JPWO2019216100A1 - ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤ - Google Patents

ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤ Download PDF

Info

Publication number
JPWO2019216100A1
JPWO2019216100A1 JP2020518207A JP2020518207A JPWO2019216100A1 JP WO2019216100 A1 JPWO2019216100 A1 JP WO2019216100A1 JP 2020518207 A JP2020518207 A JP 2020518207A JP 2020518207 A JP2020518207 A JP 2020518207A JP WO2019216100 A1 JPWO2019216100 A1 JP WO2019216100A1
Authority
JP
Japan
Prior art keywords
group
rubber composition
rubber
compound
tire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020518207A
Other languages
English (en)
Inventor
茂樹 大石
茂樹 大石
靖宏 庄田
靖宏 庄田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Publication of JPWO2019216100A1 publication Critical patent/JPWO2019216100A1/ja
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers

Abstract

本発明の課題は、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能なゴム組成物を提供することであり、その解決手段は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体(a1)を含むゴム成分(a)と、発泡剤(b)と、を含有することを特徴とする、ゴム組成物である。

Description

本発明は、ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤに関するものである。
従来、通常の路面上に加え、氷上でも安全に走行するためのタイヤとして、トレッドゴムを柔らかくしたスタッドレスタイヤが使用されており、トレッドゴムを柔らかくすることで、タイヤの氷上性能が向上することが知られている。しかしながら、一般に柔らかいトレッドゴムを具えるタイヤは、通常の路面における耐摩耗性が悪いという問題があり、タイヤの氷上性能と耐摩耗性は二律背反の関係にある。
また、タイヤの氷上性能を向上させる手法として、例えば、トレッドに用いるゴム組成物に有機繊維やグラスファイバー等を配合し、これらが氷路面を引っ掻くことで、タイヤの氷上性能を向上させる手法が知られている。しかしながら、有機繊維やグラスファイバー等は、ゴムとの相互作用が無いため破壊核として作用し、トレッドゴムの耐破壊性(耐摩耗性)を低下させる要因となる。
かかる問題を解決するタイヤ用のゴム組成物として、特開2008−303334号公報(特許文献1)には、天然ゴムおよびブタジエンゴムからなるゴム成分100重量部に対して、チタン酸カリウム繊維を0.5〜20重量部、ならびにヨウ素吸着量が100〜300mg/gであるカーボンブラックを5〜200重量部配合したゴム組成物が提案されており、該ゴム組成物を、キャップトレッド及びベーストレッドからなる2層構造のトレッドのキャップトレッドに使用することで、耐摩耗性の低下を抑制しつつ、氷上性能(氷雪上性能)が向上することが報告されている。
特開2008−303334号公報
しかしながら、上記特許文献1の表1に開示のように、チタン酸カリウム繊維を特定量配合したゴム組成物をキャップトレッドに使用することで、タイヤの氷上性能(氷上摩擦係数)は向上するものの、耐摩耗性は若干低下してしまい、氷上性能と耐摩耗性との両方を向上させることまではできない。
そこで、本発明は、上記従来技術の問題を解決し、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能なゴム組成物を提供することを課題とする。
また、本発明は、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能な発泡ゴム及びタイヤトレッド、並びに、氷上性能と耐摩耗性との両方に優れるタイヤを提供することを更なる課題とする。
上記課題を解決する本発明の要旨構成は、以下の通りである。
本発明のゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体(a1)を含むゴム成分(a)と、
発泡剤(b)と、
を含有することを特徴とする。
かかる本発明のゴム組成物は、タイヤに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
本発明のゴム組成物において、前記多元共重合体(a1)は、前記共役ジエン単位の含有量が1〜50mol%で、前記非共役オレフィン単位の含有量が40〜97mol%で、且つ前記芳香族ビニル単位の含有量が2〜35mol%であることが好ましい。この場合、ゴム組成物の耐摩耗性及び耐候性が向上し、また、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
本発明のゴム組成物は、前記ゴム成分(a)100質量部に対して、前記発泡剤(b)を0.5〜50質量部含有することが好ましい。この場合、タイヤの氷上性能及び耐摩耗性を更に向上させることができる。
本発明のゴム組成物は、更に、親水性短繊維(c)を含有することが好ましい。この場合、タイヤの氷上性能を大幅に向上させることができる。
本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30〜130℃であることが好ましい。この場合、ゴム組成物の作業性が向上し、また、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
本発明のゴム組成物において、前記多元共重合体(a1)は、0〜120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10〜150J/gであることが好ましい。この場合、ゴム組成物の作業性が向上し、また、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度が0℃以下であることが好ましい。この場合、ゴム組成物の作業性が向上する。
本発明のゴム組成物において、前記多元共重合体(a1)は、結晶化度が0.5〜50%であることが好ましい。この場合、ゴム組成物の作業性が向上し、また、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
本発明のゴム組成物において、前記多元共重合体(a1)は、前記非共役オレフィン単位が非環状の非共役オレフィン単位であることが好ましい。この場合、ゴム組成物の耐候性が向上する。
ここで、前記非環状の非共役オレフィン単位が、エチレン単位のみからなることが更に好ましい。この場合、ゴム組成物の耐候性が更に向上する。
本発明のゴム組成物において、前記多元共重合体(a1)は、前記芳香族ビニル単位がスチレン単位を含むことが好ましい。この場合、ゴム組成物の耐候性が向上する。
本発明のゴム組成物において、前記多元共重合体(a1)は、前記共役ジエン単位が1,3−ブタジエン単位及び/又はイソプレン単位を含むことが好ましい。この場合、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
本発明のゴム組成物の好適例においては、前記ゴム成分(a)中の、前記多元共重合体(a1)の含有率が、5〜100質量%である。この場合、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
また、本発明の発泡ゴムは、上記のゴム組成物を発泡させてなることを特徴とする。かかる本発明の発泡ゴムは、タイヤに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
本発明の発泡ゴムは、発泡率が5〜80%であることが好ましい。この場合、タイヤに適用することで、タイヤの氷上性能と耐摩耗性を更に向上させることができる。
また、本発明のタイヤトレッドは、上記の発泡ゴムを用いたことを特徴とする。かかる本発明のタイヤトレッドは、タイヤに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
また、本発明のタイヤは、上記のタイヤトレッドを用いたことを特徴とする。かかる本発明のタイヤは、氷上性能と耐摩耗性との両方に優れる。
本発明によれば、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能なゴム組成物を提供することができる。
また、本発明によれば、タイヤの氷上性能と耐摩耗性との両方を向上させることが可能な発泡ゴム及びタイヤトレッド、並びに、氷上性能と耐摩耗性との両方に優れるタイヤを提供することができる。
以下に、本発明のゴム組成物、発泡ゴム、タイヤトレッド及びタイヤを、その実施形態に基づき、詳細に例示説明する。
<ゴム組成物>
本発明のゴム組成物は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体(a1)を含むゴム成分(a)と、発泡剤(b)と、を含有することを特徴とする。
本発明のゴム組成物は、発泡剤(b)を含むことで、加硫後のゴム組成物(発泡ゴム)に発泡剤由来の気泡が形成され、該発泡ゴムをタイヤのトレッドに使用することで、トレッドの気泡による引っ掻き効果及び排水効果で、タイヤの氷上性能を向上させることができる。
また、本発明のゴム組成物が含有する多元共重合体(a1)は、非共役オレフィン単位を含み、大きく歪んだ際に、該非共役オレフィン単位に由来する結晶成分が崩壊し、融解エネルギーによって、エネルギーを散逸することができる。そのため、該多元共重合体(a1)は、大きく歪むことで引き起こされる摩耗を、エネルギーを散逸することで、抑制できる。
そして、本発明のゴム組成物は、発泡剤(b)と共に多元共重合体(a1)を含むことで、発泡剤(b)由来の気泡により生じた空隙部分にかかる歪エネルギーが散逸されるため、耐摩耗性が向上している。また、発泡剤(b)由来の気泡により生じる空隙部分には、局所的に大きな歪がかかり、多元共重合体(a1)のエネルギー散逸能が更に発揮されるため、発泡剤(b)と共に多元共重合体(a1)を含む本発明のゴム組成物は、発泡剤(b)を含むものの、多元共重合体(a1)を含まないゴム組成物に比べて、耐摩耗性が大幅に向上している。
従って、本発明のゴム組成物は、タイヤに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
本発明のゴム組成物のゴム成分(a)は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体(a1)を含む。該多元共重合体(a1)は、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を少なくとも含有し、共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位のみからなってもよいし、更に他の単量体単位を含有してもよい。
前記共役ジエン単位は、単量体としての共役ジエン化合物に由来する構成単位である。該共役ジエン単位は、多元共重合体の加硫を可能とし、また、ゴムとしての伸びや強度を発現する。ここで、共役ジエン化合物とは、共役系のジエン化合物を指す。該共役ジエン化合物は、炭素数が4〜8であることが好ましい。かかる共役ジエン化合物として、具体的には、1,3−ブタジエン、イソプレン、1,3−ペンタジエン、2,3−ジメチル−1,3−ブタジエン等が挙げられる。前記共役ジエン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、多元共重合体の単量体としての共役ジエン化合物は、得られる多元共重合体を用いたゴム組成物やタイヤ等の耐摩耗性を効果的に向上させる観点から、1,3−ブタジエン及び/又はイソプレンを含むことが好ましく、1,3−ブタジエン及び/又はイソプレンのみからなることがより好ましく、1,3−ブタジエンのみからなることが更に好ましい。別の言い方をすると、多元共重合体における共役ジエン単位は、1,3−ブタジエン単位及び/又はイソプレン単位を含むことが好ましく、1,3−ブタジエン単位及び/又はイソプレン単位のみからなることがより好ましく、1,3−ブタジエン単位のみからなることが更に好ましい。
前記多元共重合体(a1)は、前記共役ジエン単位の含有量が、1mol%以上であることが好ましく、3mol%以上であることがより好ましく、また、50mol%以下であることが好ましく、40mol%以下であることがより好ましく、30mol%以下であることが更に好ましく、25mol%以下であることがより更に好ましく、15mol%以下であることがより一層好ましい。共役ジエン単位の含有量が、多元共重合体全体の1mol%以上であると、伸びに優れるゴム組成物及びゴム製品が得られるので好ましく、また、50mol%以下であると、耐候性に優れる。また、共役ジエン単位の含有量は、多元共重合体全体の1〜50mol%の範囲が好ましく、3〜40mol%の範囲が更に好ましい。
前記非共役オレフィン単位は、単量体としての非共役オレフィン化合物に由来する構成単位である。該非共役オレフィン単位は、大きく歪んだ際に、当該非共役オレフィン単位に由来する結晶成分が崩壊することによって、エネルギーを散逸する。ここで、非共役オレフィン化合物とは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。該非共役オレフィン化合物は、炭素数が2〜10であることが好ましい。かかる非共役オレフィン化合物として、具体的には、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィン、ピバリン酸ビニル、1−フェニルチオエテン、N−ビニルピロリドン等のヘテロ原子置換アルケン化合物等が挙げられる。前記非共役オレフィン化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、多元共重合体の単量体としての非共役オレフィン化合物は、得られる多元共重合体を用いたゴム組成物及びタイヤ等の耐候性をより向上させる観点から、非環状の非共役オレフィン化合物であることが好ましく、また、当該非環状の非共役オレフィン化合物は、α−オレフィンであることがより好ましく、エチレンを含むα−オレフィンであることが更に好ましく、エチレンのみからなることが特に好ましい。別の言い方をすると、多元共重合体における非共役オレフィン単位は、非環状の非共役オレフィン単位であることが好ましく、また、当該非環状の非共役オレフィン単位は、α−オレフィン単位であることがより好ましく、エチレン単位を含むα−オレフィン単位であることが更に好ましく、エチレン単位のみからなることが更に好ましい。
前記多元共重合体(a1)は、前記非共役オレフィン単位の含有量が、40mol%以上であることが好ましく、45mol%以上であることが更に好ましく、55mol%以上であることがより一層好ましく、60mol%以上であることが特に好ましく、また、97mol%以下であることが好ましく、95mol%以下であることが更に好ましく、90mol%以下であることがより一層好ましい。非共役オレフィン単位の含有量が、多元共重合体全体の40mol%以上であると、結果として共役ジエン単位又は芳香族ビニル単位の含有量が減少して、耐候性が向上したり、高温での耐破壊性(特には、破断強度(Tb))が向上する。また、非共役オレフィン単位の含有量が97mol%以下であると、結果として共役ジエン単位又は芳香族ビニル単位の含有量が増加し、高温での耐破壊性(特には、破断伸び(Eb))が向上する。また、非共役オレフィン単位の含有量は、多元共重合体全体の40〜97mol%の範囲が好ましく、45〜95mol%の範囲がより好ましく、55〜90mol%の範囲がより一層好ましい。
前記芳香族ビニル単位は、単量体としての芳香族ビニル化合物に由来する構成単位である。該芳香族ビニル単位は、多元共重合体の作業性を向上させる。ここで、芳香族ビニル化合物とは、少なくともビニル基で置換された芳香族化合物を指し、共役ジエン化合物には包含されないものとする。該芳香族ビニル化合物は、炭素数が8〜10であることが好ましい。かかる芳香族ビニル化合物としては、スチレン、o−メチルスチレン、m−メチルスチレン、p−メチルスチレン、o,p−ジメチルスチレン、o−エチルスチレン、m−エチルスチレン、p−エチルスチレン等が挙げられる。前記芳香族ビニル化合物は、一種単独であってもよいし、二種以上の組み合わせであってもよい。そして、多元共重合体の単量体としての芳香族ビニル化合物は、得られる多元共重合体を用いたゴム組成物及びタイヤ等の耐候性を向上させる観点から、スチレンを含むことが好ましく、スチレンのみからなることがより好ましい。別の言い方をすると、多元共重合体における芳香族ビニル単位は、スチレン単位を含むことが好ましく、スチレン単位のみからなることがより好ましい。
なお、芳香族ビニル単位における芳香族環は、隣接する単位と結合しない限り、多元共重合体の主鎖には含まれない。
前記多元共重合体(a1)は、前記芳香族ビニル単位の含有量が、2mol%以上であることが好ましく、3mol%以上であることが更に好ましく、また、35mol%以下であることが好ましく、30mol%以下であることが更に好ましく、25mol%以下であることがより一層好ましい。芳香族ビニル単位の含有量が2mol%以上であると、高温における耐破壊性が向上する。また、芳香族ビニル単位の含有量が35mol%以下であると、共役ジエン単位及び非共役オレフィン単位による効果が顕著になる。また、芳香族ビニル単位の含有量は、多元共重合体全体の2〜35mol%の範囲が好ましく、3〜30mol%の範囲がより好ましく、3〜25mol%の範囲がより一層好ましい。
前記多元共重合体(a1)の単量体の種類の数としては、多元共重合体が共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位とを含有する限り、特に制限はない。該多元共重合体(a1)は、共役ジエン単位、非共役オレフィン単位、及び芳香族ビニル単位以外の、その他の構成単位を有していてもよいが、その他の構成単位の含有量は、所望の効果を得る観点から、多元共重合体全体の30mol%以下であることが好ましく、20mol%以下であることがより好ましく、10mol%以下であることが更に好ましく、含有しないこと、即ち、含有量が0mol%であることが特に好ましい。
前記多元共重合体(a1)は、耐摩耗性、耐候性及び結晶性を好ましいものとする観点から、単量体として、一種の共役ジエン化合物、一種の非共役オレフィン化合物、及び一種の芳香族ビニル化合物を少なくとも用いて重合してなる重合体であることが好ましい。別の言い方をすると、前記多元共重合体(a1)は、一種の共役ジエン単位、一種の非共役オレフィン単位、及び一種の芳香族ビニル単位を含有する多元共重合体であることが好ましく、一種の共役ジエン単位、一種の非共役オレフィン単位、及び一種の芳香族ビニル単位のみからなる三元共重合体であることがより好ましく、1,3−ブタジエン単位、エチレン単位、及びスチレン単位のみからなる三元共重合体であることが更に好ましい。ここで、「一種の共役ジエン単位」には、異なる結合様式の共役ジエン単位が包含される。
本発明のゴム組成物において、前記多元共重合体(a1)は、前記共役ジエン単位の含有量が1〜50mol%で、前記非共役オレフィン単位の含有量が40〜97mol%で、且つ前記芳香族ビニル単位の含有量が2〜35mol%であることが好ましい。この場合、ゴム組成物の耐摩耗性及び耐候性が更に向上し、また、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
前記多元共重合体(a1)は、ポリスチレン換算の重量平均分子量(Mw)が10,000〜10,000,000であることが好ましく、100,000〜9,000,000であることがより好ましく、150,000〜8,000,000であることが更に好ましい。前記多元共重合体のMwが10,000以上であることにより、ゴム組成物の機械的強度を十分に確保することができ、また、Mwが10,000,000以下であることにより、高い作業性を保持することができる。
前記多元共重合体(a1)は、ポリスチレン換算の数平均分子量(Mn)が10,000〜10,000,000であることが好ましく、50,000〜9,000,000であることがより好ましく、100,000〜8,000,000であることが更に好ましい。前記多元共重合体のMnが10,000以上であることにより、ゴム組成物の機械的強度を十分に確保することができ、また、Mnが10,000,000以下であることにより、高い作業性を保持することができる。
前記多元共重合体(a1)は、分子量分布[Mw/Mn(重量平均分子量/数平均分子量)]が1.00〜4.00であることが好ましく、1.50〜3.50であることがより好ましく、1.80〜3.00であることが更に好ましい。前記多元共重合体の分子量分布が4.00以下であれば、多元共重合体の物性に十分な均質性をもたらすことができる。
なお、上述した重量平均分子量(Mw)、数平均分子量(Mn)及び分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、ポリスチレンを標準物質として求める。
本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30〜130℃であることが好ましく、30〜110℃であることが更に好ましい。多元共重合体(a1)の融点が30℃以上であれば、多元共重合体(a1)の結晶性が高くなり、ゴム組成物の耐摩耗性が更に向上し、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。また、多元共重合体(a1)の融点が130℃以下であれば、ゴム組成物の作業性が向上する。
ここで、該融点は、実施例に記載の方法で測定した値である。
本発明のゴム組成物において、前記多元共重合体(a1)は、0〜120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10〜150J/gであることが好ましく、30〜120J/gであることが更に好ましい。多元共重合体(a1)の吸熱ピークエネルギーが10J/g以上であれば、多元共重合体(a1)の結晶性が高くなり、ゴム組成物の耐摩耗性が更に向上し、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。また、多元共重合体(a1)の吸熱ピークエネルギーが150J/g以下であれば、ゴム組成物の作業性が向上する。
ここで、該吸熱ピークエネルギーは、実施例に記載の方法で測定した値である。
本発明のゴム組成物において、前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度(Tg)が0℃以下であることが好ましく、−100℃〜−10℃であることが更に好ましい。多元共重合体(a1)のガラス転移温度が0℃以下であれば、ゴム組成物の作業性が向上する。
ここで、該ガラス転移温度は、実施例に記載の方法で測定した値である。
本発明のゴム組成物において、前記多元共重合体(a1)は、結晶化度が0.5〜50%であることが好ましく、3〜45%であることが更に好ましく、5〜45%であることがより一層好ましい。多元共重合体(a1)の結晶化度が0.5%以上であれば、非共役オレフィン単位に起因する結晶性を十分に確保して、ゴム組成物の耐摩耗性が更に向上し、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。また、多元共重合体(a1)の結晶化度が50%以下であれば、ゴム組成物の混練の際の作業性が向上し、また、多元共重合体(a1)を配合したゴム組成物のタッキネスが向上するため、ゴム組成物から作製したゴム部材同士を貼り付け、タイヤ等のゴム製品を成形する際の作業性も向上する。
ここで、該結晶化度は、実施例に記載の方法で測定した値である。
本発明のゴム組成物において、前記多元共重合体(a1)は、主鎖が非環状構造のみからなることが好ましい。これにより、ゴム組成物の耐摩耗性を更に向上させることができ、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
なお、多元共重合体(a1)の主鎖が環状構造を有するか否かの確認には、NMRが主要な測定手段として用いられる。具体的には、主鎖に存在する環状構造に由来するピーク(例えば、三員環〜五員環については、10〜24ppmに現れるピーク)が観測されない場合、その多元共重合体の主鎖は、非環状構造のみからなることを示す。
前記多元共重合体(a1)は、共役ジエン化合物と、非共役オレフィン化合物と、芳香族ビニル化合物とを単量体として用いる重合工程を経て製造でき、更に、必要に応じ、カップリング工程、洗浄工程、その他の工程を経てもよい。
ここで、前記多元共重合体(a1)の製造においては、重合触媒の存在下で、共役ジエン化合物を添加せずに非共役オレフィン化合物及び芳香族ビニル化合物のみを添加し、これらを重合させることが好ましい。特に後述の触媒組成物を使用する場合には、非共役オレフィン化合物及び芳香族ビニル化合物より共役ジエン化合物の方が反応性が高いことから、共役ジエン化合物の存在下で非共役オレフィン化合物及び/又は芳香族ビニル化合物を重合させることが困難となり易い。また、先に共役ジエン化合物を重合させ、後に非共役オレフィン化合物及び芳香族ビニル化合物を付加的に重合させることも、触媒の特性上困難となり易い。
重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン等が挙げられる。
重合工程は、一段階で行ってもよく、二段階以上の多段階で行ってもよい。一段階の重合工程とは、重合させる全ての種類の単量体、即ち、共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物、及びその他の単量体、好ましくは、共役ジエン化合物、非共役オレフィン化合物、及び芳香族ビニル化合物を一斉に反応させて重合させる工程である。また、多段階の重合工程とは、1種類又は2種類の単量体の一部又は全部を最初に反応させて重合体を形成し(第1重合段階)、次いで、残る種類の単量体や前記1種類又は2種類の単量体の残部を添加して重合させる1以上の段階(第2重合段階〜最終重合段階)を行って重合させる工程である。特に、多元共重合体の製造では、重合工程を多段階で行うことが好ましい。
重合工程において、重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。また、上記重合反応の圧力は、共役ジエン化合物を十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限がなく、例えば、1秒〜10日の範囲が好ましいが、重合触媒の種類、重合温度等の条件によって適宜選択することができる。
また、前記共役ジエン化合物の重合工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
前記重合工程は、多段階で行うことが好ましい。より好ましくは、少なくとも芳香族ビニル化合物を含む第1単量体原料と、重合触媒とを混合して重合混合物を得る第1工程と、前記重合混合物に対し、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1種を含む第2単量体原料を導入する第2工程とを実施することが好ましい。更に、上記第1単量体原料が共役ジエン化合物を含まず、且つ上記第2単量体原料が共役ジエン化合物を含むことがより好ましい。
前記第1工程で用いる第1単量体原料は、芳香族ビニル化合物とともに、非共役オレフィン化合物を含有してもよい。また、第1単量体原料は、使用する芳香族ビニル化合物の全量を含有してもよく、一部のみを含有してもよい。また、非共役オレフィン化合物は、第1単量体原料及び第2単量体原料の少なくともいずれかに含有される。
前記第1工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第1工程における温度(反応温度)は、特に制限はないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。また、第1工程における圧力は、特に制限はないが、芳香族ビニル化合物を十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、第1工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、反応温度を25〜80℃とした場合には、5分〜500分の範囲が好ましい。
前記第1工程において、重合混合物を得るための重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、かかる溶媒としては、重合反応において不活性なものであればよく、例えば、トルエン、シクロヘキサノン、ノルマルヘキサン等が挙げられる。
前記第2工程で用いる第2単量体原料は、共役ジエン化合物のみ、又は、共役ジエン化合物及び非共役オレフィン化合物、又は、共役ジエン化合物及び芳香族ビニル化合物、又は、共役ジエン化合物、非共役オレフィン化合物及び芳香族ビニル化合物であることが好ましい。
なお、第2単量体原料が、共役ジエン化合物以外に非共役オレフィン化合物及び芳香族ビニル化合物よりなる群から選択される少なくとも1つを含む場合には、予めこれらの単量体原料を溶媒等と共に混合した後に重合混合物に導入してもよく、各単量体原料を単独の状態から導入してもよい。また、各単量体原料は、同時に添加してもよく、逐次添加してもよい。第2工程において、重合混合物に対して第2単量体原料を導入する方法としては、特に制限はないが、各単量体原料の流量を制御して、重合混合物に対して連続的に添加すること(所謂、ミータリング)が好ましい。ここで、重合反応系の条件下で気体である単量体原料(例えば、室温、常圧の条件下における非共役オレフィン化合物としてのエチレン等)を用いる場合には、所定の圧力で重合反応系に導入することができる。
前記第2工程は、反応器内で、不活性ガス、好ましくは窒素ガス又はアルゴンガスの雰囲気下において行われることが好ましい。第2工程における温度(反応温度)は、特に制限はないが、例えば、−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、反応温度を上げると、共役ジエン単位におけるシス−1,4結合の選択性が低下することがある。また、第2工程における圧力は、特に制限はないが、共役ジエン化合物等の単量体を十分に重合反応系に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、第2工程に費やす時間(反応時間)は、重合触媒の種類、反応温度等の条件によって適宜選択することができるが、例えば、0.1時間〜10日の範囲が好ましい。
また、第2工程においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合反応を停止させてもよい。
ここで、上記の共役ジエン化合物、非共役オレフィン化合物、芳香族ビニル化合物の重合工程は、下記(A)〜(F)成分の1種以上の存在下で、各種単量体を重合させる工程を含むことが好ましい。なお、重合工程には、触媒成分として、下記(A)〜(F)成分を1種以上用いることが好ましいが、下記(A)〜(F)成分の2種以上を組み合わせて、触媒組成物として用いることが更に好ましい。
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物
(B)成分:有機金属化合物
(C)成分:アルミノキサン
(D)成分:イオン性化合物
(E)成分:ハロゲン化合物
(F)成分:置換又は無置換のシクロペンタジエン(シクロペンタジエニル基を有する化合物)、置換又は無置換のインデン(インデニル基を有する化合物)、及び、置換又は無置換のフルオレン(フルオレニル基を有する化合物)から選択されるシクロペンタジエン骨格含有化合物(以下、単に「シクロペンタジエン骨格含有化合物」と称することがある。)
以下、(A)〜(F)成分について詳細に説明する。
前記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物((A)成分)としては、希土類元素−炭素結合を有する、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(以下、「(A−1)成分」ともいう。)、希土類元素−炭素結合を有しない、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物(以下、「(A−2)成分」ともいう。)が挙げられる。
前記(A−1)成分としては、例えば、下記一般式(I):
Figure 2019216100
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、Ra〜Rfは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す]で表されるメタロセン錯体、及び下記一般式(II):
Figure 2019216100
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、X’は、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す]で表されるメタロセン錯体、並びに下記一般式(III):
Figure 2019216100
[式中、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示し、[B]-は、非配位性アニオンを示す]で表されるハーフメタロセンカチオン錯体が挙げられる。
上記一般式(I)及び(II)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-xx又はC911-xxで示され得る。ここで、Xは、0〜7又は0〜11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び(II)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCpR'は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。
一般式(III)において、上記シクロペンタジエニル環を基本骨格とするCpR'は、C55-xxで示される。ここで、Xは、0〜5の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR'として、具体的には、以下のものが例示される。
Figure 2019216100
[式中、Rは水素原子、メチル基又はエチル基を示す。]
一般式(III)において、上記インデニル環を基本骨格とするCpR'は、一般式(I)及び(II)のCpRと同様に定義され、好ましい例も同様である。
一般式(III)において、上記フルオレニル環を基本骨格とするCpR'は、C139-xx又はC1317-xxで示され得る。ここで、Xは、0〜9又は0〜17の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
一般式(I)、(II)及び(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりの嵩高さが低くなるため、非共役オレフィン化合物や芳香族ビニル化合物が導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX’3]を含む。シリル配位子[−SiX’3]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。
一般式(III)において、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基及び炭素数1〜20の一価の炭化水素基からなる群より選択される基である。ここで、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。
一般式(III)において、Xが表すアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシ基等が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基等が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
一般式(III)において、Xが表すアミノ基としては、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基等が挙げられ、これらの中でも、ビストリメチルシリルアミノ基が好ましい。
一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
また、一般式(III)において、Xが表す炭素数1〜20の一価の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
一般式(III)において、Xとしては、ビストリメチルシリルアミノ基又は炭素数1〜20の一価の炭化水素基が好ましい。
一般式(III)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
上記一般式(I)及び(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(I)及び(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えば、カリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミンの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
Figure 2019216100
[式中、X’’はハライドを示す。]
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えば、カリウム塩やリチウム塩)及びシリルの塩(例えば、カリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間〜数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
Figure 2019216100
[式中、X’’はハライドを示す。]
上記一般式(III)で表されるハーフメタロセンカチオン錯体は、例えば、次の反応により得ることができる。
Figure 2019216100
ここで、一般式(IV)で表される化合物において、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、CpR'は、それぞれ独立して無置換もしくは置換シクロペンタジエニル、インデニル又はフルオレニルを示し、Xは、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基又は炭素数1〜20の一価の炭化水素基を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す。また、一般式[A]+[B]-で表されるイオン性化合物において、[A]+は、カチオンを示し、[B]-は、非配位性アニオンを示す。
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍mol加えることが好ましく、約1倍mol加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は(II)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
上記一般式(I)及び(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
更に、他の(A−1)成分としては、下記一般式(V):
aMXbQYb ・・・ (V)
[式中、Rは、それぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mは、ランタノイド元素、スカンジウム又はイットリウムを示し、Xは、それぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該XはM及びQにμ配位しており、Qは、周期律表第13族元素を示し、Yは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは、2である]で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系複合触媒の好適例においては、下記一般式(VI):
Figure 2019216100
[式中、M1は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位しており、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示す]で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系複合触媒を用いることで、多元共重合体を効率良く製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、多元共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、上記メタロセン系複合触媒を用いない従来の触媒系を用いると、多元共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、上記メタロセン系複合触媒を用いない従来の触媒系では、金属触媒に対して10モル当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5モル当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
上記メタロセン系複合触媒において、上記一般式(V)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記一般式(V)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニルの具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記一般式(V)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
上記一般式(V)において、Xは、それぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記一般式(V)において、Yは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子を示し、該Yは、Qに配位している。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記一般式(VI)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記一般式(VI)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C97-XX又はC911-XXで示され得る。ここで、Xは、0〜7又は0〜11の整数である。また、Rは、それぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は、1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(VI)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
上記一般式(VI)において、RA及びRBは、それぞれ独立して炭素数1〜20の一価の炭化水素基を示し、該RA及びRBは、M1及びAlにμ配位している。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記一般式(VI)において、RC及びRDは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子である。ここで、炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記一般式(VII):
Figure 2019216100
[式中、M2は、ランタノイド元素、スカンジウム又はイットリウムを示し、CpRは、それぞれ独立して無置換もしくは置換インデニルを示し、RE〜RJは、それぞれ独立して炭素数1〜3のアルキル基又は水素原子を示し、Lは、中性ルイス塩基を示し、wは、0〜3の整数を示す]で表されるメタロセン錯体を、AlRKLMで表される有機アルミニウム化合物と反応させることで得られる。なお、反応温度は、室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は、任意であるが、数時間〜数十時間程度である。反応溶媒は、特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えば、トルエンやヘキサンを用いればよい。なお、上記メタロセン系複合触媒の構造は、1H−NMRやX線構造解析により決定することが好ましい。
上記一般式(VII)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記一般式(VI)中のCpRと同義である。また、上記式(VII)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(VI)中の金属M1と同義である。
上記一般式(VII)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR32]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
上記一般式(VII)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(VII)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKLMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の一価の炭化水素基又は水素原子で、RMは炭素数1〜20の一価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の一価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;ジエチルアルミニウムハイドライド、ジ−n−プロピルアルミニウムハイドライド、ジ−n−ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド、ジイソヘキシルアルミニウムハイドライド、ジオクチルアルミニウムハイドライド、ジイソオクチルアルミニウムハイドライド;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
前記(A−2)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、且つ、希土類元素と炭素との結合を有しない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有しない場合、化合物が安定であり、取り扱い易い。ここで、希土類元素化合物とは、希土類元素(M)、即ち、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素、又はスカンジウム若しくはイットリウムを含有する化合物である。
なお、ランタノイド元素の具体例としては、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A−2)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
また、上記希土類元素化合物は、2価若しくは3価の希土類金属の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(VIII)又は(IX):
1111 2・L11 w ・・・ (VIII)
1111 3・L11 w ・・・ (IX)
[それぞれの式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシ基、チオラート基、アミノ基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す]で表されることが好ましい。
上記希土類元素化合物の希土類元素に結合する基(配位子)としては、水素原子、ハロゲン原子、アルコキシ基(アルコールの水酸基の水素を除いた基であり、金属アルコキシドを形成する)、チオラート基(チオール化合物のチオール基の水素を除いた基であり、金属チオラートを形成する)、アミノ基(アンモニア、第一級アミン、又は第二級アミンの窒素原子に結合する水素原子を1つ除いた基であり、金属アミドを形成する)、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基、リン化合物残基が挙げられる。
該基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオn−ブトキシ基、チオイソブトキシ基、チオsec−ブトキシ基、チオtert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。
該基(配位子)として、更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロキシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のケトン残基(特には、ジケトンの残基);イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ピバル酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基;リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基;ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基等を挙げることもできる。
なお、これらの基(配位子)は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(一般式(VIII)及び(IX)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
好適には、上記希土類元素化合物としては、下記一般式(X):
M−(AQ1)(AQ2)(AQ3) ・・・ (X)
[式中、Mは、スカンジウム、イットリウム又はランタノイド元素であり;AQ1、AQ2及びAQ3は、同一であっても異なっていてもよい官能基であり;Aは、窒素、酸素又は硫黄であり;但し、少なくとも1つのM−A結合を有する]で表される化合物が好ましい。ここで、ランタノイド元素とは、具体的には、ランタン、セリウム、プラセオジム、ネオジム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウムである。該化合物は、反応系における触媒活性を向上させることができ、反応時間を短くし、反応温度を高くすることが可能な成分である。
一般式(X)中のMとしては、特に、触媒活性及び反応制御性を高める観点から、ガドリニウムが好ましい。
一般式(X)中のAが窒素である場合、AQ1、AQ2及びAQ3(即ち、NQ1、NQ2及びNQ3)で表される官能基としては、アミノ基等が挙げられる。そして、この場合、3つのM−N結合を有する。
アミノ基としては、例えば、ジメチルアミノ基、ジエチルアミノ基、ジイソプロピルアミノ基等の脂肪族アミノ基;フェニルアミノ基、2,6−ジ−tert−ブチルフェニルアミノ基、2,6−ジイソプロピルフェニルアミノ基、2,6−ジネオペンチルフェニルアミノ基、2−tert−ブチル−6−イソプロピルフェニルアミノ基、2−tert−ブチル−6−ネオペンチルフェニルアミノ基、2−イソプロピル−6−ネオペンチルフェニルアミノ基、2,4,6−トリ−tert−ブチルフェニルアミノ基等のアリールアミノ基;ビストリメチルシリルアミノ基等のビストリアルキルシリルアミノ基等が挙げられ、特に、脂肪族炭化水素及び芳香族炭化水素に対する溶解性の観点から、ビストリメチルシリルアミノ基が好ましい。上記アミノ基は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記構成によれば、(A−2)成分を3つのM−N結合を有する化合物とすることができ、各結合が化学的に等価となり、化合物の構造が安定となるため、取り扱いが容易となる。
また、上記構成とすれば、反応系における触媒活性を更に向上させることができる。そのため、反応時間を更に短くし、反応温度を更に高くすることができる。
一般式(X)中のAが酸素である場合、一般式(X)(即ち、M−(OQ1)(OQ2)(OQ3))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XI):
(RO)3M ・・・ (XI)
で表される希土類アルコラートや、下記一般式(XII):
(R−CO23M ・・・ (XII)
で表される希土類カルボキシレート等が挙げられる。
ここで、上記一般式(XI)及び(XII)中、Rは、同一であっても異なっていてもよく、炭素数1〜10のアルキル基である。
一般式(X)中のAが硫黄である場合、一般式(X)(即ち、M−(SQ1)(SQ2)(SQ3))で表される希土類元素含有化合物としては、特に制限されないが、例えば、下記一般式(XIII):
(RS)3M ・・・ (XIII)
で表される希土類アルキルチオラートや、下記一般式(XIV):
(R−CS23M ・・・ (XIV)
で表される化合物等が挙げられる。
ここで、上記一般式(XIII)及び(XIV)中、Rは、同一であっても異なっていてもよく、炭素数1〜10のアルキル基である。
前記有機金属化合物((B)成分)は、下記一般式(XV):
YR1 a2 b3 c ・・・ (XV)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R1、R2及びR3はそれぞれ互いに同一でも異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a、b及びcは1である]で表される。
上記一般式(XV)において、R1、R2及びR3が示す炭素数1〜10の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分岐鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基等が好ましい。
前記(B)成分としては、下記一般式(XVI):
AlR123 ・・・ (XVI)
[式中、R1及びR2は、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R1、R2及びR3はそれぞれ互いに同一又は異なっていてもよい]で表される有機アルミニウム化合物が好ましい。該有機アルミニウム化合物は、上記一般式(XV)において、YがAlで、a、b及びcが1である化合物に相当する。
上記一般式(XVI)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;ジエチルアルミニウムハイドライド、ジ−n−プロピルアルミニウムハイドライド、ジ−n−ブチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライド、ジヘキシルアルミニウムハイドライド、ジイソヘキシルアルミニウムハイドライド、ジオクチルアルミニウムハイドライド、ジイソオクチルアルミニウムハイドライド;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、ジエチルアルミニウムハイドライド、ジイソブチルアルミニウムハイドライドが好ましい。
前記(B)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(B)成分の使用量は、上述の(A)成分と共に用いる場合、該(A)成分に対して1〜50倍molであることが好ましく、約10倍molであることが更に好ましい。
前記アルミノキサン((C)成分)は、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物である。(C)成分を用いることによって、重合反応系における触媒活性を更に向上させることができるので、目的とする共重合体を容易に得ることができる。また、反応時間を更に短くし、反応温度を更に高くすることもできる。
ここで、前記有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム、及びその混合物等が挙げられ、特に、トリメチルアルミニウム、トリメチルアルミニウムとトリブチルアルミニウムとの混合物が好ましい。
一方、前記縮合剤としては、例えば、水等が挙げられる。
前記(C)成分としては、例えば、下記式(XVII):
−(Al(R7)O)n− ・・・ (XVII)
[式中、R7は、炭素数1〜10の炭化水素基であり、ここで、炭化水素基の一部はハロゲン及び/又はアルコキシ基で置換されてもよく;R7は、繰り返し単位間で同一であっても異なっていてもよく;nは5以上である]で表されるアルミノキサンを挙げることができる。
上記アルミノキサンの分子構造は、直鎖状であっても環状であってもよい。
上記式(XVII)中のnは、10以上であることが好ましい。
また、上記式(XVII)中のR7に関して、炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、特に、メチル基が好ましい。該炭化水素基は、1種でもよいし、2種以上を組み合わせてもよい。式(XVII)中のR7に関して、炭化水素基としては、メチル基とイソブチル基との組み合わせが好ましい。
上記アルミノキサンは、脂肪族炭化水素に高い溶解性を有することが好ましく、芳香族炭化水素に低い溶解性を有することが好ましい。例えば、ヘキサン溶液として市販されているアルミノキサンが好ましい。
ここで、脂肪族炭化水素としては、ヘキサン、シクロヘキサン等が挙げられる。
前記(C)成分は、特に、下記式(XVIII):
−(Al(CH3x(i−C49yO)m− ・・・ (XVIII)
[式中、x+yは1であり;mは5以上である]で表される修飾アルミノキサン(以下、「TMAO」ともいう。)としてもよい。TMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「TMAO−341」が挙げられる。
また、前記(C)成分は、特に、下記式(XIX):
−(Al(CH30.7(i−C490.3O)k− ・・・ (XIX)
[式中、kは5以上である]で表される修飾アルミノキサン(以下、「MMAO」ともいう。)としてもよい。MMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「MMAO−3A」が挙げられる。
更に、前記(C)成分は、特に、下記式(XX):
−[(CH3)AlO]i− ・・・ (XX)
[式中、iは5以上である]で表される修飾アルミノキサン(以下、「PMAO」ともいう。)としてもよい。PMAOとしては、例えば、東ソー・ファインケミカル社製の製品名「PMAO−211」が挙げられる。
前記(C)成分は、触媒活性を向上させる効果を高める観点から、上記MMAO、TMAO、PMAOのうち、MMAO又はTMAOであることが好ましく、特に、触媒活性を向上させる効果を更に高める観点から、TMAOであることが更に好ましい。
前記(C)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(C)成分は、触媒活性を向上させる観点から、前記(A)成分と共に用いる場合、該(A)成分中の希土類元素1molに対して、当該(C)成分中のアルミニウムが10mol以上となるように使用されることが好ましく、100mol以上となるように使用されることが更に好ましく、また、1000mol以下となるように使用されることが好ましく、800mol以下となるように使用されることが更に好ましい。
前記イオン性化合物((D)成分)は、非配位性アニオンとカチオンとからなる。該(D)成分を上述の(A)成分と共に用いる場合、(D)成分としては、前記(A)成分と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。
ここで、非配位性アニオンとしては、4価のホウ素アニオン、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン(「トリチルカチオン」ともいう)、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、アンモニウムカチオン等が挙げられ、アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
従って、前記イオン性化合物((D)成分)としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。
前記(D)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(D)成分の使用量は、上述の(A)成分と共に用いる場合、該(A)成分に対して0.1〜10倍molであることが好ましく、約1倍molであることが更に好ましい。
前記ハロゲン化合物((E)成分)としては、ルイス酸であるハロゲン含有化合物(以下、「(E−1)成分」ともいう。)、金属ハロゲン化物とルイス塩基との錯化合物(以下、「(E−2)成分」ともいう。)、活性ハロゲンを含む有機化合物(以下、「(E−3)成分」ともいう。)等が挙げられる。該(E)成分は、例えば、上述の(A)成分と共に用いる場合、該(A)成分と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。
上記(E−1)成分としては、例えば、周期律表中の第3族、第4族、第5族、第6族、第8族、第13族、第14族又は第15族の元素を含むハロゲン化合物を用いることができる。好ましくは、アルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。
上記ルイス酸であるハロゲン含有化合物として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチルスズジクロライド、アルミニウムトリブロマイド、トリ(ペンタフルオロフェニル)アルミニウム、トリ(ペンタフルオロフェニル)ボレート、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化スズ、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
上記(E−1)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記(E−2)成分を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記(E−2)成分を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1mol当り、0.01〜30mol、好ましくは0.5〜10molの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記(E−2)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記(E−3)成分としては、ベンジルクロライド等が挙げられる。
前記(E)成分は、一種単独で使用することも、2種以上を混合して用いることもできる。また、前記(E)成分の使用量は、前記(A)成分と共に用いる場合、該(A)成分に対して0〜5倍molであることが好ましく、1〜5倍molであることが更に好ましい。
前記シクロペンタジエン骨格含有化合物((F)成分)は、シクロペンタジエニル基、インデニル基、及びフルオレニル基から選択される基を有し、該シクロペンタジエン骨格含有化合物(F)は、置換又は無置換シクロペンタジエン、置換又は無置換のインデン、置換又は無置換のフルオレンからなる群から選択される少なくとも1種の化合物である。上記(F)成分は、1種単独で用いてもよく、2種以上を組み合わせて用いてもよい。
前記置換又は無置換のシクロペンタジエンとしては、例えば、シクロペンタジエン、ペンタメチルシクロペンタジエン、テトラメチルシクロペンタジエン、イソプロピルシクロペンタジエン、トリメチルシリル−テトラメチルシクロペンタジエン、(1−ベンジルジメチルシリル)シクロペンタ[l]フェナントレン等が挙げられる。
前記置換又は無置換のインデンとしては、例えば、インデン、2−フェニル−1H−インデン、3−ベンジル−1H−インデン、3−メチル−2−フェニル−1H−インデン、3−ベンジル−2−フェニル−1H−インデン、1−ベンジル−1H−インデン、1−メチル−3−ジメチルベンジルシリル−インデン、1,3−ビス(t−ブチルジメチルシリル)−インデン、(1−ベンジルジメチルシリル−3−シクロペンチル)インデン、(1−ベンジル−3−t−ブチルジメチルシリル)インデン等が挙げられ、特に、分子量分布を小さくする観点から、3−ベンジル−1H−インデン、1−ベンジル−1H−インデンが好ましい。
前記置換又は無置換のフルオレンとしては、フルオレン、トリメチルシリルフルオレン、イソプロピルフルオレン等が挙げられる。
特に、シクロペンタジエン骨格含有化合物((F)成分)は、置換シクロペンタジエン、置換インデン又は置換フルオレンであることが好ましく、置換インデンであることがより好ましい。これにより、重合触媒としてのかさ高さが有利に増大するため、反応時間を短くし、反応温度を高くすることができる。また、共役電子を多く具えるため、反応系における触媒活性を更に向上させることができる。
ここで、置換シクロペンタジエン、置換インデン、置換フルオレンの置換基としては、ヒドロカルビル基、メタロイド基が挙げられ、ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることがより一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
前記(F)成分は、1種単独で使用することも、2種以上を混合して用いることもできる。また、前記(F)成分の使用量は、触媒活性を向上させる観点から、前記(A)成分と共に用いる場合、該(A)成分に対するモル比として、0超であることが好ましく、0.5以上であることが更に好ましく、1以上であることが特に好ましく、また、3以下であることが好ましく、2.5以下であることが更に好ましく、2.2以下であることが特に好ましい。
上述の(A)〜(F)成分は、様々に組み合わせ、触媒組成物として、前記重合工程に用いることが好ましい。好適な触媒組成物としては、以下の第一の触媒組成物及び第二の触媒組成物が挙げられる。
前記第一の触媒組成物は、前記(A−1)成分と、前記(B)成分と、前記(D)成分と、を含み、更に、任意成分として、前記(C)成分及び前記(E)成分の一種以上を含むことが好ましい。なお、前記(A−1)成分が、前記一般式(V)で表わされメタロセン系複合触媒である場合は、前記(B)成分も任意成分となる。
前記第二の触媒組成物は、前記(A−2)成分と、前記(B)成分と、前記(D)成分と、を含み、更に、任意成分として、前記(C)成分、前記(E)成分及び前記(F)成分の一種以上を含むことが好ましい。なお、第二の触媒組成物が(F)成分を含む場合、触媒活性が向上する。
前記カップリング工程は、前記重合工程において得られた多元共重合体の高分子鎖の少なくとも一部(例えば、末端)を変性する反応(カップリング反応)を行う工程である。
前記カップリング工程において、重合反応が100%に達した際にカップリング反応を行うことが好ましい。
前記カップリング反応に用いるカップリング剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ビス(マレイン酸−1−オクタデシル)ジオクチルスズ(IV)等のスズ含有化合物;4,4’−ジフェニルメタンジイソシアネート等のイソシアネート化合物;グリシジルプロピルトリメトキシシラン等のアルコキシシラン化合物、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
これらの中でも、ビス(マレイン酸−1−オクタデシル)ジオクチルスズ(IV)が、反応効率と低ゲル生成の点で、好ましい。
なお、カップリング反応を行うことにより、数平均分子量(Mn)の増加を行うことができる。
前記洗浄工程は、前記重合工程において得られた多元共重合体を洗浄する工程である。なお、洗浄に用いる媒体としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メタノール、エタノール、イソプロパノールなどが挙げられるが、重合触媒としてルイス酸由来の触媒を使用する際は、特にこれらの溶媒に対して酸(例えば、塩酸、硫酸、硝酸等)を加えて使用することができる。添加する酸の量は溶媒に対して15mol%以下が好ましい。これ以上では、酸が多元共重合体中に残存してしまうことで混練及び加硫時の反応に悪影響を及ぼす可能性がある。
この洗浄工程により、多元共重合体中の触媒残渣量を好適に低下させることができる。
本発明のゴム組成物において、前記ゴム成分(a)中の、前記多元共重合体(a1)の含有率は、5〜100質量%の範囲が好ましく、10〜100質量%の範囲が更に好ましく、15〜100質量%の範囲がより一層好ましい。ゴム成分(a)中の、多元共重合体(a1)の含有率が5質量%以上であれば、多元共重合体(a1)による作用が十分に発揮され、ゴム組成物の耐摩耗性が更に向上し、タイヤに適用することで、タイヤの耐摩耗性を更に向上させることができる。
前記ゴム成分(a)中の、前記多元共重合体(a1)以外のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、アクリロニトリル−ブタジエンゴム(NBR)、クロロプレンゴム、エチレン−プロピレンゴム(EPM)、エチレン−プロピレン−ジエンゴム(EPDM)、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム等が挙げられる。これらは、1種単独で使用してもよく、2種以上を混合して用いてもよい。
本発明のゴム組成物は、発泡剤(b)を含有する。ゴム組成物が発泡剤(b)を含むことで、ゴム組成物を加硫させて加硫ゴムを製造する際に、発泡剤由来の気泡が加硫ゴム中に形成される。従って、発泡剤(b)を含むゴム組成物をトレッドに使用してタイヤを製造すると、トレッドの気泡による引っ掻き効果及び排水効果で、タイヤの氷上性能を向上させることができる。
前記発泡剤(b)としては、アゾジカルボンアミド(ADCA)、ジニトロソペンタメチレンテトラミン(DNPT)、ジニトロソペンタスチレンテトラミン、ベンゼンスルホニルヒドラジド誘導体、p,p’−オキシビスベンゼンスルホニルヒドラジド(OBSH)、重炭酸アンモニウム、重炭酸ナトリウム、炭酸アンモニウム、ニトロソスルホニルアゾ化合物、N,N’−ジメチル−N,N’−ジニトロソフタルアミド、トルエンスルホニルヒドラジド、p−トルエンスルホニルセミカルバジド、p,p’−オキシビスベンゼンスルホニルセミカルバジド等が挙げられる。これら発泡剤(b)の中でも、ジニトロソペンタメチレンテトラミン(DNPT)が好ましい。これら発泡剤(b)は、一種単独で使用してもよいし、二種以上を併用してもよい。
本発明のゴム組成物は、前記ゴム成分(a)100質量部に対して、前記発泡剤(b)を0.5〜50質量部含有することが好ましく、0.5〜30質量部含有することがより好ましく、1〜20質量部含有することがより一層好ましく、1〜10質量部含有することが特に好ましい。発泡剤(b)の含有量が、ゴム成分(a)100質量部に対して0.5質量部以上であれば、気泡が十分に形成されて、タイヤの氷上性能を更に向上させることができると共に、入力を受けた際の歪が大きくなって、上述の多元共重合体(a1)の効果が大きくなって、タイヤの耐摩耗性を更に向上させることができる。また、発泡剤(b)の含有量が、ゴム成分(a)100質量部に対して50質量部以下であれば、生成する発泡ゴムが十分な強度を有するため、タイヤの耐摩耗性を更に向上させることができ、また、十分な接地面積を確保できるため、タイヤの氷上性能を更に向上させることができる。
また、上記発泡剤(b)には、発泡助剤として尿素、ステアリン酸亜鉛、ベンゼンスルフィン酸亜鉛、亜鉛華等を併用することが好ましい。これら発泡助剤は、一種単独で使用してもよいし、二種以上を併用してもよい。発泡助剤を併用することにより、発泡反応を促進して反応の完結度を高め、経時的に不要な劣化を抑制することができる。
また、該発泡助剤の含有量は、特に限定されるものではないが、前記ゴム成分(a)100質量部に対して1〜30質量部の範囲が好ましい。
本発明のゴム組成物は、更に、親水性短繊維(c)を含有することが好ましい。ゴム組成物が親水性短繊維(c)と前述の発泡剤(b)を含む場合、加硫時に発泡剤(b)から発生したガスが親水性短繊維(c)の内部に浸入して、親水性短繊維(c)の形状に対応した形状を有する気泡を形成することができ、また、該気泡は、壁面が親水性短繊維由来の樹脂で覆われ、親水化される。そのため、親水性短繊維(c)と発泡剤(b)を含むゴム組成物をトレッドに使用してタイヤを製造すると、タイヤの使用時において、気泡の壁面がトレッド表面に露出することで、水との親和性が向上し、気泡が水を積極的に取り込むことができるようになり、タイヤに優れた排水性が付与され、タイヤの氷上性能を大幅に向上させることができる。
前記親水性短繊維(c)の原料として用いる親水性樹脂としては、分子内に親水性基を有する樹脂が挙げられ、具体的には、酸素原子、窒素原子、及び硫黄原子から選択される少なくとも1つを含む樹脂であることが好ましい。例えば、−OH、−COOH、−OCOR(Rはアルキル基)、−NH2、−NCO、及び−SHからなる群より選ばれる少なくとも1種の置換基を含む樹脂が挙げられる。これらの置換基のなかでも、−OH、−COOH、−OCOR、−NH2、及び−NCOが好ましい。例えば、エチレン−ビニルアルコール共重合体、ビニルアルコール単独重合体、ポリ(メタ)アクリル酸或いはそのエステル、ポリエチレングリコール、カルボキシビニル共重合体、スチレン−マレイン酸共重合体、ポリビニルピロリドン、ビニルピロリドン−酢酸ビニル共重合体、メルカプトエタノール等が挙げられ、これらの中でも、エチレン−ビニルアルコール共重合体、ビニルアルコール単独重合体、ポリ(メタ)アクリル酸が好ましく、エチレン−ビニルアルコール共重合体が特に好ましい。
上記親水性短繊維(c)の表面には、前記ゴム成分(a)に対して親和性を有し、好ましくは、ゴム組成物の加硫最高温度よりも低い融点を有する低融点樹脂からなる被覆層が形成されていてもよい。かかる被覆層を形成することで、親水性短繊維(c)が有する水との親和性を有効に保持しつつ、被覆層とゴム成分(a)との親和性が良好なため、親水性短繊維のゴム成分(a)への分散性が向上する。また、かかる低融点樹脂が加硫時に溶融することで流動性を帯びた被覆層となってゴム成分(a)と親水性短繊維(c)との接着を図ることに寄与し、良好な排水性と耐久性とが付与されたタイヤを容易に実現することができる。なお、かかる被覆層の厚みは、親水性短繊維(c)の含有量や平均径等によって変動し得るが、通常0.001〜10μm、好ましくは0.001〜5μmである。
前記被覆層に用いる低融点樹脂の融点は、ゴム組成物の加硫の最高温度よりも低いことが好ましい。なお、加硫の最高温度とは、ゴム組成物の加硫時にゴム組成物が達する最高温度を意味する。例えば、モールド加硫の場合には、上記ゴム組成物がモールド内に入ってからモールドを出て冷却されるまでに該ゴム組成物が達する最高温度を意味し、かかる加硫最高温度は、例えば、ゴム組成物中に熱電対を埋め込むこと等により測定することができる。低融点樹脂の融点の上限としては、特に制限はないものの、以上の点を考慮して選択することが好ましく、一般的には、ゴム組成物の加硫最高温度よりも、10℃以上低いことが好ましく、20℃以上低いことがより好ましい。なお、ゴム組成物の工業的な加硫温度は、一般的には最高で約190℃程度であるが、例えば、加硫最高温度がこの190℃に設定されている場合には、低融点樹脂の融点としては、通常190℃未満の範囲で選択され、180℃以下が好ましく、170℃以下がより好ましい。
前記低融点樹脂としては、ポリオレフィン系樹脂が好ましく、例としては、ポリエチレン、ポリプロピレン、ポリブテン、ポリスチレン、エチレン−プロピレン共重合体、エチレン−メタクリル酸共重合体、エチレン−エチルアクリレート共重合体、エチレン−プロピレン−ジエン三元共重合体、エチレン−酢酸ビニル共重合体、並びにこれらのアイオノマー樹脂等が挙げられる。
前記親水性短繊維(c)は、平均長さが好ましくは0.1〜50mm、より好ましくは1〜7mmで、平均径が好ましくは1μm〜2mm、より好ましくは5μm〜0.5mmである。平均長さ及び平均径が上記範囲内であると、短繊維同士が必要以上に絡まるおそれがなく、良好な分散性を確保することができる。
前記親水性短繊維(c)の含有量は、前記ゴム成分(a)100質量部に対して0.1〜100質量部の範囲が好ましく、1〜50質量部の範囲が更に好ましい。親水性短繊維(c)の含有量を上記範囲に収めることで、氷上性能と耐摩耗性の良好なバランスを取ることができる。
本発明のゴム組成物は、軟化剤(d)を含有することが好ましい。ゴム組成物が軟化剤(d)を含有することで、ゴム組成物の作業性が向上する。
前記軟化剤(d)としては、鉱物由来のミネラルオイル、石油由来のアロマチックオイル、パラフィン系オイル、ナフテン系オイル、天然物由来のパームオイル等が挙げられる。これらの中でも、ゴム組成物の耐摩耗性の観点から、鉱物由来の軟化剤及び石油由来の軟化剤が好ましい。
前記軟化剤としては、ナフテン系オイルとアスファルトとの混合物や、パラフィン系オイルが特に好ましい。
ここで、ナフテン系オイルとアスファルトとの混合物において、ナフテン系オイルは、水添ナフテン系オイルであってもよく、該水添ナフテン系オイルは、予め高温高圧水素化精製技術によりナフテン系オイルを水素化精製することにより得ることができる。一方、アスファルトは、ゴム成分(a)との相溶性や、軟化剤としての効果の点から、アスファルテン成分が5質量%以下であることが好ましい。なお、アスファルテン成分は、JPI法(日本石油学会法)に準拠して測定した組成分析より定量する。
前記軟化剤(d)は、SP値が4以下であることが好ましく、3以下であることが更に好ましい。軟化剤(d)のSP値が4以下であれば、ゴム組成物中において、軟化剤(d)が局所的に存在して破壊核になることを抑制でき、ゴム組成物の耐摩耗性が更に向上する。なお、軟化剤(d)のSP値の下限としては、特に限定されないが、0.01以上であることが好ましい。
ここで、軟化剤(d)のSP値は、ハンセン(Hansen)の数式を用いて算出される溶解度パラメータを意味し、より具体的には、ハンセンの3つのパラメータのうち分子間の双極子相互作用エネルギーと水素結合によるエネルギーから算出した数値を意味する。
前記軟化剤(d)は、重量平均分子量(Mw)が2000以下であることが好ましく、1500以下であることが更に好ましい。軟化剤(d)の重量平均分子量(Mw)が2000以下であれば、ゴム組成物中において、軟化剤(d)が局所的に存在して破壊核になることを抑制でき、ゴム組成物の耐摩耗性が更に向上する。なお、軟化剤(d)の重量平均分子量(Mw)の下限としては、特に限定されないが、400以上であることが好ましい。
ここで、軟化剤(d)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した、ポリスチレン換算の値である。
前記軟化剤(d)の含有量は、前記ゴム成分(a)100質量部に対して、0.1〜150質量部の範囲が好ましく、1〜130質量部の範囲が更に好ましく、5〜110質量部の範囲がより一層好ましい。軟化剤(d)の含有量が、ゴム成分(a)100質量部に対して、0.1質量部以上であれば、ゴム組成物の作業性が更に向上し、また、150質量部以下であれば、ゴム組成物の耐摩耗性が更に向上する。
本発明のゴム組成物は、樹脂成分(e)を含有することが好ましい。ゴム組成物が樹脂成分(e)を含有することで、ゴム組成物の作業性が更に向上する。また、ゴム組成物が、前記多元共重合体(a1)と共に樹脂成分(e)を含むことにより、多元共重合体(a1)に由来する高い耐摩耗性が維持され、かつ、タイヤ等の成型時において他部材と接着させる際のタッキネスに優れたゴム組成物をもたらすことができ、タイヤ等の生産性の向上にもつながる。
前記樹脂成分(e)としては、種々の天然樹脂及び合成樹脂を使用することができ、具体的には、ロジン系樹脂、テルペン系樹脂、石油系樹脂、フェノール系樹脂、石炭系樹脂、キシレン系樹脂等を使用することが好ましい。これら樹脂成分(e)は、1種単独で使用してもよいし、2種以上を併用してもよい。
前記天然樹脂において、ロジン系樹脂としては、ガムロジン、トール油ロジン、ウッドロジン、水素添加ロジン、不均化ロジン、重合ロジン、変性ロジンのグリセリン、ペンタエリスリトールエステル等が挙げられる。
また、前記天然樹脂において、テルペン系樹脂としては、α−ピネン系、β−ピネン系、ジペンテン系等のテルペン樹脂、芳香族変性テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等が挙げられる。
これら天然樹脂の中でも、配合されたゴム組成物の耐摩耗性の観点から、重合ロジン、テルペンフェノール樹脂、水素添加テルペン樹脂が好ましい。
前記合成樹脂において、石油系樹脂は、例えば石油化学工業のナフサの熱分解により、エチレン、プロピレン等の石油化学基礎原料とともに副生するオレフィンやジオレフィン等の不飽和炭化水素を含む分解油留分を混合物のままフリーデルクラフツ型触媒により重合して得られる。前記石油系樹脂としては、ナフサの熱分解によって得られるC5留分を(共)重合して得られる脂肪族系石油樹脂(以下、「C5系樹脂」と呼ぶことがある。)、ナフサの熱分解によって得られるC9留分を(共)重合して得られる芳香族系石油樹脂(以下、「C9系樹脂」と呼ぶことがある。)、前記C5留分とC9留分を共重合して得られる共重合系石油樹脂(以下、「C5−C9系樹脂」と呼ぶことがある。)、水素添加系やジシクロペンタジエン系等の脂環式化合物系石油樹脂、スチレン、置換スチレン又はスチレンと他のモノマーとの共重合体等のスチレン系樹脂等が挙げられる。
ナフサの熱分解によって得られるC5留分には、通常1−ペンテン、2−ペンテン、2−メチル−1−ブテン、2−メチル−2−ブテン、3−メチル−1−ブテン等のオレフィン系炭化水素、2−メチル−1,3−ブタジエン、1,2−ペンタジエン、1,3−ペンタジエン、3−メチル−1,2−ブタジエン等のジオレフィン系炭化水素等が含まれる。また、C9留分を(共)重合して得られる芳香族系石油樹脂は、ビニルトルエン、インデンを主要なモノマーとする炭素数9の芳香族を重合した樹脂であり、ナフサの熱分解によって得られるC9留分の具体例としては、α−メチルスチレン、β−メチルスチレン、γ−メチルスチレン等のスチレン同族体やインデン、クマロン等のインデン同族体等が挙げられる。商品名としては、三井石油化学製ペトロジン、ミクニ化学製ペトライト、日本石油化学製ネオポリマー、東洋曹達製ペトコール等がある。
さらに、本発明では、作業性の観点から、前記C9留分からなる石油樹脂を変性した変性石油樹脂を好適に使用することができる。前記変性石油樹脂としては、不飽和脂環式化合物で変性したC9系石油樹脂、水酸基を有する化合物で変性したC9系石油樹脂、不飽和カルボン酸化合物で変性したC9系石油樹脂等が挙げられる。
好ましい不飽和脂環式化合物としては、シクロペンタジエン、メチルシクロペンタジエン等が挙げられる。また、不飽和脂環式化合物としては、アルキルシクロペンタジエンのディールスアルダー反応生成物も好ましく、該アルキルシクロペンタジエンのディールスアルダー反応生成物としては、ジシクロペンタジエン、シクロペンタジエン/メチルシクロペンタジエン共二量化物、トリシクロペンタジエン等が挙げられる。前記不飽和脂環式化合物としては、ジシクロペンタジエンが特に好ましい。ジシクロペンタジエン変性C9系石油樹脂は、ジシクロペンタジエン及びC9留分両者の存在下、熱重合等で得ることができる。前記ジシクロペンタジエン変性C9系石油樹脂としては、例えば、ネオポリマー130S(新日本石油化学製)が挙げられる。
また、水酸基を有する化合物としては、アルコール化合物やフェノール化合物等が挙げられる。アルコール化合物の具体例としては、例えば、アリルアルコール、2−ブテン−1,4ジオール等の二重結合を有するアルコール化合物が挙げられる。フェノール化合物としては、フェノール、クレゾール、キシレノール、p−tert−ブチルフェノール、p−オクチルフェノール、p−ノニルフェノール等のアルキルフェノール類を使用できる。これらの水酸基を有する化合物は、単独で用いてもよく、二種以上を併用してもよい。また、水酸基を有するC9系石油樹脂は、石油留分とともに(メタ)アクリル酸アルキルエステル等を熱重合して石油樹脂中にエステル基を導入した後、該エステル基を還元する方法、石油樹脂中に二重結合を残存または導入した後、当該二重結合を水和する方法、等によって製造することができる。水酸基を有するC9系石油樹脂としては、前記のように各種の方法により得られるものを使用できるが、性能面、製造面から見て、フェノール変性石油樹脂等を使用するのが好ましい。該フェノール変性石油樹脂は、C9留分をフェノールの存在下でカチオン重合して得られ、変性が容易であり、低価格である。前記フェノール変性C9系石油樹脂としては、例えば、ネオポリマーE−130(新日本石油化学製)が挙げられる。
さらに、前記不飽和カルボン酸化合物で変性したC9系石油樹脂は、C9系石油樹脂をエチレン性不飽和カルボン酸で変性することができる。かかるエチレン性不飽和カルボン酸の代表的なものとして、(無水)マレイン酸、フマール酸、イタコン酸、テトラヒドロ(無水)フタール酸、(メタ)アクリル酸又はシトラコン酸等が挙げられる。不飽和カルボン酸変性C9系石油樹脂は、C9系石油樹脂及びエチレン系不飽和カルボン酸を熱重合することで得ることができる。本発明においては、マレイン酸変性C9系石油樹脂が好ましい。不飽和カルボン酸変性C9系石油樹脂としては、例えば、ネオポリマー160(新日本石油化学製)が挙げられる。
また、本発明では、ナフサの熱分解によって得られるC5留分とC9留分の共重合樹脂を好適に使用することができる。ここで、C9留分としては、特に制限はないが、ナフサの熱分解によって得られたC9留分であることが好ましい。具体的には、SCHILL&SEILACHER社製Struktolシリーズの、TS30、TS30−DL、TS35、TS35−DL等が挙げられる。
前記合成樹脂において、フェノール系樹脂としては、アルキルフェノールホルムアルデヒド系樹脂及びそのロジン変性体、アルキルフェノールアセチレン系樹脂、変性アルキルフェノール樹脂、テルペンフェノール樹脂等が挙げられ、具体的にはノボラック型アルキルフェノール樹脂のヒタノール1502(日立化成工業社製)、p−tert−ブチルフェノールアセチレン樹脂のコレシン(BASF社製)等が挙げられる。
前記合成樹脂において、石炭系樹脂としては、クマロンインデン樹脂等が挙げられ、前記合成樹脂において、キシレン系樹脂としては、キシレンホルムアルデヒド樹脂等が挙げられる。また、その他ポリブテンも樹脂成分として使用することができる。これらの合成樹脂の中で、配合されたゴム組成物の耐摩耗性の観点から、C5留分とC9留分の共重合樹脂、C9留分を(共)重合して得られる芳香族系石油樹脂、フェノール系樹脂及びクマロンインデン樹脂が好ましい。
前記樹脂成分(e)は、SP値が4以下であることが好ましく、3以下であることが更に好ましい。樹脂成分(e)のSP値が4以下であれば、ゴム組成物中において、樹脂成分(e)が局所的に存在して破壊核になることを抑制でき、ゴム組成物の耐摩耗性が更に向上する。なお、樹脂成分(e)のSP値の下限としては、特に限定されないが、0.01以上であることが好ましい。
ここで、樹脂成分(e)のSP値は、ハンセン(Hansen)の数式を用いて算出される溶解度パラメータを意味し、より具体的には、ハンセンの3つのパラメータのうち分子間の双極子相互作用エネルギーと水素結合によるエネルギーから算出した数値を意味する。
前記樹脂成分(e)は、重量平均分子量(Mw)が2000以下であることが好ましく、1500以下であることが更に好ましい。樹脂成分(e)の重量平均分子量(Mw)が2000以下であれば、ゴム組成物中において、樹脂成分(e)が局所的に存在して破壊核になることを抑制でき、ゴム組成物の耐摩耗性が更に向上する。なお、樹脂成分(e)の重量平均分子量(Mw)の下限としては、特に限定されないが、400以上であることが好ましい。
ここで、樹脂成分(e)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)で測定した、ポリスチレン換算の値である。
また、前記樹脂成分(e)は、軟化点が200℃(測定法:ASTM E28−58−T)以下の樹脂であることが好ましく、80℃〜150℃の範囲であることが更に好ましく、90℃〜120℃の範囲がより一層好ましい。軟化点が200℃以下の場合、ヒステリシスロス特性の温度依存性が小さく、作業性が更に向上する。
前記樹脂成分(e)の含有量は、前記ゴム成分(a)100質量部に対して、5〜150質量部の範囲が好ましく、5〜100質量部の範囲が更に好ましく、10〜80質量部の範囲がより一層好ましく、10〜50質量部の範囲が特に好ましい。樹脂成分(e)の含有量が、ゴム成分(a)100質量部に対して、5質量部以上であれば、ゴム組成物のタッキネス及び耐摩耗性が更に向上し、また、150質量部以下であれば、ゴム組成物の作業性を良好に維持できる。
本発明のゴム組成物は、充填剤(f)を含むことが好ましい。ゴム組成物が充填剤(f)を含む場合、ゴム組成物の補強性を向上させることができる。該充填剤(f)としては、特に制限はなく、カーボンブラック、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウム等が挙げられるが、これらの中でも、カーボンブラック、シリカ、水酸化アルミニウムが好ましく、カーボンブラック、シリカが更に好ましい。これらは、1種単独で使用してもよく、2種以上を併用してもよい。
前記カーボンブラックとしては、例えば、GPF、FEF、HAF、ISAF、SAFグレードのカーボンブラックが挙げられる。
また、前記シリカとしては、例えば、湿式シリカ(含水ケイ酸)、乾式シリカ(無水ケイ酸)、ケイ酸カルシウム、ケイ酸アルミニウム等が挙げられ、これらの中でも、湿式シリカが好ましい。
また、前記水酸化アルミニウムとしては、ハイジライト(登録商標、昭和電工社製)等を用いることが好ましい。
前記充填剤(f)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分(a)100質量部に対し、10〜120質量部が好ましく、20〜100質量部がより好ましく、30〜80質量部が特に好ましい。前記充填剤(f)の含有量が10質量部以上であることにより、充填剤(f)による補強性向上の効果が十分に得られ、また、120質量部以下であることにより、良好な作業性を保持することができる。
本発明のゴム組成物は、前記シリカの効果を向上させるために、更に、シランカップリング剤(g)を含有することが好ましい。該シランカップリング剤(g)としては、特に限定されるものではなく、例えば、ビス(3−トリエトキシシリルプロピル)テトラスルフィド、ビス(3−トリエトキシシリルプロピル)トリスルフィド、ビス(3−トリエトキシシリルプロピル)ジスルフィド、ビス(2−トリエトキシシリルエチル)テトラスルフィド、ビス(3−トリメトキシシリルプロピル)テトラスルフィド、ビス(2−トリメトキシシリルエチル)テトラスルフィド、3−メルカプトプロピルトリメトキシシラン、3−メルカプトプロピルトリエトキシシラン、2−メルカプトエチルトリメトキシシラン、2−メルカプトエチルトリエトキシシラン、3−トリメトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリエトキシシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、2−トリエトキシシリルエチル−N,N−ジメチルチオカルバモイルテトラスルフィド、3−トリメトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルベンゾチアゾリルテトラスルフィド、3−トリエトキシシリルプロピルメタクリレートモノスルフィド、3−トリメトキシシリルプロピルメタクリレートモノスルフィド、ビス(3−ジエトキシメチルシリルプロピル)テトラスルフィド、3−メルカプトプロピルジメトキシメチルシラン、ジメトキシメチルシリルプロピル−N,N−ジメチルチオカルバモイルテトラスルフィド、ジメトキシメチルシリルプロピルベンゾチアゾリルテトラスルフィド等が挙げられる。これらシランカップリング剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
また、前記シランカップリング剤(g)の含有量は、前記シリカ100質量部に対して2〜20質量部の範囲が好ましく、5〜15質量部の範囲が更に好ましい。シランカップリング剤の含有量がシリカ100質量部に対して2質量部以上であれば、シリカの効果が十分に向上し、また、シランカップリング剤の含有量がシリカ100質量部に対して20質量部以下であれば、ゴム成分(a)のゲル化の可能性が低い。
本発明のゴム組成物は、架橋剤(h)を含むことが好ましい。該架橋剤(h)としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤等が挙げられる。なお、タイヤ用のゴム組成物としては、これらの中でも硫黄系架橋剤(加硫剤)がより好ましい。
前記架橋剤(h)の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、ゴム成分(a)100質量部に対し、0.1〜20質量部が好ましい。
前記加硫剤を用いる場合には、更に加硫促進剤(i)を併用することもできる。前記加硫促進剤(i)としては、グアニジン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が挙げられる。
また、本発明のゴム組成物には、必要に応じて、加硫助剤、着色剤、難燃剤、滑剤、可塑剤、加工助剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
<発泡ゴム>
本発明の発泡ゴムは、上記のゴム組成物を発泡させてなることを特徴とする。かかる本発明の発泡ゴムは、タイヤのトレッドに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
なお、上述した、本発明のゴム組成物は、発泡剤(b)を含有するため、加硫時に発泡剤(b)由来の気泡が形成され、発泡ゴム(加硫ゴム)となる。
本発明の発泡ゴムは、発泡率が5〜80%であることが好ましく、5〜70%であることがより好ましく、10〜60%であることがより一層好ましく、10〜50%であることが特に好ましい。発泡率が5%以上であれば、気泡が十分に形成されて、タイヤの氷上性能を更に向上させることができると共に、入力を受けた際の歪が大きくなって、上述の多元共重合体(a1)の効果が大きくなって、タイヤの耐摩耗性を更に向上させることができる。また、発泡率が80%以下であれば、生成する発泡ゴムが十分な強度を有するため、タイヤの耐摩耗性を更に向上させることができ、また、十分な接地面積を確保できるため、タイヤの氷上性能を更に向上させることができる。
なお、タイヤのトレッドに用いられる発泡ゴムの発泡率は、通常1〜30%程度であるが、本発明の発泡ゴムは、上述の多元共重合体(a1)を含むため、通常の発泡率よりも高い発泡率(例えば、40%以上)にしても、氷上性能と耐摩耗性とを高度に両立することができる。
ここで、前記発泡ゴムの発泡率とは、平均発泡率Vsを意味し、具体的には次式(XXI)により算出される値を意味する。
Vs=(ρ0/ρ1−1)×100(%) ・・・ (XXI)
式(XXI)中、ρ1は発泡ゴム(加硫ゴム)の密度(g/cm3)を示し、ρ0は発泡ゴム(加硫ゴム)における固相部の密度(g/cm3)を示す。なお、発泡ゴムの密度及び発泡ゴムの固相部の密度は、エタノール中の質量と空気中の質量を測定し、これから算出される。また、発泡率は、発泡剤(b)や発泡助剤の種類、含有量等により適宜変化させることができる。
本発明の発泡ゴムは、後述するタイヤトレッドの他、靴底等の、各種発泡ゴム製品に利用できる。
<タイヤトレッド>
本発明のタイヤトレッドは、上記の発泡ゴムを用いたことを特徴とする。かかる本発明のタイヤトレッドは、上述した発泡ゴムを用いているため、タイヤに適用することで、タイヤの氷上性能と耐摩耗性との両方を向上させることができる。
なお、本発明のタイヤトレッドは、新品タイヤに適用してもよいし、更生タイヤに適用してもよい。
<タイヤ>
本発明のタイヤは、上記のタイヤトレッドを用いたことを特徴とする。かかる本発明のタイヤは、上述したタイヤトレッドを用いているため、氷上性能と耐摩耗性との両方に優れる。
なお、本発明のタイヤは、氷上性能と耐摩耗性との両方に優れるため、スタッドレスタイヤ等の冬用タイヤとして特に有用である。
本発明のタイヤは、適用するタイヤの種類や部材に応じ、未加硫のゴム組成物を用いて成形後に加硫して得てもよく、又は予備加硫工程等を経た半加硫ゴムを用いて成形後、さらに本加硫して得てもよい。なお、タイヤに充填する気体としては、通常の或いは酸素分圧を調整した空気の他、窒素、アルゴン、ヘリウム等の不活性ガスを用いることができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
<共重合体の分析方法>
以下の方法で、後述のようにして合成した共重合体の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)、ブタジエン単位、エチレン単位及びスチレン単位の含有量、融点、吸熱ピークエネルギー、ガラス転移温度、結晶化度を測定し、主鎖構造を確認した。
(1)数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー社製HLC−8121GPC/HT、カラム:東ソー社製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、共重合体のポリスチレン換算の数平均分子量(Mn)、重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は40℃である。
(2)ブタジエン単位、エチレン単位、スチレン単位の含有量
共重合体中のブタジエン単位、エチレン単位、スチレン単位の含有量(mol%)を、1H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)の各ピークの積分比より求めた。
(3)融点(Tm
示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121−1987に準拠して、共重合体の融点を測定した。
(4)吸熱ピークエネルギー
示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121−1987に準拠して、10℃/分の昇温速度で−150℃から150℃まで昇温し、その時(1st run)の0〜120℃における吸熱ピークエネルギーを測定した。
(5)ガラス転移温度(Tg)
示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)を用い、JIS K 7121−1987に準拠して、共重合体のガラス転移温度(Tg)を測定した。
(6)結晶化度
100%結晶成分のポリエチレンの結晶融解エネルギーと、得られた共重合体の融解ピークエネルギーを測定し、ポリエチレンと共重合体とのエネルギー比率から、結晶化度を算出した。なお、融解ピークエネルギーは、示差走査熱量計(DSC、ティー・エイ・インスツルメント・ジャパン社製、「DSCQ2000」)で測定した。
(7)主鎖構造の確認
合成した共重合体について、13C−NMRスペクトルを測定した。
<三元共重合体の合成方法>
十分に乾燥した1000mLの耐圧ステンレス反応器に、スチレン160gと、トルエン600mLを加えた。
窒素雰囲気下のグローブボックス中で、ガラス製容器にモノ(ビス(1,3−tert−ブチルジメチルシリル)インデニル)ビス(ビス(ジメチルシリル)アミドガドリニウム錯体{1,3−[(t−Bu)Me2Si]295Gd[N(SiHMe222}0.25mmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C654]0.275mmol、及びジイソブチルアルミニウムハイドライド1.1mmolを仕込み、トルエン40mLに溶解させて触媒溶液とした。
該触媒溶液を、前記耐圧ステンレス反応器に加え、70℃に加温した。
次いで、エチレンを圧力1.5MPaで、該耐圧ステンレス反応器に投入し、更に1,3−ブタジエン20gを含むトルエン溶液80mLを8時間かけて該耐圧ステンレス反応器に投入し、70℃で計8.5時間共重合を行った。
次いで、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを、該耐圧ステンレス反応器に加えて反応を停止させた。
次いで、大量のメタノールを用いて共重合体を分離し、50℃で真空乾燥し、三元共重合体を得た。
得られた三元共重合体について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブタジエン単位、エチレン単位、スチレン単位の含有量、融点(Tm)、吸熱ピークエネルギー、ガラス転移温度(Tg)、結晶化度を、上記の方法で測定した。結果を表1に示す。
また、得られた三元共重合体について、上記の方法で主鎖構造を確認したところ、13C−NMRスペクトルチャートにおいて、10〜24ppmにピークが観測されなかったことから、合成した三元共重合体は、主鎖が非環状構造のみからなることを確認した。
<二元共重合体の合成方法>
十分に乾燥した4Lステンレス反応器に、1,3−ブタジエン120g(2.22mol)を含むトルエン溶液2,000gを添加した後、エチレンを1.72MPaで導入する。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC962GdN(SiHMe22]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C654]28.5μmol、及びジイソブチルアルミニウムハイドライド2.00mmolを仕込み、トルエン40mlに溶解させて触媒溶液とする。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で25.0μmolとなる量をモノマー溶液へ添加し、50℃で90分間重合を行う。重合後、2,2’メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液5mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し二元共重合体を得る。
得られる二元共重合体について、数平均分子量(Mn)、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブタジエン単位、エチレン単位の含有量、融点(Tm)、吸熱ピークエネルギー、ガラス転移温度(Tg)、結晶化度を、上記の方法で測定する。結果を表1に示す。
Figure 2019216100
<親水性短繊維の作製方法>
特開2012−219245号公報に開示の製造例3に従い、二軸押出機を2台用い、ホッパーにポリエチレン[日本ポリエチレン社製、ノバテックHJ360(MFR5.5、融点132℃)]40質量部と、エチレン−ビニルアルコール共重合体[クラレ社製、エバールF104B(MFR4.4、融点183℃)]40質量部とを投入し、ダイ出口から各々同時に押し出して、常法に従って得られた繊維を長さ2mmにカットして、エチレン−ビニルアルコール共重合体からなるコアの表面にポリエチレンからなる被覆層が形成された親水性短繊維を作製した。
<ゴム組成物の調製及び評価>
(実施例1〜5及び比較例1〜5)
表2に示す配合処方に従い、通常のバンバリーミキサーを用いて、ゴム組成物を製造した。得られたゴム組成物を、160℃にて15分間加硫して、加硫ゴムを作製し、該加硫ゴムに対して、下記の方法で、発泡率を測定し、更に、耐摩耗性及び氷上性能を評価した。結果を表2に示す。
(8)発泡率
加硫ゴム(発泡ゴム)の密度ρ1(g/cm3)と、加硫ゴム(発泡ゴム)における固相部の密度ρ0(g/cm3)を測定し、上記式(XXI)に従って、発泡率(平均発泡率Vs、%)を算出した。
(9)耐摩耗性
JIS K 7218:1986の滑り摩耗試験のB法に準じて、加硫ゴムの摩耗量を測定した。なお、測定温度は室温(23℃)、荷重は16Nとした。比較例5の加硫ゴムの摩耗量の逆数を100として、指数表示した。指数値が大きい程、摩耗量が少なく、耐摩耗性が良好であることを示す。
(10)氷上性能
直径50mm、厚さ10mmの加硫ゴムを、固定した氷上に押しつけて回転させるときに発生する摩擦力をロードセルで検出し、動摩擦係数μを算出した。なお、測定温度は−2℃、面圧は12kgf/cm2、サンプル回転周速度は20cm/secとした。比較例5の動摩擦係数μを100として、指数表示した。指数値が大きい程、動摩擦係数μが大きく、氷上性能が良好であることを示す。
(比較例6)
表2に示す配合処方に従い、通常のバンバリーミキサーを用いて、ゴム組成物を製造する。得られるゴム組成物を、160℃にて15分間加硫して、加硫ゴムを作製し、該加硫ゴムに対して、上記の方法で、発泡率を測定し、更に、耐摩耗性及び氷上性能を評価する。結果を表2に示す。
Figure 2019216100
*1 天然ゴム: TSR20
*2 ブタジエンゴム: JSR社製、商品名「BR01」
*3 三元共重合体: 上記の方法で合成した三元共重合体
*4 二元共重合体: 上記の方法で合成した二元共重合体
*5 カーボンブラック: SAF級カーボンブラック、旭カーボン社製、商品名「ASAHI#105」
*6 プロセスオイル: 石油系炭化水素プロセスオイル、出光興産社製、商品名「DAIANA PROCESS OIL NS−28」
*7 シリカ: 東ソー・シリカ工業社製、商品名「Nipsil AQ」
*8 シランカップリング剤: ビストリエトキシシリルプロピルポリスルフィド、信越化学工業社製
*9 ワックス: マイクロクリスタリンワックス、精工化学社製
*10 老化防止剤: 大内新興化学工業社製、商品名「ノクラック6C」
*11 樹脂: 脂肪族炭化水素樹脂、三井石油化学社製、商品名「HI−REZ G−100X」
*12 親水性短繊維: 上記の方法で作製した親水性短繊維
*13 酸化亜鉛: ハクスイテック社製
*14 加硫促進剤CZ: N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学工業社製、商品名「ノクセラーCZ」
*15 加硫促進剤MBTS: ジ−2−ベンゾチアゾリルジスルフィド、大内新興化学工業社製、商品名「ノクセラーDM−P」
*16 発泡剤: ジニトロソペンタメチレンテトラミン、三協化成社製、商品名「セルマイクAN」
表2に示す実施例の結果から、本発明に従う実施例のゴム組成物は、耐摩耗性と氷上性能の両方に優れることが分かる。
本発明のゴム組成物及び発泡ゴムは、タイヤ、特にはスタッドレスタイヤのトレッドに利用できる。また、本発明のタイヤは、スタッドレスタイヤとして特に有用である。

Claims (17)

  1. 共役ジエン単位と、非共役オレフィン単位と、芳香族ビニル単位と、を含有する多元共重合体(a1)を含むゴム成分(a)と、
    発泡剤(b)と、
    を含有することを特徴とする、ゴム組成物。
  2. 前記多元共重合体(a1)は、前記共役ジエン単位の含有量が1〜50mol%で、前記非共役オレフィン単位の含有量が40〜97mol%で、且つ前記芳香族ビニル単位の含有量が2〜35mol%である、請求項1に記載のゴム組成物。
  3. 前記ゴム成分(a)100質量部に対して、前記発泡剤(b)を0.5〜50質量部含有する、請求項1又は2に記載のゴム組成物。
  4. 更に、親水性短繊維(c)を含有する、請求項1〜3のいずれか一項に記載のゴム組成物。
  5. 前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定した融点が30〜130℃である、請求項1〜4のいずれか一項に記載のゴム組成物。
  6. 前記多元共重合体(a1)は、0〜120℃における示差走査熱量計(DSC)で測定した吸熱ピークエネルギーが10〜150J/gである、請求項1〜5のいずれか一項に記載のゴム組成物。
  7. 前記多元共重合体(a1)は、示差走査熱量計(DSC)で測定したガラス転移温度が0℃以下である、請求項1〜6のいずれか一項に記載のゴム組成物。
  8. 前記多元共重合体(a1)は、結晶化度が0.5〜50%である、請求項1〜7のいずれか一項に記載のゴム組成物。
  9. 前記多元共重合体(a1)は、前記非共役オレフィン単位が非環状の非共役オレフィン単位である、請求項1〜8のいずれか一項に記載のゴム組成物。
  10. 前記非環状の非共役オレフィン単位が、エチレン単位のみからなる、請求項9に記載のゴム組成物。
  11. 前記多元共重合体(a1)は、前記芳香族ビニル単位がスチレン単位を含む、請求項1〜10のいずれか一項に記載のゴム組成物。
  12. 前記多元共重合体(a1)は、前記共役ジエン単位が1,3−ブタジエン単位及び/又はイソプレン単位を含む、請求項1〜11のいずれか一項に記載のゴム組成物。
  13. 前記ゴム成分(a)中の、前記多元共重合体(a1)の含有率が、5〜100質量%である、請求項1〜12のいずれか一項に記載のゴム組成物。
  14. 請求項1〜13のいずれか一項に記載のゴム組成物を発泡させてなることを特徴とする、発泡ゴム。
  15. 発泡率が5〜80%である、請求項14に記載の発泡ゴム。
  16. 請求項14又は15に記載の発泡ゴムを用いたことを特徴とする、タイヤトレッド。
  17. 請求項16に記載のタイヤトレッドを用いたことを特徴とする、タイヤ。
JP2020518207A 2018-05-08 2019-04-10 ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤ Pending JPWO2019216100A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018089770 2018-05-08
JP2018089770 2018-05-08
PCT/JP2019/015697 WO2019216100A1 (ja) 2018-05-08 2019-04-10 ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤ

Publications (1)

Publication Number Publication Date
JPWO2019216100A1 true JPWO2019216100A1 (ja) 2021-05-20

Family

ID=68466944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020518207A Pending JPWO2019216100A1 (ja) 2018-05-08 2019-04-10 ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤ

Country Status (2)

Country Link
JP (1) JPWO2019216100A1 (ja)
WO (1) WO2019216100A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205824A1 (ja) * 2020-04-09 2021-10-14 株式会社ブリヂストン 繊維強化樹脂及び成形体
CN116075436A (zh) 2020-09-28 2023-05-05 旭化成株式会社 压块成型体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180269A (ja) * 1997-07-18 1999-03-26 Mitsui Chem Inc 不飽和性共重合体、その製造方法および該共重合体系組成物
JP2010515614A (ja) * 2007-01-12 2010-05-13 チャン、ハイロン 耐パンク、防弾、及び漏れ防止安全タイヤ及びその調製方法、並びにその方法で利用される漏れ防止かつ密閉架橋高分子材料
JP2010111378A (ja) * 2008-10-06 2010-05-20 Katazen:Kk ノーパンクチューブ、及びその嵌込み方法、ノーパンクタイヤ
JP2017101181A (ja) * 2015-12-03 2017-06-08 株式会社ブリヂストン 多元共重合体の製造方法及び多元共重合体
JP2018024766A (ja) * 2016-08-10 2018-02-15 東レ株式会社 成形材料
JP2018035307A (ja) * 2016-09-02 2018-03-08 積水テクノ成型株式会社 発泡成形体及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1180269A (ja) * 1997-07-18 1999-03-26 Mitsui Chem Inc 不飽和性共重合体、その製造方法および該共重合体系組成物
JP2010515614A (ja) * 2007-01-12 2010-05-13 チャン、ハイロン 耐パンク、防弾、及び漏れ防止安全タイヤ及びその調製方法、並びにその方法で利用される漏れ防止かつ密閉架橋高分子材料
JP2010111378A (ja) * 2008-10-06 2010-05-20 Katazen:Kk ノーパンクチューブ、及びその嵌込み方法、ノーパンクタイヤ
JP2017101181A (ja) * 2015-12-03 2017-06-08 株式会社ブリヂストン 多元共重合体の製造方法及び多元共重合体
JP2018024766A (ja) * 2016-08-10 2018-02-15 東レ株式会社 成形材料
JP2018035307A (ja) * 2016-09-02 2018-03-08 積水テクノ成型株式会社 発泡成形体及びその製造方法

Also Published As

Publication number Publication date
WO2019216100A1 (ja) 2019-11-14

Similar Documents

Publication Publication Date Title
JP7217744B2 (ja) 加硫ゴム組成物、タイヤトレッド及びタイヤ
JPWO2019216109A1 (ja) 加硫ゴム組成物、タイヤトレッド及びタイヤ
JP5909121B2 (ja) タイヤ用ゴム組成物
JP5769577B2 (ja) クローラ用ゴム組成物及びそれを用いたゴムクローラ
JP2021073344A (ja) 多元共重合体、ゴム組成物、架橋ゴム組成物及びゴム物品
JP5973735B2 (ja) タイヤ用ゴム組成物及び該タイヤ用ゴム組成物を具えたタイヤ
JP2011099026A (ja) ゴム組成物及びそれを用いたタイヤ
JP5735886B2 (ja) ゴム支承被覆用ゴム組成物及びそれを用いたゴム支承被覆用ゴム
JPWO2019216100A1 (ja) ゴム組成物、発泡ゴム、タイヤトレッド及びタイヤ
JP5840481B2 (ja) 空気入りタイヤ
WO2020235285A1 (ja) 多元共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品
JP5722663B2 (ja) ゴム積層体
JP7252139B2 (ja) ゴム組成物、タイヤ、コンベヤベルト、ゴムクローラ、防振装置、免震装置及びホース
JP2019214680A (ja) ゴム組成物、タイヤ及びゴム物品
JP5973737B2 (ja) タイヤ用ゴム組成物、タイヤ用架橋ゴム組成物、及びタイヤ
JP5856494B2 (ja) 空気入りタイヤ
JP2013159631A (ja) ゴム組成物、タイヤトレッド用ゴム組成物、架橋ゴム、及びタイヤ
JP2016128552A (ja) ゴム組成物及びそれを用いたタイヤ
JP5973736B2 (ja) タイヤ用ゴム組成物、タイヤ用架橋ゴム組成物、及びタイヤ
JP2012197422A (ja) ゴム組成物及びタイヤ
JP2021175771A (ja) グラフトポリマーの製造方法、グラフトポリマー、ゴム組成物及びタイヤ
JP2013155361A (ja) ゴム組成物及び空気入りタイヤ
JP2013154857A (ja) 空気入りタイヤ
JP2012197420A (ja) ゴム組成物の製造方法
JP2013159626A (ja) 空気入りタイヤ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220809

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230221