer mainly composed of gold (Au) can be efficiently obtained by decomponent corrosion of the Au—Ag alloy with, for example, nitric acid (HNO 3 ).

更に、本発明の金属材の接合方法においては、前記第一の被接合材及び/又は前記第二の被接合材が銅材であること、が好ましい。本発明の被接合材は被接合面にナノ多孔体金属層を形成できる限りにおいて特に限定されず、従来公知の種々の金属材を用いることができるが、銅材を用いることでより確実に良好な接合体を得ることができる。   Furthermore, in the joining method of the metal material of this invention, it is preferable that said 1st to-be-joined material and / or said 2nd to-be-joined material are copper materials. The material to be bonded according to the present invention is not particularly limited as long as the nanoporous metal layer can be formed on the surface to be bonded, and various conventionally known metal materials can be used. Can be obtained.

また、本発明は、
金属基材の少なくとも一部分に二元系合金めっき層を有し、
前記二元系合金めっき層の少なくとも表面近傍が、三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むナノ多孔体構造となっていること、
を特徴とする金属材接合用金属部材、も提供する。
The present invention also provides:
Having a binary alloy plating layer on at least a portion of the metal substrate;
At least the vicinity of the surface of the binary alloy plating layer has a nanoporous structure containing metal nanoparticles having an average particle size of 5 to 500 nm arranged three-dimensionally;
Also provided is a metal member for joining a metal material.

金属基材の表面にナノ多孔体構造を有するめっき層が存在することで、被接合面に接合用組成物を塗布することなく良好な接合体を得ることができる。ここで、金属材接合用金属部材の一面にナノ多孔体構造を有するめっき層が形成されている場合は、当該めっき層を介して当該金属接合用金属部材と他の金属部材とを接合することができ、金属材接合用金属部材の複数面にナノ多孔体構造を有するめっき層が形成されている場合は、複数の金属部材を接合するジョイント部材として用いることができる。   The presence of the plating layer having a nanoporous structure on the surface of the metal substrate makes it possible to obtain a good bonded body without applying the bonding composition to the bonded surfaces. Here, when a plating layer having a nanoporous structure is formed on one surface of a metal member for joining a metal material, the metal member for metal joining and another metal member are joined via the plating layer. When a plating layer having a nanoporous structure is formed on a plurality of surfaces of a metal member for joining a metal material, it can be used as a joint member for joining a plurality of metal members.

本発明の金属材接合用金属部材においては、二元系合金めっき層がAu−Ag合金めっき層であること、が好ましい。Au−Ag合金めっき層の表面近傍には、主として金(Au)で構成されるナノ多孔体構造が形成され、当該ナノ多孔体構造は接合層として好適に用いることができる。   In the metal member for joining a metal material of the present invention, the binary alloy plating layer is preferably an Au-Ag alloy plating layer. A nanoporous structure mainly composed of gold (Au) is formed in the vicinity of the surface of the Au—Ag alloy plating layer, and the nanoporous structure can be suitably used as a bonding layer.

本発明によれば、接合層内のボイドや残留有機成分の低減によって高い信頼性及び機械的特性を有する接合部の形成が低い接合温度でも可能であると共に、被接合面への接合用組成物の塗布等が不要な、安価かつ簡便な金属材の接合方法を提供することができる。   According to the present invention, it is possible to form a bonding portion having high reliability and mechanical characteristics by reducing voids and residual organic components in the bonding layer even at a low bonding temperature, and a composition for bonding to a surface to be bonded. Therefore, it is possible to provide an inexpensive and simple method for joining metal materials that does not require coating or the like.

本発明の金属材の接合方法の工程図である。It is process drawing of the joining method of the metal material of this invention. 本発明の金属材接合用金属部材の概略断面図である。It is a schematic sectional drawing of the metal member for metal material joining of this invention. 評価用試料1のAu−Ag合金めっき層表面のSEM写真である。It is a SEM photograph of the Au-Ag alloy plating layer surface of sample 1 for evaluation. Au−Ag合金めっき層表面近傍のAg含有率を示すグラフである。It is a graph which shows Ag content rate of the Au-Ag alloy plating layer surface vicinity. 接合継手のせん断強度を示すグラフである。It is a graph which shows the shear strength of a joint joint. 評価用試料2のAu−Ag合金めっき層表面のSEM写真である。It is a SEM photograph of the Au-Ag alloy plating layer surface of sample 2 for evaluation. 評価用試料3のAu−Ag合金めっき層表面のSEM写真である。It is a SEM photograph of the Au-Ag alloy plating layer surface of sample 3 for evaluation. 評価用試料4のAu−Ag合金めっき層表面のSEM写真である。It is a SEM photograph of the Au-Ag alloy plating layer surface of sample 4 for evaluation.

以下、本発明の金属材の接合方法の好適な一実施形態について詳細に説明する。なお、以下の説明では、本発明の一実施形態を示すに過ぎず、これらによって本発明が限定されるものではなく、また、重複する説明は省略することがある。   Hereinafter, a preferred embodiment of the metal material joining method of the present invention will be described in detail. In addition, in the following description, only one embodiment of the present invention is shown, and the present invention is not limited by these, and redundant description may be omitted.

(1)接合方法
図1に、本発明の金属材の接合方法の工程図を示す。本発明の金属材の接合方法は、第一の被接合材及び/又は第二の被接合材の被接合面にめっき層を形成させる第一工程(S01)と、めっき層に脱成分腐食処理を施してナノ多孔体金属層とする第二工程(S02)と、ナノ多孔体金属層を介して第一の被接合材と第二の被接合材とを当接させた状態で、ナノ多孔体金属層を50〜400℃に加熱すると共に、第一の被接合材と第二の被接合材とを加圧する第三工程(S03)と、を含むこと、を特徴としている。以下において各工程について説明する。
(1) Joining Method FIG. 1 shows a process diagram of a joining method of metal materials of the present invention. The metal material joining method of the present invention includes a first step (S01) in which a plating layer is formed on a surface to be joined of the first material to be joined and / or the second material to be joined, and a decomponent corrosion treatment on the plating layer. In the second step (S02) to form a nanoporous metal layer, and the first porous material and the second porous material are brought into contact with each other through the nanoporous metal layer. The body metal layer is heated to 50 to 400 ° C., and includes a third step (S03) of pressurizing the first bonded material and the second bonded material. Each step will be described below.

(1−1)第一工程(S01:めっき層形成工程)
第一工程(S01)は、第一の被接合材及び/又は第二の被接合材の被接合面にめっき層を形成させる工程である。用いるめっき方法は特に限定されず、従来公知の種々の方法でめっき層を形成させればよい。
(1-1) First step (S01: plating layer forming step)
The first step (S01) is a step of forming a plating layer on the bonded surface of the first bonded material and / or the second bonded material. The plating method to be used is not particularly limited, and the plating layer may be formed by various conventionally known methods.

ここで、めっき層の組成は、脱成分腐食処理によって特定の元素が選択的に腐食される限りにおいて特に限定されないが、二元系合金であることが好ましく、Au−Ag合金であることがより好ましい。めっき層を二元系合金とすることで、脱成分腐食によって主として一方の元素を溶解除去することができ、他の元素を主成分とする金属ナノ粒子で構成されるナノ多孔体金属層を効率的に得ることができる。加えて、二元系合金とすることで、脱成分腐食後の組成の把握が容易となる。   Here, the composition of the plating layer is not particularly limited as long as a specific element is selectively corroded by decomponent corrosion treatment, but is preferably a binary alloy, more preferably an Au-Ag alloy. preferable. By making the plating layer a binary alloy, one element can be dissolved and removed mainly by decomponent corrosion, and the nanoporous metal layer composed of metal nanoparticles mainly composed of the other element can be efficiently used. Can be obtained. In addition, by using a binary alloy, it is easy to grasp the composition after decomponent corrosion.

脱成分腐食によってナノ多孔体金属層を得ることができる金属材としては、Au−Ag−Pt、Au−Cu、Au−Zn、Au−Al、Ag−Al、Ag−Zn、Cu−Al、Cu−Mg、Cu−Mn、Cu−Zn、Cu−Sn、Pt−Cu、Pt−Si、Pt−Al、Pt−Zn、Pd−Ag、Pt−Co、Pd−Al、Pd−Ni−P、Ni−Al、Ni−Cu等を例示することができる。   Examples of metal materials that can obtain a nanoporous metal layer by decomponent corrosion include Au-Ag-Pt, Au-Cu, Au-Zn, Au-Al, Ag-Al, Ag-Zn, Cu-Al, Cu -Mg, Cu-Mn, Cu-Zn, Cu-Sn, Pt-Cu, Pt-Si, Pt-Al, Pt-Zn, Pd-Ag, Pt-Co, Pd-Al, Pd-Ni-P, Ni -Al, Ni-Cu, etc. can be illustrated.

なお、Au−Ag合金めっき層は従来公知の種々のめっき方法で形成させればよいが、例えば、めっき浴には、金属金1〜5g/L、金属銀2〜10g/L、シアン5〜15g/L、光沢剤適量の組成を用いることができ、液温20〜30℃、-300~ -900mV vs. Ag/AgClの電位、電流密度0.5〜1A/dmの条件でめっきすることによって、Au−Ag合金めっき層を形成させることができる。 The Au—Ag alloy plating layer may be formed by various conventionally known plating methods. For example, in a plating bath, metal gold 1 to 5 g / L, metal silver 2 to 10 g / L, cyan 5 A composition of 15 g / L, an appropriate amount of brightener can be used, and a liquid temperature of 20 to 30 ° C., −300 to −900 mV vs. The potential of Ag / AgCl, by plating at a current density of 0.5~1A / dm 2, it is possible to form the Au-Ag alloy plating layer.

めっき層は被接合面の全体に形成させてもよく、任意の領域に部分的に形成させてもよい。また、めっき層の厚さは特に制限されないが、0.05〜1μmであることが好ましく、0.1〜0.5μmであることがより好ましい。めっき層の厚さを0.1μm以上とすることで、合金の安定な組成制御を可能とすることができ、0.5μm以下とすることで、ナノーポーラス構造の機械的強度の確保を可能とすることができる。   The plating layer may be formed on the entire surface to be joined, or may be partially formed in an arbitrary region. The thickness of the plating layer is not particularly limited, but is preferably 0.05 to 1 μm, and more preferably 0.1 to 0.5 μm. When the thickness of the plating layer is 0.1 μm or more, stable composition control of the alloy can be performed, and when it is 0.5 μm or less, the mechanical strength of the nano-porous structure can be ensured. be able to.

(1−2)第二工程(S02:脱成分腐食処理)
第二工程(S02)は、第一工程(S01)によって形成させためっき層に脱成分腐食処理を施して、ナノ多孔体金属層を得る工程である。
(1-2) Second step (S02: Decomponent corrosion treatment)
The second step (S02) is a step of obtaining a nanoporous metal layer by subjecting the plating layer formed in the first step (S01) to decomponent corrosion treatment.

脱成分腐食処理に用いる腐食液は、処理対象となるめっき層に応じて適宜選定すればよい。例えば、Au−Ag合金を硝酸(HNO)で脱成分腐食することで、主として金(Au)で構成されるナノ多孔体金属層を効率的に得ることができる。 What is necessary is just to select suitably the corrosive liquid used for a decomponent corrosion process according to the plating layer used as a process target. For example, a nanoporous metal layer mainly composed of gold (Au) can be efficiently obtained by decomponent corrosion of an Au—Ag alloy with nitric acid (HNO 3 ).

脱成分腐食によってナノ多孔体金属層を得ることができる金属材としては、Au−Ag−Pt、Au−Cu、Au−Zn、Au−Al、Ag−Al、Ag−Zn、Cu−Al、Cu−Mg、Cu−Mn、Cu−Zn、Cu-Sn、Pt−Cu、Pt−Si、Pt−Al、Pt−Zn、Pd−Ag、Pt−Co、Pd−Al、Pd−Ni−P、Ni−Al、Ni−Cu等を例示することができるが、Au−Ag−Pt、Au−Cu、Au−Zn及びAu−Al等の脱成分腐食によってナノ多孔体Au層を、Ag−Al及びAg−Zn等の脱成分腐食によってナノ多孔体Ag層を、Cu−Al、Cu−Mg、Cu−Mn及びCu−Zn等の脱成分腐食によってナノ多孔体Cu層を、Pt−Cu、Pt−Si、Pt−Al、Pt−Zn、Pd−Ag及びPt−Co等の脱成分腐食によってナノ多孔体Pt層を、Pd−Al及びPd−Ni−P等の脱成分腐食によってナノ多孔体Pd層を、Ni−Al及びNi−Cu等の脱成分腐食によってナノ多孔体Ni層を、それぞれ得ることができる。   Examples of metal materials that can obtain a nanoporous metal layer by decomponent corrosion include Au-Ag-Pt, Au-Cu, Au-Zn, Au-Al, Ag-Al, Ag-Zn, Cu-Al, Cu -Mg, Cu-Mn, Cu-Zn, Cu-Sn, Pt-Cu, Pt-Si, Pt-Al, Pt-Zn, Pd-Ag, Pt-Co, Pd-Al, Pd-Ni-P, Ni -Al, Ni-Cu and the like can be exemplified, but the nanoporous Au layer is formed by decomponent corrosion such as Au-Ag-Pt, Au-Cu, Au-Zn and Au-Al, and the Ag-Al and Ag -Nanoporous Ag layer by decomponent corrosion such as Zn, and Nanoporous Cu layer by Pt-Cu, Pt-Si by decomponent corrosion such as Cu-Al, Cu-Mg, Cu-Mn and Cu-Zn. , Pt-Al, Pt-Zn, Pd-Ag and Nanoporous Pt layer by decomponent corrosion such as Pt-Co, etc., Nanoporous Pd layer by decomponent corrosion such as Pd-Al and Pd-Ni-P, Decomponent such as Ni-Al and Ni-Cu, etc. Each nanoporous Ni layer can be obtained by corrosion.

ナノ多孔体金属層は、平均粒径が5〜500nmの金属ナノ粒子が三次元的に配列してなるナノ多孔体金属層であることが好ましく、平均粒径が10〜50nmの金属ナノ粒子が三次元的に配列してなるナノ多孔体金属層であることがより好ましい。金属ナノ粒子は一般的に安定性及び分散性に乏しく、表面を有機物等で被覆する必要があるが、金属ナノ粒子が三次元的に配列することで、当該被覆等を用いることなく、長期の安定性及び分散性を担保することができる。   The nanoporous metal layer is preferably a nanoporous metal layer in which metal nanoparticles having an average particle diameter of 5 to 500 nm are three-dimensionally arranged, and metal nanoparticles having an average particle diameter of 10 to 50 nm are A nanoporous metal layer that is three-dimensionally arranged is more preferable. Metal nanoparticles generally have poor stability and dispersibility, and it is necessary to coat the surface with organic matter, etc., but the metal nanoparticles are arranged in a three-dimensional manner without using the coating or the like for a long time. Stability and dispersibility can be ensured.

また、ナノ多孔体金属層を構成する金属ナノ粒子の平均粒径を5〜500nmとすることで、金属ナノ粒子が本来有する低温焼成機能を発現することができ、50〜400℃程度の加熱であっても金属ナノ粒子同士の焼結を進行させることができる。金属材に脱成分腐食処理を施す場合、金属ナノ粒子の平均粒径が5nm以上のナノ多孔体金属層が得られやすく、金属ナノ粒子の平均粒径が500nm以下であると上記低温焼成機能が発現されやすい。また、金属ナノ粒子の平均粒径を10〜50nmとすることで、金属ナノ粒子の安定性及び低温焼結機能を高いレベルで両立させることができる。金属ナノ粒子の平均粒径は、例えば、電子顕微鏡写真から実測することができ、さらには、当該電子顕微鏡写真から、画像処理装置を用いて算出することもできる。なお、ナノ多孔体金属層を構成する金属ナノ粒子の平均粒径は、金属ナノ粒子が扁平している場合は、最短の直径の平均値を意味する。   In addition, by setting the average particle size of the metal nanoparticles constituting the nanoporous metal layer to 5 to 500 nm, the low-temperature firing function inherent to the metal nanoparticles can be expressed, and by heating at about 50 to 400 ° C. Even if it exists, sintering of metal nanoparticles can be advanced. When a metal component is subjected to decomponent corrosion treatment, it is easy to obtain a nanoporous metal layer having an average particle size of metal nanoparticles of 5 nm or more. When the average particle size of metal nanoparticles is 500 nm or less, the low-temperature firing function is achieved. It is easy to be expressed. In addition, by setting the average particle diameter of the metal nanoparticles to 10 to 50 nm, both the stability of the metal nanoparticles and the low-temperature sintering function can be achieved at a high level. The average particle diameter of the metal nanoparticles can be measured from an electron micrograph, for example, and can be calculated from the electron micrograph using an image processing apparatus. In addition, the average particle diameter of the metal nanoparticle which comprises a nanoporous metal layer means the average value of the shortest diameter, when the metal nanoparticle is flat.

個々に生成した金属ナノ粒子を三次元的に配列することは極めて困難であるが、めっき層の脱成分腐食を用いることで、金属ナノ粒子が三次元的に配列したナノ多孔体金属層を容易に得ることができると共に、接合用組成物を被接合面に配置する手間を省くことができる。   Although it is extremely difficult to arrange individually generated metal nanoparticles in three dimensions, it is easy to form a nanoporous metal layer in which metal nanoparticles are arranged in three dimensions by using decomponent corrosion of the plating layer. And the labor of arranging the bonding composition on the surface to be bonded can be saved.

上述のとおり、脱成分腐食は適当な腐食液を用いた合金元素の選択溶解を利用したものであり、腐食液は処理対象となる金属材や目的とするナノ多孔体金属層の形状等に応じて適宜選択すればよい。腐食液としては、例えば、HF、HCl、NaOH、HNO、HSO、クエン酸、HSO+MnSO、(NHSO+MnSO、AgNO等を用いることができる。 As described above, decomponent corrosion uses selective dissolution of alloying elements using an appropriate corrosive solution, and the corrosive solution depends on the metal material to be treated and the shape of the target nanoporous metal layer, etc. May be selected as appropriate. As the corrosive liquid, for example, HF, HCl, NaOH, HNO 3 , H 2 SO 4 , citric acid, H 2 SO 4 + MnSO 4 , (NH 4 ) 2 SO 4 + MnSO 4 , AgNO 3, or the like can be used.

脱成分腐食によってめっき層の全てをナノ多孔体金属層にしてもよいが、めっき層の表面近傍のみをナノ多孔体金属層としてもよい。被接合面の接点がナノ多孔体構造を有しさえすれば、低温焼成機能を有することで、良好な接合部を得ることができる。この場合、脱成分腐食が施されていないめっき層の内部では金属ナノ粒子の焼成が不要であり、極めて効率的に接合が達成される。   Although all of the plating layer may be made into the nanoporous metal layer by decomponent corrosion, only the vicinity of the surface of the plating layer may be made into the nanoporous metal layer. As long as the contact on the surface to be joined has a nanoporous structure, a good joint can be obtained by having a low-temperature firing function. In this case, the metal nanoparticles need not be fired inside the plating layer that has not undergone decomponent corrosion, and bonding can be achieved very efficiently.

(1−3)第三工程(S03:接合工程)
第三工程(S03)は、ナノ多孔体金属層を介して第一の被接合材と第二の被接合材とを当接させた状態で、ナノ多孔体金属層を50〜400℃に加熱すると共に、第一の被接合材と第二の被接合材とを加圧して接合する工程である。
(1-3) Third step (S03: joining step)
In the third step (S03), the nanoporous metal layer is heated to 50 to 400 ° C. in a state where the first bonded material and the second bonded material are brought into contact with each other through the nanoporous metal layer. And a step of pressurizing and joining the first material to be joined and the second material to be joined.

本発明の金属材の接合方法を用いれば、加熱を伴う金属部材同士の接合において簡便に高い接合強度を得ることができる。即ち、第一の被接合材及び/又は第二の被接合材の被接合面に形成させたナノ多孔体金属層を焼結させることで、第一の被接合材と第二の被接合材とを接合することができる。この際、第一の被接合材及び第二の被接合材のうちの一方又は両方を加熱することにより、介在するナノ多孔体金属層を加熱してもよい。   If the joining method of the metal material of this invention is used, in joining of the metal members accompanying a heating, high joining strength can be obtained simply. That is, by sintering the nanoporous metal layer formed on the bonded surface of the first bonded material and / or the second bonded material, the first bonded material and the second bonded material. And can be joined. At this time, the intervening nanoporous metal layer may be heated by heating one or both of the first bonded material and the second bonded material.

また、この加熱の際に、第一の被接合材及び第二の被接合材の外部からこれらを挟む方向に0.5〜30MPa程度の加圧をすることで、強固な接合部を得ることができる。また、焼成を行う際、段階的に温度を上げたり下げたりすることもできる。更に、被接合部材表面に界面活性剤又は表面活性化剤等を塗布しておくことも可能である。   Moreover, in this heating, a strong joint is obtained by applying a pressure of about 0.5 to 30 MPa in the direction of sandwiching the first and second bonded materials from the outside. Can do. In addition, when firing, the temperature can be raised or lowered stepwise. Furthermore, it is also possible to apply a surfactant or a surface activator to the surface of the member to be joined.

なお、接合層内のボイドや残留有機成分を低減するという観点からは、ナノ多孔体金属層のみを介して第一の被接合材及び第二の被接合材を接合することが好ましいが、従来公知の種々の接合用組成物を被接合面に塗布してもよい。当該接合用組成物としては、例えば、金属ナノ粒子を主成分とする接合用組成物を用いることができる。   From the viewpoint of reducing voids and residual organic components in the bonding layer, it is preferable to bond the first bonded material and the second bonded material only through the nanoporous metal layer, Various known bonding compositions may be applied to the surfaces to be bonded. As the bonding composition, for example, a bonding composition containing metal nanoparticles as a main component can be used.

接合用組成物の「塗布」とは、接合用組成物を面状に塗布する場合も線状に塗布(描画)する場合も含む概念である。塗布されて、加熱により焼成される前の状態の接合用組成物からなる塗膜の形状は、所望する形状にすることが可能である。したがって、加熱による焼成後の接合体では、接合用組成物は、面状の接合層及び線状の接合層のいずれも含む概念であり、これら面状の接合層及び線状の接合層は、連続していても不連続であってもよく、連続する部分と不連続の部分とを含んでいてもよい。   The “application” of the bonding composition is a concept that includes a case where the bonding composition is applied in a planar shape and a case where the bonding composition is applied (drawn) linearly. The shape of the coating film made of the bonding composition in a state before being applied and fired by heating can be changed to a desired shape. Therefore, in the bonded body after firing by heating, the bonding composition is a concept including both a planar bonding layer and a linear bonding layer, and these planar bonding layer and linear bonding layer are: It may be continuous or discontinuous, and may include a continuous part and a discontinuous part.

本発明の接合方法を用いることができる第一の被接合材及び第二の被接合材としては、ナノ多孔体金属層を加熱により焼成して接合することのできるものであればよく、特に制限はないが、接合時の温度により損傷しない程度の耐熱性を具備した金属部材であることが好ましく、銅部材であることがより好ましい。   The first material to be joined and the second material to be joined that can use the joining method of the present invention are not particularly limited as long as the nanoporous metal layer can be baked and joined by heating. However, it is preferably a metal member having heat resistance that is not damaged by the temperature at the time of joining, and more preferably a copper member.

なお、被接合銅部材は、銅以外の基材に銅をめっきや蒸着等の種々の方法で被覆したものであってもよい。このような基材としては、例えば、ポリアミド(PA)、ポリイミド(PI)、ポリアミドイミド(PAI)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)等のポリエステル、ポリカーボネート(PC)、ポリエーテルスルホン(PES)、ビニル樹脂、フッ素樹脂、液晶ポリマー、セラミクス、ガラス又は銅以外の金属等を挙げることができる。   In addition, the to-be-joined copper member may coat | cover copper by various methods, such as plating and vapor deposition, to base materials other than copper. Examples of such a base material include polyesters such as polyamide (PA), polyimide (PI), polyamideimide (PAI), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), and polycarbonate. (PC), polyethersulfone (PES), vinyl resin, fluororesin, liquid crystal polymer, ceramics, glass, or metal other than copper can be used.

また、被接合銅部材は、例えば板状又はストリップ状等の種々の形状であってよく、リジッドでもフレキシブルでもよい。基材の厚さも適宜選択することができる。接着性若しくは密着性の向上又はその他の目的ために、親水化処理等の表面処理を施した銅部材を用いてもよい。   The bonded copper member may have various shapes such as a plate shape or a strip shape, and may be rigid or flexible. The thickness of the substrate can also be selected as appropriate. A copper member that has been subjected to a surface treatment such as a hydrophilization treatment may be used in order to improve adhesiveness or adhesion, or for other purposes.

接合用組成物を被接合面に塗布する場合においては、種々の塗布方法を用いることが可能であるが、上述のように、例えば、ディッピング、スクリーン印刷、スプレー式、バーコート式、スピンコート式、インクジェット式、ディスペンサー式、ピントランスファー法、刷毛による塗布方式、流延式、フレキソ式、グラビア式、又はシリンジ式等のなかから適宜選択して用いることができる。   When the bonding composition is applied to the surfaces to be bonded, various application methods can be used. As described above, for example, dipping, screen printing, spraying, bar coating, and spin coating are used. The ink jet method, the dispenser method, the pin transfer method, the brush application method, the casting method, the flexo method, the gravure method, the syringe method, and the like can be appropriately selected and used.

上記焼成を行う方法は特に限定されるものではなく、例えば従来公知のオーブン等を用いて、被接合面に形成されたナノ多孔体金属層の温度が、例えば400℃以下となるように焼成することによって接合することができる。上記焼成の温度の下限は必ずしも限定されず、被接合金属部材同士を接合できる温度であって、かつ、本発明の効果を損なわない範囲の温度であることが好ましい。   The method for performing the firing is not particularly limited. For example, firing is performed using a conventionally known oven or the like so that the temperature of the nanoporous metal layer formed on the bonded surface is, for example, 400 ° C. or less. Can be joined. The lower limit of the firing temperature is not necessarily limited, and is preferably a temperature at which the bonded metal members can be joined to each other and does not impair the effects of the present invention.

本発明の接合方法で用いるナノ多孔体金属層によれば、例えば50〜400℃程度の低温加熱による焼成でも高い導電性を発現する接合層を有する接合を実現することができるため、比較的熱に弱い被接合部材同士であっても接合することができる。また、焼成時間は特に限定されるものではなく、焼成温度に応じて、接合できる焼成時間であればよい。なお、好適な接合温度はナノ多孔体金属層を構成する金属粒子の粒径を測定することによって判断することができ、当該粒径が小さい場合にはより低温での接合が可能となる。   According to the nanoporous metal layer used in the bonding method of the present invention, it is possible to realize a bonding having a bonding layer that exhibits high conductivity even by firing at a low temperature of, for example, about 50 to 400 ° C. Even if the members to be joined are weak, they can be joined. Further, the firing time is not particularly limited, and may be any firing time that can be bonded according to the firing temperature. In addition, suitable joining temperature can be judged by measuring the particle size of the metal particle which comprises a nanoporous metal layer, and when the said particle size is small, joining at lower temperature is attained.

接合工程の雰囲気は特に制限されず、大気中、不活性ガス雰囲気下、減圧下等で行うことができる。   The atmosphere in the bonding step is not particularly limited, and can be performed in the air, under an inert gas atmosphere, under reduced pressure, or the like.

(1−4)組織調整工程(S01’:アニーリング処理)
組織調整工程(S01’)は、第一工程(S01)で被接合面に形成させためっき層に対してアニーリング処理を施し、第二工程(S02)で得られるナノ多孔体金属層を構成する組織のサイズを任意に調整する工程である。
(1-4) Structure adjustment process (S01 ': annealing process)
In the structure adjustment step (S01 ′), the plating layer formed on the bonded surface in the first step (S01) is annealed to form the nanoporous metal layer obtained in the second step (S02). This is a step of arbitrarily adjusting the size of the tissue.

アニーリング処理の温度は、50〜150℃とすること、が好ましい。アニーリング処理の温度を50〜150℃とすることで、めっき層組織の適度な粗大化や原子の再配列が生じ、その後の脱成分腐食処理によって優れた低温焼結機能を有するナノ多孔体金属層を得ることができる。   The temperature of the annealing treatment is preferably 50 to 150 ° C. By setting the temperature of the annealing treatment to 50 to 150 ° C., moderate coarsening of the plating layer structure and atomic rearrangement occur, and the nanoporous metal layer having an excellent low-temperature sintering function by the subsequent decomponent corrosion treatment Can be obtained.

より具体的には、アニーリング処理によって、第二工程(S02)で得られるナノ多孔体金属層を構成する金属ナノ粒子の平均粒径を5〜500nmとすることができる。なお、アニーリング処理の雰囲気は特に制限されず、大気中や不活性ガス雰囲気下等で行うことができる。   More specifically, the average particle diameter of the metal nanoparticles constituting the nanoporous metal layer obtained in the second step (S02) can be set to 5 to 500 nm by annealing treatment. The atmosphere for the annealing treatment is not particularly limited and can be performed in the air or in an inert gas atmosphere.

以上、本発明の接合方法に係る代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではない。例えば、被接合部材とナノ多孔体金属層との間に種々の金属層(例えば、めっき層)を形成させてもよい。   As mentioned above, although typical embodiment which concerns on the joining method of this invention was described, this invention is not limited only to these. For example, various metal layers (for example, plating layers) may be formed between the member to be joined and the nanoporous metal layer.

(2)金属材接合用金属部材
本発明の金属材接合用金属部材は、本発明の金属材の接合方法に好適に用いることができる金属部材である。以下において、金属材接合用金属部材について説明する。なお、上記接合方法における説明と重複する部分は省略する。
(2) Metal member for metal material joining The metal member for metal material joining of this invention is a metal member which can be used suitably for the joining method of the metal material of this invention. Below, the metal member for metal material joining is demonstrated. In addition, the part which overlaps with the description in the said joining method is abbreviate | omitted.

図2に本発明の金属材接合用金属部材の概略断面図を示す。金属材接合用金属部材1は、金属基材2の少なくとも一部分に二元系合金めっき層4を有し、二元系合金めっき層4の少なくとも表面近傍が、三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むナノ多孔体構造領域6となっている。   FIG. 2 shows a schematic cross-sectional view of the metal member for joining metal materials of the present invention. The metal member 1 for joining a metal material has a binary alloy plating layer 4 on at least a part of a metal base 2, and at least the surface vicinity of the binary alloy plating layer 4 is three-dimensionally arranged in an average particle diameter Is a nanoporous structure region 6 containing metal nanoparticles of 5 to 500 nm.

金属基材2の表面にナノ多孔体構造を有する二元系合金めっき層4が存在することで、被接合面に接合用組成物を塗布することなく良好な接合体を得ることができる。ここで、金属材接合用金属部材1の一面にナノ多孔体構造を有する二元系合金めっき層4が形成されている場合は、二元系合金めっき層4を介して金属接合用金属部材1と他の金属部材とを接合することができ、金属材接合用金属部材1の複数面にナノ多孔体構造を有する二元系合金めっき層4が形成されている場合は、複数の金属部材を接合するジョイント部材として金属材接合用金属部材1を用いることができる。   The presence of the binary alloy plating layer 4 having a nanoporous structure on the surface of the metal substrate 2 makes it possible to obtain a good bonded body without applying a bonding composition to the bonded surfaces. Here, when the binary alloy plating layer 4 having a nanoporous structure is formed on one surface of the metal member 1 for metal material bonding, the metal member 1 for metal bonding through the binary alloy plating layer 4. When the binary alloy plating layer 4 having the nanoporous structure is formed on the plurality of surfaces of the metal member 1 for joining the metal material, the plurality of metal members can be bonded to each other. The metal member 1 for joining metal materials can be used as a joint member to be joined.

本発明の金属材接合用金属部材1においては、二元系合金めっき層4がAu−Ag合金めっき層であること、が好ましい。Au−Ag合金めっき層の表面近傍には、主として金(Au)で構成されるナノ多孔体構造が形成され、当該ナノ多孔体構造は接合層として好適に用いることができる。なお、二元系合金めっき層4の下には、適宜他のめっき層等を形成させてもよい。   In the metal member 1 for joining metal materials of the present invention, the binary alloy plating layer 4 is preferably an Au—Ag alloy plating layer. A nanoporous structure mainly composed of gold (Au) is formed in the vicinity of the surface of the Au—Ag alloy plating layer, and the nanoporous structure can be suitably used as a bonding layer. Note that another plating layer or the like may be appropriately formed under the binary alloy plating layer 4.

以下、実施例において本発明の金属材の接合方法について更に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   Hereinafter, although the metal material joining method of the present invention will be further described in Examples, the present invention is not limited to these Examples.

≪実施例1≫
各種評価(SEM観察及びICP−MS分析)用の試料を得るために、白金スパッタ膜を形成させた20mm角のシリコン基板にAu−Ag合金めっき処理を施した。なお、めっき浴の組成はHAuCl・4HO:1mM,AgNO:2mM,Thiourea(チオ尿素):0.2M,HSO:0.01Mとし、0.7Vの電圧で30分間の処理を行った。
Example 1
In order to obtain samples for various evaluations (SEM observation and ICP-MS analysis), a 20 mm square silicon substrate on which a platinum sputtered film was formed was subjected to Au—Ag alloy plating. The composition of the plating bath was HAuCl 4 · 4H 2 O: 1 mM, AgNO 3 : 2 mM, Thiourea (thiourea): 0.2 M, H 2 SO 4 : 0.01 M, and a voltage of 0.7 V for 30 minutes. Processed.

次に、Au−Ag合金めっき層(Au:50質量%,Ag:50質量%)に対して脱成分腐食を施してナノ多孔体金属層を形成させ、評価用試料1を得た。具体的には、Au−Ag合金めっき層の表面を研磨紙で研磨後、超音波の印加を伴った硝酸(HNO:HO=2:1)に浸漬して表面近傍のAgをエッチングし、主として金(Au)で構成されるナノ多孔体構造を表面に有するAu−Ag合金めっき層を得た。ここで、浸漬時間は30秒とし、浸漬後の試料は純水で洗浄した。 Next, a deporous corrosion was applied to the Au—Ag alloy plating layer (Au: 50 mass%, Ag: 50 mass%) to form a nanoporous metal layer, and an evaluation sample 1 was obtained. Specifically, after polishing the surface of the Au—Ag alloy plating layer with abrasive paper, it is immersed in nitric acid (HNO 3 : H 2 O = 2: 1) with application of ultrasonic waves to etch Ag near the surface. Thus, an Au—Ag alloy plating layer having a nanoporous structure mainly composed of gold (Au) on the surface was obtained. Here, the immersion time was 30 seconds, and the sample after immersion was washed with pure water.

図3に、浸漬処理後のAu−Ag合金めっき層表面の走査電子顕微鏡(SEM)写真を示す。浸漬処理(脱成分腐食)後のAu−Ag合金めっき層の表面は、金属ナノ粒子が三次元的に配列してなるナノ多孔体構造となっており、当該金属ナノ粒子の平均粒径は約10nmであった。なお、走査電子顕微鏡には日立ハイテク社製の超高分解能分析走査電子顕微鏡S−4800を用いた。   FIG. 3 shows a scanning electron microscope (SEM) photograph of the surface of the Au—Ag alloy plating layer after the immersion treatment. The surface of the Au-Ag alloy plating layer after the immersion treatment (decomponent corrosion) has a nanoporous structure in which metal nanoparticles are arranged three-dimensionally, and the average particle diameter of the metal nanoparticles is about It was 10 nm. The scanning electron microscope used was an ultra-high resolution analytical scanning electron microscope S-4800 manufactured by Hitachi High-Tech.

ICP−MS分析によってAu−Ag合金めっき層表面近傍のAg含有率を測定し、得られた値を図4に示した。なお、比較として浸漬処理(脱成分腐食)を施していないAu−Ag合金めっき層表面近傍のAg含有率の値も示している。当該結果より、浸漬処理(脱成分腐食)によってAu−Ag合金めっき層表面近傍のAg含有率が低下していることが分かる。これは、Au−Ag合金めっき層の表面がAuを主成分とする金属ナノ粒子によって構成されていることを意味している。   The Ag content in the vicinity of the Au—Ag alloy plating layer surface was measured by ICP-MS analysis, and the obtained value is shown in FIG. In addition, the value of Ag content rate in the vicinity of the Au-Ag alloy plating layer surface which has not performed immersion treatment (decomponent corrosion) is also shown as a comparison. From the results, it can be seen that the Ag content in the vicinity of the Au—Ag alloy plating layer surface is reduced by the immersion treatment (decomponent corrosion). This means that the surface of the Au—Ag alloy plating layer is composed of metal nanoparticles mainly composed of Au.

接合実験用の試料を得るために、金めっき層を有する銅基材(φ10mm,厚さ5mmの円柱状)の表面にAu−Ag合金めっき処理を施した。なお、めっき浴の組成は評価用試料を作製する場合と同様(HAuCl・4HO:1mM,AgNO:2mM,Thiourea(チオ尿素):0.2M,HSO:0.01M)とし、0.7Vの電圧で30分間の処理を行った。 In order to obtain a sample for a joining experiment, Au—Ag alloy plating treatment was performed on the surface of a copper base material (φ10 mm, 5 mm thick cylindrical shape) having a gold plating layer. The composition of the plating bath is the same as in the case of preparing the evaluation sample (HAuCl 4 .4H 2 O: 1 mM, AgNO 3 : 2 mM, Thiourea (thiourea): 0.2M, H 2 SO 4 : 0.01M). And the treatment for 30 minutes was performed at a voltage of 0.7V.

Au−Ag合金めっき層(Au:50質量%,Ag:50質量%)に対して評価用試料を作製する場合と同様の脱成分腐食を施し、接合試験片1を調整した。当該試験片の表面に形成させたAu−Ag合金めっき層の上にφ3mm,厚さ2mmの円柱状の銅材を重ね、接合試験を行った(接合温度350℃、接合時間:30分、接合圧力:20MPa、雰囲気:窒素)。なお、試験後は直ちに試験片を装置外に取り出して空冷した。   The same decomponent corrosion as in the case of preparing the evaluation sample was applied to the Au—Ag alloy plating layer (Au: 50 mass%, Ag: 50 mass%), and the joining test piece 1 was prepared. A cylindrical copper material having a diameter of 3 mm and a thickness of 2 mm was stacked on the Au—Ag alloy plating layer formed on the surface of the test piece, and a joining test was performed (joining temperature 350 ° C., joining time: 30 minutes, joining Pressure: 20 MPa, atmosphere: nitrogen). Note that immediately after the test, the test piece was taken out of the apparatus and air-cooled.

接合試験により得られた接合継手1について、ボンドテスターを用いてせん断試験(せん断速度1.0mm/min,せん断高さ200μm)を行い、接合強度を求めた。得られたせん断強度を図5に示す。なお、接合継手は3つ作製し、それぞれの接合継手についてせん断試験を行って平均値を求めた。   About the joining joint 1 obtained by the joining test, the shear test (shear rate 1.0mm / min, shear height 200micrometer) was done using the bond tester, and joining strength was calculated | required. The obtained shear strength is shown in FIG. Three bonded joints were prepared, and a shear test was performed on each bonded joint to obtain an average value.

≪実施例2≫
硝酸(HNO:HO=2:1)への浸漬時間を3600秒とした以外は実施例1と同様にして、評価用試料2を得た。評価用試料2のAu−Ag合金めっき層表面の走査電子顕微鏡(SEM)写真を図6に示す。Au−Ag合金めっき層の表面は、金属ナノ粒子が三次元的に配列してなるナノ多孔体構造となっており、当該金属ナノ粒子の平均粒径は約50nmであった。浸漬時間が30秒の場合の平均粒径は約10nmであり、浸漬時間によって金属ナノ粒子の平均粒径を制御できることが分かる。
<< Example 2 >>
An evaluation sample 2 was obtained in the same manner as in Example 1 except that the immersion time in nitric acid (HNO 3 : H 2 O = 2: 1) was 3600 seconds. A scanning electron microscope (SEM) photograph of the surface of the Au—Ag alloy plating layer of the sample 2 for evaluation is shown in FIG. The surface of the Au—Ag alloy plating layer has a nanoporous structure in which metal nanoparticles are arranged three-dimensionally, and the average particle diameter of the metal nanoparticles is about 50 nm. When the immersion time is 30 seconds, the average particle diameter is about 10 nm, and it can be seen that the average particle diameter of the metal nanoparticles can be controlled by the immersion time.

評価用試料2におけるAu−Ag合金めっき層表面近傍のAg含有率を図4に示す。 FIG. 4 shows the Ag content in the vicinity of the Au—Ag alloy plating layer surface in the sample 2 for evaluation.

≪実施例3≫
脱成分腐食の前にアニーリング処理(温度:50℃,時間:60分,雰囲気:窒素)を施した以外は実施例1と同様にして、評価用試料3及び接合継手3を得た。評価用試料3のAu−Ag合金めっき層表面の走査電子顕微鏡(SEM)写真を図7に示す。Au−Ag合金めっき層の表面は、金属ナノ粒子が三次元的に配列してなるナノ多孔体構造となっており、当該金属ナノ粒子の平均粒径は約20nmであった。
Example 3
An evaluation sample 3 and a joint joint 3 were obtained in the same manner as in Example 1 except that annealing treatment (temperature: 50 ° C., time: 60 minutes, atmosphere: nitrogen) was performed before the decomponent corrosion. A scanning electron microscope (SEM) photograph of the surface of the Au—Ag alloy plating layer of the sample 3 for evaluation is shown in FIG. The surface of the Au—Ag alloy plating layer has a nanoporous structure in which metal nanoparticles are arranged three-dimensionally, and the average particle diameter of the metal nanoparticles is about 20 nm.

評価用試料3におけるAu−Ag合金めっき層表面近傍のAg含有率を図4に示す。 FIG. 4 shows the Ag content in the vicinity of the Au—Ag alloy plating layer surface in the sample 3 for evaluation.

実施例1と同様にして得られた接合継手3のせん断強度を図5に示す。50℃におけるアニーリング処理を施して得られた接合継手3のせん断強度は、接合継手1のせん断強度よりも高くなっており、当該アニーリング処理がせん断強度の向上に寄与していることが分かる。これは、アニーリング処理によって、Au−Ag合金めっき層表面の金属ナノ粒子の平均粒径が好適な値となったためであると思われる。   The shear strength of the joint joint 3 obtained in the same manner as in Example 1 is shown in FIG. The shear strength of the joint joint 3 obtained by performing the annealing treatment at 50 ° C. is higher than the shear strength of the joint joint 1, and it can be seen that the annealing treatment contributes to the improvement of the shear strength. This is considered to be because the average particle diameter of the metal nanoparticles on the surface of the Au—Ag alloy plating layer became a suitable value by the annealing treatment.

≪実施例4≫
脱成分腐食の前にアニーリング処理(温度:150℃,時間:60分,雰囲気:窒素)を施した以外は実施例1と同様にして、評価用試料4及び接合継手4を得た。評価用試料4のAu−Ag合金めっき層表面の走査電子顕微鏡(SEM)写真を図8に示す。Au−Ag合金めっき層の表面は、金属ナノ粒子が三次元的に配列してなるナノ多孔体構造となっており、当該金属ナノ粒子の平均粒径は約50nmであった。
Example 4
An evaluation sample 4 and a joint joint 4 were obtained in the same manner as in Example 1 except that annealing treatment (temperature: 150 ° C., time: 60 minutes, atmosphere: nitrogen) was performed before the decomponent corrosion. FIG. 8 shows a scanning electron microscope (SEM) photograph of the surface of the Au—Ag alloy plating layer of the sample 4 for evaluation. The surface of the Au—Ag alloy plating layer has a nanoporous structure in which metal nanoparticles are arranged three-dimensionally, and the average particle diameter of the metal nanoparticles is about 50 nm.

評価用試料4におけるAu−Ag合金めっき層表面近傍のAg含有率を図4に示す。   FIG. 4 shows the Ag content in the vicinity of the Au—Ag alloy plating layer surface in the sample 4 for evaluation.

実施例1と同様にして得られた接合継手4のせん断強度を図5に示す。150℃におけるアニーリング処理を施して得られた接合継手4のせん断強度は、接合継手1のせん断強度よりは高いものの、50℃におけるアニーリング処理を施して得られた接合継手3のせん断強度よりも低い値となっている。当該結果は、アニーリング処理はせん断強度の向上に寄与するが、当該寄与度は処理温度に依存することを示している。アニーリング処理が150℃と高い場合は原子の再配列等が進行し過ぎる結果、Au−Ag合金めっき層表面の金属ナノ粒子の平均粒径が大きくなり過ぎることが、接合継手4の強度が接合継手3の強度よりも低くなった原因であると思われる。   The shear strength of the joint joint 4 obtained in the same manner as in Example 1 is shown in FIG. Although the shear strength of the joint joint 4 obtained by performing the annealing treatment at 150 ° C. is higher than the shear strength of the joint joint 1, it is lower than the shear strength of the joint joint 3 obtained by performing the annealing treatment at 50 ° C. It is a value. The result shows that the annealing treatment contributes to the improvement of the shear strength, but the contribution depends on the treatment temperature. When the annealing treatment is as high as 150 ° C., the rearrangement of atoms proceeds too much, and as a result, the average particle size of the metal nanoparticles on the Au—Ag alloy plating layer surface becomes too large. This seems to be the reason why the strength was lower than 3.

≪実施例5≫
脱成分腐食の前にアニーリング処理(温度:100℃,時間:60分,雰囲気:窒素)を施した以外は実施例1と同様にして、評価用試料5を得た。評価用試料5におけるAu−Ag合金めっき層表面近傍のAg含有率を図4に示す。
Example 5
An evaluation sample 5 was obtained in the same manner as in Example 1 except that an annealing treatment (temperature: 100 ° C., time: 60 minutes, atmosphere: nitrogen) was performed before decomponent corrosion. FIG. 4 shows the Ag content in the vicinity of the Au—Ag alloy plating layer surface in the sample 5 for evaluation.

図4より、Au−Ag合金めっき層表面近傍のAg含有率は、アニーリング処理温度の上昇に伴い減少していることが分かる。当該結果は、アニーリング処理温度により、Au−Ag合金めっき層表面近傍に形成される金属ナノ粒子の組成を制御できることを意味している。   FIG. 4 shows that the Ag content in the vicinity of the Au—Ag alloy plating layer surface decreases as the annealing temperature increases. This result means that the composition of the metal nanoparticles formed in the vicinity of the Au—Ag alloy plating layer surface can be controlled by the annealing treatment temperature.

1・・・金属材接合用金属部材、
2・・・金属基材、
4・・・二元系合金めっき層、
6・・・ナノ多孔体構造領域。
1 ... Metal member for joining metal materials,
2 ... Metal substrate,
4 ... Binary alloy plating layer,
6: Nanoporous structure region.

Claims (9)

第一の被接合材及び/又は第二の被接合材の被接合面にめっき層を形成させる第一工程と、
前記めっき層に脱成分腐食処理を施してナノ多孔体金属層とする第二工程と、
前記ナノ多孔体金属層を介して前記第一の被接合材と前記第二の被接合材とを当接させた状態で、前記ナノ多孔体金属層を50〜400℃に加熱すると共に、前記第一の被接合材と前記第二の被接合材とを加圧する第三工程と、を含むこと、
を特徴とする金属材の接合方法。
A first step of forming a plating layer on a bonded surface of the first bonded material and / or the second bonded material;
A second step in which the plating layer is subjected to decomponent corrosion treatment to form a nanoporous metal layer;
While heating the nanoporous metal layer to 50 to 400 ° C. in a state where the first bonded material and the second bonded material are brought into contact with each other through the nanoporous metal layer, Including a third step of pressurizing the first material to be joined and the second material to be joined,
A metal material joining method characterized by the above.
更に、前記第一工程と前記第二工程の間に、前記めっき層にアニーリング処理を施す組織調整工程を有すること、
を特徴とする請求項1に記載の金属材の接合方法。
Furthermore, between the first step and the second step, having a structure adjustment step of applying an annealing treatment to the plating layer,
The metal material joining method according to claim 1.
前記アニーリング処理の温度を50〜150℃とすること、
を特徴とする請求項2に記載の金属材の接合方法。
Setting the temperature of the annealing treatment to 50 to 150 ° C .;
The metal material joining method according to claim 2.
前記ナノ多孔体金属層が、三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むこと、
を特徴とする請求項1〜3のいずれかに記載の金属材の接合方法。
The nanoporous metal layer includes metal nanoparticles having a three-dimensionally arranged average particle diameter of 5 to 500 nm;
The method for joining metal materials according to any one of claims 1 to 3.
前記めっき層が二元系合金であること、
を特徴とする請求項1〜4のいずれかに記載の金属材の接合方法。
The plating layer is a binary alloy;
The metal material joining method according to any one of claims 1 to 4.
前記二元系合金がAu−Ag合金であること、
を特徴とする請求項5に記載の金属材の接合方法。
The binary alloy is an Au-Ag alloy;
The metal material joining method according to claim 5.
前記第一の被接合材及び/又は前記第二の被接合材が銅材であること、
を特徴とする請求項1〜6のいずれかに記載の金属材の接合方法。
The first material to be joined and / or the second material to be joined is a copper material,
The metal material joining method according to any one of claims 1 to 6.
金属基材の少なくとも一部分に二元系合金めっき層を有し、
前記二元系合金めっき層の少なくとも表面近傍が、三次元的に配列する平均粒径が5〜500nmの金属ナノ粒子を含むナノ多孔体構造となっていること、
を特徴とする金属材接合用金属部材。
Having a binary alloy plating layer on at least a portion of the metal substrate;
At least the vicinity of the surface of the binary alloy plating layer has a nanoporous structure containing metal nanoparticles having an average particle size of 5 to 500 nm arranged three-dimensionally;
A metal member for joining a metal material.
前記二元系合金めっき層がAu−Ag合金めっき層であること、
を特徴とする請求項8に記載の金属材接合用金属部材。
The binary alloy plating layer is an Au-Ag alloy plating layer;
The metal member for joining a metal material according to claim 8.
JP2014245757A 2014-12-04 2014-12-04 Metal joining method Active JP6442688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014245757A JP6442688B2 (en) 2014-12-04 2014-12-04 Metal joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014245757A JP6442688B2 (en) 2014-12-04 2014-12-04 Metal joining method

Publications (2)

Publication Number Publication Date
JP2016107290A true JP2016107290A (en) 2016-06-20
JP6442688B2 JP6442688B2 (en) 2018-12-26

Family

ID=56122472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014245757A Active JP6442688B2 (en) 2014-12-04 2014-12-04 Metal joining method

Country Status (1)

Country Link
JP (1) JP6442688B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516949B1 (en) * 2018-09-25 2019-05-22 三菱電機株式会社 Method of manufacturing metal junction and metal junction, semiconductor device and waveguide
CN113695731A (en) * 2021-09-02 2021-11-26 哈尔滨工业大学 Method for performing metal/alloy low-temperature diffusion connection by utilizing electrodeposited nanocrystalline nickel intermediate layer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095040A1 (en) * 2004-03-31 2005-10-13 Ebara Corporation Method of joining and joined body
JP2008184671A (en) * 2007-01-31 2008-08-14 Tohoku Univ Nano-porous metal and production method therefor
JP2011236494A (en) * 2010-04-12 2011-11-24 Nippon Handa Kk Method for manufacturing metal member joined body, and metal member joined body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005095040A1 (en) * 2004-03-31 2005-10-13 Ebara Corporation Method of joining and joined body
JP2008184671A (en) * 2007-01-31 2008-08-14 Tohoku Univ Nano-porous metal and production method therefor
JP2011236494A (en) * 2010-04-12 2011-11-24 Nippon Handa Kk Method for manufacturing metal member joined body, and metal member joined body

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6516949B1 (en) * 2018-09-25 2019-05-22 三菱電機株式会社 Method of manufacturing metal junction and metal junction, semiconductor device and waveguide
WO2020065700A1 (en) * 2018-09-25 2020-04-02 三菱電機株式会社 Metal joint, metal joint production method, semiconductor device, and wave guide path
CN112739485A (en) * 2018-09-25 2021-04-30 三菱电机株式会社 Metal bonded body, method for producing metal bonded body, semiconductor device, and waveguide
CN113695731A (en) * 2021-09-02 2021-11-26 哈尔滨工业大学 Method for performing metal/alloy low-temperature diffusion connection by utilizing electrodeposited nanocrystalline nickel intermediate layer

Also Published As

Publication number Publication date
JP6442688B2 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
JP6262968B2 (en) Electronic component mounting substrate and manufacturing method thereof
JP5156658B2 (en) Electronic components for LSI
JP5812090B2 (en) Electronic component and method for manufacturing electronic component
JP6337909B2 (en) Manufacturing method of electronic component module
JP2014029897A (en) Conductive bonded body and semiconductor device using the same
WO2014027418A1 (en) Electronic component, and method for producing electronic component
JP5375343B2 (en) Bonding material, manufacturing method thereof, and mounting method using the same
JP2016536461A (en) Composite and multilayer silver films for joining electrical and mechanical parts
JP6442688B2 (en) Metal joining method
JP2017147151A (en) Conductive paste and semiconductor device
JP6412587B2 (en) Multilayer wiring board
JP6347385B2 (en) Copper material joining method
JP2012038790A (en) Electronic member and electronic component and manufacturing method thereof
CN111213436A (en) Substrate for printed wiring board and printed wiring board
JP2012124497A (en) Semiconductor device
JP6170045B2 (en) Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof
Hang et al. A low-temperature Cu-to-Cu interconnection method by using nanoporous Cu fabricated by dealloying electroplated Cu–Zn
JP6510900B2 (en) Bonding material for semiconductor device and method of manufacturing the same
JP5331929B2 (en) Electronic member, electronic component and method for manufacturing the same
WO2020256012A1 (en) Conductive pillar
JP2014043382A (en) Semiconductor device and method of manufacturing the same
JP2006068765A (en) Joint and joining method
WO2022186262A1 (en) Bonding sheet with preform layer, method for manufacturing bonded body, and to-be-bonded member with preform layer
JP7196706B2 (en) Bonding sheet and method of bonding electronic component to substrate using bonding sheet
JP7141864B2 (en) Electronic component mounting substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181009

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181019

R150 Certificate of patent or registration of utility model

Ref document number: 6442688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250