JP2012197422A - ゴム組成物及びタイヤ - Google Patents
ゴム組成物及びタイヤ Download PDFInfo
- Publication number
- JP2012197422A JP2012197422A JP2012019281A JP2012019281A JP2012197422A JP 2012197422 A JP2012197422 A JP 2012197422A JP 2012019281 A JP2012019281 A JP 2012019281A JP 2012019281 A JP2012019281 A JP 2012019281A JP 2012197422 A JP2012197422 A JP 2012197422A
- Authority
- JP
- Japan
- Prior art keywords
- group
- copolymer
- rubber
- cation
- compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Tires In General (AREA)
Abstract
【課題】耐亀裂成長性を向上するゴム組成物を提供する。
【解決手段】本発明に係るゴム組成物は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを少なくとも含む。
【選択図】なし
【解決手段】本発明に係るゴム組成物は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを少なくとも含む。
【選択図】なし
Description
本発明は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを含有するゴム組成物及びそれを用いたタイヤに関する。
従来から、ポリブタジエンゴムの成形加工性や引張応力,引張強さ,耐屈曲亀裂成長性などを改良することを目的として、シンジオタクティック−1,2−構造含有ポリブタジエンゴムは、各種用途のゴム組成物に用いられている。
例えば、特許文献1には、配合物のダイスウェル比が小さく,その加硫物がタイヤのサイドウォ−ルとして好適な引張応力と耐屈曲亀裂成長性に優れたシンジオタクティック−1,2−構造含有ポリブタジエンゴム配合ゴム組成物が記載されている。
また、特許文献2には、タイヤのトレッド用ゴム組成物が記載され、特許文献3には、大型空気入りバイアスタイヤのヒステリシスロスを低下させ、高弾性化することを目的として、カーカスプライコーティングゴム組成物への適用が提案されている。さらに、特許文献4には、大型タイヤのビード耐久性向上を目的として、エイペックスゴム組成物への適用が開示され、特許文献5には、重荷重用タイヤのゴムチェーファー用ゴム組成物に適用しクラック防止する技術が提案されている。
しかしながら、タイヤ等のゴム製品の更なる性能向上が求められており、ゴム組成物の耐亀裂成長性の更なる向上が要望されている。
例えば、特許文献1には、配合物のダイスウェル比が小さく,その加硫物がタイヤのサイドウォ−ルとして好適な引張応力と耐屈曲亀裂成長性に優れたシンジオタクティック−1,2−構造含有ポリブタジエンゴム配合ゴム組成物が記載されている。
また、特許文献2には、タイヤのトレッド用ゴム組成物が記載され、特許文献3には、大型空気入りバイアスタイヤのヒステリシスロスを低下させ、高弾性化することを目的として、カーカスプライコーティングゴム組成物への適用が提案されている。さらに、特許文献4には、大型タイヤのビード耐久性向上を目的として、エイペックスゴム組成物への適用が開示され、特許文献5には、重荷重用タイヤのゴムチェーファー用ゴム組成物に適用しクラック防止する技術が提案されている。
しかしながら、タイヤ等のゴム製品の更なる性能向上が求められており、ゴム組成物の耐亀裂成長性の更なる向上が要望されている。
本発明は、このような状況下で、更に耐亀裂成長性を向上するゴム組成物を提供することを課題とする。
本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、シンジオタクティック−1,2−構造含有ポリブタジエンゴムを含有するゴム組成物に、特定の共重合体を配合することにより、耐亀裂成長性を向上し得ることを見出して、本発明を完成させるに至った。
即ち、本発明は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを少なくとも含むゴム組成物及びそのゴム組成物を用いたタイヤである。
即ち、本発明は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを少なくとも含むゴム組成物及びそのゴム組成物を用いたタイヤである。
本発明によれば、更に耐亀裂成長性を向上するゴム組成物を提供することができる。
<ゴム組成物>
本発明のゴム組成物は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを少なくとも含むことを特徴とする。
本発明のゴム組成物は、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムとを少なくとも含むことを特徴とする。
<共役ジエン化合物と非共役オレフィンとの共重合体>
まず、共役ジエン化合物と非共役オレフィンとの共重合体について説明する。
・共役ジエン化合物と非共役オレフィンとの共重合体の構成
本発明において使用する共役ジエン化合物と非共役オレフィンとの共重合体の共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合量は、25%以上であることが好ましく、50%以上であることが好ましい。さらに、共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合量は、好ましくは、92%超であり、さらに好ましくは95%以上である。共役ジエン化合物部分(共役ジエン化合物由来部分)のシス−1,4結合量が25%以上であれば、低いガラス転移点(Tg)を保持することができ、これにより、耐亀裂成長性や耐摩耗性等の物性が改良される。
まず、共役ジエン化合物と非共役オレフィンとの共重合体について説明する。
・共役ジエン化合物と非共役オレフィンとの共重合体の構成
本発明において使用する共役ジエン化合物と非共役オレフィンとの共重合体の共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合量は、25%以上であることが好ましく、50%以上であることが好ましい。さらに、共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合量は、好ましくは、92%超であり、さらに好ましくは95%以上である。共役ジエン化合物部分(共役ジエン化合物由来部分)のシス−1,4結合量が25%以上であれば、低いガラス転移点(Tg)を保持することができ、これにより、耐亀裂成長性や耐摩耗性等の物性が改良される。
共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合含量を92%超とすることにより、耐亀裂成長性、耐侯性、耐熱性を向上させることが可能となる。また、共役ジエン化合物由来部分(共役ジエン部分)のシス−1,4−結合含量を95%以上とすると、耐亀裂成長性、耐侯性、耐熱性を一層高めることができる。
シス−1,4結合量は、共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
共役ジエン化合物と非共役オレフィンとの共重合体における共役ジエン化合物の割合は、30mol%〜98mol%であることが好ましく、50mol%〜98mol%であることがより好ましく、60mol%〜98mol%であることがさらに好ましく、70mol%〜96mol%であることが特に好ましい。共役ジエン化合物の割合が30mol%以上98mol%以下であれば、非共役オレフィン部分の割合が低くなるため、加工性が良好になる。なお、共役ジエン化合物の割合が98mol%以下であれば、十分な耐候性が得られるので、この点からも好ましい。
非共役オレフィンとしては、非環状オレフィンであることが好ましい。また、非共役オレフィンの炭素数は、2〜10のα−オレフィンであることが好ましい。α−オレフィンは、オレフィンのα位に二重結合を有するため、共役ジエン化合物との共重合を効率よく行うことができる。従って、非共役オレフィンとしては、エチレン、プロピレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン等のα−オレフィンが好適に挙げられ、これらの中でも、エチレン、プロピレン及び1−ブテンが好ましく、エチレンが更に好ましい。これら非共役オレフィンは、単独で用いてもよく、二種以上を組み合わせて用いてもよい。なお、オレフィンは、脂肪族不飽和炭化水素で、炭素−炭素二重結合を1個以上有する化合物を指す。
共役ジエン化合物は、炭素数が4〜12であることが好ましい。この共役ジエン化合物として、具体的には、1,3−ブタジエン、イプレン、1,3−ペンタジエン、2,3−ジメチルブタジエン等が挙げられ、これらの中でも、1,3−ブタジエン及びイソプレンが好ましい。また、これら共役ジエン化合物は、単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上述した共役ジエン化合物の具体例のいずれを用いても、同様のメカニズムで本発明の共重合体を調製することができる。
共役ジエン化合物と非共役オレフィンとの共重合体は、低分子量化の問題が起こることも無く、その重量平均分子量(Mw)は特に限定されるものでもない。高分子構造材料への適用の観点から、共役ジエン化合物と非共役オレフィンとの共重合体のポリスチレン換算重量平均分子量(Mw)は、10,000〜10,000,000が好ましく、10,000〜1,000,000がより好ましく、50,000〜600,000が更に好ましい。Mwが10,000,000を超えると成形加工性が悪化するおそれがある。
本発明に係る共重合体は、共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であることが好ましい。更に好ましくは3%以下、より好ましくは2.5%以下である。
共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量が5%以下であると、本発明に係る共重合体の耐侯性や耐オゾン性をさらに向上させることができる。さらには、共役ジエン化合物部分の1,2付加体(3,4付加体を含む)含量が2.5%以下であると、本発明の共重合体は、耐オゾン性や耐疲労性をさらに向上させることができる。
共役ジエン化合物由来部分における共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量は、共役ジエン化合物由来部分中の量であって、共重合体全体に対する割合ではない。
なお、前記共役ジエン化合物部分の1,2付加体部分(3,4付加体部分を含む)含量
(共役ジエン化合物由来部分の共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量)は、共役ジエン化合物がブタジエンの場合、1,2−ビニル結合量と同じ意味である。
(共役ジエン化合物由来部分の共役ジエン化合物の1,2付加体部分(3,4付加体部分を含む)含量)は、共役ジエン化合物がブタジエンの場合、1,2−ビニル結合量と同じ意味である。
また、重量平均分子量(Mw)と数平均分子量(Mn)との比で表される分子量分布(Mw/Mn)は、10以下が好ましく、6以下が更に好ましい。分子量分布が10を超えると物性が均質でなくなるためである。
ここで、平均分子量及び分子量分布は、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレンを標準物質として求めることができる。
本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体は、ランダム共重合体であっても、ブロック共重合体であってもよい。あるいは、テーパー共重合体であってもよい。テーパー共重合体とは、ランダム共重合体とブロック共重合体とが混在してなる共重合体であり、共役ジエン化合物の単量体単位からなるブロック部分及び非共役オレフィンの単量体単位からなるブロック部分のうち少なくとも一方のブロック部分(ブロック構造ともいう)と、共役ジエン化合物及び非共役オレフィンの単量体単位が不規則に配列してなるランダム部分(ランダム構造ともいう)とから構成される共重合体である。
また、共役ジエン化合物と非共役オレフィンとが交互に配列する交互共重合体(共役ジエン化合物をAと、非共役オレフィンをBとした場合の、−ABABABAB−の分子鎖構造)であってもよい。
また、共役ジエン化合物と非共役オレフィンとが交互に配列する交互共重合体(共役ジエン化合物をAと、非共役オレフィンをBとした場合の、−ABABABAB−の分子鎖構造)であってもよい。
ブロック共重合体の構造は、(A−B)x、A−(B−A)x及びB−(A−B)x(ここで、Aは、共役ジエン化合物の単量体単位からなるブロック部分であり、Bは、非共役オレフィンの単量体単位からなるブロック部分であり、xは1以上の整数である)のいずれかである。なお、(A−B)又は(B−A)の構造を複数備えるブロック共重合体をマルチブロック共重合体と称する。
テーパー共重合体の構造は、共役ジエン化合物成分と非共役オレフィン成分との組成が連続的又は不連続的に分布があることを示す。ここで、非共役オレフィン成分の連鎖構造としては、長鎖(高分子量)の非共役オレフィンブロック成分を多く含まず、短鎖(低分子量)の非共役オレフィンブロック成分を多く含むことが好ましい。
テーパー共重合体の構造は、共役ジエン化合物成分と非共役オレフィン成分との組成が連続的又は不連続的に分布があることを示す。ここで、非共役オレフィン成分の連鎖構造としては、長鎖(高分子量)の非共役オレフィンブロック成分を多く含まず、短鎖(低分子量)の非共役オレフィンブロック成分を多く含むことが好ましい。
共役ジエン化合物と非共役オレフィンとの共重合体がブロック共重合体である場合は、非共役オレフィンの単量体単位からなるブロック部分が静的結晶性を示すため、破断強度等の機械的性質に優れる。
したがって、本発明では、共役ジエン化合物と非共役オレフィンとの共重合体は、ブロック共重合体及びテーパー共重合体から選ばれる少なくとも1種であることが好ましい。
従って、本発明においては、共重合体は、ブロック共重合体及びテーパー共重合体から選ばれる少なくとも1種であることが好ましい。
したがって、本発明では、共役ジエン化合物と非共役オレフィンとの共重合体は、ブロック共重合体及びテーパー共重合体から選ばれる少なくとも1種であることが好ましい。
従って、本発明においては、共重合体は、ブロック共重合体及びテーパー共重合体から選ばれる少なくとも1種であることが好ましい。
また、共役ジエン化合物と非共役オレフィンとの共重合体がランダム共重合体である場合、非共役オレフィンの単量体単位の配列が不規則であるため、共重合体が相分離を起こすことがなく、ブロック部分に由来する結晶化温度が観測されない。すなわち、耐熱性などの性質を有する非共役オレフィンを共重合体の主鎖中に導入することが可能になるため、耐熱性が向上する。交互共重合体である場合は、柔軟性と接着性の両立が可能となる。
本発明においては、共役ジエン化合物と非共役オレフィンとの共重合体をゴム成分に含める。ゴム成分100質量部中における共役ジエン化合物と非共役オレフィンとの共重合体の配合量は、5〜95質量部であることが好ましく、10〜90質量部であることがより好ましく、20〜90質量部であることがさらに好ましく、40〜90質量部であることが特に好ましい。
・共役ジエン化合物と非共役オレフィンとの共重合体の製造方法
次に、本発明に係る共重合体の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。本発明に係る共重合体は、重合触媒または重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させることができる。
次に、本発明に係る共重合体の製造方法を詳細に説明する。但し、以下に詳述する製造方法は、あくまで例示に過ぎない。本発明に係る共重合体は、重合触媒または重合触媒組成物の存在下、共役ジエン化合物と非共役オレフィンとを重合させることができる。
共役ジエン化合物と非共役オレフィンとの共重合体の製造方法においては、後述する重合触媒、または第一、第二、第三重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、重合を行うことができる。本発明において使用される重合触媒または重合触媒組成物については、後述する。
重合方法としては、溶液重合法、懸濁重合法、液相塊状重合法、乳化重合法、気相重合法、固相重合法等の任意の方法を用いることができる。また、重合反応に溶媒を用いる場合、用いられる溶媒は重合反応において不活性であればよく、例えば、トルエン、シクロヘキサン、ノルマルヘキサン、またそれらの混合物等が挙げられる。
共役ジエン化合物と非共役オレフィンとの共重合体の製造方法は、例えば、(1)単量体として共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンを含む重合反応系中に、重合触媒組成物の構成成分を別個に提供し、該反応系中において重合触媒組成物としてもよいし、(2)予め調製された重合触媒組成物を重合反応系中に提供してもよい。また、(2)においては、助触媒によって活性化されたメタロセン錯体(活性種)を提供することも含まれる。なお、重合触媒組成物に含まれるメタロセン錯体の使用量は、共役ジエン化合物及び該共役ジエン化合物以外の非共役オレフィンの合計に対して、0.0001〜0.01倍モルの範囲が好ましい。
また、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法においては、メタノール、エタノール、イソプロパノール等の重合停止剤を用いて、重合を停止させてもよい。
本発明に係る製造方法において、共役ジエン化合物及び非共役オレフィンの重合反応は、不活性ガス、好ましくは窒素ガスやアルゴンガスの雰囲気下において行われることが好ましい。上記重合反応の重合温度は、特に制限されないが、例えば−100℃〜200℃の範囲が好ましく、室温程度とすることもできる。なお、重合温度を上げると、重合反応のシス−1,4選択性が低下することがある。また、上記重合反応の圧力は、共役ジエン化合物及び非共役オレフィンを十分に重合反応系中に取り込むため、0.1〜10.0MPaの範囲が好ましい。また、上記重合反応の反応時間も特に制限されず、例えば1秒〜10日の範囲が好ましいが、重合される単量体の種類、触媒の種類、重合温度等の条件によって適宜選択することができる。
本発明に係る製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、該非共役オレフィンの圧力は、0.1MPa〜10MPaであることが好ましい。該非共役オレフィンの圧力が0.1MPa以上であれば、反応混合物中に非共役オレフィンを効率的に導入することができる。また、非共役オレフィンの圧力を高くし過ぎても、非共役オレフィンを効率的に導入する効果が頭打ちとなるため、非共役オレフィンの圧力を10MPa以下とするのが好ましい。
前記共重合体の製造方法において、上記共役ジエン化合物と該共役ジエン化合物以外の非共役オレフィンとの重合の際、重合開始時における該共役ジエン化合物の濃度(mol/l)と該非共役オレフィンの濃度(mol/l)とは、下記式の関係を満たすことが好ましい。非共役オレフィンの濃度/共役ジエン化合物の濃度の値を1以上とすることで、反応混合物中に非共役オレフィンを効率的に導入することができる。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.0
更に好ましくは、下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
さらに好ましくは、下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
更に好ましくは、下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.3
さらに好ましくは、下記式の関係を満たすことが好ましい。
非共役オレフィンの濃度/共役ジエン化合物の濃度 ≧ 1.7
本発明に係る製造方法によれば、上記重合触媒または重合触媒組成物を用いること以外は、通常の配位イオン重合触媒による重合体の製造方法と同様にして、単量体である共役ジエン化合物と非共役オレフィンを共重合させることができる。
・第一重合触媒組成物
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第一重合触媒組成物について説明する。
第一重合触媒組成物としては、下記一般式(I):
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第一重合触媒組成物について説明する。
第一重合触媒組成物としては、下記一般式(I):
第一重合触媒組成物は、更に、通常のメタロセン錯体を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。ここで、メタロセン錯体は、一つ又は二つ以上のシクロペンタジエニル又はその誘導体が中心金属に結合した錯体化合物である。特に、中心金属に結合したシクロペンタジエニル又はその誘導体が一つであるメタロセン錯体を、ハーフメタロセン錯体と称することがある。
なお、重合反応系において、第一重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
なお、重合反応系において、第一重合触媒組成物に含まれる錯体の濃度は0.1〜0.0001mol/Lの範囲であることが好ましい。
上記一般式(I)及び式(II)で表されるメタロセン錯体において、式中のCpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C9H7-XRX又はC9H11-XRXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられる。また、メタロイド基は、ヒドロカルビル基を有することが好ましい。メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、一般式(I)及び式(II)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
上記一般式(III)で表されるハーフメタロセンカチオン錯体において、式中のCpR’は、無置換もしくは置換のシクロペンタジエニル、インデニル又はフルオレニルであり、これらの中でも、無置換もしくは置換のインデニルであることが好ましい。シクロペンタジエニル環を基本骨格とするCpR’は、C5H5-XRXで示される。ここで、Xは0〜5の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。シクロペンタジエニル環を基本骨格とするCpR’として、具体的には、以下のものが例示される。
一般式(III)において、上記インデニル環を基本骨格とするCpR’は、一般式(I)のCpRと同様に定義される。好ましい例も同様である。
一般式(III)において、上記フルオレニル環を基本骨格とするCpR’は、C13H9-XRX又はC13H17-XRXで示され得る。ここで、Xは0〜9又は0〜17の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられる。また、メタロイド基は、ヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は、上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。
一般式(I)、式(II)及び式(III)における中心金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。中心金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
一般式(I)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR3)2]を含む。シリルアミド配位子に含まれるR基(一般式(I)におけるRa〜Rf)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、Ra〜Rfのうち少なくとも一つが水素原子であることが好ましい。Ra〜Rfのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になり、また、ケイ素まわりのかさ高さが低くなるため、非共役オレフィンが導入され易くなる。同様の観点から、Ra〜Rcのうち少なくとも一つが水素原子であり、Rd〜Rfのうち少なくとも一つが水素原子であることが更に好ましい。更に、アルキル基としては、メチル基が好ましい。
一般式(II)で表されるメタロセン錯体は、シリル配位子[−SiX’3]を含む。シリル配位子[−SiX’3]に含まれるX’は、下記で説明される一般式(III)のXと同様に定義される基であり、好ましい基も同様である。
一般式(III)において、Xは水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基及び炭素数1〜20の炭化水素基からなる群より選択される基である。ここで、上記アルコキシド基としては、メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基等のアリールオキシド基が挙げられ、これらの中でも、2,6−ジ−tert−ブチルフェノキシ基が好ましい。
一般式(III)において、Xが表すチオラート基としては、チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオ−n−ブトキシ基、チオイソブトキシ基、チオ−sec−ブトキシ基、チオ−tert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基が挙げられ、これらの中でも、2,4,6−トリイソプロピルチオフェノキシ基が好ましい。
一般式(III)において、Xが表すアミド基としては、ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基が挙げられ、これらの中でも、ビストリメチルシリルアミド基が好ましい。
一般式(III)において、Xが表すシリル基としては、トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等が挙げられ、これらの中でも、トリス(トリメチルシリル)シリル基が好ましい。
一般式(III)において、Xが表すハロゲン原子としては、フッ素原子、塩素原子、臭素原子又はヨウ素原子のいずれでもよいが、塩素原子又は臭素原子が好ましい。また、Xが表す炭素数1〜20の炭化水素基として、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、ネオペンチル基、ヘキシル基、オクチル基等の直鎖又は分枝鎖の脂肪族炭化水素基;フェニル基、トリル基、ナフチル基等の芳香族炭化水素基;ベンジル基等のアラルキル基等の他;トリメチルシリルメチル基、ビストリメチルシリルメチル基等のケイ素原子を含有する炭化水素基等が挙げられ、これらの中でも、メチル基、エチル基、イソブチル基、トリメチルシリルメチル基等が好ましい。
一般式(III)において、Xとしては、ビストリメチルシリルアミド基又は炭素数1〜20の炭化水素基が好ましい。
一般式(III)において、[B]-で示される非配位性アニオンとしては、例えば、4価のホウ素アニオンが挙げられる。該4価のホウ素アニオンとして、具体的には、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、更に0〜3個、好ましくは0〜1個の
中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
上記一般式(I)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びビス(トリアルキルシリル)アミドの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(I)で表されるメタロセン錯体を得るための反応例を示す。
上記一般式(II)で表されるメタロセン錯体は、例えば、溶媒中でランタノイドトリスハライド、スカンジウムトリスハライド又はイットリウムトリスハライドを、インデニルの塩(例えばカリウム塩やリチウム塩)及びシリルの塩(例えばカリウム塩やリチウム塩)と反応させることで得ることができる。なお、反応温度は室温程度にすればよいので、温和な条件で製造することができる。また、反応時間は任意であるが、数時間〜数十時間程度である。反応溶媒は特に限定されないが、原料及び生成物を溶解する溶媒であることが好ましく、例えばトルエンを用いればよい。以下に、一般式(II)で表されるメタロセン錯体を得るための反応例を示す。
[A]+で表されるカチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。
上記反応に用いる一般式[A]+[B]-で表されるイオン性化合物としては、上記の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物であって、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、一般式[A]+[B]-で表されるイオン性化合物は、メタロセン錯体に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。なお、一般式(III)で表されるハーフメタロセンカチオン錯体を重合反応に用いる場合、一般式(III)で表されるハーフメタロセンカチオン錯体をそのまま重合反応系中に提供してもよいし、上記反応に用いる一般式(IV)で表される化合物と一般式[A]+[B]-で表されるイオン性化合物を別個に重合反応系中に提供し、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させてもよい。また、一般式(I)又は式(II)で表されるメタロセン錯体と一般式[A]+[B]-で表されるイオン性化合物とを組み合わせて使用することにより、反応系中で一般式(III)で表されるハーフメタロセンカチオン錯体を形成させることもできる。
一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体の構造は、X線構造解析により決定することが好ましい。
上記第一重合触媒組成物に用いることができる助触媒は、通常のメタロセン錯体を含む重合触媒組成物の助触媒として用いられる成分から任意に選択され得る。該助触媒としては、例えば、アルミノキサン、有機アルミニウム化合物、上記のイオン性化合物等が好適に挙げられる。これら助触媒は、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、上記第一重合触媒組成物におけるアルミノキサンの含有量は、メタロセン錯体の中心金属Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度、好ましくは100程度となるようにすることが好ましい。
一方、上記有機アルミニウム化合物としては、一般式AlRR’R”(式中、R及びR’はそれぞれ独立してC1〜C10の炭化水素基又は水素原子であり、R”はC1〜C10の炭化水素基である)で表される有機アルミニウム化合物が好ましい。上記有機アルミニウム化合物としては、例えば、トリアルキルアルミニウム、ジアルキルアルミニウムクロライド、アルキルアルミニウムジクロライド、ジアルキルアルミニウムハイドライド等が挙げられ、これらの中でも、トリアルキルアルミニウムが好ましい。また、トリアルキルアルミニウムとしては、例えば、トリエチルアルミニウム、トリイソブチルアルミニウム等が挙げられる。なお、上記重合触媒組成物における有機アルミニウム化合物の含有量は、メタロセン錯体に対して2〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
更に、第一重合触媒組成物においては、一般式(I)及び式(II)で表されるメタロセン錯体、並びに上記一般式(III)で表されるハーフメタロセンカチオン錯体をそれぞれ、適切な助触媒と組み合わせることで、シス−1,4結合量や得られる共重合体の分子量を増大できる。
・第二重合触媒組成物
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第二重合触媒組成物について説明する。
第二重合触媒組成物としては、
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アルミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)よりなる群から選択される少なくとも一種とを含む重合触媒組成物(以下、第二重合触媒組成物ともいう)を好適に挙げることができる。
第二重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の少なくとも一種を含む場合、第二重合触媒組成物は、更に、
(C)成分:下記一般式(X):
YR1 aR2 bR3 c ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物を含む。
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第二重合触媒組成物について説明する。
第二重合触媒組成物としては、
(A)成分:希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であって、希土類元素と炭素との結合を有さない該希土類元素化合物又は反応物と、
(B)成分:非配位性アニオンとカチオンとからなるイオン性化合物(B−1)、アルミノキサン(B−2)、並びにルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種のハロゲン化合物(B−3)よりなる群から選択される少なくとも一種とを含む重合触媒組成物(以下、第二重合触媒組成物ともいう)を好適に挙げることができる。
第二重合触媒組成物が、イオン性化合物(B−1)及びハロゲン化合物(B−3)の少なくとも一種を含む場合、第二重合触媒組成物は、更に、
(C)成分:下記一般式(X):
YR1 aR2 bR3 c ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物を含む。
前記共重合体の製造方法に用いる第二重合触媒組成物は、上記(A)成分及び(B)成分を含むことを要し、ここで、該重合触媒組成物が、上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)の少なくとも一種を含む場合には、更に、
YR1 aR2 bR3 c ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物を含むことを要する。
上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記第二重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。
YR1 aR2 bR3 c ・・・ (X)
(式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である)で表される有機金属化合物を含むことを要する。
上記イオン性化合物(B−1)及び上記ハロゲン化合物(B−3)は、(A)成分へ供給するための炭素原子が存在しないため、該(A)成分への炭素供給源として、上記(C)成分が必要となる。なお、上記重合触媒組成物が上記アルミノキサン(B−2)を含む場合であっても、該重合触媒組成物は、上記(C)成分を含むことができる。また、上記第二重合触媒組成物は、通常の希土類元素化合物系の重合触媒組成物に含有される他の成分、例えば助触媒等を含んでいてもよい。
第二重合触媒組成物に用いる(A)成分は、希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物であり、ここで、希土類元素化合物及び該希土類元素化合物とルイス塩基との反応物は、希土類元素と炭素との結合を有さない。該希土類元素化合物及び反応物が希土類元素−炭素結合を有さない場合、化合物が安定であり、取り扱いやすい。ここで、希土類元素化合物とは、周期律表中の原子番号57〜71の元素から構成されるランタノイド元素又はスカンジウムもしくはイットリウムを含有する化合物である。なお、ランタノイド元素の具体例としては、ランタニウム、セリウム、プラセオジム、ネオジウム、プロメチウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミニウム、エルビウム、ツリウム、イッテルビウム、ルテチウムを挙げることができる。なお、上記(A)成分は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
また、上記希土類元素化合物は、希土類金属が2価もしくは3価の塩又は錯体化合物であることが好ましく、水素原子、ハロゲン原子及び有機化合物残基から選択される1種又は2種以上の配位子を含有する希土類元素化合物であることが更に好ましい。更に、上記希土類元素化合物又は該希土類元素化合物とルイス塩基との反応物は、下記一般式(XI)又は(XII):
M11X11 2・L11w ・・・ (XI)
M11X11 3・L11w ・・・ (XII)
(式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す)で表されることができる。
M11X11 2・L11w ・・・ (XI)
M11X11 3・L11w ・・・ (XII)
(式中、M11は、ランタノイド元素、スカンジウム又はイットリウムを示し、X11は、それぞれ独立して、水素原子、ハロゲン原子、アルコキシド基、チオラート基、アミド基、シリル基、アルデヒド残基、ケトン残基、カルボン酸残基、チオカルボン酸残基又はリン化合物残基を示し、L11は、ルイス塩基を示し、wは、0〜3を示す)で表されることができる。
上記希土類元素化合物の希土類元素に結合する基(配位子)として、具体的には、水素原子;メトキシ基、エトキシ基、プロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基等の脂肪族アルコキシ基;フェノキシ基、2,6−ジ−tert−ブチルフェノキシ基、2,6−ジイソプロピルフェノキシ基、2,6−ジネオペンチルフェノキシ基、2−tert−ブチル−6−イソプロピルフェノキシ基、2−tert−ブチル−6−ネオペンチルフェノキシ基、2−イソプロピル−6−ネオペンチルフェノキシ基;チオメトキシ基、チオエトキシ基、チオプロポキシ基、チオ−n−ブトキシ基、チオイソブトキシ基、チオ−sec−ブトキシ基、チオ−tert−ブトキシ基等の脂肪族チオラート基;チオフェノキシ基、2,6−ジ−tert−ブチルチオフェノキシ基、2,6−ジイソプロピルチオフェノキシ基、2,6−ジネオペンチルチオフェノキシ基、2−tert−ブチル−6−イソプロピルチオフェノキシ基、2−tert−ブチル−6−チオネオペンチルフェノキシ基、2−イソプロピル−6−チオネオペンチルフェノキシ基、2,4,6−トリイソプロピルチオフェノキシ基等のアリールチオラート基;ジメチルアミド基、ジエチルアミド基、ジイソプロピルアミド基等の脂肪族アミド基;フェニルアミド基、2,6−ジ−tert−ブチルフェニルアミド基、2,6−ジイソプロピルフェニルアミド基、2,6−ジネオペンチルフェニルアミド基、2−tert−ブチル−6−イソプロピルフェニルアミド基、2−tert−ブチル−6−ネオペンチルフェニルアミド基、2−イソプロピル−6−ネオペンチルフェニルアミド基、2,4,6−tert−ブチルフェニルアミド基等のアリールアミド基;ビストリメチルシリルアミド基等のビストリアルキルシリルアミド基;トリメチルシリル基、トリス(トリメチルシリル)シリル基、ビス(トリメチルシリル)メチルシリル基、トリメチルシリル(ジメチル)シリル基、トリイソプロピルシリル(ビストリメチルシリル)シリル基等のシリル基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子等が挙げられる。更には、サリチルアルデヒド、2−ヒドロキシ−1−ナフトアルデヒド、2−ヒドロキシ−3−ナフトアルデヒド等のアルデヒドの残基;2’−ヒドロキシアセトフェノン、2’−ヒドロキシブチロフェノン、2’−ヒドロキシプロピオフェノン等のヒドロキシフェノンの残基;アセチルアセトン、ベンゾイルアセトン、プロピオニルアセトン、イソブチルアセトン、バレリルアセトン、エチルアセチルアセトン等のジケトンの残基;イソ吉草酸、カプリル酸、オクタン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、イソステアリン酸、オレイン酸、リノール酸、シクロペンタンカルボン酸、ナフテン酸、エチルヘキサン酸、ビバール酸、バーサチック酸[シェル化学(株)製の商品名、C10モノカルボン酸の異性体の混合物から構成される合成酸]、フェニル酢酸、安息香酸、2−ナフトエ酸、マレイン酸、コハク酸等のカルボン酸の残基;ヘキサンチオ酸、2,2−ジメチルブタンチオ酸、デカンチオ酸、チオ安息香酸等のチオカルボン酸の残基、リン酸ジブチル、リン酸ジペンチル、リン酸ジヘキシル、リン酸ジヘプチル、リン酸ジオクチル、リン酸ビス(2−エチルヘキシル)、リン酸ビス(1−メチルヘプチル)、リン酸ジラウリル、リン酸ジオレイル、リン酸ジフェニル、リン酸ビス(p−ノニルフェニル)、リン酸ビス(ポリエチレングリコール−p−ノニルフェニル)、リン酸(ブチル)(2−エチルヘキシル)、リン酸(1−メチルヘプチル)(2−エチルヘキシル)、リン酸(2−エチルヘキシル)(p−ノニルフェニル)等のリン酸エステルの残基;2−エチルヘキシルホスホン酸モノブチル、2−エチルヘキシルホスホン酸モノ−2−エチルヘキシル、フェニルホスホン酸モノ−2−エチルヘキシル、2−エチルヘキシルホスホン酸モノ−p−ノニルフェニル、ホスホン酸モノ−2−エチルヘキシル、ホスホン酸モノ−1−メチルヘプチル、ホスホン酸モノ−p−ノニルフェニル等のホスホン酸エステルの残基、ジブチルホスフィン酸、ビス(2−エチルヘキシル)ホスフィン酸、ビス(1−メチルヘプチル)ホスフィン酸、ジラウリルホスフィン酸、ジオレイルホスフィン酸、ジフェニルホスフィン酸、ビス(p−ノニルフェニル)ホスフィン酸、ブチル(2−エチルヘキシル)ホスフィン酸、(2−エチルヘキシル)(1−メチルヘプチル)ホスフィン酸、(2−エチルヘキシル)(p−ノニルフェニル)ホスフィン酸、ブチルホスフィン酸、2−エチルヘキシルホスフィン酸、1−メチルヘプチルホスフィン酸、オレイルホスフィン酸、ラウリルホスフィン酸、フェニルホスフィン酸、p−ノニルフェニルホスフィン酸等のホスフィン酸の残基を挙げることもできる。なお、これらの配位子は、一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
上記第二重合触媒組成物に用いる(A)成分において、上記希土類元素化合物と反応するルイス塩基としては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記希土類元素化合物が複数のルイス塩基と反応する場合(式(XI)及び(XII)においては、wが2又は3である場合)、ルイス塩基L11は、同一であっても異なっていてもよい。
上記第二重合触媒組成物に用いる(B)成分は、イオン性化合物(B−1)、アルミノキサン(B−2)及びハロゲン化合物(B−3)よりなる群から選択される少なくとも一種の化合物である。なお、上記第二重合触媒組成物における(B)成分の合計の含有量は、(A)成分に対して0.1〜50倍モルであることが好ましい。
上記(B−1)で表されるイオン性化合物は、非配位性アニオンとカチオンとからなり、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応してカチオン性遷移金属化合物を生成できるイオン性化合物等を挙げることができる。ここで、非配位性アニオンとしては、例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられる。
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
一方、カチオンとしては、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等を挙げることができる。カルボニウムカチオンの具体例としては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、より具体的には、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオン等が挙げられる。アンモニウムカチオンの具体例としては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン(例えば、トリ(n−ブチル)アンモニウムカチオン)等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンの具体例としては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。従って、イオン性化合物としては、上述の非配位性アニオン及びカチオンからそれぞれ選択し組み合わせた化合物が好ましく、具体的には、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。また、これらのイオン性化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物におけるイオン性化合物の含有量は、(A)成分に対して0.1〜10倍モルであることが好ましく、約1倍モルであることが更に好ましい。
上記(B−2)で表されるアルミノキサンは、有機アルミニウム化合物と縮合剤とを接触させることによって得られる化合物であり、例えば、一般式:(−Al(R’)O−)で示される繰り返し単位を有する鎖状アルミノキサン又は環状アルミノキサン(式中、R’は炭素数1〜10の炭化水素基であり、一部の炭化水素基はハロゲン原子及び/又はアルコキシ基で置換されてもよく、繰り返し単位の重合度は、5以上が好ましく、10以上が更に好ましい)を挙げることができる。ここで、R’として、具体的には、メチル基、エチル基、プロピル基、イソブチル基等が挙げられ、これらの中でも、メチル基が好ましい。また、アルミノキサンの原料として用いられる有機アルミニウム化合物としては、例えば、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム及びその混合物等が挙げられ、トリメチルアルミニウムが特に好ましい。例えば、トリメチルアルミニウムとトリブチルアルミニウムとの混合物を原料として用いたアルミノキサンを好適に用いることができる。なお、上記第二重合触媒組成物におけるアルミノキサンの含有量は、(A)成分を構成する希土類元素Mと、アルミノキサンのアルミニウム元素Alとの元素比率Al/Mが、10〜1000程度となるようにすることが好ましい。
上記(B−3)で表されるハロゲン化合物は、ルイス酸、金属ハロゲン化物とルイス塩基との錯化合物及び活性ハロゲンを含む有機化合物のうち少なくとも一種からなり、例えば、上記(A)成分である希土類元素化合物又はそのルイス塩基との反応物と反応して、カチオン性遷移金属化合物やハロゲン化遷移金属化合物や遷移金属中心が電荷不足の化合物を生成することができる。なお、上記第二重合触媒組成物におけるハロゲン化合物の合計の含有量は、(A)成分に対して1〜5倍モルであることが好ましい。
上記ルイス酸としては、B(C6F5)3等のホウ素含有ハロゲン化合物、Al(C6F5)3等のアルミニウム含有ハロゲン化合物を使用できる他、周期律表中の第III,IV,V,VI又はVIII族に属する元素を含有するハロゲン化合物を用いることもできる。好ましくはアルミニウムハロゲン化物又は有機金属ハロゲン化物が挙げられる。また、ハロゲン元素としては、塩素又は臭素が好ましい。上記ルイス酸として、具体的には、メチルアルミニウムジブロマイド、メチルアルミニウムジクロライド、エチルアルミニウムジブロマイド、エチルアルミニウムジクロライド、ブチルアルミニウムジブロマイド、ブチルアルミニウムジクロライド、ジメチルアルミニウムブロマイド、ジメチルアルミニウムクロライド、ジエチルアルミニウムブロマイド、ジエチルアルミニウムクロライド、ジブチルアルミニウムブロマイド、ジブチルアルミニウムクロライド、メチルアルミニウムセスキブロマイド、メチルアルミニウムセスキクロライド、エチルアルミニウムセスキブロマイド、エチルアルミニウムセスキクロライド、ジブチル錫ジクロライド、アルミニウムトリブロマイド、三塩化アンチモン、五塩化アンチモン、三塩化リン、五塩化リン、四塩化錫、四塩化チタン、六塩化タングステン等が挙げられ、これらの中でも、ジエチルアルミニウムクロライド、エチルアルミニウムセスキクロライド、エチルアルミニウムジクロライド、ジエチルアルミニウムブロマイド、エチルアルミニウムセスキブロマイド、エチルアルミニウムジブロマイドが特に好ましい。
上記金属ハロゲン化物とルイス塩基との錯化合物を構成する金属ハロゲン化物としては、塩化ベリリウム、臭化ベリリウム、ヨウ化ベリリウム、塩化マグネシウム、臭化マグネシウム、ヨウ化マグネシウム、塩化カルシウム、臭化カルシウム、ヨウ化カルシウム、塩化バリウム、臭化バリウム、ヨウ化バリウム、塩化亜鉛、臭化亜鉛、ヨウ化亜鉛、塩化カドミウム、臭化カドミウム、ヨウ化カドミウム、塩化水銀、臭化水銀、ヨウ化水銀、塩化マンガン、臭化マンガン、ヨウ化マンガン、塩化レニウム、臭化レニウム、ヨウ化レニウム、塩化銅、ヨウ化銅、塩化銀、臭化銀、ヨウ化銀、塩化金、ヨウ化金、臭化金等が挙げられ、これらの中でも、塩化マグネシウム、塩化カルシウム、塩化バリウム、塩化マンガン、塩化亜鉛、塩化銅が好ましく、塩化マグネシウム、塩化マンガン、塩化亜鉛、塩化銅が特に好ましい。
また、上記金属ハロゲン化物とルイス塩基との錯化合物を構成するルイス塩基としては、リン化合物、カルボニル化合物、窒素化合物、エーテル化合物、アルコール等が好ましい。具体的には、リン酸トリブチル、リン酸トリ−2−エチルヘキシル、リン酸トリフェニル、リン酸トリクレジル、トリエチルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、ジエチルホスフィノエタン、ジフェニルホスフィノエタン、アセチルアセトン、ベンゾイルアセトン、プロピオニトリルアセトン、バレリルアセトン、エチルアセチルアセトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸フェニル、マロン酸ジメチル、マロン酸ジエチル、マロン酸ジフェニル、酢酸、オクタン酸、2−エチル−ヘキサン酸、オレイン酸、ステアリン酸、安息香酸、ナフテン酸、バーサチック酸、トリエチルアミン、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジフェニルエーテル、2−エチル−ヘキシルアルコール、オレイルアルコール、ステアリルアルコール、フェノール、ベンジルアルコール、1−デカノール、ラウリルアルコール等が挙げられ、これらの中でも、リン酸トリ−2−エチルヘキシル、リン酸トリクレジル、アセチルアセトン、2−エチルヘキサン酸、バーサチック酸、2−エチルヘキシルアルコール、1−デカノール、ラウリルアルコールが好ましい。
上記ルイス塩基は、上記金属ハロゲン化物1モル当り、0.01〜30モル、好ましくは0.5〜10モルの割合で反応させる。このルイス塩基との反応物を使用すると、ポリマー中に残存する金属を低減することができる。
上記活性ハロゲンを含む有機化合物としては、ベンジルクロライド等が挙げられる。
上記第二重合触媒組成物に用いる(C)成分は、下記一般式(X):
YR1 aR2 bR3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物であり、下記一般式(Xa):
AlR1R2R3 ・・・ (Xa)
[式中、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
YR1 aR2 bR3 c ・・・ (X)
[式中、Yは、周期律表第1族、第2族、第12族及び第13族から選択される金属であり、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよく、また、Yが周期律表第1族から選択される金属である場合には、aは1で且つb及びcは0であり、Yが周期律表第2族及び第12族から選択される金属である場合には、a及びbは1で且つcは0であり、Yが周期律表第13族から選択される金属である場合には、a,b及びcは1である]で表される有機金属化合物であり、下記一般式(Xa):
AlR1R2R3 ・・・ (Xa)
[式中、R1及びR2は、同一又は異なり、炭素数1〜10の炭化水素基又は水素原子で、R3は炭素数1〜10の炭化水素基であり、但し、R3は上記R1又はR2と同一又は異なっていてもよい]で表される有機アルミニウム化合物であることが好ましい。式(X)の有機アルミニウム化合物としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。以上に述べた(C)成分としての有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記第二重合触媒組成物における有機アルミニウム化合物の含有量は、(A)成分に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
・重合触媒
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる重合触媒について説明する。
重合触媒としては、共役ジエン化合物と非共役オレフィンとの重合用であり、下記式(A):
RaMXbQYb ・・・ (A)
(式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系複合触媒が挙げられる。
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる重合触媒について説明する。
重合触媒としては、共役ジエン化合物と非共役オレフィンとの重合用であり、下記式(A):
RaMXbQYb ・・・ (A)
(式中、Rはそれぞれ独立して無置換もしくは置換インデニルを示し、該RはMに配位しており、Mはランタノイド元素、スカンジウム又はイットリウムを示し、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位しており、Qは周期律表第13族元素を示し、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位しており、a及びbは2である)で表されるメタロセン系複合触媒が挙げられる。
上記メタロセン系複合触媒の好適例においては、下記式(XV):
上記メタロセン系重合触媒を用いることで、共役ジエン化合物と非共役オレフィンとの共重合体を製造することができる。また、上記メタロセン系複合触媒、例えば予めアルミニウム触媒と複合させてなる触媒を用いることで、共重合体合成時に使用されるアルキルアルミニウムの量を低減したり、無くしたりすることが可能となる。なお、従来の触媒系を用いると、共重合体合成時に大量のアルキルアルミニウムを用いる必要がある。例えば、従来の触媒系では、金属触媒に対して10当量以上のアルキルアルミニウムを用いる必要があるところ、上記メタロセン系複合触媒であれば、5当量程度のアルキルアルミニウムを加えることで、優れた触媒作用が発揮される。
上記メタロセン系複合触媒において、上記式(A)中の金属Mは、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属Mとしては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(A)において、Rは、それぞれ独立して無置換インデニル又は置換インデニルであり、該Rは上記金属Mに配位している。なお、置換インデニル基の具体例としては、例えば、1,2,3−トリメチルインデニル基、ヘプタメチルインデニル基、1,2,4,5,6,7−ヘキサメチルインデニル基等が挙げられる。
上記式(A)において、Qは、周期律表第13族元素を示し、具体的には、ホウ素、アルミニウム、ガリウム、インジウム、タリウム等が挙げられる。
上記式(A)において、Xはそれぞれ独立して炭素数1〜20の炭化水素基を示し、該XはM及びQにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(A)において、Yはそれぞれ独立して炭素数1〜20の炭化水素基又は水素原子を示し、該YはQに配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記式(XV)において、金属M1は、ランタノイド元素、スカンジウム又はイットリウムである。ランタノイド元素には、原子番号57〜71の15元素が含まれ、これらのいずれでもよい。金属M1としては、サマリウムSm、ネオジムNd、プラセオジムPr、ガドリニウムGd、セリウムCe、ホルミウムHo、スカンジウムSc及びイットリウムYが好適に挙げられる。
上記式(XV)において、CpRは、無置換インデニル又は置換インデニルである。インデニル環を基本骨格とするCpRは、C9H7-XRX又はC9H11-XRXで示され得る。ここで、Xは0〜7又は0〜11の整数である。また、Rはそれぞれ独立してヒドロカルビル基又はメタロイド基であることが好ましい。ヒドロカルビル基の炭素数は1〜20であることが好ましく、1〜10であることが更に好ましく、1〜8であることが一層好ましい。該ヒドロカルビル基として、具体的には、メチル基、エチル基、フェニル基、ベンジル基等が好適に挙げられる。一方、メタロイド基のメタロイドの例としては、ゲルミルGe、スタニルSn、シリルSiが挙げられ、また、メタロイド基はヒドロカルビル基を有することが好ましく、メタロイド基が有するヒドロカルビル基は上記のヒドロカルビル基と同様である。該メタロイド基として、具体的には、トリメチルシリル基等が挙げられる。置換インデニルとして、具体的には、2−フェニルインデニル、2−メチルインデニル等が挙げられる。なお、式(XV)における二つのCpRは、それぞれ互いに同一でも異なっていてもよい。
上記式(XV)において、RA及びRBは、それぞれ独立して炭素数1〜20の炭化水素基を示し、該RA及びRは、M1及Alにμ配位している。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。なお、μ配位とは、架橋構造をとる配位様式のことである。
上記式(XV)において、RC及びRDは、それぞれ独立して炭素数1〜20の炭化水素基又は水素原子である。ここで、炭素数1〜20の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
なお、上記メタロセン系複合触媒は、例えば、溶媒中で、下記式(XVI):
上記式(XVI)で表されるメタロセン錯体において、CpRは、無置換インデニル又は置換インデニルであり、上記式(XV)中のCpRと同義である。また、上記式(XVI)において、金属M2は、ランタノイド元素、スカンジウム又はイットリウムであり、上記式(XV)中の金属M1と同義である。
上記式(XVI)で表されるメタロセン錯体は、シリルアミド配位子[−N(SiR3)2]を含む。シリルアミド配位子に含まれるR基(RE〜RJ基)は、それぞれ独立して炭素数1〜3のアルキル基又は水素原子である。また、RE〜RJのうち少なくとも一つが水素原子であることが好ましい。RE〜RJのうち少なくとも一つを水素原子にすることで、触媒の合成が容易になる。更に、アルキル基としては、メチル基が好ましい。
上記式(XVI)で表されるメタロセン錯体は、更に0〜3個、好ましくは0〜1個の中性ルイス塩基Lを含む。ここで、中性ルイス塩基Lとしては、例えば、テトラヒドロフラン、ジエチルエーテル、ジメチルアニリン、トリメチルホスフィン、塩化リチウム、中性のオレフィン類、中性のジオレフィン類等が挙げられる。ここで、上記錯体が複数の中性ルイス塩基Lを含む場合、中性ルイス塩基Lは、同一であっても異なっていてもよい。
また、上記式(XVI)で表されるメタロセン錯体は、単量体として存在していてもよく、二量体又はそれ以上の多量体として存在していてもよい。
一方、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物は、AlRKRLRMで表され、ここで、RK及びRLは、それぞれ独立して炭素数1〜20の1価の炭化水素基又は水素原子で、RMは炭素数1〜20の1価の炭化水素基であり、但し、RMは上記RK又はRLと同一でも異なっていてもよい。炭素数1〜20の1価の炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、デシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、ステアリル基等が挙げられる。
上記有機アルミニウム化合物の具体例としては、トリメチルアルミニウム、トリエチルアルミニウム、トリ−n−プロピルアルミニウム、トリイソプロピルアルミニウム、トリ−n−ブチルアルミニウム、トリイソブチルアルミニウム、トリ−t−ブチルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリシクロヘキシルアルミニウム、トリオクチルアルミニウム;水素化ジエチルアルミニウム、水素化ジ−n−プロピルアルミニウム、水素化ジ−n−ブチルアルミニウム、水素化ジイソブチルアルミニウム、水素化ジヘキシルアルミニウム、水素化ジイソヘキシルアルミニウム、水素化ジオクチルアルミニウム、水素化ジイソオクチルアルミニウム;エチルアルミニウムジハイドライド、n−プロピルアルミニウムジハイドライド、イソブチルアルミニウムジハイドライド等が挙げられ、これらの中でも、トリエチルアルミニウム、トリイソブチルアルミニウム、水素化ジエチルアルミニウム、水素化ジイソブチルアルミニウムが好ましい。また、これら有機アルミニウム化合物は、1種単独で使用することも、2種以上を混合して用いることもできる。なお、上記メタロセン系複合触媒の生成に用いる有機アルミニウム化合物の量は、メタロセン錯体に対して1〜50倍モルであることが好ましく、約10倍モルであることが更に好ましい。
・第三重合触媒組成物
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第三重合触媒組成物について説明する。
第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の共重合体中での含有量を任意に制御することが可能となる。
次に、本発明に係る共役ジエン化合物と非共役オレフィンとの共重合体の製造方法において用いられる第三重合触媒組成物について説明する。
第三重合触媒組成物は、上記メタロセン系複合触媒と、ホウ素アニオンとを含むことを特徴とし、更に、通常のメタロセン系触媒を含む重合触媒組成物に含有される他の成分、例えば助触媒等を含むことが好ましい。なお、上記メタロセン系複合触媒とホウ素アニオンとを合わせて2成分触媒ともいう。第三重合触媒組成物によれば、上記メタロセン系複合触媒と同様に、更にホウ素アニオンを含有するため、各単量体成分の共重合体中での含有量を任意に制御することが可能となる。
第三重合触媒組成物において、2成分触媒を構成するホウ素アニオンとして、具体的には、4価のホウ素アニオンが挙げられる。例えば、テトラフェニルボレート、テトラキス(モノフルオロフェニル)ボレート、テトラキス(ジフルオロフェニル)ボレート、テトラキス(トリフルオロフェニル)ボレート、テトラキス(テトラフルオロフェニル)ボレート、テトラキス(ペンタフルオロフェニル)ボレート、テトラキス(テトラフルオロメチルフェニル)ボレート、テトラ(トリル)ボレート、テトラ(キシリル)ボレート、(トリフェニル、ペンタフルオロフェニル)ボレート、[トリス(ペンタフルオロフェニル)、フェニル]ボレート、トリデカハイドライド−7,8−ジカルバウンデカボレート等が挙げられ、これらの中でも、テトラキス(ペンタフルオロフェニル)ボレートが好ましい。
なお、上記ホウ素アニオンは、カチオンと組み合わされたイオン性化合物として使用することができる。上記カチオンとしては、例えば、カルボニウムカチオン、オキソニウムカチオン、アミンカチオン、ホスホニウムカチオン、シクロヘプタトリエニルカチオン、遷移金属を有するフェロセニウムカチオン等が挙げられる。カルボニウムカチオンとしては、トリフェニルカルボニウムカチオン、トリ(置換フェニル)カルボニウムカチオン等の三置換カルボニウムカチオン等が挙げられ、トリ(置換フェニル)カルボニルカチオンとして、具体的には、トリ(メチルフェニル)カルボニウムカチオン等が挙げられる。アミンカチオンとしては、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン等のトリアルキルアンモニウムカチオン;N,N−ジメチルアニリニウムカチオン、N,N−ジエチルアニリニウムカチオン、N,N−2,4,6−ペンタメチルアニリニウムカチオン等のN,N−ジアルキルアニリニウムカチオン;ジイソプロピルアンモニウムカチオン、ジシクロヘキシルアンモニウムカチオン等のジアルキルアンモニウムカチオン等が挙げられる。ホスホニウムカチオンとしては、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオン等のトリアリールホスホニウムカチオン等が挙げられる。これらカチオンの中でも、N,N−ジアルキルアニリニウムカチオン又はカルボニウムカチオンが好ましく、N,N−ジアルキルアニリニウムカチオンが特に好ましい。従って、上記イオン性化合物としては、N,N−ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、トリフェニルカルボニウムテトラキス(ペンタフルオロフェニル)ボレート等が好ましい。なお、ホウ素アニオンとカチオンとからなるイオン性化合物は、上記メタロセン系複合触媒に対して0.1〜10倍モル加えることが好ましく、約1倍モル加えることが更に好ましい。
なお、上記第三重合触媒組成物においては、上記メタロセン系複合触媒と上記ホウ素アニオンとを用いる必要があるが、上記式(XVI)で表されるメタロセン触媒と有機アルミニウム化合物を反応させる反応系に、ホウ素アニオンが存在していると、上記式(XV)のメタロセン系複合触媒を合成することができない。従って、上記第三重合触媒組成物の調製には、該メタロセン系複合触媒を予め合成し、該メタロセン系複合触媒を単離精製してからホウ素アニオンと組み合わせる必要がある。
上記第三重合触媒組成物に用いることができる助触媒としては、例えば、上述のAlRKRLRMで表される有機アルミニウム化合物の他、アルミノキサン等が好適に挙げられる。上記アルミノキサンとしては、アルキルアミノキサンが好ましく、例えば、メチルアルミノキサン(MAO)、修飾メチルアルミノキサン等が挙げられる。また、修飾メチルアルミノキサンとしては、MMAO−3A(東ソーファインケム社製)等が好ましい。なお、これらアルミノキサンは、一種単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<シンジオタクティック−1,2−構造含有ポリブタジエンゴム>
シンジオタクティック−1,2−構造含有ポリブタジエンゴムは、ポリブタジエンゴムのマトリックス中に、シンジオタクチック−1,2−ポリブタジエン重合体が微細化した短繊維結晶状態で分散しているものである。
シンジオタクティック−1,2−構造含有ポリブタジエンゴムは、ポリブタジエンゴムのマトリックス中に、シンジオタクチック−1,2−ポリブタジエン重合体が微細化した短繊維結晶状態で分散しているものである。
本発明におけるシンジオタクティック−1,2−構造含有ポリブタジエンゴムの製造方法としては、種々の方法が知られている。例えば、特開2000−44633号公報には、n−ブタン、シス−2−ブテン、トランス−2−ブテン、及びブテン−1などのC4留分を主成分とする不活性有機溶媒中で製造する方法が記載されている。この方法でのゴム組成物が含有するシンジオタクチック−1,2−ポリブタジエンは短繊維結晶であり、短繊維結晶の長軸長さの分布が繊維長さの98%以上が0.6μm未満であり,70%以上が0.2μm未満であることが記載されている。
ポリブタジエンは、いわゆるミクロ構造として、1,4−位での重合で生成した結合部分(1,4−構造)と1,2−位での重合で生成した結合部分(1,2−構造)とが分子鎖中に共存する。1,4−構造は、更にシス構造とトランス構造の二種に分けられる。一方、1,2−構造は、ビニル基を側鎖とする構造をとる。
本発明に係るシンジオタクティック−1,2−構造含有ポリブタジエンゴムは、宇部興産株式会社製、商品名「UBEPOL VCR」(登録商標)として入手でき、「VCR412」(SPB結晶量:12.0質量%)、「VCR617」(SPB結晶量:17.0質量%)、「VCR450」(SPB結晶量:3.8質量%)、「VCR800」(SPB結晶量:5.3質量%)などの各種グレードがある。ここで、SPB結晶とは、シンジオタクチック−1,2−ポリブタジエン短繊維結晶の略称である。上記各種グレードのいずれもが、マトリックスポリマーのミクロ構造として、シス−1,4結合量:98質量%、トランス結合量:1質量%、ビニル結合量:1質量%である。
ゴム成分100質量部中におけるシンジオタクティック−1,2−構造含有ポリブタジエンゴムの配合量は、10〜60質量部であることが好ましい。
本発明に係るシンジオタクティック−1,2−構造含有ポリブタジエンゴムは、宇部興産株式会社製、商品名「UBEPOL VCR」(登録商標)として入手でき、「VCR412」(SPB結晶量:12.0質量%)、「VCR617」(SPB結晶量:17.0質量%)、「VCR450」(SPB結晶量:3.8質量%)、「VCR800」(SPB結晶量:5.3質量%)などの各種グレードがある。ここで、SPB結晶とは、シンジオタクチック−1,2−ポリブタジエン短繊維結晶の略称である。上記各種グレードのいずれもが、マトリックスポリマーのミクロ構造として、シス−1,4結合量:98質量%、トランス結合量:1質量%、ビニル結合量:1質量%である。
ゴム成分100質量部中におけるシンジオタクティック−1,2−構造含有ポリブタジエンゴムの配合量は、10〜60質量部であることが好ましい。
<ゴム組成物>
本発明に係るゴム組成物としては、共役ジエン化合物と非共役オレフィンとの共重合体を含む限り、特に制限はなく、目的に応じて適宜選択することができるが、本発明に係る共重合体以外のゴム成分、無機充填材、カーボンブラック、架橋剤、などを含むことが好ましい。
本発明に係るゴム組成物としては、共役ジエン化合物と非共役オレフィンとの共重合体を含む限り、特に制限はなく、目的に応じて適宜選択することができるが、本発明に係る共重合体以外のゴム成分、無機充填材、カーボンブラック、架橋剤、などを含むことが好ましい。
<共役ジエン化合物と非共役オレフィンとの共重合体の含有量>
共役ジエン化合物と非共役オレフィンとの共重合体のゴム成分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%以上95重量%以下が好ましい。共役ジエン化合物と非共役オレフィンとの共重合体のゴム成分中の含有量が、3質量%未満であると、弾性率が不十分となる場合があり、95重量%以下であると、ゴムとしての性質を維持できるため好ましい。
共役ジエン化合物と非共役オレフィンとの共重合体のゴム成分中の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、3質量%以上95重量%以下が好ましい。共役ジエン化合物と非共役オレフィンとの共重合体のゴム成分中の含有量が、3質量%未満であると、弾性率が不十分となる場合があり、95重量%以下であると、ゴムとしての性質を維持できるため好ましい。
・ゴム成分
共重合体以外のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、共役ジエン化合物と非共役オレフィンとの共重合体、天然ゴム、各種ブタジエンゴム、各種スチレン−ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、イソブチレンとp−メチルスチレンの共重合体の臭化物、ハロゲン化ブチルゴム、アクリロニトリロブタジエンゴム、クロロプレンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
共重合体以外のゴム成分としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、共役ジエン化合物と非共役オレフィンとの共重合体、天然ゴム、各種ブタジエンゴム、各種スチレン−ブタジエン共重合体ゴム、イソプレンゴム、ブチルゴム、イソブチレンとp−メチルスチレンの共重合体の臭化物、ハロゲン化ブチルゴム、アクリロニトリロブタジエンゴム、クロロプレンゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエン共重合体ゴム、スチレン−イソプレン共重合体ゴム、スチレン−イソプレン−ブタジエン共重合体ゴム、イソプレン−ブタジエン共重合体ゴム、クロロスルホン化ポリエチレン、アクリルゴム、エピクロルヒドリンゴム、多硫化ゴム、シリコーンゴム、フッ素ゴム、ウレタンゴム、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
・補強性充填材
ゴム組成物には、必要に応じて補強性充填材を配合することができる。補強性充填材としては、カーボンブラック、無機充填材、などを挙げることができ、カーボンブラック及び無機充填材から選択される少なくとも一種が好ましい。
無機充填材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。なお、無機充填材を用いる時は適宜シランカップリング剤を使用してもよい。
補強性充填材の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、共役ジエン化合物と非共役オレフィンとの共重合体を含むゴム成分100質量部に対し、5質量部〜200質量部が好ましい。補強性充填材の少なくともいずれかの含有量が、5質量部未満であると、補強性充填材を入れる効果があまりみられないことがあり、200質量部を超えると前記ゴム成分に補強性充填材が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させることがある。
ゴム組成物には、必要に応じて補強性充填材を配合することができる。補強性充填材としては、カーボンブラック、無機充填材、などを挙げることができ、カーボンブラック及び無機充填材から選択される少なくとも一種が好ましい。
無機充填材としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、シリカ、水酸化アルミニウム、クレー、アルミナ、タルク、マイカ、カオリン、ガラスバルーン、ガラスビーズ、炭酸カルシウム、炭酸マグネシウム、水酸化マグネシウム、炭酸カルシウム、酸化マグネシウム、酸化チタン、チタン酸カリウム、硫酸バリウムなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。なお、無機充填材を用いる時は適宜シランカップリング剤を使用してもよい。
補強性充填材の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、共役ジエン化合物と非共役オレフィンとの共重合体を含むゴム成分100質量部に対し、5質量部〜200質量部が好ましい。補強性充填材の少なくともいずれかの含有量が、5質量部未満であると、補強性充填材を入れる効果があまりみられないことがあり、200質量部を超えると前記ゴム成分に補強性充填材が混ざり込まなくなる傾向があり、ゴム組成物としての性能を低下させることがある。
・架橋剤
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄などが挙げられるが、中でも、タイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、共役ジエン化合物と非共役オレフィンとの共重合体を含むゴム成分100質量部に対し、0.1質量部〜20質量部が好ましい。架橋剤の含有量が0.1質量部未満では、架橋がほとんど進行しなかったり、20質量部を超えると一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、加硫物の物性が損なわれたりすることがある。
架橋剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、硫黄系架橋剤、有機過酸化物系架橋剤、無機架橋剤、ポリアミン架橋剤、樹脂架橋剤、硫黄化合物系架橋剤、オキシム−ニトロソアミン系架橋剤硫黄などが挙げられるが、中でも、タイヤ用ゴム組成物としては硫黄系架橋剤がより好ましい。
架橋剤の含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、共役ジエン化合物と非共役オレフィンとの共重合体を含むゴム成分100質量部に対し、0.1質量部〜20質量部が好ましい。架橋剤の含有量が0.1質量部未満では、架橋がほとんど進行しなかったり、20質量部を超えると一部の架橋剤により混練り中に架橋が進んでしまう傾向があったり、加硫物の物性が損なわれたりすることがある。
・その他の成分
その他の成分としては、加硫促進剤が挙げられる。加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。また必要に応じて、補強剤、軟化剤、充填材、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
その他の成分としては、加硫促進剤が挙げられる。加硫促進剤としては、グアジニン系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、スルフェンアミド系、チオ尿素系、チウラム系、ジチオカルバメート系、ザンテート系等の化合物が使用できる。また必要に応じて、補強剤、軟化剤、充填材、加硫助剤、着色剤、難燃剤、滑剤、発泡剤、可塑剤、加工助剤、酸化防止剤、老化防止剤、スコーチ防止剤、紫外線防止剤、帯電防止剤、着色防止剤、その他の配合剤など公知のものをその使用目的に応じて使用することができる。
<架橋ゴム組成物>
本発明に係る架橋ゴム組成物は、本発明に係るゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120℃〜200℃、加温時間1分間〜900分間が好ましい。
本発明に係る架橋ゴム組成物は、本発明に係るゴム組成物を架橋して得られたものである限り、特に制限はなく、目的に応じて適宜選択することができる。架橋の条件としては、特に制限はなく、目的に応じて適宜選択することができるが、温度120℃〜200℃、加温時間1分間〜900分間が好ましい。
<タイヤ>
・タイヤの構造
本発明に係るタイヤ100を、図1を用いて説明する。タイヤ100は、一対のビードコア111,112と、スティフナー113,114と、カーカスプライ121とを有する。スティフナー113,114は、ビードコア111,112からタイヤ径方向外側に延在する。カーカスプライ121は、ビードコア111,112において、スティフナー113,114のトレッド幅方向外側に折り返されて、馬蹄形のタイヤケース形状を形成する。カーカスプライ121のタイヤ径方向外側には、複数のベルト層からなるベルト部115が配設されている。
・タイヤの構造
本発明に係るタイヤ100を、図1を用いて説明する。タイヤ100は、一対のビードコア111,112と、スティフナー113,114と、カーカスプライ121とを有する。スティフナー113,114は、ビードコア111,112からタイヤ径方向外側に延在する。カーカスプライ121は、ビードコア111,112において、スティフナー113,114のトレッド幅方向外側に折り返されて、馬蹄形のタイヤケース形状を形成する。カーカスプライ121のタイヤ径方向外側には、複数のベルト層からなるベルト部115が配設されている。
ベルト部115のタイヤ径方向外側には、トレッド部118が配設されている。また、カーカスプライ121のタイヤ径方向内側には、空気透過防止層としてインナーライナー130が配設されている。
また、カーカスプライ121のタイヤ径方向外側には、サイドウォール部119が形成されている。サイドウォール部119は、本発明に係るゴム組成物を用いて形成されている。
本発明に係るタイヤは、本発明に係るゴム組成物、又は架橋ゴム組成物を用いたものである限り、特に制限はなく、目的に応じて適宜選択することができる。本発明に係るゴム組成物、又は架橋ゴム組成物のタイヤにおける適用部位としては、例えば、トレッド、ベーストレッド、サイド補強ゴム、ビードフィラー、インナーライナーなどが挙げられるが、これに限定されない。
・タイヤの製造方法
本発明に係るタイヤの製造方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴムからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤを製造することができる。
本発明に係るタイヤの製造方法としては、慣用の方法を用いることができる。例えば、タイヤ成形用ドラム上に未加硫ゴムからなるカーカス層、ベルト層、トレッド層等の通常タイヤ製造に用いられる部材を順次貼り重ね、ドラムを抜き去ってグリーンタイヤとする。次いで、このグリーンタイヤを常法に従って加熱加硫することにより、所望のタイヤを製造することができる。
<タイヤ以外の用途>
タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、発泡体などに本発明に係るゴム組成物、又は架橋ゴム組成物を使用することができる。
タイヤ用途以外にも、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、発泡体などに本発明に係るゴム組成物、又は架橋ゴム組成物を使用することができる。
以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
エチレン−ブタジエン共重合体(EBR)の分析方法及び樹脂組成物の評価方法を以下に示す。
<(a)エチレン−ブタジエン共重合体(EBR)の分析方法>
・共重合体のミクロ構造(1,2−ビニル結合量、シス−1,4結合量)
共重合体中のブタジエン部分のミクロ構造(1,2−ビニル結合量)を、1H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)による1,2−ビニル結合成分(5.0−5.1ppm)と全体のブタジエン結合成分(5−5.6ppm)の積分比より求めた。また、共重合体中のブタジエン部分のミクロ構造(シス−1,4結合量)を、13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)によるシス−1,4結合成分(26.5−27.5ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
エチレン−ブタジエン共重合体(EBR)の分析方法及び樹脂組成物の評価方法を以下に示す。
<(a)エチレン−ブタジエン共重合体(EBR)の分析方法>
・共重合体のミクロ構造(1,2−ビニル結合量、シス−1,4結合量)
共重合体中のブタジエン部分のミクロ構造(1,2−ビニル結合量)を、1H−NMRスペクトル(100℃、d−テトラクロロエタン標準:6ppm)による1,2−ビニル結合成分(5.0−5.1ppm)と全体のブタジエン結合成分(5−5.6ppm)の積分比より求めた。また、共重合体中のブタジエン部分のミクロ構造(シス−1,4結合量)を、13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)によるシス−1,4結合成分(26.5−27.5ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
・共重合体のエチレン含有率
共重合体中のエチレン部分の含有率(mol%)を 13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)による全体のエチレン結合成分(28.5−30.0ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
共重合体中のエチレン部分の含有率(mol%)を 13C−NMRスペクトル(100℃、d−テトラクロロエタン標準:73.8ppm)による全体のエチレン結合成分(28.5−30.0ppm)と全体のブタジエン結合成分(26.5−27.5ppm+31.5−32.5ppm)の積分比より求めた。
・共重合体の重量平均分子量(Mw)及び分子量分布(Mw/Mn)
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
ゲルパーミエーションクロマトグラフィー[GPC:東ソー製HLC−8121GPC/HT、カラム:東ソー製GMHHR−H(S)HT×2本、検出器:示差屈折率計(RI)]で単分散ポリスチレンを基準として、重合体のポリスチレン換算の重量平均分子量(Mw)及び分子量分布(Mw/Mn)を求めた。なお、測定温度は140℃である。
・共重合体のブロックポリエチレン融解温度(DSCピーク温度)
JIS K7121−1987に準拠して示差走査熱量測定(DSC)を行い、DSC曲線を描き、ブロックポリエチレン融解温度(DSCピーク温度)を測定した。なお、測定は、単体ポリマーや触媒残渣等の不純物の影響を避けるため、共重合体を大量のテトラヒドロフランに48h浸漬し、テトラヒドロフランに溶解する成分を全て取り除いた後、乾燥したゴム成分をサンプルとして使用した。
JIS K7121−1987に準拠して示差走査熱量測定(DSC)を行い、DSC曲線を描き、ブロックポリエチレン融解温度(DSCピーク温度)を測定した。なお、測定は、単体ポリマーや触媒残渣等の不純物の影響を避けるため、共重合体を大量のテトラヒドロフランに48h浸漬し、テトラヒドロフランに溶解する成分を全て取り除いた後、乾燥したゴム成分をサンプルとして使用した。
・共重合体の同定
文献(「高分子学会予稿集Vol.42, No.4, Page1347」)のオゾン分解−GPC法を応用して、連鎖分布の解析を行った。なお、ゲルパーミエーションクロマトグラフィーは[GPC:東ソー製HLC−8121GPC/HT、カラム:昭和電工製GPC HT−803×2本、検出器:示差屈折率計(RI)、単分散ポリスチレンを基準、測定温度は140℃]を用いて測定した。
文献(「高分子学会予稿集Vol.42, No.4, Page1347」)のオゾン分解−GPC法を応用して、連鎖分布の解析を行った。なお、ゲルパーミエーションクロマトグラフィーは[GPC:東ソー製HLC−8121GPC/HT、カラム:昭和電工製GPC HT−803×2本、検出器:示差屈折率計(RI)、単分散ポリスチレンを基準、測定温度は140℃]を用いて測定した。
・耐亀裂成長性の評価
耐亀裂成長性は、以下の方法により評価した。まず、作成したゴム組成物から、60mm×100mm×1.0mmの試験片を作成し、試験片の中央部に0.3mmの傷を入れた。この試験片を振動数300サイクル/分、歪み50%の条件下で伸長歪みを与え、この傷が20mmに成長するまでの時間を測定した。下記式により比較例1の時間を100とする指数で表示した。値が大きいほど、傷が成長するまでの時間が長く、耐亀裂成長性が良好であることを示す。
耐亀裂成長性指数={(供試試料の時間)/(比較例1の試料の時間)}×100
なお、表1に示す結果では、指標が120を超えるものを良好と判断した。
耐亀裂成長性は、以下の方法により評価した。まず、作成したゴム組成物から、60mm×100mm×1.0mmの試験片を作成し、試験片の中央部に0.3mmの傷を入れた。この試験片を振動数300サイクル/分、歪み50%の条件下で伸長歪みを与え、この傷が20mmに成長するまでの時間を測定した。下記式により比較例1の時間を100とする指数で表示した。値が大きいほど、傷が成長するまでの時間が長く、耐亀裂成長性が良好であることを示す。
耐亀裂成長性指数={(供試試料の時間)/(比較例1の試料の時間)}×100
なお、表1に示す結果では、指標が120を超えるものを良好と判断した。
製造例1 (a)エチレン−ブタジエン共重合体(EBR)の製造
十分に乾燥した400ml耐圧ガラス反応器に、トルエン溶液160mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC9H6)2GdN(SiHMe2)2]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン15.23g(0.28mol)を含むトルエン溶液100mlを添加した後、さらに90分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体A(ブロック共重合体)を得た。得られた共重合体Aの収量は12.50gであった。
得られた共重合体(a)について、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。共重合体Aの13C−NMRスペクトルチャートを図2に、DSC曲線を図3に示す。
共重合体(a)中のブタジエン部分のミクロ構造として、シス−1,4−結合量は98%、1,2−ビニル結合量は1.2%であった。
重量平均分子量Mwは350,000であり、分子量分布Mw/Mnは、2.2であった。
エチレン含有率は7mol%であった。
ブロックポリエチレン融解温度(DSCピーク温度)は、121℃であり、連鎖構造はブロックであった。
十分に乾燥した400ml耐圧ガラス反応器に、トルエン溶液160mlを添加した後、エチレンを0.8MPaで導入した。一方、窒素雰囲気下のグローブボックス中で、ガラス製容器にビス(2−フェニルインデニル)ガドリニウムビス(ジメチルシリルアミド)[(2−PhC9H6)2GdN(SiHMe2)2]28.5μmol、ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート[Me2NHPhB(C6F5)4]34.2μmol、及びジイソブチルアルミニウムハイドライド1.43mmolを仕込み、トルエン8mlに溶解させて触媒溶液とした。その後、グローブボックスから触媒溶液を取り出し、ガドリニウム換算で28.2μmolとなる量をモノマー溶液へ添加し、室温で5分間重合を行った。その後、エチレンの導入圧力を0.2MPa/minの速度で低下させながら、1,3−ブタジエン15.23g(0.28mol)を含むトルエン溶液100mlを添加した後、さらに90分間重合を行った。重合後、2,2’−メチレン−ビス(4−エチル−6−t−ブチルフェノール)(NS−5)5質量%のイソプロパノール溶液1mlを加えて反応を停止させ、さらに大量のメタノールで共重合体を分離し、70℃で真空乾燥し、共重合体A(ブロック共重合体)を得た。得られた共重合体Aの収量は12.50gであった。
得られた共重合体(a)について、ミクロ構造、エチレン含有率、重量平均分子量(Mw)、分子量分布(Mw/Mn)、ブロックポリエチレン融解温度(DSCピーク温度)及び連鎖構造を上記の方法で測定・評価した。共重合体Aの13C−NMRスペクトルチャートを図2に、DSC曲線を図3に示す。
共重合体(a)中のブタジエン部分のミクロ構造として、シス−1,4−結合量は98%、1,2−ビニル結合量は1.2%であった。
重量平均分子量Mwは350,000であり、分子量分布Mw/Mnは、2.2であった。
エチレン含有率は7mol%であった。
ブロックポリエチレン融解温度(DSCピーク温度)は、121℃であり、連鎖構造はブロックであった。
実施例1〜2、比較例1〜3
製造例1で得られた共役ジエン化合物と非共役オレフィンとの共重合体EBR(a)、シンジオタクティック−1,2−構造含有ポリブタジエンゴム(VCR)、天然ゴム(NR)及び各種配合剤とを、表1に示す配合内容に従ってバンバリーミキサーにより混練し、実施例1〜2と、比較例1〜3の5種類のゴム組成物とを調製した。上記方法で耐亀裂成長性を測定した。結果を表1に示す。
製造例1で得られた共役ジエン化合物と非共役オレフィンとの共重合体EBR(a)、シンジオタクティック−1,2−構造含有ポリブタジエンゴム(VCR)、天然ゴム(NR)及び各種配合剤とを、表1に示す配合内容に従ってバンバリーミキサーにより混練し、実施例1〜2と、比較例1〜3の5種類のゴム組成物とを調製した。上記方法で耐亀裂成長性を測定した。結果を表1に示す。
表1に示した各成分は、下記のものを用いた。
・VCR:宇部興産株式会社製、商品名「UBEPOL VCR412」(登録商標)(SPB結晶量:12.0質量%、シス−1,4結合量:98質量%、トランス結合量:1質量%、ビニル結合量:1質量%)
・カーボンブラック:東海カーボン(株)製、商標:シーストKH(N339)
・老化防止剤:N−(1,3−ジメチルブチル)−N’−p−フェニレンジアミン、大内新興化学(株)製、ノックラック6C
・加硫促進剤CZ−G:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製、ノクセラーCZ−G
・加硫促進剤DM−P:ジベンゾチアジルジスルフィド、大内新興化学(株)製、ノクセラーDM−P
・VCR:宇部興産株式会社製、商品名「UBEPOL VCR412」(登録商標)(SPB結晶量:12.0質量%、シス−1,4結合量:98質量%、トランス結合量:1質量%、ビニル結合量:1質量%)
・カーボンブラック:東海カーボン(株)製、商標:シーストKH(N339)
・老化防止剤:N−(1,3−ジメチルブチル)−N’−p−フェニレンジアミン、大内新興化学(株)製、ノックラック6C
・加硫促進剤CZ−G:N−シクロヘキシル−2−ベンゾチアゾリルスルフェンアミド、大内新興化学(株)製、ノクセラーCZ−G
・加硫促進剤DM−P:ジベンゾチアジルジスルフィド、大内新興化学(株)製、ノクセラーDM−P
表1に示された結果から、共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2−構造含有ポリブタジエンゴムの両者を含むゴム組成物の耐亀裂成長性は、比較例1〜3のゴム組成物に比べて良好であることが判った。
本発明のゴム積層体は、ブチル系ゴムを含むゴム組成物からなる層と、ジエン系ゴムを含むゴム組成物からなる層との間の接着性を向上することができるため、空気入りタイヤ、防振ゴム、免震ゴム、ベルト(コンベアベルト)、ゴムクローラ、各種ホース、発泡体などに好適に用いられる。
100…タイヤ、 111,112…ビードコア、 113,114…スティフナー、 115a〜115d…ベルト層、 118…トレッド部、119…サイドウォール部、 121…カーカスプライ、 130…インナーライナー
Claims (14)
- 共役ジエン化合物と非共役オレフィンとの共重合体と、シンジオタクティック−1,2
−構造含有ポリブタジエンゴムとを少なくとも含むゴム組成物。 - 前記共重合体において、共役ジエンの割合が30mol%〜98mol%である請求項1に記載のゴム組成物。
- 前記共重合体は、共役ジエン化合物部分のシス−1,4結合量が50%以上である請求項1又は2に記載のゴム組成物。
- 前記共重合体のポリスチレン換算重量平均分子量は、10,000〜10,000,000である請求項1乃至3のいずれか1項に記載のゴム組成物。
- 前記共重合体の分子量分布(Mw/Mn)は、10以下である請求項1乃至4のいずれか1項に記載のゴム組成物。
- 前記非共役オレフィンは、非環状オレフィンである請求項1乃至5のいずれか1項に記載のゴム組成物。
- 前記非共役オレフィンの炭素数は、2〜10である請求項1又は6に記載のゴム組成物。
- 前記非共役オレフィンは、エチレン、プロピレン及び1−ブテンよりなる群から選択される少なくとも一種である請求項6又は7に記載のゴム組成物。
- 前記非共役オレフィンは、エチレンである請求項8に記載のゴム組成物。
- 前記共役ジエン化合物は、1,3−ブタジエン及びイソプレンよりなる群から選択される少なくとも一種である請求項1乃至9のいずれか1項に記載のゴム組成物。
- 前記ゴム組成物のゴム成分100質量部中における前記シンジオタクティック−1,2−構造含有ポリブタジエンゴムが10〜60質量部である請求項1乃至10のいずれかに記載のゴム組成物。
- 更に、ジエン系ゴムを含む請求項1乃至11のいずれか1項に記載のゴム組成物。
- 請求項1乃至12のいずれか1項に記載のゴム組成物を用いたタイヤ。
- 請求項1乃至12のいずれか1項に記載のゴム組成物をサイドウォールに用いたタイヤ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012019281A JP2012197422A (ja) | 2011-03-05 | 2012-01-31 | ゴム組成物及びタイヤ |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011048401 | 2011-03-05 | ||
JP2011048401 | 2011-03-05 | ||
JP2012019281A JP2012197422A (ja) | 2011-03-05 | 2012-01-31 | ゴム組成物及びタイヤ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012197422A true JP2012197422A (ja) | 2012-10-18 |
Family
ID=47179967
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012019281A Pending JP2012197422A (ja) | 2011-03-05 | 2012-01-31 | ゴム組成物及びタイヤ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012197422A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163869A1 (ja) * | 2018-02-21 | 2019-08-29 | 株式会社ブリヂストン | 加硫ゴム組成物の製造方法 |
-
2012
- 2012-01-31 JP JP2012019281A patent/JP2012197422A/ja active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019163869A1 (ja) * | 2018-02-21 | 2019-08-29 | 株式会社ブリヂストン | 加硫ゴム組成物の製造方法 |
CN111727218A (zh) * | 2018-02-21 | 2020-09-29 | 株式会社普利司通 | 硫化橡胶组合物的制造方法 |
JPWO2019163869A1 (ja) * | 2018-02-21 | 2021-02-25 | 株式会社ブリヂストン | 加硫ゴム組成物の製造方法 |
CN111727218B (zh) * | 2018-02-21 | 2023-05-16 | 株式会社普利司通 | 硫化橡胶组合物的制造方法 |
JP7290386B2 (ja) | 2018-02-21 | 2023-06-13 | 株式会社ブリヂストン | 加硫ゴム組成物の製造方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5918131B2 (ja) | 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5918134B2 (ja) | 共役ジエン化合物と非共役オレフィンとの共重合体、ゴム組成物、及びタイヤ | |
JP5739991B2 (ja) | 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5731217B2 (ja) | 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JPWO2012014457A1 (ja) | 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5909121B2 (ja) | タイヤ用ゴム組成物 | |
JPWO2012014459A1 (ja) | 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5932224B2 (ja) | 共重合体、ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5769577B2 (ja) | クローラ用ゴム組成物及びそれを用いたゴムクローラ | |
JP5722663B2 (ja) | ゴム積層体 | |
JP5675434B2 (ja) | ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5722664B2 (ja) | 積層体 | |
JP5612511B2 (ja) | ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP2013151583A (ja) | ゴム組成物、ビードフィラー、チェーファー及びタイヤ | |
JP5612512B2 (ja) | ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5922874B2 (ja) | ガスバリア材 | |
JP5656686B2 (ja) | ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5656687B2 (ja) | ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP2012197422A (ja) | ゴム組成物及びタイヤ | |
JP5917814B2 (ja) | ゴム組成物、タイヤサイド用ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP2013155360A (ja) | 空気入りタイヤ | |
JP2013154857A (ja) | 空気入りタイヤ | |
JP5639506B2 (ja) | ゴム組成物、架橋ゴム組成物、及びタイヤ | |
JP5769563B2 (ja) | ゴムクローラ用組成物及びそれを用いたゴムクローラ | |
JP2013155260A (ja) | ゴム組成物及びタイヤ |