JPWO2019189800A1 - 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 - Google Patents

非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 Download PDF

Info

Publication number
JPWO2019189800A1
JPWO2019189800A1 JP2020511112A JP2020511112A JPWO2019189800A1 JP WO2019189800 A1 JPWO2019189800 A1 JP WO2019189800A1 JP 2020511112 A JP2020511112 A JP 2020511112A JP 2020511112 A JP2020511112 A JP 2020511112A JP WO2019189800 A1 JPWO2019189800 A1 JP WO2019189800A1
Authority
JP
Japan
Prior art keywords
negative electrode
less
electrode material
aqueous secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020511112A
Other languages
English (en)
Other versions
JP7248019B2 (ja
Inventor
山田 俊介
俊介 山田
信亨 石渡
信亨 石渡
佐藤 智洋
智洋 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Publication of JPWO2019189800A1 publication Critical patent/JPWO2019189800A1/ja
Application granted granted Critical
Publication of JP7248019B2 publication Critical patent/JP7248019B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、下記式1で表される密度指数(Dr-t)が0.080g/cm3以下である非水系二次電池用負極材による。式1:Dr-t(g/cm3)=[体積抵抗率が0.05Ω・cmのときの粉体密度(g/cm3)]−[タップ密度(g/cm3)]

Description

本発明は、低温入出力特性、急速充放電特性及びサイクル特性に優れた非水系二次電池用負極材に関する。また、本発明は、この非水系二次電池用負極材を含む非水系二次電池用負極及び非水系二次電池に関する。
近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、急速充放電特性に優れた非水系二次電池、とりわけリチウムイオン二次電池が注目されている。特に、リチウムイオンを吸蔵・放出できる正極及び負極、並びにLiPFやLiBF等のリチウム塩を溶解させた非水電解液からなる非水系リチウム二次電池が開発され、実用化されている。
この非水系リチウム二次電池の負極材としては種々のものが提案されているが、高容量であること、放電電位の平坦性に優れていること等の理由から、天然黒鉛やコークス等の黒鉛化で得られる人造黒鉛、黒鉛化メソフェーズピッチ、黒鉛化炭素繊維等の黒鉛質の炭素材が用いられている。また、一部の電解液に対して比較的安定しているなどの理由で非晶質の炭素材も用いられている。更には、黒鉛粒子の表面に非晶質炭素を被覆あるいは付着させ、黒鉛による高容量かつ不可逆容量が小さいという特性と、非晶質炭素による電解液との安定性に優れるという特性との2つの特性を併せもたせた炭素材も用いられている。
最近では、電気自動車等の分野において、高容量であることや低温入出力特性にすぐれること等の特性が重視され、この観点から上記の非水系リチウム二次電池の負極材の中でも黒鉛粒子の表面に非晶質炭素を被覆あるいは付着させた材料が使用されている。このような材料の中でも低温下での入出力特性を改善したものとして、特許文献1には、黒鉛粒子と1次粒子径3nm以上500nm以下の炭素微粒子との複合粒子で、ラマンR(90/10)値が所定の条件を満たす負極材を用いることにより、負極活物質表面に均一且つ連続的な微細流路が生成し、低温下においてもLiイオンの移動を効率良くすることが可能となった負極材が開示されている。また、特許文献2には、黒鉛粒子にピッチとカーボンブラックの混合物を付着させて焼成した複合黒鉛粒子と、この複合黒鉛粒子をさらに高温で黒鉛化した複合黒鉛粒子とを混合することで、高容量で急速充放電特性を改善した負極材が開示されている。また、特許文献3には、タップ密度が高く表面に非晶質炭素を被覆した黒鉛粒子とタップ密度が高い黒鉛粒子をブレンドさせることにより、急速充放電特性やサイクル特性を改善する技術が開示されている。また、特許文献4には、タップ密度が高く粒度分布半値幅が大きい負極材を用いることにより、急速放電特性やサイクル特性を改善する技術が開示されている。また、特許文献5には、表面に非晶質炭素を含む造粒炭素材で、熱的特性が所定の条件を満たす負極材を用いることにより、入出力特性とプレス荷重を改善する技術が開示されている。
特開2014−60148号公報 特開2008−27664号公報 特開2014−241302号公報 特開2013−197082号公報 特開2017−45574号公報
本発明者等の検討によれば、前記特許文献1、2に記載の非水系二次電池用負極材では負極材粒子間の導電パスの形成や、電極内のLiイオンの拡散性が不十分であるため、低温入出力特性、急速充放電特性、サイクル特性等が不十分であるという問題があることを見出した。また、前記特許文献3〜5に記載の非水系二次電池用負極材ではタップ密度を増加させることにより電極内のLiイオンの拡散性は改善されるが、導電パスの形成が不十分であるため、低温入出力特性、急速充放電特性、サイクル特性等が不十分であるという問題があることを見出した。
本発明の課題は、低温入出力特性、急速充放電特性及びサイクル特性に優れた非水系二次電池用負極材、並びにこれを含む非水系二次電池用負極及び非水系二次電池を提供することにある。
本発明者等は上記課題を解決するべく鋭意検討した結果、表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、特定の密度指数を満足する非水系二次電池用負極材により上記課題を解決し得ることを見出した。即ち、本発明の要旨は以下の通りである。
[1]表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、下記式1で表される密度指数(Dr-t)が0.080g/cm以下である非水系二次電池用負極材。
式1:
r-t(g/cm)=[体積抵抗率が0.05Ω・cmのときの粉体密度(g/cm)]−[タップ密度(g/cm)]
[2]フロー式粒子像分析より求められる円形度が0.90以上である、[1]に記載の非水系二次電池用負極材。
[3]タップ密度とその値が等しいときの粉体密度で測定した体積抵抗率が0.150Ω・cm以下である、[1]又は[2]に記載の非水系二次電池用負極材。
[4]タップ密度が0.88〜1.65g/cmである、[1]乃至[3]のいずれか1つに記載の非水系二次電池用炭素材。
[5]下記式2で表されるラマンR値が0.20以上1.00以下である、[1]乃至[4]のいずれか1つに記載の非水系二次電池用炭素材。
式2:
[ラマンR値]=[ラマンスペクトル分析における1360cm−1付近のピークPの強度I]/[1580cm−1付近のピークPの強度I
[6]集電体と、該集電体上に形成された活物質層とを備え、該活物質層が[1]乃至[5]のいずれか1項に記載の負極材を含有する、非水系二次電池用負極。
[7] 正極及び負極、並びに電解質を備える非水系二次電池であって、該負極が[6]に記載の非水系二次電池用負極である、非水系二次電池。
本発明によれば、低温入出力特性、急速充放電特性及びサイクル特性に優れた非水系二次電池用負極材、並びにこれを含む非水系二次電池用負極及び非水系二次電池が提供される。
以下、本発明を詳細に説明するが、本発明は以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本発明において、「〜」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
〔非水系二次電池用負極材〕
本発明の非水系二次電池用負極材(以下、単に「本発明の負極材」と称することがある。)は、表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、下記式1で表される密度指数(Dr-t)が0.080g/cm以下であるものである。
式1:
r-t(g/cm)=[体積抵抗率が0.05Ω・cmのときの粉体密度(g/cm)]−[タップ密度(g/cm)]
本発明の非水系二次電池用負極材は、低温入出力特性、急速充放電特性及びサイクル特性に優れるという効果を奏する。
一般的には、タップ密度が高い負極材はその粒子形状が球状や塊状であるために粒子間の接触性に劣り、体積抵抗率が増大する傾向がある。特に低密度の時には、より粒子同士が接触し難くなるため体積抵抗率はさらに増大する。この結果、導電パスの形成が不十分となって低温入出力特性、急速充放電特性、サイクル特性等が悪化する。一方で、粒子間の接触性を向上させて導電パスの形成を改善するためにタップ密度を低くすると、負極材粒子の形状が扁平状や鱗片状になる傾向があり、電極内で並行方向へ配向し、垂直方向のLiイオン移動経路の屈曲度が増大するため、Liイオンが電極内をスムーズに移動できなくなり低温入出力特性、急速充放電特性、サイクル特性等が悪化する。
これに対し、本発明の負極材がこのような効果を奏する理由は定かではないが、密度指数(Dr-t)を特定の範囲に調整することにより、粒子形状をより球状や塊状に維持す
ることでLiイオン移動経路の屈曲度が小さくなってLiイオンが電極内をスムーズに移動できることに加え、より低い粉体密度であっても体積抵抗率が低くなり導電パスの形成が十分となることによって、低温入出力特性、急速充放電特性、サイクル特性等が向上するものと推定される。
ここで密度指数(Dr-t)が特定の値より小さいことは、よりタップ密度が高く負極
材粒子の形状がより球状や塊状であるにも関わらず、体積抵抗率が一定の値にまで小さくなるときの粉体密度(g/cm)がより小さい、つまり、より低い粉体密度においても体積抵抗率が小さくなって導電パスの形成が十分であることを示している。
[黒鉛]
本発明の負極材は表面の少なくとも一部に非晶質炭素を有する黒鉛を含む。リチウムイオン二次電池に用いる場合、この黒鉛としては、表面の少なくとも一部に非晶質炭素を有するものであれば特に制限されないが、リチウムイオンを吸蔵・放出することが可能なものを用いることが好ましい。黒鉛として、具体的には、鱗片状、塊状又は板状の天然黒鉛や石油コークス、石炭ピッチコークス、石炭ニードルコークス及びメソフェーズピッチ等を2500℃以上に加熱して製造する人造黒鉛等を挙げることができる。
また、これらの黒鉛に力学的エネルギー処理を与えることが、黒鉛が球形化されるという観点から好ましく、また、黒鉛のLiイオンの挿入・脱離サイトとして働くエッジ量が増えることにより低温入出力特性が向上するため好ましい。力学的エネルギー処理は、例えば、ケーシング内部に多数のブレードを設置したローターを有する装置を用い、そのローターを高速回転することにより、その内部に導入した天然黒鉛又は人造黒鉛に対し、衝撃圧縮、摩擦及びせん断力等の機械的作用を繰り返し与えることで製造することができる。
本発明の負極材において、黒鉛として球形化黒鉛を含むことが、充填性が上がり活物質層を高密度化できることにより高容量化できるため好ましく、また、電極体にしたときの粒子間空隙の形状が整うため、電解液の移動がスムーズになり急速充放電特性が向上するため好ましい。このような球形化黒鉛は、各種の黒鉛に対して球形化処理を行うことにより得ることができる。この球形化処理の方法としては、例えば、せん断力や圧縮力を与えることによって機械的に球形に近づける方法、複数の微粒子をバインダー又は粒子自身の有する付着力によって造粒する機械的・物理的処理方法等が挙げられる。
更に、本発明の負極材は、黒鉛として、前記の球形化黒鉛に対し、石油系や石炭系のタールやピッチ、ポリビニルアルコール、ポリアクリルニトリル、フェノール樹脂、セルロース等の樹脂を必要により溶媒等を用いて混合し、非酸化性雰囲気で500℃〜2000℃、好ましくは600℃〜1800℃、より好ましくは700〜1600℃、更に好ましくは800〜1500℃で焼成することにより、表面の少なくとも一部に非晶質炭素を有する黒鉛を得ることができる。本発明の負極材は、このような表面の少なくとも一部に非晶質炭素を有する黒鉛を用いることにより、低温入出力特性を更に向上させている。
特に、本発明の負極材において、黒鉛と非晶質炭素との質量比は(〔[非晶質炭素の質量]/[黒鉛の質量]〕×100)は、好ましくは0.1%以上、より好ましくは0.5%以上、更に好ましくは1%以上、特に好ましくは2%以上、最も好ましいは3%以上である。一方、好ましくは30%以下、より好ましくは20%以下、更に好ましくは15%以下、特に好ましくは10%以下である。この質量比が上記範囲であると、高容量であり、かつ、Liイオンが挿入・脱離し易くなるため、低温入出力特性、急速充放電特性及びサイクル特性に優れる点で好ましい。なお、上記の質量比は焼成収率から求めることができる。
[物性]
本発明の負極材は以下の特定の密度指数(Dr−t)を満足する。また、本発明の負極材は、以下の各物性を満足していることが好ましい。
<密度指数(Dr−t)>
本発明の負極材は、密度指数(Dr-t)が0.080g/cm以下である。表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、かつこのDr-tが0.080g/cm以下であることにより、本発明の負極材は低温出力特性、急速充放電特性、及びサイクル特性に優れるという効果が得られるが、これらの特性をより良好なものとするため、Dr-tは、好ましくは0.070g/cm以下であり、より好ましくは0.065g/cm以下、更に好ましくは0.060g/cm以下、特に好ましくは0.055g/cm以下である。一方、充填性、容量、及び工程性の観点からはDr-tは、好ましくは0/cm以上であり、より好ましくは0.010g/cm以上である。
また、式1に示される通り、Dr−tは前記粉体密度と前記タップ密度の値を用いることにより決定される。このため、Dr−tは以下に説明する粉体密度及びタップ密度のそれぞれを測定することにより求めることができる。また、Dr−tの値の制御方法については本発明の負極材にかかる製造方法の説明において詳述する。
<体積抵抗率が0.05Ω・cmのときの粉体密度>
本発明の負極材は、体積抵抗率が0.05Ω・cmのときの粉体密度の値が、好ましくは0.8g/cm以上、より好ましくは0.85g/cm以上、更に好ましくは0.88g/cm以上、特に好ましくは0.9g/cm以上、最も好ましくは0.94g/cm以上、好ましくは1.65g/cm以下であり、より好ましくは1.35g/cm以下であり、更に好ましくは1.2g/cm以下であり、特に好ましくは1.13g/cm以下であり、最も好ましくは1.11g/cm以下である。上記粉体密度は、上記下限値以上であると負極材層の充填性が上がるため圧延性が良好で高密度の負極シートが形成し易くなり高密度化が可能になり、電極体にしたときにLiイオン移動経路の屈曲度が小さくなり、且つ粒子間空隙の形状が整うため電解液の移動がスムーズになり急速充放電特性が向上するといった観点から好ましく、また、上記上限値以下であるとより低い粉体密度においても導電パスの形成が十分となることによって、低温入出力特性、急速充放電特性、サイクル特性に優れる観点から好ましい。
なお、上記粉体密度は、粉体抵抗測定装置(例えば、三菱ケミカルアナリテック社製の粉体抵抗測定システムMCP−PD51型とロレスタ−GP4端子型とMCP−T600)を用いて、横断面積3.14cmの円柱状の粉体抵抗測定用容器に3.0gの負極材を投入し、徐々に圧力をかけて粉体密度を高めていき、体積抵抗率が0.05Ω・cmとなったときの粉体密度の値を用いる。より具体的には以下の通りである。
≪詳細な測定方法≫
まず、装置の補正を行う。荷重の補正に際しては、まず、負極材を投入する円柱型容器の底辺と上から容器内に挿入し負極材に圧力をかける押し棒が接触していない状態での荷重が0kgf/3.14cmであることを確認する。
次に、厚み計の補正を行う。油圧ポンプを用いて円柱型容器と押し棒を近づけ、荷重が20kgf/3.14cmになったところで厚み計の数値が0.00mmになるようにゼロ点補正を行う。補正が終了したら、直径2cmの円柱型の容器に3.0gの負極材を投入し、均一に荷重がかかるように負極材の高さを調整する。油圧ポンプを用いて台座を上昇させ円筒型容器内に押し棒を挿入し、厚み計を確認しながら圧力をかけ徐々に粉体の密度を高めていき、体積抵抗率が0.05Ω・cmとなったときの粉体密度の値を用いる。測定によるばらつきを少なくするため、測定は最低2回実施し、ばらつく場合には3回実施し、値が近い2点の平均を用いる。
<タップ密度>
本発明の負極材は、タップ密度(g/cm)が、好ましくは0.8g/cm以上、より好ましくは0.85g/cm以上、更に好ましくは0.88g/cm以上、特に好ましくは0.9g/cm以上、最も好ましくは0.93g/cm以上、好ましくは1.65g/cm以下であり、より好ましくは1.35g/cm以下であり、更に好ましくは1.3g/cm以下、特に好ましくは1.2g/cm以下、最も好ましくは1.15以下である。タップ密度は、上記下限値以上であると極板化作製時のスジ引き等の工程性が良好になり、負極材層の充填性が上がるため圧延性が良好で高密度の負極シートが形成し易くなり高密度化が可能になり、電極体にしたときにLiイオン移動経路の屈曲度が小さくなり、且つ粒子間空隙の形状が整うため電解液の移動がスムーズになり急速充放電特性が向上するといった観点から好ましく、また、上記上限値以下であると粒子の表面や内部に適度な空間を有するため低温入出力特性や急速充放電特性に優れる観点から好ましい。
なお、タップ密度は、粉体密度測定器タップデンサーKYT−3000(株式会社セイシン企業製)を用いて測定される。具体的には、20ccのタップセルに試料を落下させ、セルに満杯に充填した後、ストローク長10mmのタップを1000回行い、そのときの密度をタップ密度とする。
<体積抵抗率>
本発明の負極材は、タップ密度とその値が等しいときの粉体密度で測定した体積抵抗率が0.150Ω・cm以下であることで、Liイオンが電極内をスムーズに移動できることに加え、より低い粉体密度であっても体積抵抗率が低くなり導電パスの形成が十分となり、低温入出力特性、急速充放電特性、サイクル特性等が向上する観点から好ましい。この観点から、上記体積抵抗率は、0.130Ω・cm以下であることがより好ましく、0.110Ω・cm以下であることが更に好ましく、0.100Ω・cm以下であることが特に好ましい。また、上記体積抵抗率の下限値は特に制限されないが、通常、0.010Ω・cm以上である。
本発明の負極材において上記体積抵抗率は、粉体抵抗測定装置(例えば、三菱ケミカルアナリテック社製の粉体抵抗測定システムMCP−PD51型とロレスタ−GP4端子型とMCP−T600)を用いて、横断面積3.14cmの円柱状の粉体抵抗測定用容器に3.0gの負極材を投入し、徐々に圧力をかけて粉体密度を高めていき、予め測定したタップ密度の値と等しい値となったときの体積抵抗率の値を用いる。より具体的には以下の通りである。
まず、装置の補正を行う。荷重の補正に際しては、本発明の負極材を投入する円柱型容器の底辺と上から容器内に挿入して負極材に圧力をかける押し棒が接触していない状態での荷重が0kgf/3.14cmであることを確認する。次に厚み計の補正を行う。油圧ポンプを用いて円柱型容器と押し棒を近づけ、荷重が20kgf/3.14cmになったところで厚み計の数値が0.00mmになるようにゼロ点補正を行う。補正が終了したら、直径2cmの円柱型の容器に3.0gの負極材を投入し、均一に荷重がかかるように負極材の高さを調整する。油圧ポンプを用いて台座を上昇させ円筒型容器内に押し棒を挿入し、厚み計を確認しながら圧力をかけ徐々に粉体の密度を予め測定したタップ密度の値に近づけ、タップ密度の値と等しくなったときの値を用いる。測定によるばらつきを少なくするため、測定は最低2回実施し、ばらつく場合には3回実施し、値が近い2点の平均を用いる。後掲の実施例において製造した負極材の体積抵抗率もこの方法で測定した。
また、本発明の負極材は、粉体密度が1.1g/cmであるときの体積抵抗率が0.150Ω・cm以下であることが導電パスの形成が十分となることによって、低温入出力特性、急速充放電特性、サイクル特性に優れる観点から好ましい。この観点から、上記体積抵抗率は、0.100Ω・cm以下であることがより好ましく、0.070Ω・cm以下であることが更に好ましい。また、上記体積抵抗率の下限値は特に制限されないが、通常、0.001Ω・cm以上である。
なお、粉体密度が1.1g/cmであるときの測定した体積抵抗率は、前述のタップ密度とその値が等しいときの粉体密度で測定した体積抵抗率の測定方法に対して、測定条件とする粉体の密度をタップ密度と等しい値から1.1g/cmに変更して測定したものとして求めることができる。
前記体積抵抗率が0.150Ω・cm以下となるように制御する方法としては、例えば、負極材粒子の円形度、タップ密度、粒度分布を調整して好ましい値にする方法や、負極材に導電助剤を混合又は複合化する方法が挙げられる。
導電助剤としては、鱗片状黒鉛、カーボンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。炭素材に導電助剤を混合した場合、導電助剤により炭素材同士の接触性が良くなるために前記体積抵抗率の値が低くなる傾向にある。
また、負極材と導電助剤を複合化する場合としては、具体的には、負極材にバインダーとなる非晶質炭素前駆体とともに混合し、その後焼成することにより粒子表面に結着させる方法や、メカノケミカル処理による複合化、ファンデルワールス力により結着させる方法などがある。炭素材に導電助剤を複合化させる場合、炭素材表面への導電助剤の分散性や結着性が高まるために前記体積抵抗率の値が低くなる傾向にある。なお、ここで用いることのできる非晶質炭素前駆体としては、エチレンヘビーエンド等のナフサの熱分解時に得られる石油系重質油、タール、石炭ピッチ、コールタールピッチ、石油系ピッチ、合成ピッチなどのピッチ、塩化ビニル、塩化ビニリデン、ポリアクリロニトリル、フェノール樹脂、芳香族ポリイミドなどの樹脂類が挙げられる。これらの有機物前駆体は1種のみで用いても2種以上を組み合わせて用いてもよい。
<BET比表面積(SA)>
本発明の負極材は、BET法による比表面積(SA)が、好ましくは1m/g以上、より好ましくは2m/g以上、更に好ましくは2.5m/g以上であり、特に好ましくは4.5m/g以上であり、最も好ましくは5.3m/g以上であり、一方、好ましくは30m/g以下、より好ましくは20m/g以下、更に好ましくは17m/g以下、特に好ましくは15m/g以下である。SAがこの範囲を上記下限値以上であると、Liイオンが出入りする部位が確保され、リチウムイオン二次電池の急速充放電特性や低温入出力特性が良好となる傾向にあり、一方、SAがこの範囲を上回ると上記上限値以下であると活物質の電解液に対する活性が過剰となり過ぎず、電解液との副反応が抑えられて電池の初期充放電効率の低下やガス発生量の増大を防ぎ、電池容量が向上する傾向がある。
なお、本発明の負極材において、BET−SAはマウンテック社製マクソーブを用いて測定することができる。具体的には、試料に対して窒素流通下100℃、3時間の予備減圧乾燥を行なった後、液体窒素温度まで冷却し、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定することができる。
<円形度>
本発明の負極材は、フロー式粒子像分析より求められる円形度が、0.90以上であることが好ましく、0.91以上であることがより好ましく、0.92以上であることが更に好ましく、0.93以上であることが特に好ましく、0.94以上であることが最も好ましい。このように円形度が高い負極材であると、Liイオン拡散の屈曲度が下がって粒子間空隙中の電解液移動がスムーズになり急速充放電特性を高めることができるために好ましい。一方、この円形度は、理論上限が1であるため、通常、1未満であり、好ましくは0.99以下、より好ましくは0.98以下、さらに好ましくは0.97以下である。円形度が高過ぎると、真球状となるため、負極材同士の接触性が低下してサイクル特性が悪化するおそれがある。
なお、円形度はフロー式粒子像分析装置(東亜医療電子社製FPIA−2000)を使用し、円相当径による粒径分布の測定を行い、平均円形度を算出することにより求められる。円形度は以下の式で定義され、円形度が1のときに理論的真球となる。
[円形度]=[粒子投影形状と同じ面積を持つ相当円の周囲長]/[粒子投影形状の実際の周囲長]
この円形度の測定においては、分散媒としてイオン交換水を使用し、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用する。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した相当径が1.5〜40μmの範囲の粒子の円形度を平均し、円形度とする。
<ラマンR値>
本発明におけるラマンR値は、下記式2の通り、本発明の負極材についてラマン分光法により得られるラマンスペクトルにおける1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定したときの強度比(I/I)として定義する。なお、「1580cm−1付近」とは1580〜1620cm−1の範囲を、「1360cm−1付近」とは1350〜1370cm−1の範囲を指す。
式2:
[ラマンR値]=[ラマンスペクトル分析における1360cm−1付近のピークPの強度I]/[1580cm−1付近のピークPの強度I
本発明の負極材のラマンR値は、好ましくは0.20以上、より好ましくは0.25以上、更に好ましくは0.30以上、特に好ましくは、0.37以上、最も好ましくは、0.45以上である。また、通常1.00以下、好ましくは0.80以下、より好ましくは0.70以下、更に好ましくは0.650以下である。このラマンR値が小さすぎることは負極材表面の結晶性が高すぎることを示しており、Liイオンが挿入・脱離しにくくなることにより低温入出力特性が低下する場合がある。一方、ラマンR値が大き過ぎると非晶質炭素の持つ不可逆容量の影響の増大、電解液との副反応の増大により、リチウムイオン二次電池の初期充放電効率の低下やガス発生量の増大を招き、電池容量が低下する傾向がある。
ラマンスペクトルはラマン分光器により測定される。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にアルゴンイオンレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行う。
アルゴンイオンレーザー光の波長 :514.5nm
試料上のレーザーパワー :25mW
分解能 :4cm−1
測定範囲 :1100cm−1〜1730cm−1
ピーク強度測定、ピーク半値幅測定 :バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
<体積基準平均粒子径(平均粒子径d50)及び粒度分布>
本発明の負極材は、体積基準平均粒子径(「平均粒子径d50」とも記載する。)は好ましくは1μm以上、より好ましくは3μm以上、更に好ましくは4μm以上、特に好ましくは5μm以上である。また、好ましくは50μm以下、より好ましくは40μm以下、更に好ましくは30μm以下、特に好ましくは25μm以下、最も好ましくは20μm以下である。d50の値が小さすぎると、不可逆容量の増加、初期電池容量の損失を招く傾向があり、一方、d50の値が大きすぎるとスラリー塗布における筋引き等の工程不都合の発生、急速充放電特性の低下、低温入出力特性の低下を招く場合がある。
平均粒子径(d50)並びに以下に説明するd90及びd10は、界面活性剤であるポリオキシエチレンソルビタンモノラウレート(例として、ツィーン20(登録商標)が挙げられる)の0.2質量%水溶液10mLに、複合粒子0.01gを懸濁させ、これを測定サンプルとして市販のレーザー回折/散乱式粒度分布測定装置(例えばHORIBA製LA−920)に導入し、測定サンプルに28kHzの超音波を出力60Wで1分間照射した後、前記測定装置において体積基準のメジアン径として測定したものであると定義する。
d90はレーザー回折/散乱式粒度分布測定により体積基準で測定された小粒子側からの90%積算部の粒径をμm単位で表したものであり、d10は同様に測定された小粒子側からの10%積算部の粒径をμm単位で表したものであり、d90/d10は、d90とd10の比を表す。
本発明の負極材は、d90が好ましくは100μm以下、より好ましくは60μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下、最も好ましくは35μm以下である。また、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10m以上である。d90が小さすぎると電極強度の低下や初期充放電効率の低下を招く場合があり、大きすぎると筋引きなどの工程不都合の発生、電池の急速充放電特性の低下、及び低温入出力特性の低下を招く場合がある。
本発明の負極材は、d10が好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上である。また、好ましくは20μm以下、より好ましくは15μm以下、更に好ましくは12μm以下、特に好ましくは10μm以下、最も好ましくは8μm以下である。d10が小さすぎるとスラリー粘度上昇などの工程不都合の発生、電極強度の低下や初期充放電効率の低下を招く場合があり、大きすぎると電池の急速充放電特性の低下、及び低温入出力特性の低下を招く場合がある。
本発明の負極材は、d90/d10が好ましくは1.0以上、より好ましくは2.0以上、更に好ましくは2.5以上、特に好ましくは3.0以上である。d90/d10が上記範囲であると大きな粒子の間に小さな粒子が入り込むことにより粒子同士の接触性が向上して導電パスが改善されるため、体積抵抗率が下がり、急速充放電特性や低温入出力特性やサイクル特性が改善する傾向がある。
[製造方法]
本発明の非水系二次電池用負極材の製造方法は、表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、前記密度指数(Dr−t)を満たすものとなるように製造できる方法であれば特に制限はないが、例えば、球形化処理を施した球状黒鉛に非晶質炭素前駆体(非晶質炭素の原料)を混合し、焼成することで製造することができる。さらに、負極材の導電助剤が複合化されていることが好ましい。具体的には、1)前記球形化処理を施した球状黒鉛や、表面の少なくとも一部に非晶質炭素を有する黒鉛について、前述及び後述のタップ密度、円形度及び粒度分布等を前述及び後述の好ましい範囲に調整すること、2)導電助剤として後述する炭素微粒子を用い、その凝集帯が適度に解砕された状態で黒鉛粒子に添着させること等を適宜組み合わせることにより、前記密度指数(Dr−t)の値を特定値以下に調整することができる。
<黒鉛粒子>
本発明の負極材を製造するために使用する黒鉛粒子(原料)は、以下の種類、物性を示すものが好ましい。なお、黒鉛粒子(原料)の物性について、その測定条件及び定義は特に説明しない限りは前述の黒鉛について説明したものと同様である。
黒鉛粒子(原料)の種類は特に限定されず、天然黒鉛、人造黒鉛のいずれであってもよい。天然黒鉛としては、鱗片状黒鉛、塊状黒鉛、土状黒鉛等のいずれであってもよいが、不純物の少ない黒鉛が好ましく、必要に応じて公知の精製処理を施して用いることが好ましい。人造黒鉛としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂等の有機物を、通常2500℃以上、通常3200℃以下の範囲の温度で焼成し、黒鉛化したものが挙げられる。この際、珪素含有化合物やホウ素含有化合物などを黒鉛化触媒として用いることもできる。
黒鉛粒子の結晶性(黒鉛化度)は、通常、X線広角回折法による(002)面の面間隔(d002)が、0.335nm以上0.340nm未満である。また、d002値は0.338nm以下であることが好ましく、0.337nm以下であることがより好ましく、0.336nm以下であることが更に好ましい。
黒鉛粒子(原料)の形状は急速充放電特性の観点から特に球状(球状化黒鉛)であることが好ましい。黒鉛粒子を球状化する方法として、公知の技術を用いて球形化処理を施すことで球形化された黒鉛粒子を製造することができる。例えば、衝撃力を主体に粒子の相互作用も含めた圧縮、摩擦、せん断力等の機械的作用を繰り返し粒子に与える装置を用いて行うことが挙げられる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。また、黒鉛粒子を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。具体的な装置としては、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。例えば前述の装置を用いて処理する場合は、回転するローターの周速度を通常、特に制限はないが、30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、処理は、単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理するのがより好ましい。
(円形度)
本発明の負極材の原料に用いる黒鉛粒子(原料)は、フロー式粒子像分析より求められる円形度(1.5〜40μm)が、0.90以上であることが好ましく、0.91以上であることがより好ましく、0.92以上であることが更に好ましく、0.93以上であることが特に好ましく、0.94以上であることが最も好ましく、円形度(10〜40μm)が0.88以上であることが好ましく、0.89以上であることがより好ましく、0.90以上であることが更に好ましく、0.91以上であることが特に好ましく、0.92以上であることが最も好ましい。このように円形度が高い黒鉛粒子(原料)であると、それを用いて製造した負極材の、Liイオン拡散の屈曲度が下がって粒子間空隙中の電解液移動がスムーズになり、急速充放電特性を高めることができるために好ましい。一方、この円形度は、理論上限が1であるため、円形度(1.5〜40μm)は通常、1未満であり、好ましくは0.99以下、より好ましくは0.98以下、さらに好ましくは0.97以下であり、円形度(10〜40μm)は通常、1未満であり、好ましくは0.99以下、より好ましくは0.98以下、さらに好ましくは0.97以下である。円形度が高過ぎると、真球状となるため、それを用いて製造した負極材同士の接触性が低下してサイクル特性が悪化するおそれがある。
円形度はフロー式粒子像分析装置(東亜医療電子社製FPIA−2000)を使用し、円相当径による粒径分布の測定を行い、平均円形度を算出することにより求められる。円形度は以下の式で定義され、円形度が1のときに理論的真球となる。
[円形度]=[粒子投影形状と同じ面積を持つ相当円の周囲長]/[粒子投影形状の実際の周囲長]
この円形度の測定においては、分散媒としてイオン交換水を使用し、界面活性剤としてポリオキシエチレン(20)モノラウレートを使用する。円相当径とは、撮影した粒子像と同じ投影面積を持つ円(相当円)の直径であり、円形度とは、相当円の周囲長を分子とし、撮影された粒子投影像の周囲長を分母とした比率である。測定した相当径が1.5〜40μmの範囲の粒子の円形度を平均したものを円形度(1.5〜40μm)、測定した相当径が10〜40μmの範囲の粒子の円形度を平均したものを円形度(10〜40μm)とする。
(体積抵抗率)
本発明の黒鉛粒子(原料)は、前記測定法にて求められる、粉体密度が1.1g/cmであるとき体積抵抗率が0.150Ω・cm以下であることが好ましく、0.100Ω・cm以下であることがより好ましく、0.070Ω・cm以下であることが更に好ましく、0.060Ω・cm以下であることが特に好ましく、0.050以下であることが最も好ましい。また、上記体積抵抗率の下限値は特に制限されないが、通常、0.001Ω・cm以上である。粉体密度が1.1g/cmであるときの測定した体積抵抗率が上記範囲内であると、それを用いて製造した負極材が十分な導電パスを形成できるようになり、低温入出力特性、急速充放電特性、サイクル特性が向上するため好ましい。
(タップ密度)
黒鉛粒子(原料)のタップ密度は、好ましくは0.6g/cm以上、より好ましくは0.7g/cm以上であり、更に好ましくは0.8g/cm以上、特に好ましくは0.85g/cm以上、最も好ましくは0.9g/cm以上、通常1.6g/cm以下、好ましくは1.5g/cm以下、より好ましくは1.4g/cm以下である。
(体積基準平均粒子径(平均粒子径d50))
黒鉛粒子(原料)の体積基準平均粒子径(d50)も特に限定されないが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上であり、通常100μm以下、好ましくは50μm以下、より好ましくは40μm以下である。
(d90、d10、d90/d10)
本発明の負極材の原料に用いる黒鉛粒子(原料)のd90は、好ましくは100μm以下、より好ましくは60μm以下、更に好ましくは50μm以下、特に好ましくは40μm以下、最も好ましくは35μm以下である。また、好ましくは5μm以上、より好ましくは7μm以上、更に好ましくは10m以上である。
本発明の負極材の原料に用いる黒鉛粒子(原料)のd10は、好ましくは1μm以上、より好ましくは2μm以上、更に好ましくは3μm以上、特に好ましくは4μm以上である。また、好ましくは20μm以下、より好ましくは15μm以下、更に好ましくは12μm以下、特に好ましくは10μm以下、最も好ましくは8μm以下である。
本発明の負極材の原料に用いる黒鉛粒子(原料)のd90/d10は、好ましくは1.0以上、より好ましくは2.0以上、更に好ましくは3.0以上、特に好ましくは4.0以上である。
本発明の負極材の原料に用いる黒鉛粒子(原料)のd90、d10、d90/d10が上記範囲であると、それを用いて製造した負極材のd90、d10、d90/d10を前記の好ましい範囲に調整することが可能となり、負極材粒子同士の接触性が向上して導電パスが改善されるため、体積抵抗率が下がり、急速充放電特性や低温入出力特性やサイクル特性が改善する傾向がある。
(BET比表面積)
黒鉛粒子(原料)のBET比表面積も特に限定されないが、通常1m/g以上、好ましくは1.5m/g以上、より好ましくは2m/g以上、更に好ましくは3m/g以上、特に好ましくは4.5m/g以上であり、最も好ましくは5.1m/g以上である。また、通常は20m/g以下、好ましくは15m/g以下、より好ましくは10m/g以下の範囲である。
(ラマンR値)
黒鉛粒子(原料)の、下記式2で表されるラマンR値は特に限定されないが、0.10以上1以下であることが好ましい。また、ラマンR値は、より好ましくは0.15以上、さらに好ましくは0.20以上であり、特に好ましくは0.25以上であり、より好ましくは0.8以下、さらに好ましくは0.6以下である。
式2:
ラマンR値=(ラマンスペクトル分析における1360cm−1付近のピークPの強度I)/(1580cm−1付近のピークPの強度I
<非晶質炭素前駆体>
本発明の負極材は、表面の少なくとも一部に非晶質炭素を有する黒鉛を含む。この非晶質炭素は非晶質炭素前駆体(非晶質炭素の原料)を焼成することにより形成される。
非晶質炭素前駆体としては、特に限定されないが、コールタール、コールタールピッチ、乾留液化油等の石炭系重質油;常圧残油、減圧残油等の直留系重質油;原油、ナフサ等の熱分解時に副生するエチレンタール等の分解系重質油等の石油系重質油;アセナフチレン、デカシクレン、アントラセン等の芳香族炭化水素;フェナジンやアクリジン等の窒素含有環状化合物;チオフェン等の硫黄含有環状化合物;アダマンタン等の脂肪族環状化合物;ビフェニル、テルフェニル等のポリフェニレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラール等のポリビニルエステル類、ポリビニルアルコール等の熱可塑性高分子等の有機物が挙げられる。これらの有機物前駆体は1種のみで用いても2種以上を組み合わせて用いてもよい。
<導電助剤>
本発明の負極材は、さらに表面に導電助剤として炭素微粒子が複合化されていることが粒子間の接触性や体積抵抗率の観点から好ましい。 本発明の負極材を製造するために使用する、導電助剤として複合化される炭素微粒子(原料)(以下、「炭素微粒子(原料)」と略す場合がある。)」は、1次粒径が、好ましくは3nm以上、より好ましくは15nm以上であり、好ましくは500nm以下、より好ましくは200nm以下、更に好ましくは100nm以下、特に好ましくは70nm以下、最も好ましくは30nm以下である。なお、炭素微粒子の1次粒子径は、SEM等の電子顕微鏡観察やレーザー回折式粒度分布計などによって測定することができる。「炭素微粒子(原料)」の一次粒子径が上記範囲であると、より低い粉体密度であっても体積抵抗率が低くなり導電パスの形成が十分となることに加え、Liイオンが電極内をスムーズに移動できるため、低温入出力特性、急速充放電特性、サイクル特性が向上する傾向にある。
炭素微粒子(原料)の種類は特に限定されないが、鱗片状黒鉛、石炭微粉、気相炭素粉、カーボンブラック、ケッチェンブラック、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。この中でもカーボンブラックが特に好ましい。カーボンブラックであると、低温下においても入出力特性が高くなり、同時に安価・簡便に入手が可能という利点がある。また、炭素微粒子(原料)の形状は特に限定されず、粒状、球状、鎖状、針状、繊維状、板状、鱗片状等のいずれであってもよい。
炭素微粒子(原料)のBET比表面積は特に限定されないが、通常1m/g以上、好ましくは10m/g以上、より好ましくは30m/g以上であり、通常は1000m/g以下、好ましくは500m/g以下、より好ましくは120m/g以下、更に好ましくは100m/g以下、特に好ましくは70m/g以下の範囲である。
炭素微粒子(原料)の嵩密度は特に限定されないが、通常0.01g/cm以上、好ましくは0.1g/cm以上、より好ましくは0.15g/cm以上であり、更に好ましくは0.17g/cm以上であり、通常1g/cm以下、好ましくは0.8g/cm以下、より好ましくは0.6g/cm以下である。
炭素微粒子(原料)のタップ密度は特に限定されないが、通常0.1g/cm以上、好ましくは0.15g/cm以上、より好ましくは0.2g/cm以上であり、通常2g/cm以下、好ましくは1g/cm以下、より好ましくは0.8g/cm以下である。
炭素微粒子(原料)のDBP吸油量は、先に述べたとおり、低いことが好ましい。炭素微粒子の吸油量は、330mL/100g以下であることが好ましく、170mL/100g以下であることがより好ましく、100mL/100g以下であることが更に好ましい。下限値は特段限定されないが、通常10mL/100g以上、好ましくは50mL/100g以上、より好ましくは60mL/100g以上である。
<黒鉛と導電助剤の複合化>
黒鉛と導電助剤を複合化する手法としては、黒鉛にバインダーとなる非晶質炭素前駆体とともに混合し、その後焼成することにより粒子表面に結着させる方法や、メカノケミカル処理による複合化、ファンデルワールス力により結着させる方法などがある。炭素材に導電助剤を複合化させる場合、黒鉛表面への導電助剤の分散性や結着性が高まるために前記体積抵抗率の値が低くなる傾向にある。より黒鉛表面への導電助剤の分散性や結着性が高め前記体積抵抗率の値が低くするために、以下の(1)及び(2)の観点を考慮した製造方法を採用することが好ましい。なお、非晶質炭素前駆体としては、前述の物を用いることができる。
(1)炭素微粒子の凝集体が適度に解砕された状態で、黒鉛粒子に添着させること。
上述の炭素微粒子は、一次粒子同士の凝集力が強いため二次粒子凝集体として存在し易い傾向がある。この二次粒子が適度に解砕された状態で黒鉛粒子に添着していることが十分な導電パスの形成と、スムーズなLiイオンの移動が可能となる点で好ましい。一方で、解砕が不足した状態や過度に解砕された状態で黒鉛粒子に添着している場合、前者は導電助剤として有効に働く炭素微粒子数が少なることにより、後者は炭素微粒子のストラクチャー構造が崩れることにより、導電パスの形成やLiイオン移動性が不十分になる傾向がある。
炭素微粒子はそのまま単独で事前に解砕しても再凝集してしまい、黒鉛粒子との混合の際に二次粒子となってしまう。そのため以下のような製造方法を採用することにより、炭素微粒子が適度に凝集していない状態で黒鉛粒子に添着され、黒鉛粒子表面に均一に複合化することができ、十分な導電パスの形成と、スムーズなLiイオン移動が可能となる点で好ましい。
炭素微粒子が凝集する前の一次粒子の状態で、黒鉛粒子に炭素微粒子を添着させるためには、黒鉛粒子と炭素微粒子を混合する装置として、黒鉛粒子と炭素微粒子を混合・撹拌する混合撹拌機構のみならず、黒鉛粒子や炭素微粒子を解砕する解砕機構を備える装置、いわゆる解砕混合機を採用して混合することが好ましい。このような解砕混合機を用いて黒鉛粒子と炭素微粒子を混合することにより、黒鉛粒子や炭素微粒子の凝集体を解砕して均一に混合することができる。複合化する前に黒鉛粒子や炭素微粒子の凝集体を十分に解砕して均一に混合しておくことにより、その後の工程において生じる炭素微粒子同士の凝集も抑制することができる。
(2)炭素微粒子として、吸油量が低い炭素微粒子を用いること。吸油量が低い炭素微粒子を使用することにより、黒鉛粒子及び非晶質炭素前駆体と混合した際に、炭素微粒子が再凝集して二次粒子凝集体になりにくい。その結果、炭素微粒子の適度な分散が維持できるため、十分な導電パスの形成と、スムーズなLiイオン移動が可能となり好ましい。
以上の(1)及び(2)の観点を考慮した製造方法としては、炭素微粒子を適度に解砕しながら黒鉛粒子に乾式にて添着させる工程、及び前記工程で得られた炭素微粒子添着黒鉛粒子と非晶質炭素前駆体有機物とを混合した後、焼成処理する工程を含む製造方法が挙げられる。
炭素微粒子を適度に解砕しながら黒鉛粒子に乾式にて添着させる工程は、後述の解砕混合器等を用い、炭素微粒子と黒鉛粒子をドライブレンドする方法が例示される。当該工程により、黒鉛粒子に適度に解砕された炭素微粒子の一次粒子が添着する。黒鉛粒子に炭素微粒子の一次粒子が添着した後は、非晶質炭素前駆体有機物を混合した後、焼成する。焼成の温度は詳細には後述するが、2600℃以下であることが好ましい。
また、炭素微粒子として、吸油量が低い炭素微粒子を用いることが好ましく、炭素微粒子の吸油量は、330mL/100g以下であることが好ましく、170mL/100g以下であることがより好ましく、100mL/100g以下であることが更に好ましい。
なお、炭素微粒子が均一に分散していることは、先に述べたHgポロシメトリー解析により把握できる。具体的には、Hgポロシメトリーから求められる、炭素微粒子を黒鉛粒子に添着させることによる200nm以下の微細孔体積増加率が50%以上となることが好ましい。100%以上であることがより好ましく、200%以上であることが更に好ましい。Hgポロシメトリーによる測定方法は、前述の方法を用いることができる。また、上記微細孔体積増加率の測定は、炭素材の製造において、炭素微粒子を含有して製造した炭素材、及び炭素微粒子を含有せず製造した炭素材の200nm以下の微細孔体積を測定し、その増加率を計算すればよい。
黒鉛粒子と炭素微粒子を混合する場合の黒鉛粒子と「炭素微粒子」の混合比率は、目的とする複合粒子の組成に基づいて適宜選択されるべきものであるが、「黒鉛粒子」100質量部に対して、「炭素微粒子」は、通常0.01質量部、好ましくは0.1質量部、より好ましくは0.15質量部であり、通常20質量部、好ましくは10質量部、より好ましくは5質量部以下、更に好ましくは2.9質量部以下である。上記範囲であると、電池の充放電効率および放電容量などリチウムイオン二次電池に求められる諸特性を満足しつつ、低温下においても入出力特性が高くなる利点がある。
「黒鉛粒子」と「炭素微粒子」の混合粉体に非晶質炭素前駆体を混合する場合の非晶質炭素前駆体の混合比率は、目的とする複合粒子の組成に基づいて適宜選択されるべきものであるが、「黒鉛粒子」100質量部に対して、非晶質炭素前駆体はその残炭物として、通常0.01質量部以上、好ましくは0.1質量部以上、より好ましくは0.5質量部以上であり、更に好ましくは1質量部以上であり、通常60質量部、好ましくは30質量部、より好ましくは20質量部以下であり、更に好ましくは10質量部以下であり、特に好ましくは5質量部以下である。上記範囲であると、電池の充放電効率、放電容量、および低温下における入出力特性が高くなる利点がある。
「黒鉛粒子」と「炭素微粒子」の混合粉体に、非晶質炭素前駆体を混合し、不活性ガス中で熱処理する場合、熱処理条件は特に限定されないが、熱処理温度は、通常600℃以上、好ましくは800℃以上、より好ましくは900℃以上、更に好ましくは1000℃以上、通常2600℃以下、好ましくは2200℃以下、より好ましくは1800℃以下、更に好ましくは1500℃以下である。また、熱処理時間は、非晶質炭素前駆体が非晶質炭素化するまで行えばよく、通常10分〜24時間である。上記範囲内であると、非水系電解液二次電池の負極活物質として用いた場合に、非水系電解液二次電池の低温時における入出力特性を大幅に改善することができる。なお、不活性ガスとしては窒素、アルゴンが挙げられる。
「黒鉛粒子」と「炭素微粒子」を混合する装置として解砕混合機を採用する場合、具体的な装置は特に限定されず、市販されているものを適宜採用することができるが、例えばロッキングミキサー、レーディゲミキサー、ヘンシェルミキサー等が挙げられる。また、解砕混合条件も特に限定されないが、解砕羽根(チョッパー)の回転数は、通常100rpm以上、好ましくは1000rpm以上、より好ましくは2000rpm以上であり、通常100000rpm以下、好ましくは30000rpm以下、更に好ましくは10000rpm以下である。さらに解砕混合時間は、通常30秒以上、好ましくは1分以上、より好ましくは2分以上であり、通常24時間以下、好ましくは3時間以下、より好ましくは1時間以下、更に好ましくは15分以下である。上記範囲内であると、炭素微粒子の凝集体を適度に解砕することが可能となり、「黒鉛粒子」や「炭素微粒子」の凝集を効果的に防止することができる。
本発明の炭素材を製造するために、前述の製造方法によって得られた複合粒子について、別途粉砕処理を行ってもよい。
粉砕処理に使用する粗粉砕機としては、ジョークラッシャー、衝撃式クラッシャー、コ−ンクラッシャー等が挙げられ、中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。これらの中でも、ボールミル、振動ミル等が、粉砕時間が短く、処理速度の観点から好ましい。
粉砕速度は、装置の種類、大きさによって適宜設定するものであるが、例えば、ボールミルの場合、通常50rpm以上、好ましい100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。
粉砕時間は、通常30秒以上、好ましい1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。
振動ミルの場合、粉砕速度は、通常50rpm以上、好ましい100rpm以上、より好ましくは150rpm以上、更に好ましくは200rpm以上である。また、通常2500rpm以下、好ましくは2300rpm以下、より好ましくは2000rpm以下である。速度が速すぎると、粒径の制御が難しくなる傾向があり、速度が遅すぎると処理速度が遅くなる傾向がある。
粉砕時間は、通常30秒以上、好ましくは1分以上、より好ましくは1分30秒以上、更に好ましくは2分以上である。また、通常3時間以下、好ましくは2.5時間以下、より好ましくは2時間以下である。粉砕時間が短すぎると粒径制御が難しくなる傾向があり、粉砕時間が長すぎると、生産性が低下する傾向がある。
本発明の炭素材を製造するために、前述の製造方法によって得られた複合粒子について、粒径の分級処理を行ってもよい。分級処理条件としては、目開きが、通常53μm以下、好ましくは45μm以下、より好ましくは38μm以下であるものを用いて実施される。
分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合:回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができ、乾式気流式分級の場合:重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)等を用いることができ、湿式篩い分けの場合:機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等を用いることができる。
〔非水系二次電池用負極〕
本発明の非水系二次電池用負極(以下、「本発明の負極」と称する場合がある。)は、集電体と、該集電体上に形成された活物質層とを備え、該活物質層が本発明の負極材を含有するものである。
本発明の負極材を用いて負極を作製するには、負極材に結着樹脂を配合したものを水性又は有機系媒体でスラリーとし、必要によりこれに増粘材を加えて集電体に塗布し、乾燥すればよい。
結着樹脂としては、非水電解液に対して安定で、かつ非水溶性のものを用いるのが好ましい。例えば、スチレン・ブタジエンゴム、イソプレンゴム及びエチレン・プロピレンゴム等のゴム状高分子;ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリイミド、ポリアクリル酸、及び芳香族ポリアミド等の合成樹脂;スチレン・ブタジエン・スチレンブロック共重合体やその水素添加物、スチレン・エチレン・ブタジエン、スチレン共重合体、スチレン・イソプレン及びスチレンブロック共重合体並びにその水素化物等の熱可塑性エラストマー;シンジオタクチック−1,2−ポリブタジエン、エチレン・酢酸ビニル共重合体、及びエチレンと炭素数3〜12のα−オレフィンとの共重合体等の軟質樹脂状高分子;ポリテトラフルオロエチレン・エチレン共重合体、ポリビニデンフルオライド、ポリペンタフルオロプロピレン及びポリヘキサフルオロプロピレン等のフッ素化高分子等を用いることができる。有機系媒体としては、例えば、N−メチルピロリドン及びジメチルホルムアミドを用いることができる。
結着樹脂は、負極材100重量部に対して通常は0.1重量部以上、好ましくは0.2重量部以上用いるのが好ましい。結着樹脂の使用量を負極材100重量部に対して0.1重量部以上とすることで、負極材料相互間や負極材料と集電体との結着力が十分となり、負極から負極材料が剥離することによる電池容量の減少及びリサイクル特性の悪化を防ぐことができる。
また、結着樹脂の使用量は負極材100重量部に対して10重量部以下とするのが好ましく、7重量部以下とするのがより好ましい。結着樹脂の使用量を負極材100重量部に対して10重量部以下とすることにより、負極の容量の減少を防ぎ、かつリチウムイオン等のアルカリイオンの負極材料への出入が妨げられる等の問題を防ぐことができる。
スラリーに添加する増粘材としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロース及びヒドロキシプロピルセルロース等の水溶性セルロース類、ポリビニルアルコール並びにポリエチレングリコール等が挙げられる。これらの中でも好ましいのはカルボキシメチルセルロースである。増粘材は負極材料100重量部に対して、通常0.1〜10重量部、特に0.2〜7重量部となるように用いるのが好ましい。
負極集電体としては、従来からこの用途に用い得ることが知られている、例えば、銅、銅合金、ステンレス鋼、ニッケル、チタン及び炭素等を用いればよい。集電体の形状は通常はシート状であり、その表面に凹凸をつけたもの、ネット及びパンチングメタル等を用いることも好ましい。
集電体に負極材と結着樹脂のスラリーを塗布・乾燥した後は、加圧して集電体上に形成された活物質層の密度を大きくして負極活物質層の単位体積当たりの電池容量を大きくするのが好ましい。活物質層の密度は1.2〜1.8g/cmの範囲にあることが好ましく、1.3〜1.6g/cmであることがより好ましい。活物質層の密度を上記下限値以上とすることで、電極の厚みの増大に伴う電池の容量の低下を防ぐことができる。また、活物質層の密度を上記上限値以下とすることで、電極内の粒子間空隙が減少に伴い空隙に保持される電解液量が減り、リチウムイオン等のアルカリイオンの移動性が小さくなり急速充放電性が小さくなるのを防ぐことができる。
本発明の負極材を用いて形成した負極活物質層の水銀圧入法による10nm〜100000nmの範囲の細孔容量は、0.05mL/gであることが好ましく、0.1mL/g以上であることがより好ましい。細孔容量を0.05mL/g以上とすることによりリチウムイオン等のアルカリイオンの出入りの面積が大きくなる。
〔非水系二次電池〕
本発明の非水系二次電池は、正極及び負極、並びに電解質を備える非水系二次電池であって、負極として、本発明の負極を用いたものである。特に、本発明の非水系二次電池に用いる正極及び負極は、通常、Liイオンを吸蔵、放出可能なリチウムイオン二次電池であることが好ましい。
本発明の非水系二次電池は、上記の本発明の負極を用いる以外は、常法に従って製造することができる。特に、本発明の非水系二次電池は、[負極の容量]/[正極の容量]の値を1.01〜1.5に設計することが好ましく、1.2〜1.4に設計することがより好ましい。
[正極]
本発明の非水系二次電池の正極の活物質となる正極材としては、例えば、基本組成がLiCoOで表されるリチウムコバルト複合酸化物、LiNiOで表されるリチウムニッケル複合酸化物、LiMnO及びLiMnで表されるリチウムマンガン複合酸化物等のリチウム遷移金属複合酸化物、二酸化マンガン等の遷移金属酸化物、並びにこれらの複合酸化物混合物等を用いればよい。更にはTiS、FeS、Nb、Mo、CoS、V、CrO、V、FeO、GeO及びLiNi0.33Mn0.33Co0.33、LiFePO等を用いればよい。
前記正極材に結着樹脂を配合したものを適当な溶媒でスラリー化して集電体に塗布、乾燥することにより正極を製造することができる。なお、スラリー中にはアセチレンブラック、ケッチェンブラック等の導電材を含有させることが好ましい。また、必要に応じて増粘材を含有させてもよい。なお、結着材及び増粘剤としては、この用途に周知のもの、例えば負極の製造に用いるものとして例示したものを用いることができる。
導電材の配合量は正極材100重量部に対し、0.5〜20重量部が好ましく、1〜15重量部がより好ましい。また、増粘材の配合量は正極材100重量部に対し、0.2〜10重量部が好ましく、0.5〜7重量部がより好ましい。更に、正極材100重量部に対する結着樹脂の配合量は、結着樹脂を水でスラリー化する場合には0.2〜10重量部が好ましく、0.5〜7重量部がより好ましく、一方、結着樹脂をN−メチルピロリドン等の結着樹脂を溶解する有機溶媒でスラリー化する場合には0.5〜20重量部が好ましく、1〜15重量部がより好ましい。
正極集電体としては、例えば、アルミニウム、チタン、ジルコニウム、ハフニウム、ニオブ及びタンタル等並びにこれらの合金が挙げられる。これらの中でもアルミニウム、チタン及びタンタル並びにその合金が好ましく、アルミニウム及びその合金が最も好ましい。
[電解液]
電解液は、従来周知の非水溶媒に種々のリチウム塩を溶解させたものを用いることができる。
非水溶媒としては、例えば、エチレンカーボネート、フルオロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート及びビニレンカーボネート等の環状カーボネート、ジメチルカーボネート、エチルメチルカーボネート及びジエチルカーボネート等の鎖状カーボネート、γ−ブチロラクトン等の環状エステル、クラウンエーテル、2−メチルテトラヒドロフラン、テトラヒドロフラン、1,2−ジメチルテトラヒドロフラン及び1,3−ジオキソラン等の環状エーテル、1,2−ジメトキシエタン等の鎖状エーテル等を用いればよい。通常はこれらの2種以上を混合して用いる。なかでも環状カーボネートと鎖状カーボネート、又はこれに更に他の溶媒を混合して用いることが好ましい。
電解液には、ビニレンカーボネート、ビニルエチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン及びジエチルスルホン等の化合物やジフルオロリン酸リチウムのようなジフルオロリン酸塩等が添加されていてもよい。更に、ジフェニルエーテル及びシクロヘキシルベンゼン等の過充電防止剤が添加されていてもよい。
非水溶媒に溶解させる電解質としては、例えば、LiClO、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CFCFSO、LiN(CFSO)(CSO)及びLiC(CFSO等が挙げられる。電解液中の電解質の濃度は通常0.5〜2mol/Lであり、好ましくは0.6〜1.5mol/Lである。
[セパレータ]
正極と負極との間に介在させるセパレータを用いることが好ましい。このようなセパレータとしては、ポリエチレンやポリプロピレン等のポリオレフィンの多孔性シートや不織布を用いることが好ましい。
以下、実施例により本発明の内容を更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
<実施例1>
(非水系電解液二次電池用負極の調製)
d50が8.0μm、d90が12.5μm、d10が5.3μm、d90/d10が2.4、BET比表面積が10.9m/g、タップ密度が0.90g/cm、円形度(1.5〜40μm)が0.95、円形度(10〜40μm)が0.91、粉体密度が1.1g/cmであるときの体積抵抗率が0.053Ω・cmの黒鉛粒子に、一次粒子径が24nm、BET比表面積(SA)が115m/g、DBP吸油量が110mL/100gのカーボンブラックを、黒鉛質粒子に対して2.0質量%添加し、チョッパーによるカーボンブラック凝集体の解砕機構とシャベルの回転による粉体の混合攪拌機構を有する回転式ミキサーにより、チョッパー回転数3000rpmで5分間、混合・攪拌した。その混合粉体と炭素質物前駆体としてナフサ熱分解時に得られる石油系重質油とを混合し、不活性ガス中で1100℃熱処理を施した後、焼成物を粉砕・分級処理することにより、黒鉛質粒子の表面にカーボンブラック微粒子と非晶質炭素とが添着された複合炭素粒子(1)を得た。この複合炭素粒子(1)を負極材として用いた。焼成収率から、得られた複合炭素粒子(1)は、黒鉛100重量部に対して2重量部の非晶質炭素で被覆されていることが確認された。得られた負極材について前述の方法にて各種物性を測定した。その結果を表1(表1A,表1B)に示す。
<負極シートの作製>
前述の実施例で調製した負極材を負極活物質として用い、活物質層密度1.35±0.03g/cmの活物質層を有する極板を作製した。具体的には、負極材50.00±0.02gに、1質量%カルボキシメチルセルロースナトリウム塩水溶液を50.00±0.02g(固形分換算で0.500g)、及び重量平均分子量27万のスチレン・ブタジエンゴム水性ディスパージョン1.00±0.05g(固形分換算で0.5g)を、キーエンス製ハイブリッドミキサーで5分間撹拌し、30秒脱泡してスラリーを得た。
このスラリーを、集電体である厚さ10μmの銅箔上に、負極材料が6.00±0.2mg/cm付着するように、ダイコーターを用いて幅10cmに塗布して乾燥後、幅5cmにカットし、直径20cmのローラを用いてロールプレスして、活物質層の密度が1.35±0.03g/cmになるよう調整し電極シートを得た。
<正極シートの作製>
正極は、正極活物質としてのニッケル−マンガンーコバルト酸リチウム(LiNiMnCoO)85質量%と、導電材としてのアセチレンブラック10質量%と、結着剤としてのポリフッ化ビニリデン(PVdF)5質量%とを、N−メチルピロリドン溶媒中で混合してスラリーを得た。このスラリーを、集電体である厚さ15μmのアルミニウム箔上に正極材が13.7±0.2mg/cm付着するように、ブレードコーターを用いて塗布し、130℃で乾燥した。更にロールプレスを行い、正極密度が2.60±0.05g/cmになるよう調整し電極シートを得た。
<非水電解液二次電池(ラミネート型電池)の作製法>
上記方法で作製した正極シートと負極シート、及びポリエチレン製セパレータを、負極、セパレータ、正極の順に積層した。こうして得られた電池要素を筒状のアルミニウムラミネートフィルムで包み込み、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)の混合溶媒(体積比=3:3:4)に、LiPFを1mol/Lになるように溶解させた電解液を注入した後で真空封止し、シート状の非水系電解液二次電池を作製した。更に、電極間の密着性を高めるために、ガラス板でシート状電池を挟んで加圧した。
<低温出力特性>
上記非水系二次電池の作製法により作製したラミネート型非水系二次電池を用いて、下記の測定方法で低温出力特性を測定した。
充放電サイクルを経ていない非水系二次電池に対して、25℃で電圧範囲4.1V〜3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて3サイクル、電圧範囲4.2V〜3.0V、電流値0.2Cにて(充電時には4.2Vにて定電圧充電をさらに2.5時間実施)2サイクル、初期充放電を行った。更に、SOC50%まで電流値0.2Cで充電を行った後、−30℃の低温環境下で、1/8C、1/4C、1/2C、1.5C、2.5C、3.5C、5Cの各電流値で2秒間定電流放電させ、各々の条件の充電における2秒後の電池電圧の上昇を測定し、それらの測定値から充電上限電圧を4.2Vとした際に、2秒間に流すことのできる電流値Iを算出し、4.2×I(W)で計算される値をそれぞれの電池の低温出力特性とし、後述の比較例2の低温出力値を100としたときの電池の低温出力の比で示した。低温出力特性を測定した結果を表2に示す。
<急速放電特性>
上記非水系二次電池の作製法により作製したラミネート型非水系二次電池を用いて、下記の測定方法で急速放電特性を測定した。
充放電サイクルを経ていない非水系二次電池に対して、25℃で電圧範囲4.1V〜3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて3サイクル、電圧範囲4.2V〜3.0V、電流値0.2Cにて(充電時には4.2Vにて定電圧充電をさらに2.5時間実施)2サイクル、初期充放電を行った。更に、25℃で電圧4.2Vまで電流値0.2Cにて充電(4.2Vにて定電圧充電をさらに2.5時間実施)した後、電圧3.0Vまで電流値3Cにて放電を行った。この、電流値3Cのときの放電容量と電流値0.2Cのときの放電容量との比([(電流値3Cのときの放電容量)/(電流値0.2Cのときの放電容量)]×100)(%)を急速放電特性とした。急速放電特性を測定した結果を表2に示す。
<サイクル特性>
上記非水系二次電池の作製法により作製したラミネート型非水系二次電池を用いて、下記の測定方法で急速放電特性を測定した。
充放電サイクルを経ていない非水系二次電池に対して、25℃で電圧範囲4.1V〜3.0V、電流値0.2C(1時間率の放電容量による定格容量を1時間で放電する電流値を1Cとする、以下同様)にて3サイクル、電圧範囲4.2V〜3.0V、電流値0.2Cにて(充電時には4.2Vにて定電圧充電をさらに2.5時間実施)2サイクル、初期充放電を行った。更に、60℃で電圧範囲4.2V〜3.0V、電流値2Cにて500サイクルの充放電を行った。この、500サイクル目の放電容量と1サイクル目の放電容量との比([(500サイクル目の放電容量)/(1サイクル目の放電容量)]×100)(%)をサイクル特性とした。サイクル特性を測定した結果を表2に示す。
<実施例2>
黒鉛粒子100質量部に対して3重量部の非晶質炭素で被覆されている以外は、実施例1と同様の方法でサンプルを得て、実施例1と同様の評価を行った。結果を表1(表1A,表1B)及び表2に示す。
<実施例3>
d50が8.3μm、d90が13.3μm、d10が4.5μm、d90/d10が3.0、BET比表面積が11.0m/g、タップ密度が0.83g/cm、円形度(1.5〜40μm)が0.94、円形度(10〜40μm)が0.90、粉体密度が1.1g/cmであるときの体積抵抗率が0.049Ω・cmの黒鉛粒子を用いた以外は、実施例2と同様の方法でサンプルを得て、実施例1と同様の評価を行った。結果を表1(表1A,表1B)及び表2に示す。
<実施例4>
d50が9.9μm、d90が26.9μm、d10が5.8μm、d90/d10が4.6、BET比表面積が9.6m/g、タップ密度が0.94g/cm、円形度(1.5〜40μm)が0.94、円形度(10〜40μm)が0.90の黒鉛粒子を用いた以外は、実施例1と同様の方法でサンプルを得た。正極シートの活物質重量を20.5mg/cm2、負極シートの活物質重量を9.00±0.2mg/cm2、活物質層密度を1.50±0.03g/cmとし、急速放電特性を電流値2Cのときの放電容量と電流値0.2Cのときの放電容量との比とした以外は、実施例1と同様の評価を行った。結果を表1(表1A,表1B)及び表3に示す。
<実施例5>
d50が12.4μm、d90が33.9μm、d10が6.3μm、d90/d10が5.4、BET比表面積が8.7m/g、タップ密度が0.96g/cm、円形度(1.5〜40μm)が0.94、円形度(10〜40μm)が0.90の黒鉛粒子を用いた以外は、実施例1と同様の方法でサンプルを得て、実施例4と同様の評価を行った。結果を表1(表1A,表1B)及び表3に示す。
<比較例1>
体積平均粒子径(d50)が9.8μm、d90が17.2μm、d10が4.1μm、d90/d10が4.2、BET比表面積が9.4m/g、タップ密度が0.70g/cm、円形度(1.5〜40μm)が0.93、円形度(10〜40μm)が0.87、粉体密度が1.1g/cmであるときの体積抵抗率が0.032Ω・cmの黒鉛粒子を用いた以外は、実施例1と同様の方法でサンプルを得て、実施例1と同様の評価を行った。結果を表1(表1A,表1B)及び表2に示す。
<比較例2>
カーボンブラックを添加しない以外は実施例1と同様の方法でサンプルを得て、実施例1及び実施例4と同様の評価を行った。結果を表1(表1A,表1B)〜3に示す。
Figure 2019189800
Figure 2019189800
Figure 2019189800
表1(表1A,表1B)〜3から明らかなように、密度指数(Dr-t)を特定の範囲内に調整した実施例1〜5は比較例1、2に比べて、優れた低温出力特性、急速放電特性、サイクル特性を示すことがわかった。これは、密度指数(Dr-t)を特定の範囲に調整することにより、粒子形状をより球状や塊状に維持したまま、より低い粉体密度であっても体積抵抗率を低く維持できるようになるため、Liイオンが電極内をスムーズに移動できることに加え、導電パスを十分に形成でき、低温出力特性、急速放電特性、サイクル特性が向上したものと考えられる。一方で、円形度が低く、密度指数(Dr-t)が大きな比較例2はLiイオンが電極内をスムーズに移動できずに急速放電特性が低下したと考えられる。また、体積抵抗率が高く、密度指数(Dr-t)が大きな比較例3は、特に導電パスの形成が不十分となり、低温出力特性やサイクル特性が低下したと考えられる。即ち、本発明の非水系二次電池用負極材を用いることにより、低温出力特性、急速放電特性、サイクル特性が大きく改善される。
本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
本出願は、2018年3月29日付で出願された日本特許出願2018−064736に基づいており、その全体が引用により援用される。
本発明の非水電解液二次電池用負極材、並びにこれを含む非水系二次電池用負極及び非水系二次電池は、低温出力特性、急速放電特性及びサイクル特性に優れるため、車載用途;パワーツール用途;携帯電話、パソコン等の携帯機器用途等に好適に用いることができる。

Claims (7)

  1. 表面の少なくとも一部に非晶質炭素を有する黒鉛を含み、下記式1で表される密度指数(Dr-t)が0.080g/cm以下である非水系二次電池用負極材。
    式1:
    r-t(g/cm)=[体積抵抗率が0.05Ω・cmのときの粉体密度(g/cm)]−[タップ密度(g/cm)]
  2. フロー式粒子像分析より求められる円形度が0.90以上である、請求項1に記載の非水系二次電池用負極材。
  3. タップ密度とその値が等しいときの粉体密度で測定した体積抵抗率が0.150Ω・cm以下である、請求項1又は2に記載の非水系二次電池用負極材。
  4. タップ密度が0.88〜1.65g/cmである、請求項1乃至3のいずれか1項に記載の非水系二次電池用炭素材。
  5. 下記式2で表されるラマンR値が0.20以上1.00以下である、請求項1乃至4のいずれか1項に記載の非水系二次電池用炭素材。
    式2:
    [ラマンR値]=[ラマンスペクトル分析における1360cm−1付近のピークPの強度I]/[1580cm−1付近のピークPの強度I
  6. 集電体と、該集電体上に形成された活物質層とを備え、該活物質層が請求項1乃至5のいずれか1項に記載の負極材を含有する、非水系二次電池用負極。
  7. 正極及び負極、並びに電解質を備える非水系二次電池であって、該負極が請求項6に記載の非水系二次電池用負極である、非水系二次電池。
JP2020511112A 2018-03-29 2019-03-29 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池 Active JP7248019B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018064736 2018-03-29
JP2018064736 2018-03-29
PCT/JP2019/014113 WO2019189800A1 (ja) 2018-03-29 2019-03-29 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池

Publications (2)

Publication Number Publication Date
JPWO2019189800A1 true JPWO2019189800A1 (ja) 2021-04-01
JP7248019B2 JP7248019B2 (ja) 2023-03-29

Family

ID=68061977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020511112A Active JP7248019B2 (ja) 2018-03-29 2019-03-29 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池

Country Status (6)

Country Link
US (1) US20210184217A1 (ja)
EP (1) EP3780185A4 (ja)
JP (1) JP7248019B2 (ja)
KR (1) KR20200135340A (ja)
CN (1) CN111954948A (ja)
WO (1) WO2019189800A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263284B2 (ja) * 2020-03-24 2023-04-24 東海カーボン株式会社 リチウムイオン二次電池用負極材の製造方法
PL3955349T3 (pl) * 2020-04-30 2023-07-17 Contemporary Amperex Technology Co., Limited Materiał czynny elektrody ujemnej, sposób jego wytwarzania, akumulator i urządzenie zawierające akumulator
CN114156446A (zh) * 2021-11-11 2022-03-08 珠海冠宇电池股份有限公司 一种负极活性材料及含有该负极活性材料的负极片和锂离子电池

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367611A (ja) * 2001-06-08 2002-12-20 Mitsui Mining Co Ltd リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP2014060148A (ja) * 2012-08-23 2014-04-03 Mitsubishi Chemicals Corp 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
JP2014186955A (ja) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2014186956A (ja) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2015135811A (ja) * 2013-12-18 2015-07-27 三菱化学株式会社 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2017045574A (ja) * 2015-08-25 2017-03-02 三菱化学株式会社 炭素材、及び、非水系二次電池
JP2017063013A (ja) * 2015-06-18 2017-03-30 帝人株式会社 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極及び非水電解質二次電池
JP2018041712A (ja) * 2016-09-05 2018-03-15 ジーエス エナジー コーポレーション 二次電池用負極活物質及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974597B2 (ja) 2006-07-19 2012-07-11 日本カーボン株式会社 リチウムイオン二次電池用負極及び負極活物質
KR101641750B1 (ko) 2009-03-27 2016-07-21 미쓰비시 가가꾸 가부시키가이샤 비수 전해액 2 차 전지용 부극 재료 및 이것을 사용한 비수 전해액 2 차 전지
EP2413404B1 (en) * 2009-03-27 2016-12-14 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5742153B2 (ja) * 2010-09-29 2015-07-01 三菱化学株式会社 非水系二次電池用複層構造炭素材、及びそれを用いた負極材並びに非水系二次電池
JP6251964B2 (ja) * 2012-02-24 2017-12-27 三菱ケミカル株式会社 非水系二次電池用複層構造炭素材、及びそれを用いた非水系二次電池用負極並びに非水系二次電池
JP6127370B2 (ja) * 2012-03-23 2017-05-17 三菱化学株式会社 非水系二次電池用炭素材、非水系二次電池用負極及びリチウムイオン二次電池
JP6609959B2 (ja) * 2015-03-27 2019-11-27 三菱ケミカル株式会社 非水系二次電池用複合炭素材、及び、非水系二次電池
JP6627221B2 (ja) * 2015-01-29 2020-01-08 三菱ケミカル株式会社 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法
JP6794614B2 (ja) * 2015-08-06 2020-12-02 三菱ケミカル株式会社 炭素材、及び、非水系二次電池
JP2018064736A (ja) 2016-10-19 2018-04-26 テルモ株式会社 気管用チューブ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002367611A (ja) * 2001-06-08 2002-12-20 Mitsui Mining Co Ltd リチウム二次電池用負極材料、その製造方法、及びリチウム二次電池
JP2014060148A (ja) * 2012-08-23 2014-04-03 Mitsubishi Chemicals Corp 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
JP2014186955A (ja) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2014186956A (ja) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2015135811A (ja) * 2013-12-18 2015-07-27 三菱化学株式会社 非水系二次電池負極用炭素材、それを用いた非水系二次電池用負極及び非水系二次電池
JP2017063013A (ja) * 2015-06-18 2017-03-30 帝人株式会社 非水電解質二次電池用電極合剤層、非水電解質二次電池用電極及び非水電解質二次電池
JP2017045574A (ja) * 2015-08-25 2017-03-02 三菱化学株式会社 炭素材、及び、非水系二次電池
JP2018041712A (ja) * 2016-09-05 2018-03-15 ジーエス エナジー コーポレーション 二次電池用負極活物質及びその製造方法

Also Published As

Publication number Publication date
EP3780185A1 (en) 2021-02-17
CN111954948A (zh) 2020-11-17
KR20200135340A (ko) 2020-12-02
JP7248019B2 (ja) 2023-03-29
EP3780185A4 (en) 2021-05-12
WO2019189800A1 (ja) 2019-10-03
US20210184217A1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
JP5943052B2 (ja) 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
JP6252034B2 (ja) 非水系電解液二次電池用炭素材、非水系電解液二次電池用負極、非水系電解液二次電池、及び非水系電解液二次電池用炭素材の製造方法
JP5589489B2 (ja) 非水電解液二次電池用負極材料及びこれを用いた非水電解液二次電池
JP7099325B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
KR101970023B1 (ko) 비수계 이차 전지용 탄소재, 그 탄소재를 사용한 부극 및 비수계 이차 전지
JP6102074B2 (ja) 非水系二次電池用負極炭素材、及び負極並びに、非水系二次電池
JP6060506B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2012216545A (ja) 非水系二次電池用黒鉛粒子及びその製造方法、負極並びに非水系二次電池
JP6627221B2 (ja) 非水系二次電池用炭素材、非水系二次電池用負極、非水系二次電池、及び非水系二次電池用炭素材の製造方法
JP6098275B2 (ja) 非水系二次電池負極用炭素材、非水系二次電池用負極及び非水系二次電池
JP2021061230A (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP7248019B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP2014067643A (ja) 非水系二次電池用炭素材料、及び負極並びに、非水系二次電池
JP6379565B2 (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池
JP2014067636A (ja) 非水系二次電池負極用複合炭素材、及び負極並びに、非水系二次電池
JP7077721B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP7388109B2 (ja) 非水系二次電池用負極材、非水系二次電池用負極及び非水系二次電池
JP7099005B2 (ja) 非水系二次電池用負極材及びその製造方法、非水系二次電池用負極並びに非水系二次電池
JP2014067644A (ja) 非水系二次電池用炭素材、及び負極並びに、非水系二次電池
JP2015185444A (ja) 非水系二次電池負極用炭素材、及び、非水系二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230227

R151 Written notification of patent or utility model registration

Ref document number: 7248019

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151