JPWO2019035212A1 - 焼結体、回路部品および焼結体の製造方法 - Google Patents

焼結体、回路部品および焼結体の製造方法 Download PDF

Info

Publication number
JPWO2019035212A1
JPWO2019035212A1 JP2019536404A JP2019536404A JPWO2019035212A1 JP WO2019035212 A1 JPWO2019035212 A1 JP WO2019035212A1 JP 2019536404 A JP2019536404 A JP 2019536404A JP 2019536404 A JP2019536404 A JP 2019536404A JP WO2019035212 A1 JPWO2019035212 A1 JP WO2019035212A1
Authority
JP
Japan
Prior art keywords
sintered body
mass
less
component
cordierite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019536404A
Other languages
English (en)
Other versions
JP6964670B2 (ja
Inventor
恭平 阿閉
恭平 阿閉
西村 昇
昇 西村
勝田 祐司
祐司 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2019035212A1 publication Critical patent/JPWO2019035212A1/ja
Application granted granted Critical
Publication of JP6964670B2 publication Critical patent/JP6964670B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • C04B2235/3481Alkaline earth metal alumino-silicates other than clay, e.g. cordierite, beryl, micas such as margarite, plagioclase feldspars such as anorthite, zeolites such as chabazite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/11Treatments characterised by their effect, e.g. heating, cooling, roughening
    • H05K2203/1126Firing, i.e. heating a powder or paste above the melting temperature of at least one of its constituents
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • H05K3/4629Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

焼結体は、主相としてアルミナ相を含み、SiとMnとを含む非晶質相と、コージェライト相とをさらに含む。気孔率は、1.1%以上5.0%以下である。好ましくは、XRD回折法で得られるコージェライトのメインピークの強度をI1、アルミナのメインピークの強度をI2として、I1/(I1+I2)が、0.20以上0.45以下である。焼結体の製造では、アルミナを70質量%以上85質量%以下、Si成分をSiO2換算で3質量%以上7質量%以下、Mn成分をMnO換算で3質量%以上6.5質量%以下、コージェライトを8質量%以上15質量%以下含み、これら4成分の合計が85質量%以上である粉末が調整される。粉末から成形体が得られ、成形体が焼成されることにより、焼結体が得られる。

Description

本発明は、主相としてアルミナ相を含む焼結体に関連する。
回路部品の高周波化が進むに従い、回路を保持する部品等に低比誘電率および低誘電正接が求められている。例えば、光通信の分野では、通信の高速化に伴い、光通信用パッケージ等の部品にて利用される周波数が高くなりつつある。信号品質を劣化させることなく高速で伝送するために、部品に使用される様々な材料には低比誘電率および低誘電正接が求められる。さらに、部品の小型化および低背化に伴い、材料の強度も求められる。
特開2003−104772号公報(文献1)のアルミナ質焼結体は、アルミナ粉末と、焼結助剤であるMn粉末およびSiO粉末と、他の酸化物とを含む成形体を、1200〜1500℃で焼成することにより製造される。アルミナ質焼結体の相対密度は、95%以上である。誘電正接は12〜28×10−4であり、強度は400〜505MPaである。文献1のアルミナ質焼結体は、ある程度の強度を有するが、高速通信等の高周波回路の材料としては誘電正接が高い。またアルミナ以外の構成成分の比誘電率は低いものでなく、相対密度より推定される気孔率も低いことから、比誘電率は8.9以上と推定され、高周波回路の材料としては比誘電率も高い。
特開2001−97767号公報(文献2)のアルミナ質焼結体は、アルミナ粉末と、焼結助剤であるMn粉末およびSiO粉末と、他の酸化物とを含む成形体を、1200〜1500℃で焼成することにより製造される。アルミナ質焼結体では、アルミナ結晶粒子の粒界相にMnAlおよびMnSiが析出する。アルミナ質焼結体の相対密度は、95%以上である。最も低い誘電正接は20×10−4であり、強度は350〜492MPaである。文献2のアルミナ質焼結体も、ある程度の強度を有するが、高速通信等の高周波回路の材料としては誘電正接は十分に低いとはいえない。また、文献1と同様、アルミナ以外の構成成分の比誘電率は低いものではなく、相対密度より推定される気孔率も低いことから、比誘電率は8.9以上と推定され、高周波回路の材料としては比誘電率も高い。
特開2004−115290号公報(文献3)では、結晶化したガラスであるマトリクス中に10〜70質量%のアルミナ粒子が分散した複合酸化物焼結体が開示されている。複合酸化物焼結体は、900〜1000℃の低温で焼成される。60GHzでの比誘電率は7.5〜9.0であり、誘電正接は6〜15×10−4である。強度は350〜500MPaである。文献3の複合酸化物焼結体には、比誘電率が低いものもあるが、高周波回路の材料としては誘電正接は高い。焼成温度が低いため、絶縁基板と同時焼成されるメタライズ配線層(導体)には、Cuが利用される。しかし、ガラスマトリクス中にアルミナ粒子が分散した複合酸化物とCuの熱膨張率差は大きいため、Cu配線を埋設した部品において応力が生じやすい。したがって、部品の小型化および低背化の際に、クラック、剥離、反り等が生じる虞がある。
本発明は、主相としてアルミナ相を含む焼結体に向けられており、比誘電率および誘電正接が低く、所望の曲げ強度を有する焼結体を提供することを目的としている。
本発明の一の好ましい形態に係る焼結体は、主相としてアルミナ相を含み、SiとMnとを含む非晶質相と、コージェライト相とをさらに含む。気孔率は、1.1%以上5.0%以下である。これにより、焼結体の比誘電率および誘電正接を低くすることが実現され、ある程度の曲げ強度も得ることができる。
好ましくは、XRD回折法で得られるコージェライトのメインピークの強度をI1、アルミナのメインピークの強度をI2として、I1/(I1+I2)が、0.20以上0.45以下である。さらに好ましくは、I1/(I1+I2)は、0.23以上0.40以下である。
焼結体の10GHzにおける比誘電率は、好ましくは8.5以下であり、10GHzにおける誘電正接は、好ましくは5×10−4以下である。曲げ強度は、好ましくは300MPa以上である。吸水率は、好ましくは1.0%以下である。気孔の平均直径は、好ましくは2.0μm以上5.5μm以下である。
本発明は、上記焼結体を含む回路部品にも向けられている。回路部品は、前記焼結体の表面または内部に位置する導体を含む。
本発明は、焼結体の製造方法にも向けられている。焼結体の製造では、アルミナを70質量%以上85質量%以下、Si成分をSiO換算で3質量%以上7質量%以下、Mn成分をMnO換算で3質量%以上6.5質量%以下、コージェライトを8質量%以上15質量%以下含み、これら4成分の合計が85質量%以上である粉末が調製される。前記粉末から成形体が得られ、前記成形体は焼成される。
焼成温度は、好ましくは、が1200℃以上1400℃以下にて1時間以上3時間以下保持される。
原料となる前記粉末では、好ましくは、Si成分のSiO換算質量とMn成分のMnO換算質量との和は、前記粉末の11質量%以下である。さらに好ましくは、Si成分のSiO換算質量とMn成分のMnO換算質量との比は、0.6以上2.0以下である。
上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。
回路部品の一例を示す断面図である。 焼結体の製造の流れの概略を示す図である。 実験例8におけるI1およびI2を例示する図である。
以下、図面を参照しつつ、本発明の実施の形態に係る焼結体およびその製造方法について説明する。なお、本発明に係る焼結体およびその製造方法は、以下の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない限りにおいて、種々の変更、修正、及び改良等を加え得るものである。
本発明に係る焼結体は、主相としてアルミナ相を含む。ここで、「主相」とは、断面における気孔を除く面積の50%以上の相を指すものとする。焼結体は、副相として、SiとMnとを含む非晶質相と、コージェライト相とを含む。「副相」は、主相以外の相を指すものとする。焼結体には、さらに他の相が含まれてもよい。SiとMnとを含む非晶質相は、主に、アルミナ粒子の結合性を向上するフラックス相である。一方、コージェライトはアルミナよりも比誘電率が低いため、コージェライト相を設けることで、焼結体全体の比誘電率は低くなる。なお、原料として導入したコージェライト粒子は、焼結の過程でアルミナ粒子及びフラックス成分粒子と一部が反応をし、焼結を促進する効果を生じる。つまり、本発明の焼結体は、アルミナ、フラックス、コージェライトを反応させつつ焼結を進めることで、低比誘電率化に必要な気孔を残しつつ、ある程度の緻密性、強度を発現し、焼結体の低比誘電率および低誘電正接が実現される。
高周波回路の基板や支持体として利用される焼結体では、好ましくは、比誘電率は8.5以下であり、誘電正接は5×10−4以下であり、曲げ強度は300MPa以上である。このような焼結体は、光通信等の高速通信に用いられる回路部品に特に適している。
例えば、焼成前のシート状の成形体上に粉末状の導電材料を含むパターンを印刷等により形成し、このような成形体を積層する。これにより導電材料を含む積層成形体が得られる。積層成形体が焼成されることにより、内部や表面のパターンも焼成され、配線等の導体を内部や表面に有する焼結体が得られる。以下、導体を含む焼結体を「複合焼結体」という。
図1は、複合焼結体を含む回路部品の一例を示す断面図である。回路部品1は、焼結体10である複数の基板層11と、配線である導体12と、電極13とを含む。焼結体10および導体12は複合焼結体の主要部を構成する。回路部品1では、焼結体10を覆う封止樹脂が設けられてもよい。各基板層11は、焼成前はシート状の成形体である。導体12は、焼成前は成形体上に形成された導電材料である。成形体と導体材料との同時焼成により、成形体と導電材料とが一体化し、焼結体10の表面または内部に位置する導体12を含む複合焼結体が作製される。なお、図1では、基板層11を貫通する導体であるビアや他の回路部分の記載は省略している。
回路部品1では導体12と電極13とは電気的に接続される。導体12は、焼結体10の内部のみに設けられてもよく、焼結体10の表面のみに設けられてもよい。基板層11の数は1でもよい。導体12は、配線以外の用途に用いられる部位であってもよい。
図2は、焼結体の製造の流れの概略を示す図である。まず、焼結体の原料粉末の調整が行われる(ステップS1)。焼結体の原料としては、例えば、アルミナ粉末、SiO粉末、MnCO粉末、コージェライト粉末の混合物が利用される。SiO粉末およびMnCO粉末はフラックスとして機能する。他の代替原料が利用されてもよい。例えば、MnCO粉末に代えて、MnO粉末が利用されてもよい。
次に、原料粉末の成形体が取得される(ステップS2)。後述の実験例では、乾式プレスおよびCIP(冷間等方圧プレス)により成形体が得られるが、他の様々な手法が利用可能である。例えば、ドクターブレード法、押出し法、射出法、鋳込み法等の周知の成型方法が利用可能である。また、成形に用いたバインダ等の助剤は、必要に応じて加熱等により除去されてもよい。
上述の回路部品が製造される場合は、焼成前に、成形体から積層成形体が作製される(ステップS3)。この場合、既述のように、成形体上に導体粉末等でパターンが形成される。複数の成形体が重ねられて積層成形体が形成される。回路を有する成形体が一層の場合は積層は行われない。回路を有さない焼結体を得る場合は、ステップS3は省略される。
成形体または積層成形体が準備されると、焼成が行われる(ステップS4)。導電材料を含む成形体が焼成される場合は、成形体と導電材料との焼成が同時に行われる。焼成温度の好ましい範囲は、1200℃以上1400℃以下であり、好ましくは、1300℃以上1400℃以下である。このような焼成温度により、Cu−W、Mo−Mn、Cu−Mo等の導体粉末によるパターンを成形体と同時に焼成することができる。導体との同時焼成は、好ましくは水素雰囲気下で行われる。他の雰囲気条件としては、アルゴン、窒素、真空雰囲気が想定される。
後述の実験例では、焼成時間は2時間であるが、焼成時間は焼成温度に依存し、所望の焼成温度の範囲に保持される時間は、1時間以上3時間以下が好ましい。これは、長時間の焼成(特に高温において)は、原料成分間の反応が進み過ぎ、気孔が過度に無くなることとコージェライト相が少なくなり過ぎることが生じ、比誘電率の低減の妨げとなるためである。
焼結体は、アルミナ相と比べて熱膨張率が相対的に小さいコージェライト相を含む。これにより、Cu−W、Mo−Mn、Cu−Mo等の導体と、焼結体との熱膨張率の差は、低減される。その結果、複合焼結体においてクラック、反り等が抑制され、特に小型の回路部品において特性の安定性や信頼性が向上する。このような焼結体材料は、高周波化および低背化が進む回路部品、例えば、通信用部品に適している。
焼結体にコージェライトを複合化する場合、原料にコージェライト自体ではなく、焼成過程で反応によりコージェライト相が生成されるのであれば、フォルステライト、エンスタタイト、サフィリン等の使用も可能である。ただし、焼結体におけるコージェライトの量は重要であり、焼成後のコージェライトの量を正確に制御するためにはコージェライト粉末が原料に含められることが好ましい。
なお、コージェライト以外の添加成分として、例えば、Mgスピネルやムライトの検討も行った。しかし、Mgスピネルの比誘電率は8.8でありムライトの比誘電率は6.5程度であり、これらはコージェライトの比誘電率4.8よりも高い。そのため、焼結体の比誘電率を低下させるには多量の添加が必要となり、焼結体の曲げ強度の低下および誘電正接の増加を招いた。また、導体を同時焼成する場合、水素を導入した還元性の高い雰囲気で焼成が行われる。このような雰囲気でも酸化物が還元されない添加剤としてコージェライトは適している。
原料中のコージェライトは、焼成時にアルミナおよびフラックスの一部と反応する。一方、焼結体に残存するコージェライトの量は、焼結体の各種特性に大きな影響を与える。そのため、コージェライトと他の材料とを反応させつつコージェライトを焼結体中にある程度残すことが重要となる。原材料中のコージェライトの量、フラックスの量、フラックスを構成する各成分の割合、および、焼成温度は、焼結体の製造において重要な条件となり得る。これらの条件の好ましい範囲について、以下の実験例を参照して説明する。実験例の条件および測定結果を表1Aおよび表1Bに示す。
Figure 2019035212
Figure 2019035212
(実験例における焼結体の製造)
以下に説明する実験例における焼結体の製造方法は、一例に過ぎない。
アルミナ原料として市販の粉末を使用した。アルミナの純度は99.9%以上であり、平均粒径は1〜3μmである。フラックス中のSi成分は、市販のSiO粉末を使用した。Mn成分は、市販のMnCO粉末を使用した。SiO粉末およびMnCO粉末は、共に純度99%以上、平均粒径1μmである。コージェライト原料を作製するために、市販のMgO、SiO、Alの高純度粉末をコージェライトの組成となるように混合したものを準備した。各粉末は、純度99.9%、平均粒径1μm以下である。混合粉末を1400℃、大気下にて加熱合成した後に粉砕し、平均粒径1〜3μmに調整したものをコージェライト原料とした。なお、市販のコージェライト粉末が使用されてもよい。
上記のアルミナ原料、フラックス原料、コージェライト原料を、表1Aの各実験例に合わせて秤量し、アルミナボールおよびポリポットを用いて3時間ボールミルにて湿式混合を行い、スラリーを得た。スラリーを乾燥し、ふるいを通して調合粉末を得た。
調合粉末を乾式プレスにより100kgf/cmにて成形し、さらに、CIPにて0.7tonf/cmにて二次成形し、直径約65mm、厚さ約12mmの円板状成形体を得た。なお、成形体を得る手法としては他の様々な手法が採用されてもよい。
円板状成形体をアルミナ製のサヤに収め、各実験例の条件に合わせて、大気または水素雰囲気下、焼成温度(すなわち、最高温度)1300〜1400℃にて2時間保持し、焼結体を得た。水素雰囲気下での焼成は、埋設配線等の導体を同時焼成する場合を想定したものである。
(焼結体の評価方法)
かさ密度および吸水率は、焼結体からJIS−R1601に記載の3×4×40mmの抗折棒を切り出し、アルキメデス法にて測定した。
比誘電率および誘電正接は、焼結体から直径14〜15mm、厚さ7.0〜7.5mmの円柱部材を切り出し、JIS−R1627に準じて両端短絡型共振法にて10GHzにおけるものを測定した。
曲げ強度(表1Bでは単に「強度」と表記)は、焼結体からJIS−R1601に記載の3×4×40mmの抗折棒を切り出し、JIS−R1601に準じて三点曲げ強度を測定した。
気孔率および気孔径は、焼結体から切出した試料の一面を鏡面状に研磨仕上し、走査型電子顕微鏡(SEM)を用いて観察することにより得た。気孔率は、観察画像を二値化し、材料中の閉気孔の面積率として得た。気孔径は、数十の気孔のそれぞれの長径と短径との平均径を算出し、平均径の平均として得た。
焼結体の一部をアルミナ乳鉢にて粉砕し、X線回折装置(XRD)を用いてXRD回折法により結晶相を同定した。測定条件はCuKα、40kV、40mA、2θ=5〜70°、ステップ幅を0.002°とした。測定結果より、コージェライトのメインピークの強度I1とアルミナのメインピークの強度I2とからI1/(I1+I2)を算出した。図3に、実験例8におけるI1およびI2を例示する。
(実験例の説明および評価)
表1Aおよび表1Bの各実験例の条件および評価について説明する。番号の後ろに*を付していない実験例は、本発明の実施例であり、*を付している実験例は、本発明に対する比較例である。
実験例1,2は比較例であり、原料にコージェライトを含まない。平均粒径2.9μmのアルミナを90.0質量%、フラックスのSi成分をSiO換算で5.8質量%、Mn成分をMnO換算で4.2質量%(SiO/MnO=1.4)とした粉末を原料に用いた。なお、原料にはMnCOが使用されるため、MnCOをMnO換算した質量を用いてMnOの質量%を求めている。実験例1では、1330℃で2時間大気焼成を行い、実験例2では1360℃で2時間大気焼成を行った。
1330℃の焼成では吸水率が3.0%であり、緻密な焼結体が得られず、誘電正接は高い。1360℃で焼成した場合、吸水率が1.0%以下であり、緻密な焼結体が得られるが、比誘電率が8.7、誘電正接が16×10−4であり、共に高い。このようにコージェライトを複合化しない場合、低比誘電率および低誘電正接を得ることができない。
実験例3〜6では、実験例1,2の原料を基にコージェライトを5.0〜15質量%添加し、実験例1,2と同様にして、表1Aに記載の条件にて焼成を行った。コージェライトの量は、実験例3では5.0質量%、実験例4では8.7質量%、実験例5では10質量%、実験例6では15質量%である。各実験例の吸水率は0.0%であり、焼結体中の気孔のほとんどは閉気孔として存在する。
実験例3は比較例であり、焼結体では原料中のコージェライト相が存在しない。誘電正接は16×10−4であり、高い。実験例4〜6は、コージェライト量を変えて作製した材料であり、気孔率が1.9〜2.1%であり、ほぼ同様である。I1/(I1+I2)は0.29〜0.40であり、焼結体中にコージェライト相が存在する。比誘電率は7.6〜8.3、誘電正接は1.0〜5.0×10−4であり、これらはI1/(I1+I2)が増加するにつれて低くなる。曲げ強度は300MPa以上あり、良好である。
実験例7〜10では、実験例1〜6と同様にして、表1Aに記載の条件にて焼成を行った。これらの実験例では、フラックスの構成質量比(SiO/MnO)は1.0に固定され、フラックスの総量(SiO+MnO)は、実験例7で6.5質量%、実験例8で8.5質量%、実験例9で10.0質量%、実験例10で8.5質量%である。実験例7〜9では、焼成温度は1300℃であり、実験例10では1330℃である。
いずれの実験例においても、吸水率、比誘電率、誘電正接、曲げ強度とも良好である。特に実験例8,9では、曲げ強度がそれぞれ490MPa、460MPaであり非常に高い。両実験例での気孔径は2.0μmであり、実験例5の気孔径5.1μmよりも微細な気孔であるため非常に高い曲げ強度を有すると考えられる。実験例10では、比誘電率8.4、誘電正接1.7×10−4、450MPaであり、材料特性は良好である。しかし、実験例8と比較すると、1330℃で焼成したことで、気孔率およびI1/(I1+I2)が減少し、比誘電率が増加する。また、曲げ強度が低下するため、実験例10の原料構成の場合、1300℃で焼成することが望ましい。
表1Bの結晶相の欄に記載の相は、アルミナ、コージェライト以外はX線回折法により極微量検出されたものを示す。
実験例8の焼結体の熱膨張率をJIS−R1618に準じた方法により40〜1000℃の範囲で測定した。実験例8の熱膨張率は7.0ppm/℃であり、アルミナ単体の熱膨張率8.2ppm/℃よりも小さい。コージェライト相との複合化によって熱膨張率が低下するといえる。その結果、Cu−W等の導体との熱膨張率差が相対的に小さくなり、導体埋設時のクラックや反り等の発生を抑制することができる。
実験例11〜15では、実験例1〜10と同様にして、表1Aに記載の条件にて焼成を行った。これらの実験例では、フラックスの総量(SiO+MnO)は10.0質量%に固定される。フラックスの構成質量比(SiO/MnO)は、実験例11では0.5、実験例12では0.6、実験例13では1.8、実験例14では2.0、実験例15では2.4である。
実験例11はフラックスのMn成分を多くし、実験例15はフラックスのSi成分を多くしたものであり、共に比較例である。実験例11では、Mnとコージェライトとがより反応しやすいため、気孔率およびI1/(I1+I2)が減少し、比誘電率は8.7となり、高い。実験例15では、Si成分が多いため、反応が進みにくい。その結果、吸水率および気孔率が増加し、誘電正接は10×10−4であり、高い。実験例12〜14は、実験例11,15に対してフラックスの質量比を0.6〜2.0に調製したものである。実験例12〜14では、誘電率は8.5以下、誘電正接は5.0×10−4以下、曲げ強度は300MPa以上であり、良好な特性が得られた。実験例11〜15の結果から、比誘電率8.5以下、誘電正接5.0×10−4以下、曲げ強度300MPa以上の良好な特性を得るためには、フラックスの質量比は0.6〜2.0に調整することが好ましく、1.0〜1.4に調整することがより好ましいといえる。
実験例16,17では、実験例1〜15と同様にして、表1Aに記載の条件にて焼成を行った。実験例16ではフラックスの質量を5.0質量%に、実験例17ではフラックスの質量を12質量%に調整した。実験例16,17は共に比較例である。実験例16では、焼結不足により誘電正接が30×10−4以上と高い。実験例17では、気孔率が減少したために比誘電率が8.6と高くなったと考えられる。実験例16,17並びに他の実験例から、比誘電率8.5以下、誘電正接5.0×10−4以下、曲げ強度300MPa以上の良好な特性を得るためには、フラックスの質量は6〜11質量%、好ましくは、7.5〜10質量%程度に調整することが望ましいといえる。
実験例18,19では、実験例1〜17と同様にして、表1Aに記載の条件にて焼成を行った。実験例18の焼成温度は1360℃であり、実験例19の焼成温度は1400℃である。実験例18,19から、フラックスの質量比や総量を調製することで、焼成温度を上げた場合でも、比誘電率8.5以下、誘電正接5.0×10−4以下、300MPa以上の良好な特性が得られることが分かる。
実験例20〜22では、実験例1〜19と同様にして、表1Aに記載の条件にて焼成を行った。実験例20〜22では、水素を導入した還元環境にて焼成を行った。実験例20〜22から、還元環境においても大気焼成時と同等の材料特性が得られることが分かる。したがって、還元雰囲気における導体との同時焼成を行うことが可能である。
上記実験例の結果から、アルミナ相を主相として含み、フラックス相とコージェライト相とをさらに含む焼結体において、気孔率が1.2%以上(実験例12,19,22)4.5%以下(実験例14)とすることにより、比誘電率および誘電正接が低く、所望の曲げ強度が得られることが分かる。ただし、比較例である実験例17において気孔率が1.0%であり、実験例15において気孔率が7.6%であることを考慮すると、気孔率が1.1%以上5.0%以下において、比誘電率および誘電正接が低く、所望の曲げ強度が得られると考えられる。
また、このような気孔率が得られるのであれば、アルミナ相が主相である限りコージェライト相の割合は適宜決定されてよいが、実験例の結果から、XRD回折法で得られるコージェライトのメインピークの強度をI1、アルミナのメインピークの強度をI2として、I1/(I1+I2)が、0.20以上0.45以下であることが好ましいと考えられる。実験例の比較例以外におけるI1/(I1+I2)の範囲を考慮すると、より好ましくは、I1/(I1+I2)は0.23以上0.40以下である。
上記実験例では、低比誘電率の条件として、10GHzにおける比誘電率が8.5以下であるとしている。低誘電正接の条件として、10GHzにおける誘電正接が5×10−4以下であるとしている。これらの条件は、高周波回路部品の材料としての使用を考慮したものである。実験例の結果から、10GHzにおける比誘電率が8.3以下、10GHzにおける誘電正接が2×10−4以下である焼結体も十分に提供することができることが分かる。
焼結体全体の強度は焼結体の大きさに依存することから、曲げ強度の条件はある程度緩やかに設定可能である。回路部品の材料としては、好ましくは、曲げ強度は、300MPa以上である。また、吸水率が大きい場合、曲げ強度が低下すると共に誘電正接が増大することから、吸水率は低いほど好ましい。吸水率は0.0%であることが最も好ましいが、1.0%以下であればよい。
実験例の結果から、気孔径、すなわち、気孔の平均直径が小さくなる条件では比誘電率は高くなる傾向にあり、気孔径は2.0μm以上であることが好ましい。気孔径の上限は特に定められないが、気孔径が大きすぎると曲げ強度の観点から好ましくなく、気孔径は5.5μm以下であることが好ましい。
実験例の結果より、原料粉末は、アルミナを70質量%以上85質量%以下、Si成分をSiO換算で3質量%以上7質量%以下、Mn成分をMnO換算で3質量%以上6.5質量%以下、コージェライトを8質量%以上15質量%以下含むことが好ましいと考えられる。他の添加剤の許容される割合を考慮すると、原料粉末におけるこれら4成分の合計は85質量%以上とされ、より好ましくは95%以上である。他の添加剤としては、例えば、焼結体の色を調整するものを挙げることができる。
焼結体に求められる特性にもよるが、原料粉末は、アルミナを80質量%以上83質量%以下含むことがより好ましい。Si成分に関しては、原料粉末は、SiO換算で4.2質量%以上5.8質量%以下含むことがより好ましい。Mn成分に関しては、原料粉末は、MnO換算で3.1質量%以上5.0質量%以下含むことがより好ましい。コージェライトに関しては、原料粉末は、9質量%以上12質量%以下含むことがより好ましい。
既述のように、原料粉末におけるフラックスの量、および、フラックスを構成する各成分の割合も焼結体の特性に影響を与える。実験例から、原料粉末において、Si成分のSiO換算質量とMn成分のMnO換算質量との和は、原料粉末の6質量%以上11質量%以下であることが好ましい。より好ましくは、7.5質量%以上10質量%以下である。
原料粉末において、Si成分のSiO換算質量とMn成分のMnO換算質量との比は、0.6以上2.0以下であることが好ましい。より好ましくは、1.0以上1.4以下である。
上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。
本発明の焼結体は、低比誘電率および低誘電正接が求められる様々な部品として利用可能である。特に、高周波化が求められる回路部品の材料に適している。
1 回路部品
10 焼結体
12 導体
S1〜S4 ステップ
焼成温度は、好ましくは、1200℃以上1400℃以下にて1時間以上3時間以下保持される。
図2は、焼結体の製造の流れの概略を示す図である。まず、焼結体の原料粉末の調が行われる(ステップS1)。焼結体の原料としては、例えば、アルミナ粉末、SiO粉末、MnCO粉末、コージェライト粉末の混合物が利用される。SiO粉末およびMnCO粉末はフラックスとして機能する。他の代替原料が利用されてもよい。例えば、MnCO粉末に代えて、MnO粉末が利用されてもよい。
1330℃の焼成では吸水率が3.0%であり、緻密な焼結体が得られず、誘電正接は高い。1360℃で焼成した場合、吸水率が1.0%以下であり、緻密な焼結体が得られるが、比誘電率が8.、誘電正接が16×10−4であり、共に高い。このようにコージェライトを複合化しない場合、低比誘電率および低誘電正接を得ることができない。
いずれの実験例においても、吸水率、比誘電率、誘電正接、曲げ強度とも良好である。特に実験例8,9では、曲げ強度がそれぞれ490MPa、460MPaであり非常に高い。両実験例での気孔径は2.0μmであり、実験例5の気孔径5.1μmよりも微細な気孔であるため非常に高い曲げ強度を有すると考えられる。実験例10では、比誘電率8.4、誘電正接1.7×10−4曲げ強度450MPaであり、材料特性は良好である。しかし、実験例8と比較すると、1330℃で焼成したことで、気孔率およびI1/(I1+I2)が減少し、比誘電率が増加する。また、曲げ強度が低下するため、実験例10の原料構成の場合、1300℃で焼成することが望ましい。
実験例11はフラックスのMn成分を多くし、実験例15はフラックスのSi成分を多くしたものであり、共に比較例である。実験例11では、Mnとコージェライトとがより反応しやすいため、気孔率およびI1/(I1+I2)が減少し、比誘電率は8.7となり、高い。実験例15では、Si成分が多いため、反応が進みにくい。その結果、吸水率および気孔率が増加し、誘電正接は10×10−4であり、高い。実験例12〜14は、実験例11,15に対してフラックスの質量比を0.6〜2.0に調したものである。実験例12〜14では、誘電率は8.5以下、誘電正接は5.0×10−4以下、曲げ強度は300MPa以上であり、良好な特性が得られた。実験例11〜15の結果から、比誘電率8.5以下、誘電正接5.0×10−4以下、曲げ強度300MPa以上の良好な特性を得るためには、フラックスの質量比は0.6〜2.0に調整することが好ましく、1.0〜1.4に調整することがより好ましいといえる。
実験例18,19では、実験例1〜17と同様にして、表1Aに記載の条件にて焼成を行った。実験例18の焼成温度は1360℃であり、実験例19の焼成温度は1400℃である。実験例18,19から、フラックスの質量比や総量を調することで、焼成温度を上げた場合でも、比誘電率8.5以下、誘電正接5.0×10−4以下、300MPa以上の良好な特性が得られることが分かる。

Claims (13)

  1. 焼結体であって、
    主相としてアルミナ相を含み、SiとMnとを含む非晶質相と、コージェライト相とをさらに含み、
    気孔率が、1.1%以上5.0%以下である。
  2. 請求項1に記載の焼結体であって、
    XRD回折法で得られるコージェライトのメインピークの強度をI1、アルミナのメインピークの強度をI2として、I1/(I1+I2)が、0.20以上0.45以下である。
  3. 請求項2に記載の焼結体であって、
    I1/(I1+I2)が、0.23以上0.40以下である。
  4. 請求項1ないし3のいずれか1つに記載の焼結体であって、
    10GHzにおける比誘電率が、8.5以下である。
  5. 請求項1ないし4のいずれか1つに記載の焼結体であって、
    10GHzにおける誘電正接が、5×10−4以下である。
  6. 請求項1ないし5のいずれか1つに記載の焼結体であって、
    曲げ強度が、300MPa以上である。
  7. 請求項1ないし6のいずれか1つに記載の焼結体であって、
    吸水率が、1.0%以下である。
  8. 請求項1ないし7のいずれか1つに記載の焼結体であって、
    気孔の平均直径が、2.0μm以上5.5μm以下である。
  9. 回路部品であって、
    請求項1ないし8のいずれか1つに記載の焼結体と、
    前記焼結体の表面または内部に位置する導体と、
    を備える。
  10. 焼結体の製造方法であって、
    a)アルミナを70質量%以上85質量%以下、Si成分をSiO換算で3質量%以上7質量%以下、Mn成分をMnO換算で3質量%以上6.5質量%以下、コージェライトを8質量%以上15質量%以下含み、これら4成分の合計が85質量%以上である粉末を調整する工程と、
    b)前記粉末の成形体を得る工程と、
    c)前記成形体を焼成する工程と、
    を備える。
  11. 請求項10に記載の焼結体の製造方法であって、
    前記c)工程において、焼成温度が、1200℃以上1400℃以下に1時間以上3時間以下保持される。
  12. 請求項10または11に記載の焼結体の製造方法であって、
    前記a)工程において、Si成分のSiO換算質量とMn成分のMnO換算質量との和が、前記粉末の11質量%以下である。
  13. 請求項10ないし12のいずれか1つに記載の焼結体の製造方法であって、
    前記a)工程において、Si成分のSiO換算質量とMn成分のMnO換算質量との比が、0.6以上2.0以下である。
JP2019536404A 2017-08-18 2017-08-18 焼結体、回路部品および焼結体の製造方法 Active JP6964670B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/029654 WO2019035212A1 (ja) 2017-08-18 2017-08-18 焼結体、回路部品および焼結体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2019035212A1 true JPWO2019035212A1 (ja) 2020-10-15
JP6964670B2 JP6964670B2 (ja) 2021-11-10

Family

ID=65362512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019536404A Active JP6964670B2 (ja) 2017-08-18 2017-08-18 焼結体、回路部品および焼結体の製造方法

Country Status (4)

Country Link
US (1) US11332410B2 (ja)
JP (1) JP6964670B2 (ja)
CN (1) CN110997597B (ja)
WO (1) WO2019035212A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022149955A (ja) * 2021-03-25 2022-10-07 日本碍子株式会社 複合焼結体、ハニカム構造体、電気加熱触媒および複合焼結体の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3287149B2 (ja) 1994-02-14 2002-05-27 松下電器産業株式会社 アルミナ質のセラミックス
US7129453B2 (en) * 1997-04-04 2006-10-31 Dalton Robert C Artificial dielectric systems and devices with sintered ceramic matrix material
JP3924406B2 (ja) 1999-09-30 2007-06-06 京セラ株式会社 アルミナ質焼結体及びその製造方法、並びに配線基板及びその製造方法
JP3559495B2 (ja) 2000-03-28 2004-09-02 京セラ株式会社 誘電体磁器組成物およびそれを用いた誘電体共振器並びに非放射性誘電体線路
JP4897163B2 (ja) 2001-09-19 2012-03-14 太平洋セメント株式会社 アルミナ質焼結体の製造方法
JP4959079B2 (ja) * 2001-09-27 2012-06-20 京セラ株式会社 半導体素子収納用パッケージ
JP2004115290A (ja) 2002-09-24 2004-04-15 Kyocera Corp 複合酸化物焼結体及びその製造方法並びに配線基板
JP4540297B2 (ja) * 2003-02-25 2010-09-08 京セラ株式会社 低温焼成磁器組成物および低温焼成磁器並びに配線基板
JP4395320B2 (ja) * 2003-04-23 2010-01-06 京セラ株式会社 低温焼成磁器組成物および低温焼成磁器並びに配線基板
CN103803957A (zh) * 2014-03-12 2014-05-21 哈尔滨工业大学 一种超低热膨胀系数的堇青石陶瓷材料及其制备方法
JP6581967B2 (ja) * 2014-03-19 2019-09-25 日本碍子株式会社 セラミック素地及びその製造方法
US10486332B2 (en) * 2015-06-29 2019-11-26 Corning Incorporated Manufacturing system, process, article, and furnace

Also Published As

Publication number Publication date
JP6964670B2 (ja) 2021-11-10
CN110997597A (zh) 2020-04-10
CN110997597B (zh) 2023-06-20
US20200165168A1 (en) 2020-05-28
US11332410B2 (en) 2022-05-17
WO2019035212A1 (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
JP5559590B2 (ja) セラミックス焼結体、その製造方法及びセラミックス構造体
US10071932B2 (en) Glass ceramic sintered compact and wiring board
JP2007294862A (ja) 基板およびこれを用いた回路基板
Choi et al. Effects of Nd 2 O 3 on the microwave dielectric properties of BiNbO 4 ceramics
JP7062229B2 (ja) 板状の窒化ケイ素質焼結体およびその製造方法
JP6728859B2 (ja) セラミック基板およびその製造方法
JP2008053525A (ja) 多層セラミック基板およびその製造方法
JP6964670B2 (ja) 焼結体、回路部品および焼結体の製造方法
US7208434B2 (en) Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
JP4645935B2 (ja) 低温焼成磁器組成物およびその製造方法
JP4808837B2 (ja) 高周波用アルミナ質焼結体
KR20140047607A (ko) AlN 기판 및 그 제조 방법
JP2018070436A (ja) 窒化ケイ素焼結体の製造方法
JP2021072350A (ja) 複合焼結体および複合焼結体の製造方法
JP2002348172A (ja) 高周波用配線基板
JPH10251069A (ja) 窒化珪素回路基板及び半導体装置
JP2003073162A (ja) ガラスセラミックスおよびそれを用いた配線基板
JP5527052B2 (ja) 誘電体磁器、誘電体磁器の製造方法及び電子部品
JP4047050B2 (ja) 低温焼成磁器組成物及び低温焼成磁器並びにそれを用いた配線基板
WO2023157784A1 (ja) 窒化ケイ素焼結体、および、窒化ケイ素焼結体の製造方法
JP4998833B2 (ja) ガラスセラミック基板の製造方法およびガラスセラミック基板
JP2003137657A (ja) ガラスセラミックスおよびその製造方法、並びに配線基板
JP3350380B2 (ja) 誘電体磁器組成物および誘電体共振器
KR102141812B1 (ko) 질화알루미늄 소결체 및 그 제조 방법
JP4534413B2 (ja) 高周波部品用低誘電率磁器組成物の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200406

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210513

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211019

R150 Certificate of patent or registration of utility model

Ref document number: 6964670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150