JP2008053525A - 多層セラミック基板およびその製造方法 - Google Patents

多層セラミック基板およびその製造方法 Download PDF

Info

Publication number
JP2008053525A
JP2008053525A JP2006229103A JP2006229103A JP2008053525A JP 2008053525 A JP2008053525 A JP 2008053525A JP 2006229103 A JP2006229103 A JP 2006229103A JP 2006229103 A JP2006229103 A JP 2006229103A JP 2008053525 A JP2008053525 A JP 2008053525A
Authority
JP
Japan
Prior art keywords
sio
layer portion
inner layer
ceramic substrate
surface layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006229103A
Other languages
English (en)
Inventor
Atsushi Urakawa
淳 浦川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2006229103A priority Critical patent/JP2008053525A/ja
Publication of JP2008053525A publication Critical patent/JP2008053525A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】非ガラス系材料を用いて構成される多層セラミック基板において、その強度を高める。
【解決手段】多層セラミック基板1は、SiO系結晶相を含む、内層部3と表層部4,5とからなる積層構造を有し、表層部4,5におけるSiO系結晶相の割合が、内層部3におけるSiO系結晶相の割合よりも少なくされ、それによって、表層部4,5の熱膨張係数が、内層部3の熱膨張係数より小さくされる。このように熱膨張係数の関係を特定的に選ぶことにより、焼成後の冷却過程において、表層部4,5に圧縮応力が生じるため、多層セラミック基板1の抗折強度が向上する。
【選択図】図1

Description

この発明は、多層セラミック基板およびその製造方法に関するもので、特に、表層部と内層部との間で熱膨張係数の差を設けて高強度化を図った多層セラミック基板およびその製造方法に関するものである。
この発明にとって興味ある多層セラミック基板が、たとえば特開平6−29664号公報(特許文献1)に記載されている。特許文献1には、ガラスと残部が結晶質とからなる低温焼成多層セラミック基板であって、その最外層の熱膨張係数を内層の熱膨張係数より小さくし、かつ表裏の最外層の厚みの合計を内層の厚みより小さくしたものが記載されている。このような構成を採用することにより、焼成後の冷却過程において、表裏の最外層に圧縮応力が生じるため、多層セラミック基板の抗折強度が向上するとされている。
上述の特許文献1に記載の多層セラミック基板では、最外層および内層は、ガラスと結晶質とからなるガラス系材料から構成されている。そして、特許文献1では、最外層および内層の各々の熱膨張係数を調整するため、最外層の材料について、(1)原料のガラスとフィラーとの混合比率を変える、(2)ガラスの組成を変える、(3)フィラーの種類・配合を変える、といった方法が記載されている。
このように、ガラス系材料では熱膨張係数の調整が比較的容易である。これに対して、特に非ガラス系材料、たとえばBaO−Al−SiO系低温焼結セラミック材料は、ガラスとフィラーとからなる材料ではないため、その熱膨張係数を調整することが難しい。したがって、非ガラス系材料を用いて、多層セラミック基板を構成した場合、最外層の熱膨張係数を内層の熱膨張係数よりも小さくすることがそれほど容易ではなく、また、非ガラス系材料を用いた場合、熱膨張係数の差を設けることにより、強度向上に関して、どの程度の効果が得られるかは不明である。
特開平6−29664号公報
そこで、この発明の目的は、非ガラス系材料をはじめとする低温焼結セラミック材料を用いながら、強度がより高められた、多層セラミック基板を提供しようとすることである。
この発明の他の目的は、上述した多層セラミック基板を製造するための好ましい方法を提供しようとすることである。
この発明は、第1の熱膨張係数を持つ表層部と前記第1の熱膨張係数より大きな第2の熱膨張係数を持つ内層部とからなる積層構造を有する、多層セラミック基板にまず向けられるものであって、上述した技術的課題を解決するため、表層部および内層部は、SiO系結晶相を含み、表層部におけるSiO系結晶相の割合が、内層部におけるSiO系結晶相の割合よりも少ないことを特徴としている。
上記SiO系結晶相は、クォーツおよび/またはクリストバライトであることが好ましい。
また、表層部と内層部とは、SiO系結晶相の割合を除き、互いに実質的に同組成の材料によって形成されていることが好ましい。
好ましくは、表層部および内層部は、BaO−Al−SiO系低温焼結セラミック材料によって形成される。この場合、BaO−Al−SiO系低温焼結セラミック材料は、BaをBaOに換算して4.0〜50.0重量%、AlをAlに換算して2.0〜60.0重量%、およびSiをSiOに換算して4.0〜70.0重量%含有することが好ましい。
この発明に係る多層セラミック基板は、表層部および/または内層部に関連して、銀または銅を主成分とする導体パターンが設けられることが好ましい。
また、この発明に係る多層セラミック基板は、表層部の表面上に搭載される表面実装型電子部品をさらに備えることが好ましい。
この発明は、また、第1の熱膨張係数を持つ表層部と前記第1の熱膨張係数より大きな第2の熱膨張係数を持つ内層部とからなる積層構造を有する、多層セラミック基板を製造する方法にも向けられる。
この発明に係る多層セラミック基板の製造方法は、焼成されたとき上記表層部となる未焼成の表層部と、焼成されたとき上記内層部となる未焼成の内層部とからなる積層構造を有する、未焼成の積層構造体を作製する工程と、未焼成の積層構造体を焼成する工程とを備えている。
そして、未焼成の表層部および未焼成の内層部は、少なくともSiOを含み、かつ、焼成されたとき、SiO系結晶相を生成する材料を含み、焼成後において、表層部における前記SiO系結晶相の割合は、内層部における前記SiO系結晶相の割合よりも少なくなるようにされることを特徴としている。
この発明に係る多層セラミック基板の製造方法において、第1の好ましい実施態様では、未焼成の表層部に含まれるSiOの割合が、未焼成の内層部に含まれるSiOの割合よりも少なくされ、第2の好ましい実施態様では、未焼成の表層部と未焼成の内層部とは互いに実質的に同組成の材料によって形成されており、未焼成の表層部に含まれる無機材料を作製する際に適用される仮焼温度が、未焼成の内層部に含まれる無機材料を作製する際に適用される仮焼温度よりも高くされる。
この発明に係る多層セラミック基板によれば、表層部におけるSiO系結晶相の割合が、内層部におけるSiO系結晶相の割合よりも小さい。すなわち、一般的なセラミックの熱膨張係数が6〜10×10−6/℃程度であるのに対し、クォーツやクリストバライト等のSiO系結晶相の熱膨張係数は15×10−6/℃以上であるため、表層部の熱膨張係数を内層部の熱膨張係数より小さくすることができ、焼成後の冷却過程で表層部に圧縮応力を発生させることができ、その結果、多層セラミック基板の抗折強度を高めることができる。また、多層セラミック基板の反りを低減することができる。さらに、多層セラミック基板の外表面上に導体膜が形成される場合、この導体膜の多層セラミック基板に対する密着強度を高く維持することができる。
SiO系結晶相が、特にクォーツおよび/またはクリストバライトであるとき、その割合を変えることによって、電気的特性や機械的特性を大きく変化させることなく、熱膨張係数を調整することがより容易である。
表層部と内層部とが互いに実質的に同組成の材料によって形成されていると、表層部と内層部との間で良好な接合状態を得ることができ、デラミネーションなどが生じにくくすることができる。
表層部および内層部がBaO−Al−SiO系低温焼結セラミック材料によって形成されていると、表層部および内層部自体の抗折強度を高めることできるとともに、多層セラミック基板を得るため、低温での焼成が可能である。特に、BaO−Al−SiO系低温焼結セラミック材料が、BaをBaOに換算して4.0〜50.0重量%、AlをAlに換算して2.0〜60.0重量%、およびSiをSiOに換算して4.0〜70.0重量%含有するようにされると、表層部および内層部自体の抗折強度をより確実に高めることができる。
この発明に係る多層セラミック基板において、表層部および/または内層部に関連して導体パターンが設けられ、導体パターンが銀または銅を主成分とするとき、表層部および内層部が低温焼結セラミック材料によって形成されていると、多層セラミック基板を得るための焼成と同時焼成が可能であるばかりでなく、導体パターンの電気抵抗を低くすることができ、導体パターンの電気抵抗に起因する挿入損失を低減することができる。
この発明に係る多層セラミック基板の製造方法において、未焼成の表層部に含まれるSiOの割合を、未焼成の内層部に含まれるSiOの割合よりも少なくしたり、未焼成の表層部に含まれる無機材料を作製する際に適用され仮焼温度を、未焼成の内層部に含まれる無機材料を作製する際に適用される仮焼温度よりも高くしたりすることにより、焼成後において、表層部におけるSiO系結晶相の割合が内層部におけるSiO系結晶相の割合よりも少ない状態を容易に得ることができる。
図1は、この発明の一実施形態による多層セラミック基板1を示す断面図である。
多層セラミック基板1は、内層部3ならびに内層部3を積層方向に挟むように位置する第1および第2の表層部4および5とからなる積層構造を有している。内層部3は、少なくとも1つの内層部セラミック層6をもって構成され、第1および第2の表層部4および5は、それぞれ、少なくとも1つの表層部セラミック層7および8をもって構成されている。
多層セラミック基板1は、好ましくは銀または銅を主成分とする導体パターンを備えている。導体パターンは、たとえばコンデンサまたはインダクタのような受動素子を構成したり、あるいは素子間の電気的接続のような接続配線を行なったりするためのもので、典型的には、図示したように、いくつかの導体膜9〜11ならびにいくつかのビアホール導体12をもって構成される。
導体膜9は、多層セラミック基板1の内部に形成される。導体膜10および11は、それぞれ、多層セラミック基板1の一方主面上および他方主面上に形成される。ビアホール導体12は、導体膜9〜11のいずれかと電気的に接続されかつセラミック層6〜8のいずれか特定のものを厚み方向に貫通するように設けられる。
多層セラミック基板1の一方主面上には、外部導体膜10に電気的に接続された状態で、表面実装型電子部品13および14が搭載される。多層セラミック基板1の他方主面上に形成された外部導体膜11は、当該多層セラミック基板1を図示しないマザーボード上に実装する際の電気的接続手段として用いられる。
このような多層セラミック基板1において、表層部4および5の熱膨張係数は、内層部3の熱膨張係数より小さくされる。これにより、多層セラミック基板1に高い抗折強度を与えることができる。
より詳細には、表層部4および5ならびに内層部3は、非ガラス系セラミック材料から構成され、たとえばクォーツおよび/またはクリストバライトのようなSiO系結晶相を含んでいる。そして、このSiO系結晶相の割合が、表層部4および5の方が内層部3より少なくされることにより、表層部4および5の熱膨張係数が内層部3の熱膨張係数より小さくなるようにされる。
表層部4および5と内層部3とは、SiO系結晶相の割合を除き、互いに実質的に同組成の材料によって形成されていることが好ましい。これによって、表層部4および5と内層部3との間で良好な接合状態を得ることができ、デラミネーションなどの欠陥が生じにくくなる。
なお、表層部4および5と内層部3とは、上述のように、互いに実質的に同組成の材料によって形成されることが好ましいが、ここで、「実質的に同組成」とは、SiO系結晶相のほか、少なくとも1種類(好ましくは2種類以上)の同じ結晶相が析出し得る組成のことを言う。
表層部4および5ならびに内層部3は、BaO−Al−SiO系低温焼結セラミック材料によって形成されていることが好ましい。これによって、表層部4および5ならびに内層部3自体の抗折強度を高めることができるとともに、焼成工程において、たとえば950〜1040℃といった比較的低温での焼結が可能である。そのため、前述した導体膜9〜11およびビアホール導体12のような導体パターンが銀または銅を主成分とするとき、これら導体パターンの焼成を、多層セラミック基板1を得るための焼成と同時に行なうことができる。BaO−Al−SiO系低温焼結セラミック材料は、代表的な非ガラス系材料であるが、このほか、Al−CaO−SiO−MgO−B系低温焼結セラミック材料(非ガラス系)を用いることもできる。
上述したBaO−Al−SiO系低温焼結セラミック材料は、BaをBaOに換算して4.0〜50.0重量%、AlをAlに換算して2.0〜60.0重量%、およびSiをSiOに換算して4.0〜70.0重量%含有することが好ましい。
BaがBaOに換算して4.0重量%未満か、50.0重量%を超えると、焼結性が悪化して焼結体が十分に緻密化しにくくなり、Qの低下を招くことがある。AlをAlに換算して2.0重量%未満であると、抗折強度の向上に寄与するAl化合物が十分析出せず、抗折強度を十分に高めることができない。他方、AlがAlに換算して60.0重量%を超えると、焼結性が悪化して焼結体が十分に緻密化しないため、抗折強度の低下を招くことがある。SiがSiOに換算して4.0重量%未満か、70.0重量%を超えると、焼結性が悪化して焼結体が十分に緻密化しにくくなり、Qの低下を招くことがある。なお、上述した組成系のBaO−Al−SiO系低温焼結セラミック材料は、クォーツ、クリストバライトのSiO系結晶相のほか、サンボルナイト、セルシアンアルミナの結晶相を析出し得る。
なお、BaO−Al−SiO系低温焼結セラミック材料には、1〜30重量%の範囲でBが添加されることが好ましい。これによって、焼結性を向上させ、焼結体をより緻密化することができるからである。
BaO−Al−SiO系低温焼結セラミック材料(非ガラス系)について説明したが、本発明における表層部、内層部用のセラミック材料はこれに限定されるものではない。たとえば、ガラス複合系や結晶化ガラス系の低温焼結セラミック材料であっても、SiO系結晶相を有するものであれば、本発明に含まれる。
多層セラミック基板1において、内層部3の厚みは50〜1500μm、表層部4および5の各々の厚みは5〜150μmであることが好ましい。その理由は次のとおりである。
表層部4および5と内層部3との界面において熱膨張係数の差による応力が働く。より詳細には、表層部4および5側では圧縮応力が働き、この圧縮応力は、界面からの距離が大きくなるに従い小さくなる。他方、内層部3側には引っ張り応力が働き、この引っ張り応力は、界面からの距離が大きくなるに従い小さくなる。これは、距離に従い、応力が緩和されることによる。この距離が150μmを超えると、表面には圧縮応力がほぼ作用しなくなり、その効果がほとんど見られなくなるため、表層部4および5の各々の厚みは150μm以下であることが好ましい。
他方、表層部4および5の各々の厚みが5μm未満になると、引っ張り応力が働いているために強度低下した内層部3が表面から5μm未満の表面近傍領域に存在することになる。このため、表面近傍の内層部3から破壊が起こりやすくなり、表層部4および5に圧縮応力を形成することによって強化した効果が見られなくなり、したがって、表層部4および5の各々の厚みは5μm以上であることが好ましい。
上述のような多層セラミック基板1は、好ましくは、次のようにして製造される。
多層セラミック基板1を製造するため、図2に示すような未焼成の積層構造体21が作製される。未焼成の積層構造体21は、焼成されることによって、多層セラミック基板1となるべきものであって、多層セラミック基板1における内層部3に対応する未焼成の内層部23ならびに第1および第2の表層部4および5にそれぞれ対応する未焼成の第1および第2の表層部24および25を備えている。
未焼成の内層23ならびに未焼成の表層部24および25は、たとえばBaO−Al−SiO系低温焼結セラミック材料のための原料のように、少なくともSiOを含み、かつ、焼成されたとき、SiO系結晶相を生成する材料を含んでいる。そして、焼成後において、前述したように、表層部4および5におけるSiO系結晶相の割合は、内層部3におけるSiO系結晶相の割合よりも少なくなるように、表層部24および25ならびに内層部23の各組成が選ばれる。
SiO系結晶相の割合についての上述したような特定的な関係が達成されるようにするため、第1の好ましい実施態様では、未焼成の表層部24および25に含まれるSiOの割合が、未焼成の内層部23に含まれるSiOの割合よりも少なくされる。第2の好ましい実施態様では、未焼成の表層部24および25と未焼成の内層部23とは互いに実質的に同組成の材料によって形成されており、未焼成の表層部24および25に含まれる無機材料を作製する際に適用される仮焼温度が、未焼成の内層部23に含まれる無機材料を作製する際に適用される仮焼温度よりも高くされる。なお、これら第1および第2の好ましい実施態様の各々については、後述する実験例において、より具体的に説明する。
未焼成の内層部23は、内層部セラミック層6となる内層部セラミックグリーンシート26をもって構成され、未焼成の表層部24および25は、それぞれ、表層部セラミック層7および8となる表層部セラミックグリーンシート27および28をもって構成されている。なお、未焼成の積層構造体21を作製するため、内層部セラミックグリーンシート26ならびに表層部セラミックグリーンシート27および28が用意され、これらが所定の順序で積層され、次いで圧着されるのが通常であるが、セラミックグリーンシート26〜28の各々に対応する生のセラミック層を厚膜印刷により形成することによって、未焼成の積層構造体21を作製するようにしてもよい。
上述した内層セラミックグリーンシート26ならびに表層部セラミックグリーンシート27および28に関連して、多層セラミック基板1に備える導体パターンとしての導体膜9〜11ならびにビアホール導体12が設けられている。
次に、未焼成の積層構造体21が焼成される。一例として、導体膜9〜11ならびにビアホール導体12の導電成分として銅が用いられ、未焼成の内層部23ならびに未焼成の表層部24および25がBaO−Al−SiO系低温焼結セラミック材料のための原料を含む組成である場合には、還元性雰囲気中において、950〜1040℃の温度で焼成される。この焼成の結果、図1に示した多層セラミック基板1が得られる。
なお、未焼成の内層部23ならびに未焼成の表層部24および25が焼結する温度では実質的に焼結しないAl等の無機材料を含む、拘束用グリーンシートが用意され、未焼成の積層構造体21の少なくとも一方の主面上に拘束用グリーンシートを配置した状態で焼成工程を実施してもよい。この場合、拘束用グリーンシートは、焼成工程において実質的に焼結しないので収縮が生じず、未焼成の積層構造体21に対して主面方向での収縮を抑制するように作用する。その結果、得られた多層セラミック基板1の不所望な変形を抑制し、寸法精度を高めることができるとともに、焼成時において、未焼成の表層部24および25と未焼成の内層部23との間で剥がれを生じにくくすることができる。
次に、この発明による効果を確認するために実施した実験例について説明する。
(実験例1)
実験例1は、SiO割合によって生成結晶相の調整を行なう、第1の好ましい実施態様に対応している。
SiO、BaCO、Al、B、CaCOおよびCrの各粉末を用意し、これら粉末を表1の組成が得られるように調合し、混合し、次いで850℃の温度で仮焼した。得られた仮焼粉末を、ジルコニアボールミルで12時間粉砕し、無機材料としての原料粉末を得た。
次に、この原料粉末に、トルエンおよびエキネンからなる有機溶剤を加えて混合し、さらに、バインダおよび可塑剤を加えて混合し、スラリーを得た。そして、このスラリーに対して、ドクターブレード法を適用して、厚さ50μmのセラミックグリーンシートを得た。
次に、これらセラミックグリーンシートを積み重ね、適当なサイズにカットした後、還元性雰囲気中において、950〜1000℃の温度で焼成した。
このようにして得られた焼成後の各材料に係る焼結体について3点曲げ強度試験を行ない、抗折強度を測定した。また、各材料に係る焼結体の熱膨張係数をTMAにて測定した。表1には、これらの結果が示されている。
Figure 2008053525
他方、焼成後の各材料に係る焼結体を粉砕し、XRDにて結晶相およびその相からのピーク強度を調べた。表2に、その結果が示されている。
Figure 2008053525
表2において、「クォーツ」については2θ=20.8°付近のピーク強度、「クリストバライト」については2θ=21.8°付近のピーク強度、「BaAlSi」については2θ=34.0°付近のピーク強度、「BaSi」については2θ=33.0°付近のピーク強度、「Al」については2θ=35.1°付近のピーク強度をそれぞれ求めたものである。
表1および表2から、組成を変化させることにより、生成される結晶相が変化していることがわかる。特に、クォーツ、クリストバライトなどのSiO系結晶相の割合が大きく変化しており、これが熱膨張係数の変化に現われている。
より具体的には、原料粉末の組成においてSiOの割合が比較的多い材料1、2および4では、クォーツおよび/またはクリストバライトのピーク強度が比較的高い(すなわち、存在割合が比較的多い)。そして、これら材料1、2および4では熱膨張係数が比較的大きい。
他方、原料粉末の組成においてSiOの割合が比較的少ない材料3、6および8では、クォーツおよび/またはクリストバライトのピーク強度が低い(すなわち、存在割合が比較的少ない)。そして、これら材料3、6および8では熱膨張係数が比較的小さい。
なお、各材料単体での抗折強度については、材料間で特に有意な差がなく、210〜260MPaの範囲内にある。
次に、表3に示すように、上記材料1〜8の各々を組み合わせて表層部と内層部との各々において用いた多層セラミック基板を作製した。ここで、表層部の厚みは、上下それぞれ0.05mmとし、内層部の厚みは0.9mmとした。
そして、各試料に係る多層セラミック基板の状態での抗折強度を測定した。表3に、その結果が示されている。また、表3には、表1に示した「熱膨張係数」から「(内層部の熱膨張係数)−(表層部の熱膨張係数)」の式によって算出した「熱膨張係数差」が表示されている。
Figure 2008053525
表3において、*を付した試料は、この発明の範囲外のものである。
表3から、表層部の熱膨張係数が内層部の熱膨張係数より小さい場合には、高い抗折強度が得られており、この抗折強度は、表1に示した抗折強度と比較すればわかるように、各材料単体の場合に比べて大幅に向上している。
(実験例2)
実験例2では、仮焼温度によって生成結晶相の調整を行なう、第2の好ましい実施態様に対応している。
実験例1における表1に示した材料2の組成を採用しながら、表4に示すように、800℃、850℃、900℃および950℃の各温度で仮焼したことを除いて、実験例1の場合と同様の条件を適用して、原料粉末を得、その後、同様の工程を経て、各材料に係る焼結体を得た。
そして、実験例1の場合と同様の方法により、各材料に係る焼結体単体での抗折強度および熱膨張係数を求めるとともに、結晶相およびその相からのピーク強度を調べた。
表4には、抗折強度および熱膨張係数が示され、表5には、結晶相およびピーク強度が示されている。なお、表4および表5において、材料2は、仮焼温度が850℃であるので、表1および表2に示した材料2と同じものである。
Figure 2008053525
Figure 2008053525
表4および表5から、仮焼温度の変更により、各材料の反応性が変化し、その結果、焼成後に生成した結晶相の割合が変化し、また、熱膨張係数が変化することがわかる。より具体的には、仮焼温度が高くなるに従って、クォーツ、クリストバライトのようなSiO系結晶相の割合が低くなり、また、熱膨張係数が小さくなることがわかる。
次に、実験例1の場合と同様、表4および表5に示した材料9、2、10および11の各々を組み合わせて表層部と内層部との各々において用いた多層セラミック基板を作製し、多層セラミック基板の状態での抗折強度を求めた。その結果が表6に示されている。表6には、表3の場合と同様にして求めた「熱膨張係数差」が示されている。
Figure 2008053525
表6において、試料記号に*を付したものは、この発明の範囲外のものである。
表6から、表層部の熱膨張係数が内層部の熱膨張係数より小さい場合には、高い抗折強度が得られており、これらの抗折強度は、表4に示した材料単体での抗折強度に比べて大幅に向上していることがわかる。
この発明の一実施形態による多層セラミック基板1を示す断面図である。 図1に示した多層セラミック基板1の製造の途中で作製される未焼成の積層構造体21を示す断面図である。
符号の説明
1 多層セラミック基板
3 内層部
4,5 表層部
9 内部導体膜
10,11 外部導体膜
12 ビアホール導体
13,14 表面実装型電子部品
21 未焼成の積層構造体
23 未焼成の内層部
24,25 未焼成の表層部

Claims (10)

  1. 第1の熱膨張係数を持つ表層部と前記第1の熱膨張係数より大きな第2の熱膨張係数を持つ内層部とからなる積層構造を有する、多層セラミック基板であって、
    前記表層部および前記内層部は、SiO系結晶相を含み、前記表層部における前記SiO系結晶相の割合が、前記内層部における前記SiO系結晶相の割合よりも少ない、
    多層セラミック基板。
  2. 前記SiO系結晶相は、クォーツおよび/またはクリストバライトである、請求項1に記載の多層セラミック基板。
  3. 前記表層部と前記内層部とは、前記SiO系結晶相の割合を除き、互いに実質的に同組成の材料によって形成されている、請求項1または2に記載の多層セラミック基板。
  4. 前記表層部および前記内層部は、BaO−Al−SiO系低温焼結セラミック材料によって形成されている、請求項1ないし3のいずれかに記載の多層セラミック基板。
  5. 前記BaO−Al−SiO系低温焼結セラミック材料は、BaをBaOに換算して4.0〜50.0重量%、AlをAlに換算して2.0〜60.0重量%、およびSiをSiOに換算して4.0〜70.0重量%含有する、請求項4に記載の多層セラミック基板。
  6. 前記表層部および/または前記内層部に関連して設けられ、かつ、銀または銅を主成分とする導体パターンをさらに備える、請求項1ないし5のいずれかに記載の多層セラミック基板。
  7. 前記表層部の表面上に搭載される表面実装型電子部品をさらに備える、請求項1ないし6のいずれかに記載の多層セラミック基板。
  8. 第1の熱膨張係数を持つ表層部と前記第1の熱膨張係数より大きな第2の熱膨張係数を持つ内層部とからなる積層構造を有する、多層セラミック基板を製造する方法であって、
    焼成されたとき前記表層部となる未焼成の表層部と、焼成されたとき前記内層部となる未焼成の内層部とからなる積層構造を有する、未焼成の積層構造体を作製する工程と、
    前記未焼成の積層構造体を焼成する工程と
    を備え、
    前記未焼成の表層部および前記未焼成の内層部は、少なくともSiOを含み、かつ、焼成されたとき、SiO系結晶相を生成する材料を含み、焼成後において、前記表層部における前記SiO系結晶相の割合は、前記内層部における前記SiO系結晶相の割合よりも少なくなるようにされる、
    多層セラミック基板の製造方法。
  9. 前記未焼成の表層部に含まれるSiOの割合は、前記未焼成の内層部に含まれるSiOの割合よりも少ない、請求項8に記載の多層セラミック基板の製造方法。
  10. 前記未焼成の表層部と前記未焼成の内層部とは互いに実質的に同組成の材料によって形成されており、前記未焼成の表層部に含まれる無機材料を作製する際に適用される仮焼温度は、前記未焼成の内層部に含まれる無機材料を作製する際に適用される仮焼温度よりも高い、請求項8に記載の多層セラミック基板の製造方法。
JP2006229103A 2006-08-25 2006-08-25 多層セラミック基板およびその製造方法 Pending JP2008053525A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229103A JP2008053525A (ja) 2006-08-25 2006-08-25 多層セラミック基板およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229103A JP2008053525A (ja) 2006-08-25 2006-08-25 多層セラミック基板およびその製造方法

Publications (1)

Publication Number Publication Date
JP2008053525A true JP2008053525A (ja) 2008-03-06

Family

ID=39237273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229103A Pending JP2008053525A (ja) 2006-08-25 2006-08-25 多層セラミック基板およびその製造方法

Country Status (1)

Country Link
JP (1) JP2008053525A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092970A1 (ja) 2009-02-16 2010-08-19 株式会社村田製作所 低温焼結セラミック焼結体および多層セラミック基板
WO2011099397A1 (ja) * 2010-02-10 2011-08-18 株式会社村田製作所 セラミック焼結体およびその製造方法
JP2012015433A (ja) * 2010-07-05 2012-01-19 Murata Mfg Co Ltd 多層セラミック基板
WO2013099944A1 (ja) * 2011-12-27 2013-07-04 株式会社村田製作所 多層セラミック基板およびそれを用いた電子部品
WO2014156393A1 (ja) * 2013-03-27 2014-10-02 株式会社村田製作所 絶縁性セラミックペースト、セラミック電子部品およびその製造方法
WO2017122381A1 (ja) * 2016-01-13 2017-07-20 株式会社村田製作所 積層体及び電子部品
CN113451172A (zh) * 2020-03-27 2021-09-28 日本碍子株式会社 层叠结构体及半导体制造装置部件
WO2022168624A1 (ja) * 2021-02-05 2022-08-11 日本電気硝子株式会社 積層ガラスセラミック誘電体材料、焼結体、焼結体の製造方法及び高周波用回路部材

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010092970A1 (ja) 2009-02-16 2010-08-19 株式会社村田製作所 低温焼結セラミック焼結体および多層セラミック基板
EP2397452A1 (en) * 2009-02-16 2011-12-21 Murata Manufacturing Co., Ltd. Sintered body of low temperature cofired ceramic and multilayer ceramic substrate
CN102307825A (zh) * 2009-02-16 2012-01-04 株式会社村田制作所 低温烧结陶瓷烧结体及多层陶瓷基板
US8173565B2 (en) 2009-02-16 2012-05-08 Murata Manufacturing Co., Ltd. Sintered body of low temperature cofired ceramic and multilayer ceramic substrate
EP2397452A4 (en) * 2009-02-16 2013-05-01 Murata Manufacturing Co LTCC SINTERED BODY AND MULTILAYER CERAMIC SUBSTRATE
WO2011099397A1 (ja) * 2010-02-10 2011-08-18 株式会社村田製作所 セラミック焼結体およびその製造方法
US8652982B2 (en) 2010-02-10 2014-02-18 Murata Manufacturing Co., Ltd. Ceramic sintered body and method for producing ceramic sintered body
JP2012015433A (ja) * 2010-07-05 2012-01-19 Murata Mfg Co Ltd 多層セラミック基板
US8420209B2 (en) 2010-07-05 2013-04-16 Murato Manufacturing Co., Ltd. Multilayer ceramic substrate
WO2013099944A1 (ja) * 2011-12-27 2013-07-04 株式会社村田製作所 多層セラミック基板およびそれを用いた電子部品
WO2014156393A1 (ja) * 2013-03-27 2014-10-02 株式会社村田製作所 絶縁性セラミックペースト、セラミック電子部品およびその製造方法
JP5880780B2 (ja) * 2013-03-27 2016-03-09 株式会社村田製作所 絶縁性セラミックペースト、セラミック電子部品およびその製造方法
US9974168B2 (en) 2013-03-27 2018-05-15 Murata Manufacturing Co., Ltd. Insulating ceramic paste, ceramic electronic component, and method for producing the same
US10292264B2 (en) 2013-03-27 2019-05-14 Murata Manufacturing Co., Ltd. Insulating ceramic paste, ceramic electronic component, and method for producing the same
WO2017122381A1 (ja) * 2016-01-13 2017-07-20 株式会社村田製作所 積層体及び電子部品
CN108476593A (zh) * 2016-01-13 2018-08-31 株式会社村田制作所 层叠体以及电子部件
US20180319129A1 (en) * 2016-01-13 2018-11-08 Murata Manufacturing Co., Ltd. Multilayer body and electronic component
CN113451172A (zh) * 2020-03-27 2021-09-28 日本碍子株式会社 层叠结构体及半导体制造装置部件
CN113451172B (zh) * 2020-03-27 2024-05-14 日本碍子株式会社 层叠结构体及半导体制造装置部件
WO2022168624A1 (ja) * 2021-02-05 2022-08-11 日本電気硝子株式会社 積層ガラスセラミック誘電体材料、焼結体、焼結体の製造方法及び高周波用回路部材

Similar Documents

Publication Publication Date Title
JP5104761B2 (ja) セラミック基板およびその製造方法
KR101073873B1 (ko) 다층 세라믹 기판과 그 제조 방법, 및 전자 부품
KR101241256B1 (ko) 저온 소결 세라믹 소결체 및 다층 세라믹 기판
JP4994052B2 (ja) 基板およびこれを用いた回路基板
JP2008053525A (ja) 多層セラミック基板およびその製造方法
WO2010079696A1 (ja) 低温焼結セラミック材料およびセラミック基板
JP2009088089A (ja) セラミック多層基板
JP6458863B2 (ja) 低温焼結セラミック材料、セラミック焼結体およびセラミック電子部品
JP5796602B2 (ja) セラミック電子部品およびその製造方法
JP2008270741A (ja) 配線基板
WO2010092969A1 (ja) 低温焼結セラミック材料およびセラミック基板
JP2007250728A (ja) セラミック積層デバイスおよびその製造方法
JP4606115B2 (ja) 多層基板及びその製造方法
WO2011099397A1 (ja) セラミック焼結体およびその製造方法
JP5585649B2 (ja) 金属ベース基板およびその製造方法
JP4699769B2 (ja) セラミック多層基板の製造方法
JP2006273676A (ja) セラミック組成物
JP3101966B2 (ja) 高熱膨張Al2O3−SiO2系焼結体およびその製造方法
JP2006196674A (ja) 配線基板の製造方法
US20090114433A1 (en) Multi-layered ceramic board and method of manufacturing the same
JP3688919B2 (ja) セラミック多層配線基板
JP4576151B2 (ja) セラミックス組成物及びセラミックス配線基板
JP2012156380A (ja) 多層配線基板
JP2010109133A (ja) セラミックス電子部品、及びこれを用いた電子機器
JP2009266993A (ja) 多層配線基板およびその製造方法