JPWO2018199267A1 - 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 - Google Patents

変性共役ジエン系重合体、重合体組成物、及びゴム組成物 Download PDF

Info

Publication number
JPWO2018199267A1
JPWO2018199267A1 JP2019514641A JP2019514641A JPWO2018199267A1 JP WO2018199267 A1 JPWO2018199267 A1 JP WO2018199267A1 JP 2019514641 A JP2019514641 A JP 2019514641A JP 2019514641 A JP2019514641 A JP 2019514641A JP WO2018199267 A1 JPWO2018199267 A1 JP WO2018199267A1
Authority
JP
Japan
Prior art keywords
conjugated diene
polymer
modified conjugated
mass
molecular weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019514641A
Other languages
English (en)
Other versions
JP6888081B2 (ja
Inventor
長谷部 公一
公一 長谷部
僚 鈴木
僚 鈴木
裕美 仲二見
裕美 仲二見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Publication of JPWO2018199267A1 publication Critical patent/JPWO2018199267A1/ja
Application granted granted Critical
Publication of JP6888081B2 publication Critical patent/JP6888081B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F36/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F36/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F36/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/30Introducing nitrogen atoms or nitrogen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明に係る変性共役ジエン系重合体は、重量平均分子量が、20×104以上300×104以下であり、分子量分布Mw/Mnが、1.6以上、4.0以下であり、共役ジエン系重合体の総量に対する変性率が30質量%以上80質量%以下であり、GPC(ゲルパーミエーションクロマトグラフィー)における分子量が100万以上500万以下の成分が5質量%以上50質量%以下であり、前記分子量が100万以上500万以下である成分の変性率が90質量%以上100質量%以下である。

Description

本発明は、変性共役ジエン系重合体、重合体組成物、及びゴム組成物に関する。
近年、自動車に対する低燃費化要求が高まり、自動車用タイヤ、特に地面と接するタイヤトレッドに用いられる材料の改良が求められている。従来から、転がり抵抗が小さい、すなわち低ヒステリシスロス性を有する材料の開発が求められてきている。
また、タイヤを軽量化するため、タイヤのトレッド部の厚みを減らす必要があり、耐摩耗性が高い材料も求められている。
一方で、タイヤトレッドに用いられる材料は、安全性の観点から、ウェットスキッド抵抗性に優れ、かつ実用上十分な破壊特性を有することが要求されている。
このような要求に応える材料として、ゴム状重合体と、カーボンブラックやシリカ等の補強性充填剤とを含むゴム材料がある。シリカを含むゴム材料を用いると、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス向上を図ることができる。また、運動性の高いゴム状重合体の分子末端部に、シリカとの親和性又は反応性を有する官能基を導入することによって、ゴム状重合体中におけるシリカの分散性を改良し、かつ、シリカ粒子との結合でゴム状重合体の分子末端部の運動性を低減して、ヒステリシスロスを低減化する試みがなされている。
例えば、特許文献1及び2には、環式アザシラサイクル化合物を重合体活性末端と反応させて官能化したポリマーが提案されている。
また、特許文献3には、重合体活性末端と多官能性シラン化合物をカップリング反応させたジエン系ゴムが提案されている。
特表2008−527150号公報 国際公開第11/129425号パンフレット 国際公開第07/114203号パンフレット
しかしながら、シリカは、カーボンブラックが疎水性の表面を有しているのに対して、親水性の表面を有しており、共役ジエン系ゴムとの親和性が低く、カーボンブラックに比較して、分散性が悪いという欠点を有している。そのため、充填剤としてシリカを採用する場合、シリカと共役ジエン系ゴムとの間の結合を付与し、分散性を改良するため、別途シランカップリング剤等を含有させる必要がある。
また、共役ジエン系ゴムの分子末端にシリカとの反応性の高い官能基を導入した材料は、混練工程中にシリカ粒子との反応が進行して、ゴム組成物の粘度が上昇するため、練り難くなったり、又は、混練り後にシートに加工する際に肌荒れを生じたり、シート切れが生じやすくなったりし、加工性が悪化する傾向にあるという問題を有している。
さらに官能基を導入した材料は、金型等の金属表面へ付着しやすくなるという問題を有している。さらにまた、このような材料を加硫物としたとき、特にシリカ等の無機充填剤を含む加硫物としたときに、十分な耐摩耗性が得られない、という問題を有している。
そこで、本発明においては、加工時及び加硫時の金属表面への付着性が低く、加硫物としたときに高い耐摩耗性を有し、省燃費性にも優れるタイヤ用のゴム組成物が得られる、変性共役ジエン系重合体を提供することを目的とする。
本発明者らは、上記従来技術の課題を解決するために鋭意研究検討した結果、充填剤との親和性又は反応性を有する官能基を重合体分子に導入した変性共役ジエン系重合体であって、重量平均分子量及び分子量分布が特定範囲であり、所定の範囲の変性率を有し、かつ、GPC(ゲルパーミエーションクロマトグラフィー)による分子量曲線において、分子量が100万以上500万以下である成分の含有量、及び当該成分の変性率を特定の範囲とした変性共役ジエン系重合体が、上記従来技術の課題を解決し得ることを見出し、本発明を完成させるに至った。
すなわち、本発明は以下のとおりである。
[1]
重量平均分子量が、20×10以上300×10以下であり、
分子量分布Mw/Mnが、1.6以上、4.0以下であり、
共役ジエン系重合体の総量に対する変性率が30質量%以上80質量%以下であり、
GPC(ゲルパーミエーションクロマトグラフィー)における分子量が100万以上500万以下の成分が5質量%以上50質量%以下であり、
前記分子量が100万以上500万以下である成分の変性率が90質量%以上100質量%以下である、
変性共役ジエン系重合体。
[2]
GPCにおけるピークトップ、又はピークが複数存在する場合には分子量が最大であるピークトップの分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1.10倍以上である、
[1]に記載の変性共役ジエン系重合体。
[3]
GPCにおけるピークトップ、又はピークが複数存在する場合には分子量が最大であるピークトップの分子量の1/2である分子量成分の変性率が、変性共役ジエン系重合体全体変性率の1/2以下である、
[1]又は[2]に記載の変性共役ジエン系重合体。
[4]
GPCにおけるMw/Mnが2.0以上4.0以下であり、
収縮因子g’が0.64以上1.00以下である、
[1]乃至[3]のいずれか一項に記載の変性共役ジエン系重合体。
[5]
変性共役ジエン系重合体は、窒素とケイ素を、それぞれ3質量ppm以上含有し、
ケイ素に対する窒素のモル比(窒素/ケイ素)が、1.1以上10未満である、
[1]乃至[4]のいずれか一項に記載の変性共役ジエン系重合体。
[6]
変性共役ジエン系重合体は、窒素とケイ素を、それぞれ3質量ppm以上含有し、
ケイ素に対する窒素のモル比(窒素/ケイ素)が、0.1以上0.9未満である、
[1]乃至[4]のいずれか一項に記載の変性共役ジエン系重合体。
[7]
[1]乃至[6]のいずれか一項に記載の変性共役ジエン共重合体を10質量%以上含有する重合体組成物。
[8]
[1]乃至[6]のいずれか一項に記載の変性共役ジエン共重合体10質量%以上を含有するゴム状重合体100質量部と、
充填剤5〜150質量部と、
を、含むゴム組成物。
本発明によれば、加工時及び加硫時の金属表面への付着性が低く、加硫物としたときに高い耐摩耗性を有し、省燃費性にも優れるタイヤ用のゴム組成物が得られる、変性共役ジエン系重合体を提供することができる。
以下、本発明を実施するための形態(以下、「本実施形態」という。)について、詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
〔変性共役ジエン系重合体〕
本実施形態の変性共役ジエン系重合体は、
重量平均分子量が、20×10以上300×10以下であり、
分子量分布Mw/Mnが、1.6以上4.0以下であり、
共役ジエン系重合体の総量に対する変性率が30質量%以上80質量%以下であり、
GPC(ゲルパーミエーションクロマトグラフィー)における分子量が100万以上500万以下の成分が5質量%以上50質量%以下であり、
前記分子量が100万以上500万以下である成分の変性率が90質量%以上100質量%以下である、変性共役ジエン系重合体である。
(重量平均分子量)
本実施形態の変性共役ジエン系重合体は、重量平均分子量が、20×10以上300×10以下であり、好ましくは40×10万以上250×10以下であり、より好ましくは50×10以上200×10以下である。
重量平均分子量が20×10以上300×10以下であることにより、加硫物としたときに耐摩耗性に優れる。
変性共役ジエン系重合体の重量平均分子量は、重合工程における単量体添加量、重合開
始剤の添加量、及び重合時間等の重合条件を調整することにより、上記数値範囲に制御す
ることができる。
変性共役ジエン系重合体の重量平均分子量は、後述する実施例に記載の方法により測定する。
(分子量分布)
本実施形態の変性共役ジエン系重合体は、数平均分子量(Mn)に対する重量平均分子量(Mw)の比で表される分子量分布Mw/Mnが1.6以上4.0以下である。この範囲の分子量分布である変性共役ジエン系重合体は、同程度の分子量及び変性率の重合体と比較して加硫物とする際の加工性により優れる傾向にある。Mw/Mnは、好ましくは1.8以上3.0以下であり、より好ましくは1.9以上2.5以下である。
変性共役ジエン系重合体の分子量分布は、重合工程における重合温度、及び重合時間等の重合条件を調整することにより上記数値範囲に制御することができ、連続重合で製造することがより好ましい。
また、本実施形態の変性共役ジエン系重合体は、分子量が100万以上500万以下の変性共役ジエン系重合体(以下、「特定の高分子量成分」、「高分子量成分」と記載する場合がある。)を、5質量%以上50質量%以下含む。これにより、加硫物としたときに、耐摩耗性により優れる傾向にある。前記特定の高分子量成分の含有量は、好ましくは6質量%以上45質量%以下、より好ましくは7質量%以上40質量%以下である。
本実施形態の変性共役ジエン系重合体の分子量分布は、GPCによる分子量曲線が一山(モノモーダル)の形状、又は複数ピークの場合は台形もしくは連峰型の形状であることが好ましい。連峰型の形状とは、ピークとピークの間の最下部の高さが両側のピーク高さの50%以上である形を意味する。このような分子量分布を有する変性共役ジエン系重合体は、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れる傾向にある。
上述したような、前記特定の高分子量成分の含有量が、5質量%以上50質量%以下の範囲にある変性共役ジエン系重合体を得るためには、例えば、後述する有機モノリチウム化合物の重合開始剤としての使用量を調整すればよく、また、後述する重合工程において、連続式、回分式のいずれの重合様式においても、滞留時間分布を有する方法、すなわち、成長反応の時間分布を広げる方法を選択することが有効である。
連続式における具体的な方法としては、攪拌機付槽型反応器を用い攪拌機で激しく混合する形式のバックミックス反応器とする方法、好ましくは完全混合型反応器として用いる方法、管型反応器においては一部をリサーキュレーションする方法、重合開始剤のフィード場所を単量体入口又はその付近の他の重合器途中に設けた入口とする方法、及び、槽型と管型の反応器を組み合わせて用いる方法が挙げられる。
これらの方法によれば、滞留時間分布を大きくして、滞留時間の長い重合体成分を高分子量成分とすることができる。
また、回分式における具体的な方法としては、例えば、重合開始剤を、重合開始時から重合途中の間で連続的若しくは断続的にフィードする方法が挙げられる。
この方法は、最初に重合開始剤をフィードした重合開始時点から重合した重合体が高分子量成分となり、後で重合を開始した重合体との間で分子量の差が生じるものとする方法である。より具体的には、単量体に対し、目標分子量に相当する重合開始剤の量を、例えば転化率0質量%〜95質量%までの間で、連続的にフィードすれば、拡大した分子量分布を有する重合体とすることができる傾向にある。
上述した方法を用いることで、反応工程前の共役ジエン系重合体のリビング末端の活性比率が高くなる傾向にあり、カップリング後のカップリング率、すなわち、変性率が高い変性共役ジエン系重合体が得られる傾向にある。
これらの方法の中で、攪拌機付槽型反応器を用い、攪拌機で激しく混合する形式のバックミックス反応器とする方法がより好ましい。
なお、本明細書において「分子量」とは、GPC(ゲルパーミエーションクロマトグラフィー)によって得られる、標準ポリスチレン換算分子量である。
数平均分子量、重量平均分子量、分子量分布は、後述する実施例に記載の方法により測定することができる。
(変性率)
本実施形態の変性共役ジエン系重合体は、共役ジエン系重合体の総量に対する変性率が30質量%以上80質量%以下であり、好ましくは40質量%以上75質量%以下であり、より好ましくは50質量%以上70質量%以下である。
一般に、変性共役ジエン系重合体の変性率が高い場合、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れる傾向にある。一方、加工性が悪化し、特に金属表面への付着性が高くなり作業性が劣る傾向にある。
これは金属表面への付着しやすい低分子量成分よりも、高い変性率を有する高分子量成分の方が更に金属表面との相互作用が大きくなるためであると推定される。
そこで、本実施形態においては、変性率の下限を30質量%以上とし、変性による低ヒステリシスロス性とウェットスキッド抵抗性のバランスという効果が得られるようにし、一方において、変性率の上限を80質量%以下に設定して加工性の悪化を抑制し、また、後述するように、特定分子量成分の変性率を制御することによって、金属表面への重合体の付着を抑制するように設計した。
変性率は、充填剤に親和性又は結合反応性を有する特定官能基を重合体分子中に有する重合体成分の、共役ジエン系重合体の総量に対する含有率を質量%で表したものである。
充填剤に親和性又は結合反応性を有する特定官能基としては、好ましくは窒素原子、珪素原子、酸素原子を含む官能基を有する官能基が挙げられる。
本実施形態の変性共役ジエン系重合体を含むゴム状重合体と充填剤とを組み合わせたゴム組成物において低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れたものとする観点から、本実施形態の変性共役ジエン系重合体は、前記官能基を重合体の末端に有する変性共役ジエン系重合体であることが好ましい。例えば、重合開始末端に窒素原子を有する官能基が結合している重合体及び/又は終了末端に窒素原子、珪素原子、酸素原子を含む官能基により変性されている変性共役ジエン系重合体が挙げられる。
変性率は、官能基含有の変性成分と非変性成分を分離できるクロマトグラフィーによって測定することができる。このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。
より具体的には、変性率は、試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの差分から、シリカカラムへの吸着量を測定し、算出する。
さらに具体的には、変性率は、実施例に記載の方法により測定することができる。
変性共役ジエン系重合体の変性率は、重合工程における重合温度、及び重合時間等の重
合条件、及び変性反応工程における変性剤添加量、及び変性時間等の変性条件を調整することにより、上記数値範囲に制御することができる。
(特定の高分子量成分の変性率)
本発明者は、GPCによる分子量曲線の、それぞれの分子量領域での変性率を測定することにより、重合体によっては分子量領域毎に変性率が異なっていることを見出した。
また、各分子量領域の変性率がより不均一な特定構造の変性ジエン系重合体、特に上述した特定の高分子量成分の変性率が高い変性共役ジエン系重合体は、各分子量領域の変性率が均一である同等の変性率の変性共役ジエン系重合体に比べ、特定の性能において優れていることを見出した。
本実施形態の変性共役ジエン系重合体は、GPCにおける分子量が100万以上500万以下の高分子量成分の変性率が90質量%以上100質量%以下である。好ましくは95質量%以上であり、より好ましくは98質量%以上である。
当該高分子量成分の変性率が高い変性共役ジエン系重合体は、高い変性率である高分子量成分がシリカと相互作用することにより、加硫物としたときに高い耐摩耗性を示す。
当該高分子量成分の変性率が高い変性共役ジエン系重合体は、連続重合で得ることができる。連続重合における具体的な方法としては、攪拌機付槽型反応器を用い攪拌機で激しく混合する形式のバックミックス反応器とする方法、好ましくは完全混合型反応器として用いる方法、管型反応器においては一部をリサーキュレーションする方法、重合開始剤のフィード場所を単量体入口又はその付近の他の重合器途中の入り口とする方法、及び、槽型と管型の反応器を組み合わせて用いる方法が挙げられ、攪拌機付槽型反応器を用いて攪拌機で激しく混合する完全混合型反応器を適用する方法が好ましい。
これらの方法により、重合器出口付近のモノマー濃度が低下せずに高分子量の失活ポリマーの生成が抑制されるため、GPCにおける分子量が100万以上500万以下の高分子量成分の変性率が90質量%以上100質量%以下になると考えられる。
特定の分子量成分毎の変性率は、官能基含有の変性成分と非変性成分を分離できるクロマトグラフィーによって測定することができる。
このクロマトグラフィーを用いた方法としては、特定官能基を吸着するシリカ等の極性物質を充填剤としたゲル浸透クロマトグラフィー用のカラムを使用し、非吸着成分の内部標準を比較に用いて定量する方法が挙げられる。
より具体的には、分子量成分毎の変性率は、試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系ゲルカラムで測定したクロマトグラムとシリカ系カラムで測定したクロマトグラムとの分子量成分毎の差分から、シリカカラムへの吸着量を測定する方法により得られる。さらに具体的には、変性率は、後述する実施例に記載の方法により測定することができる。
(ピークトップの変性率)
本実施形態において、GPC曲線におけるピークトップ、又はピークが複数存在する場合には分子量が最大であるピークのピークトップの分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1.10倍以上であることが好ましく、1.15倍以上であることがより好ましく、1.20倍以上であることがさらに好ましい。
当該ピークトップの分子量成分の変性率が、変性共役ジエン系重合体全体の変性率より高い変性共役ジエン系重合体は、加硫物としたときに耐摩耗性に優れる傾向にある。
GPC曲線におけるピークトップ、又はピークが複数存在する場合には、分子量が最大であるピークのピークトップの分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1.10倍以上であるものとするためには、重合反応器に導入するモノマー及び溶媒に含まれる重合停止剤、連鎖移動剤として作用する不純物の量を通常より多く調整することが有効である。
(低分子量成分の変性率)
本実施形態の変性共役ジエン系重合体は、GPC曲線におけるピークが一つ存在する場合にはそのピークのピークトップ、又はピークが複数存在する場合には分子量が最大であるピークトップの分子量の1/2である分子量の成分(以下、「低分子量成分」と記載する場合がある。)の変性率が、変性共役ジエン系重合体全体の変性率の1/2以下であることが好ましく、変性共役ジエン系重合体全体変性率の0.1倍以上0.4倍以下であることがより好ましい。その場合、低分子量成分の絡み合いが低下するため、ゴム組成物の流動性に優れた変性共役ジエン系重合体を得ることができる。
特に、耐摩耗性と流動性に優れ、加工時の金属表面への付着性が低いゴム組成物を得るためには、0.3倍以上0.5倍以下であることが好ましい。
本実施形態の、上述した低分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1/2以下である変性共役ジエン系重合体は、高温重合を行う方法、98%以上のモノマー転化率が達成した段階での重合途中で停止反応を増やす方法、重合系内で強制的な混合を行うことにより滞留時間分布の拡大を図る方法、変性基を有するカップリング剤による2分子以上のカップリング反応を利用する方法等により得ることができる。
本実施形態の変性共役ジエン系重合体によれば、加工時及び加硫時の金属表面への付着性が低く、かつ、加硫物としたときには高い耐摩耗性を示すという一見すると相反する効果を奏する変性共役ジエン系重合体が得られる。
このような変性共役ジエン系重合体が得られるメカニズムは必ずしも明確ではないが、以下のように推定される。
一般に、変性剤残基は、窒素、リン、酸素等を含む極性基を有するので、金属表面との相互作用が大きい。上述した低分子量成分の変性率が高い場合には、変性剤残基が結合した低分子量成分が多く存在することになり、混練時にロール等の金属の表面には変性剤残基を有する低分子量成分が付着し易くなる。金属の表面に低分子量成分が付着した場合、低分子量成分は重合体同士の絡みあい効果が小さいので、重合体が金属に付着したままになり易い。これに対し、変性共役ジエン系重合体全体の変性率を30質量%以上80質量%以下の範囲に設定しつつ、上述した高分子量成分の変性率を90質量%以上100質量%以下にした場合には、変性剤残基が結合した高分子量成分が多く存在することになり、混練時にロール等の金属の表面には変性剤残基を有する高分子量成分が付着し易いが、分子鎖の絡みあい効果が大きいために、高分子鎖に絡めとられて金属表面に残りにくくなると推定される。
(変性共役ジエン系重合体の構成)
本実施形態の変性共役ジエン系重合体は、好ましくは重合開始末端及び/又は停止末端に、充填剤に親和性又は反応性の官能基を有する変性剤残基が結合している変性共役ジエン系重合体である。
すなわち、本実施形態の変性共役ジエン系重合体は、官能基を有する変性剤残基及び共役ジエン系重合体鎖から成るものであることが好ましい。
<変性剤残基>
本実施形態の変性共役ジエン系重合体における変性剤残基は、共役ジエン系重合体鎖に結合されている、変性共役ジエン系重合体の構成単位であり、例えば、後述する共役ジエン系重合体と変性剤とを反応させることによって生じる、変性剤由来の構造単位である。
変性剤残基は、充填剤に親和性又は結合反応性を有する特定官能基を有する。
本実施形態の変性共役ジエン系重合体が、重合開始末端に官能基が結合している変性共役ジエン系重合体である場合、当該変性共役ジエン系重合体は、官能基を有する重合開始剤を用いて重合反応を行うことにより得ることができる。
<官能基に関する好ましい実施形態>
前記充填剤に親和性又は結合反応性を有する官能基としては、好ましくは、窒素原子、ケイ素原子を含む官能基が挙げられる。
より好ましくは、窒素原子のモル数のケイ素原子のモル数に対する比、すなわちN/Siのモルが0.1〜10.0であることが好ましく、より好ましくは0.2〜7.0である。
この範囲では、特にシリカ系充填剤との親和性が良好であり、シリカ系充填剤を用いたゴム組成物のヒステリシスロスが小さく、低燃費タイヤ用のゴム組成物として良好な性能を発揮する。
ケイ素原子を含む官能基としては、以下に限定されるものではないが、例えば、メトキシシリル基、エトキシシリル基、プロポキシシリル基等が挙げられる。
また、窒素原子を含む官能基としては、以下に限定されるものではないが、例えば、二級アミノ基、三級アミノ基等が挙げられる。
また、本実施形態の変性共役ジエン系重合体は、窒素原子を含む官能基を重合体分子中に有する変性共役ジエン系重合体であることが好ましい。かかる場合、窒素原子を含む官能基としては、特に窒素原子が少なくとも−NH−型の2級アミンを含むものであることが好ましい。その場合、充填剤としてシリカ系充填剤及びカーボンブラックを用いたゴム組成物のヒステリシスロスが低く、低燃費タイヤ用のゴム組成物として良好な性能を発揮する。
変性剤残基がケイ素原子を有する場合、ケイ素原子の少なくとも1個が、炭素数1〜20のアルコキシシリル基又はシラノール基を構成することが好ましい。これらによって、ゴム組成物とした場合の充填剤の分散性が改良されて省燃費性が向上する傾向にある。
本実施形態の変性共役ジエン系重合体は、複数の共役ジエン系重合体鎖の末端が、1個のケイ素原子と結合していてもよい。また、共役ジエン系重合体鎖の末端とアルコキシ基又は水酸基とが、一つのケイ素原子に結合し、その結果として、その1つのケイ素原子がアルコキシシリル基又はシラノール基を構成していてもよい。
(共役ジエン系重合体を構成する単量体)
本実施形態の変性共役ジエン系重合体の変性前の共役ジエン系重合体は、少なくとも共役ジエン化合物を重合して得られ、必要に応じて共役ジエン化合物とビニル置換芳香族化合物との両方を共重合して得られる。
共役ジエン化合物としては、重合可能な単量体であれば特に限定されないが、1分子当り4〜12の炭素原子を含む共役ジエン化合物が好ましく、より好ましくは4〜8の炭素原子を含む共役ジエン化合物である。このような共役ジエン化合物としては、以下に限定されないが、例えば、1,3−ブタジエン、イソプレン、2,3−ジメチル−1,3−ブタジエン、1,3−ペンタジエン、3−メチル−1,3−ペンタジエン、1,3−ヘキサジエン、1,3−ヘプタジエンが挙げられる。これらの中でも、工業的入手の容易さの観点から、1,3−ブタジエン、イソプレンが好ましい。これらは1種のみを単独で用いてもよく、2種以上を併用してもよい。
ビニル置換芳香族化合物としては、共役ジエン化合物と共重合可能な単量体であれば特に限定されないが、モノビニル芳香族化合物が好ましい。モノビニル芳香族化合物としては、以下に限定されないが、例えば、スチレン、p−メチルスチレン、α−メチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレンが挙げられる。これらの中でも、工業的入手の容易さの観点から、スチレンが好ましい。これらは1種のみを単独で用いてもよいし、2種以上を併用してもよい。
(SBRの場合の好ましい実施形態)
本実施形態の変性共役ジエン系重合体が、ブタジエン−スチレンランダム共重合体(SBR)である場合、結合スチレン量は5質量%〜50質量%が好ましく、ビニル結合量は10質量%〜75質量%が好ましい。この範囲であれば、タイヤ用の他、あらゆる用途に適合しうるSBRが工業的に得られる。
特に、結合スチレン量が25質量%〜45質量%であり、ビニル結合量が18質量%〜30質量%である場合、ヒステリシスロスが小さく、耐摩耗性に優れたゴム組成物が得られる。
また、結合スチレン量が18質量%〜28質量であり、ビニル結合量が45質量%〜65質量%である場合、天然ゴムと配合したゴム組成物において、ヒステリシスロスが小さく、強度が優れる省燃費タイヤ用ゴム組成物が得られる。
なお、結合スチレン量は、全単量体成分中のスチレンの質量%であり、ビニル結合量は、ブタジエン成分中のビニル結合成分の質量%である。
(ガラス転移温度)
本実施形態の変性共役ジエン系重合体のガラス転移温度(Tg)は、変性共役ジエン系重合体の分子鎖が回転運動を開始する温度であり、省燃費性とウェットグリップ性とに大きく影響する。
Tgが低い場合には省燃費性が良好になり、Tgが高い場合にはウェットグリップ性が向上する。
省燃費タイヤ用途に使用される変性共役ジエン系重合体の場合、Tgが−20℃以上0℃以下であるものが好ましい。これにより、ウェットグリップ性、剛性が極めて良好なものとなる。この変性共役ジエン系重合体はハイパフォーマンス用タイヤ、及びウルトラハイパフォーマンス用タイヤに極めて有用である。
また、本実施形態の変性共役ジエン系重合体は、Tgが−50℃以上−20℃未満であるものが、好ましい他の形態として挙げられる。これにより、省燃費性とウェットグリップ性とのバランスに極めて優れているものとなる。この変性共役ジエン系重合体はサマー用タイヤ及びオールシーズン用タイヤに極めて有用である。
さらに、本実施形態の変性共役ジエン系重合体は、Tgが−70℃以上−50℃未満であるものが、好ましい他の形態として挙げられる。これにより、低温性能性及び耐摩耗性が極めて良好なものとなる。この変性共役ジエン系重合体はウインター用タイヤに極めて有用である。また、耐摩耗性を改良するために各種タイヤトレッドの配合材料として用いられる。
本実施形態の変性共役ジエン系重合体のTgは、ISO 22768:2006に準拠して測定することができる。
(ランダムSBRの好ましい形態)
本実施形態の変性共役ジエン系重合体が、ブタジエン−スチレンランダム共重合体(SBR)である場合、スチレン単位が単独で存在する割合が多いことが好ましく、長い連鎖は少ないものが好ましい。
具体的には、変性共役ジエン系重合体がブタジエン−スチレン共重合体の場合、田中らの方法(Polymer,22,1721(1981))として知られているオゾン分解による方法で、前記共重合体を分解し、GPCによりスチレン連鎖分布を分析した場合、全結合スチレン量に対し、単離スチレン量が40質量%以上であり、スチレンの連鎖が8個以上の連鎖スチレン構造が5質量%以下であることが好ましい。この場合、特に、ヒステリシスロスが小さく、優れた性能の省燃費タイヤ用のゴム組成物が得られる。
(水素化共役ジエン系重合体)
本実施形態の変性共役ジエン系重合体は、当該変性共役ジエン系重合体を、又は、変性前の共役ジエン系重合体を、不活性溶剤中でさらに水素化する処理を施したものであってもよい。これにより二重結合の全部又は一部を飽和炭化水素に変換することができる。かかる場合、耐熱性、耐候性が向上し、高温で加工する場合の製品の劣化を防止することができ、ゴムとしての運動性能が向上する傾向にある。また、その結果、自動車用途等種々の用途で一層優れた性能を発揮する。
共役ジエン化合物に基づく不飽和二重結合の水素化率は、目的に応じて任意に選択でき、特に限定されない。加硫物として用いる場合には、共役ジエン部の二重結合が部分的に残存していることが好ましい。かかる観点から、共役ジエン系重合体中の共役ジエン部の水添率は、3.0モル%以上70モル%以下であることが好ましく、5.0モル%以上65モル%以下であることがより好ましく、10モル%以上60モル%以下であることがさらに好ましい。特に、ビニル基を選択的に水素化することで、耐熱性及び運動性能が向上する傾向にある。水素化率は、核磁気共鳴装置(NMR)により求めることができる。
(油展重合体・ムーニー粘度)
本実施形態の変性共役ジエン系重合体は、伸展油を加えた油展重合体としてもよい。本実施形態の変性共役ジエン系重合体は、非油展であっても、油展であってもよい。
また、加硫ゴム組成物とする際の加工性と、加硫物としたときの耐摩耗性の観点から、本実施形態の変性共役ジエン系重合体は、100℃で測定されるムーニー粘度が、20以上100以下であることが好ましく、30以上80以下であることがより好ましい。変性共役ジエン系重合体のムーニー粘度は、後述する実施例に記載の方法により測定することができる。
(窒素・ケイ素含有量)
本実施形態の変性共役ジエン系共重合体は、窒素及びケイ素の含有量が、省燃費性向上の観点から、それぞれ3質量ppm以上であることが好ましく、7質量ppm以上であることがより好ましく、10質量ppm以上であることがさらに好ましい。
本実施形態の変性共役ジエン系共重合体は、フィラーとの混練時に窒素により物理吸着し、ケイ素により化学結合すると考えられ、上記数値範囲とすることにより、ヒステリシスロス性に優れたゴム組成物が得られる。
本実施形態の変性共役ジエン系共重合体では、含有される窒素とケイ素とのモル比が重要であり、ケイ素に対する窒素のモル比(N/Si)が、1.1以上10未満であることが、混練時にシリカを短時間で分散できる観点から好ましく、1.3以上7以下であることがより好ましく、1.5以上5以下であることがさらに好ましい。
N/Siのモル比が、前記範囲であることが好ましい理由については、窒素による物理吸着の方がケイ素による化学結合よりも反応速度が速いため、ケイ素に対する窒素のモル比が等モル以上であることが好ましいと推定される。
また、本実施形態の変性共役ジエン系共重合体は、ケイ素に対する窒素のモル比(N/Si)が、0.1以上0.9未満であるものが他の好ましい形態として挙げられる。これにより、混練時にシリカを短時間で分散できる。かかる場合、0.2以上0.75以下であることがより好ましく、0.3以上0.6以下であることがさらに好ましい。
ケイ素に対する窒素のモル比が0.1以上0.9未満であることが好ましい理由については、窒素による物理吸着がケイ素による化学結合よりも結合が強固であるため、ケイ素に対する窒素のモル比が等モル未満であることが好ましいと推定される。この場合は、ケイ素の含有量は7質量ppm以上が好ましい。
本実施形態の変性共役ジエン系共重合体の窒素及びケイ素の含有量、及びケイ素に対する窒素のモル比(窒素/ケイ素)は、共役ジエン系共重合体の変性反応に使用される変性剤の種類や使用量を調整することにより制御することが可能である。
例えば、所望の窒素及びケイ素の含有量に応じた変性剤を所定の含有量で用いたり、変性剤中のケイ素に対する窒素のモル比を高めたりすることにより、変性共役ジエン系共重合体のケイ素に対する窒素のモル比を高めることが可能である。
(収縮因子)
本実施形態の変性共役ジエン系重合体においては、3D−GPCを用いて測定される収縮因子(g’)が0.86以上0.99以下である変性共役ジエン系重合体が、好ましい形態として挙げられる。
本実施形態の変性共役ジエン系重合体の収縮因子(g’)が前記範囲であることにより、引張強度が優れる傾向にある。
収縮因子(g’)は、変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.86以上0.99以下である変性共役ジエン系重合体は、変性ジエン系重合体の1分子における分岐の数が3分岐以下の変性共役ジエン系重合体である。かかる場合、収縮因子(g’)は、0.88以上0.99以下がより好ましく、0.90以上0.98以下がさらに好ましい。
当該変性共役ジエン系共重合体を得るための方法としては、例えば、リビング活性末端との反応点を3つ以下有する変性剤を、重合開始剤の総モル数に対して、3分の1以上のモル数で添加して、3分岐以下の変性共役ジエン系共重合体を得る方法が有効である。
また、本実施形態の変性共役ジエン系重合体においては、3D−GPCを用いて測定される収縮因子(g’)が0.64以上1.00以下であるものが、好ましい形態として挙げられる。
このような変性共役ジエン系重合体は、充填剤を加えたゴム組成物の粘度が低くなり、加工性が優れる傾向にある。
収縮因子(g’)は、変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.64以上1.00以下である変性共役ジエン系重合体は、変性共役ジエン系重合体の1分子における分岐の数が6分岐以下の変性共役ジエン系重合体である。
当該変性共役ジエン系共重合体を得る方法としては、例えば、リビング活性末端との反応点を6つ以下有する変性剤を、重合開始剤の総モル数に対して、6分の1以上のモル数で添加して、6分岐以下の変性共役ジエン系共重合体を得る方法が有効である。
なお、本実施形態の変性共役ジエン系重合体においては、前記収縮因子(g’)が0.64以上1.00以下であるとともに、GPCによるMw/Mnが2.0以上4.0以下であることが好ましい。これにより、充填剤を加えた組成物の粘度が大幅に低くなる傾向にあり、加工性が大きく向上するという効果が得られる。
また、本実施形態の変性共役ジエン系重合体においては、3D−GPCを用いて測定される収縮因子(g’)が0.30以上0.86未満であるものが、好ましい形態として挙げられる。
このような変性共役ジエン系重合体は、充填剤を加えたゴム組成物の粘度が大幅に低くなり、加工性が極めて優れる。
収縮因子(g’)は、変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.30以上0.86未満である変性共役ジエン系重合体は、変性共役ジエン系重合体の1分子における分岐の数が4分岐以上の変性共役ジエン系重合体である。
当該変性共役ジエン系共重合体を得るための方法としては、例えば、リビング活性末端との反応点を4つ以上有する変性剤を、重合開始剤の総モル数に対して、4分の1以下のモル数で添加して、4分岐以上の変性共役ジエン系共重合体を得る方法が有効である。
さらに、本実施形態の変性共役ジエン系重合体は、3D−GPCを用いて測定される収縮因子(g’)が0.30以上0.70未満であることがより好ましい。
このような変性共役ジエン系重合体は、充填剤を加えたゴム組成物の粘度がより低くなり、加工性がさらに優れたものとなる。
収縮因子(g’)は、該変性共役ジエン系共重合体の分岐構造の指標となり、収縮因子(g’)が0.30以上0.70未満である変性共役ジエン系重合体は、変性共役ジエン系重合体の1分子における分岐の数が5分岐以上の変性共役ジエン系重合体である。
当該変性共役ジエン系共重合体を得る方法としては、例えば、リビング活性末端との反応点を5つ以上有する変性剤を、重合開始剤の総モル数に対して、5分の1以下のモル数で添加して、5分岐以上の変性共役ジエン系共重合体を得る方法が有効である。
粘度検出器付きGPC−光散乱法測定(以下、単に「粘度検出器付きGPC−光散乱法測定」又は「3D−GPC測定」ともいう。)により測定される収縮因子(g’)は、その変性共役ジエン系重合体の分岐数の指標ともなる。例えば、収縮因子(g’)が減少するにつれて、変性共役ジエン系重合体の分岐数(例えば、星形高分子の分岐数(「星形高分子の腕数」ともいう。))が増加する傾向にある。
絶対分子量が等しい変性共役ジエン系重合体を比較する場合には、変性共役ジエン系重合体の分岐が多いほど収縮因子(g’)が小さくなるため、この場合の収縮因子(g’)は、分岐度の指標として用いることができる。
収縮因子(g’)は、3D−GPC測定を用いて測定される。固有粘度と分子量との関係式([η]=KMα([η]:固有粘度、M:分子量)における定数(K、α)を、logK=−3.883、α=0.771として、分子量Mの範囲を1000〜20000000まで入力し、標準固有粘度[η]と分子量Mとの関係を作成する。
この標準固有粘度[η]に対して、3D−GPC測定で得られたサンプルの各分子量Mでの固有粘度[η]を標準固有粘度[η]に対する固有粘度[η]の関係として[η]/[η]を各分子量Mで算出し、その平均値を収縮因子(g’)とする。
より具体的には、後述する実施例に記載の方法により測定することができる。
(変性共役ジエン系重合体の好ましい構造)
本実施形態の変性共役ジエン系重合体は、好ましくは、下記一般式(I)で表される。
Figure 2018199267
前記式(I)中、Dはジエン系重合体鎖を表し、R〜Rは、各々独立に、単結合又は炭素数1〜20のアルキレン基を表し、R及びRは、各々独立に、炭素数1〜20のアルキル基を表し、R、R、及びRは、各々独立に、水素原子又は炭素数1〜20のアルキル基を表し、R及びR10は、各々独立に、炭素数1〜20のアルキレン基を表し、R11は、水素原子又は炭素数1〜20のアルキル基を表す。
m及びxは、1〜3の整数を表し、x≦mであり、pは、1又は2を表し、yは1〜3の整数を表し、y≦(p+1)であり、zは、1又は2の整数を表す。
複数存在する場合のD、R〜R11、m、p、x、y、及びzは、各々独立している。
iは、0〜6の整数を表し、jは0〜6の整数を表し、kは0〜6の整数を表し、(i+j+k)は1〜10の整数であり、((x×i)+(y×j)+(z×k))は、1〜30の整数である。
Aは、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、珪素原子、硫黄原子、リン原子からなる群より選ばれる少なくとも1種の原子を有し、かつ、活性水素を有しない有機基を表す。ただし、(i+j+k)が1の場合は、Aは無いものとしてよい。変性共役ジエン系重合体が、式(I)の構造を有することにより、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性により優れる傾向にある。
本実施形態の変性共役ジエン系重合体において、好ましくは、前記式(I)において、Aは、下記一般式(II)〜(V)のいずれかを表す。
Figure 2018199267
式(II)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、aは、1〜10の整数を表し、Bは、複数存在する場合には、各々独立している。
Figure 2018199267
式(III)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、Bは、炭素数1〜20のアルキル基を表し、aは、1〜10の整数を表し、B及びBは、それぞれ複数存在する場合には、各々独立している。
Figure 2018199267
式(IV)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、aは、1〜10の整数を表し、Bは、複数存在する場合は、各々独立している。
Figure 2018199267
式(V)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、aは、1〜10の整数を表し、Bは、複数存在する場合は、各々独立している。これによって、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性により優れる傾向にある。また、実用上入手が容易となる傾向にある。
〔変性共役ジエン系重合体の製造方法〕
本実施形態の変性共役ジエン系重合体の製造方法は、好ましくは、有機モノリチウム化合物を重合開始剤として用い、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る重合工程と、当該共役ジエン系重合体と、共役ジエン系重合体の活性末端と反応する結合基を有し、さらに充填剤に親和性又は結合反応性を有する特定官能基を有する変性剤とを反応させる変性反応工程と、を有する。
(重合工程)
本実施形態の変性ジエン系重合体の製造方法における重合工程の好ましい形態においては、有機モノリチウム化合物を重合開始剤とし、少なくとも共役ジエン化合物を重合し、共役ジエン系重合体を得る。
重合工程においては、リビングアニオン重合反応による成長反応によって重合が行われることが好ましく、これにより、活性末端を有する共役ジエン系重合体が得られ、高変性率の変性ジエン系重合体を得ることができる傾向にある。
本実施形態の変性ジエン系重合体は、GPCによる分子量曲線において、それぞれの分子量領域での変性率が不均一である特定構造の変性ジエン系重合体である。
本実施形態の変性共役ジエン系重合体は、GPCにおける分子量が100万以上500万以下である成分(高分子量成分)の変性率が90質量%以上100質量%以下である。
また、上述した高分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1.10倍以上であることが好ましい。
さらに、上述した低分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1/2以下であることが好ましい。
このような特定分子量領域の変性率が、特定の変性率である変性共役ジエン系重合体は、成長反応の停止又は連鎖移動を制御した重合方法により得られる。
具体的には、重合反応器に導入するモノマー及び溶媒に含まれる重合停止剤、連鎖移動剤として作用する不純物の量を通常より多くする方法、高温下で重合を行う方法、98%以上のモノマー転化率による重合途中での停止反応を増やす方法、又は変性基を有するカップリング剤による2分子以上のカップリング反応を利用して高分子量成分の変性率を高める方法等を適用することにより製造することができる。
上述した観点から、用いる単量体成分中における不純物総計を50ppm〜300ppmとすることが好ましく、アレン類、アセチレン類、1級及び2級アミン等の不純物の含有量濃度(質量)は、アレン類が20ppm以上であることが好ましく、30ppm以上であることがより好ましく、アセチレン類は20ppm以上であることが好ましく、30ppm以上であることがより好ましく、1級及び2級アミンは合計窒素含有量として5ppm以上であることが好ましい。
アレン類としては、例えば、プロパジエン、1,2−ブタジエンが挙げられる。
アセチレン類としては、例えば、エチルアセチレン、ビニルアセチレンが挙げられる。
1級及び2級アミンとしては、例えば、メチルアミン、ジメチルアミンが挙げられる。
成長反応の停止又は連鎖移動を制御した重合方法を行うためには、さらに、重合温度の制御及びモノマー添加率を制御することが好ましい。重合温度はリビングアニオン重合が進行する温度であることが好ましく、75℃以上110℃以下であることが好ましい。より好ましくは、80℃以上100℃以下である。
また、単量体全体の転化率が98%以上、好ましくは99%以上で変性剤と反応させることが好ましい。
重合工程で得られる共役ジエン系重合体は、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。共役ジエン系重合体をゴム状重合体とするためには、共役ジエン系重合体の単量体全体に対して、共役ジエン化合物を40質量%以上用いることが好ましく、55質量%以上用いることがより好ましい。
ランダム共重合体としては、以下ものに限定されないが、例えば、ブタジエン−イソプレンランダム共重合体等の2種以上の共役ジエン化合物からなるランダム共重合体、ブタジエン−スチレンランダム共重合体、イソプレン−スチレンランダム共重合体、ブタジエン−イソプレン−スチレンランダム共重合体の共役ジエンとビニル置換芳香族化合物からなるランダム共重合体が挙げられる。
共重合体鎖中の各単量体の組成分布としては、特に限定されず、例えば、統計的ランダムな組成に近い完全ランダム共重合体、組成がテーパー状に分布しているテーパー(勾配)ランダム共重合体が挙げられる。共役ジエンの結合様式、すなわち1,4−結合や1,2−結合等の組成は、均一であってもよいし、分布があってもよい。
ブロック共重合体としては、以下のものに限定されないが、例えば、ブロックが2個からなる2型ブロック共重合体(ジブロック)、3個からなる3型ブロック共重合体(トリブロック)、4個からなる4型ブロック共重合体(テトラブロック)が挙げられる。1つのブロックを構成する重合体としては、1つの種類の単量体からなる重合体であっても、2種以上の単量体からなる共重合体であってもよい。例えば、1,3−ブタジエンからなる重合体ブロックを「B」で表し、1,3−ブタジエンとイソプレンの共重合体を「B/I」で表し、1,3−ブタジエンとスチレンの共重合体を「B/S」で表し、スチレンからなる重合体ブロックを「S」で表すと、B−B/I2型ブロック共重合体、B−B/S2型ブロック共重合体、S−B2型ブロック共重合体、B−B/S−S3型ブロック共重合体、S−B−S3型ブロック共重合体、S−B−S−B4型ブロック共重合体等で表される。
上記式において、各ブロックの境界は必ずしも明瞭に区別される必要はない。また、1つの重合体ブロックが2種類の単量体からなる共重合体である場合、ブロック中の各単量体は均一に分布していても、又はテーパー状に分布していてもよい。
<重合開始剤>
重合開始剤としては、少なくとも有機モノリチウム化合物を用いることが好ましい。
有機モノリチウム化合物としては、以下のものに限定されないが、例えば、低分子化合物、可溶化したオリゴマーの有機モノリチウム化合物が挙げられる。また、有機モノリチウム化合物としては、その有機基とそのリチウムの結合様式において、例えば、炭素−リチウム結合を有する化合物、窒素−リチウム結合を有する化合物、及び錫−リチウム結合を有する化合物が挙げられる。
有機モノリチウム化合物の重合開始剤としての使用量は、目的とする共役ジエン系重合体又は変性共役ジエン系重合体の分子量によって決めることが好ましい。
重合開始剤の使用量に対する、共役ジエン化合物等の単量体の使用量は、重合度に関係し、数平均分子量及び/又は重量平均分子量に関係する傾向にある。したがって、共役ジエン系重合体の分子量を増大させるためには、重合開始剤を減らす方向に調整するとよく、分子量を低下させるためには、重合開始剤量を増やす方向に調整するとよい。
重合開始剤としての有機モノリチウム化合物は、好ましくは、置換アミノ基を有するアルキルリチウム化合物、又はジアルキルアミノリチウムである。これらを用いた場合、重合開始末端にアミノ基からなる窒素原子を有する、共役ジエン系重合体が得られる。
置換アミノ基とは、活性水素を有しない、又は、活性水素を保護した構造の、アミノ基である。
活性水素を有しないアミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3−ジメチルアミノプロピルリチウム、3−ジエチルアミノプロピルリチウム、4−(メチルプロピルアミノ)ブチルリチウム、4−ヘキサメチレンイミノブチルリチウムが挙げられる。
活性水素を保護した構造のアミノ基を有するアルキルリチウム化合物としては、以下のものに限定されないが、例えば、3−ビストリメチルシリルアミノプロピルリチウム、4−トリメチルシリルメチルアミノブチルリチウムが挙げられる。
ジアルキルアミノリチウムとしては、以下のものに限定されないが、例えば、リチウムジメチルアミド、リチウムジエチルアミド、リチウムジプロピルアミド、リチウムジブチルアミド、リチウムジ−n−ヘキシルアミド、リチウムジへプチルアミド、リチウムジイソプロピルアミド、リチウムジオクチルアミド、リチウム−ジ−2−エチルへキシルアミド、リチウムジデシルアミド、リチウムエチルプロピルアミド、リチウムエチルブチルアミド、リチウムエチルベンジルアミド、リチウムメチルフェネチルアミド、リチウムヘキサメチレンイミド、リチウムピロリジド、リチウムピペリジド、リチウムヘプタメチレンイミド、リチウムモルホリド、1−リチオアザシクロオクタン、6−リチオ−1,3,3−トリメチル−6−アザビシクロ[3.2.1]オクタン、1−リチオ−1,2,3,6−テトラヒドロピリジンが挙げられる。
これらの置換アミノ基を有する有機モノリチウム化合物は、重合可能な単量体、例えば、1,3−ブタジエン、イソプレン、スチレン等の単量体を少量反応させて、可溶化したオリゴマーの有機モノリチウム化合物として用いることもできる。
有機モノリチウム化合物は、好ましくは、アルキルリチウム化合物である。当該化合物を用いた場合、重合開始末端にアルキル基を有する、共役ジエン系重合体が得られる。
アルキルリチウム化合物としては、以下のものに限定されないが、例えば、n−ブチルリチウム、sec−ブチルリチウム、tert−ブチルリチウム、n−ヘキシルリチウム、ベンジルリチウム、フェニルリチウム、スチルベンリチウムが挙げられる。
アルキルリチウム化合物としては、工業的入手の容易さ及び重合反応のコントロールの容易さの観点から、n−ブチルリチウム、sec−ブチルリチウムが好ましい。
これらの有機モノリチウム化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
また、有機モノリチウム化合物は、他の有機金属化合物と併用してもよい。
当該有機金属化合物としては、以下に限定されるものではないが、例えば、アルカリ土類金属化合物、他のアルカリ金属化合物、その他の有機金属化合物が挙げられる。
アルカリ土類金属化合物としては、以下のものに限定されないが、例えば、有機マグネシウム化合物、有機カルシウム化合物、有機ストロンチウム化合物が挙げられる。また、アルカリ土類金属のアルコキサイド、スルフォネート、カーボネート、アミドの化合物も挙げられる。有機マグネシウム化合物としては、以下に限定されるものではないが、例えば、ジブチルマグネシウム、エチルブチルマグネシウムが挙げられる。
その他の有機金属化合物としては、例えば、有機アルミニウム化合物が挙げられる。
重合工程において、重合反応様式としては、以下のものに限定されないが、例えば、回分式(「バッチ式」ともいう。)、連続式の重合反応様式が挙げられる。
連続式においては、1個又は2個以上の連結された反応器を用いることができる。連続式の反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。連続式においては、好ましくは、連続的に単量体、不活性溶媒、及び重合開始剤が反応器にフィードされ、該反応器内で重合体を含む重合体溶液が得られ、連続的に重合体溶液が排出される。
回分式の反応器は、例えば、攪拌機付の槽型のものが用いられる。回分式においては、好ましくは、単量体、不活性溶媒、及び重合開始剤がフィードされ、必要により単量体が重合中に連続的又は断続的に追加され、該反応器内で重合体を含む重合体溶液が得られ、重合終了後に重合体溶液が排出される。
本実施形態の変性共役ジエン系重合体の製造方法の重合工程において、高い割合で活性末端を有する共役ジエン系重合体を得るには、重合体を連続的に排出し、短時間で次の反応に供することが可能な、連続式の重合反応様式が好ましい。
重合工程は、不活性溶媒中で重合することが好ましい。
不活性溶媒としては、例えば、飽和炭化水素、芳香族炭化水素等の炭化水素系溶媒が挙げられる。
炭化水素系溶媒としては、以下のものに限定されないが、例えば、ブタン、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロペンタン、メチルシクロヘキサン等の脂環族炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素及びそれらの混合物からなる炭化水素が挙げられる。
重合反応に供する前に、不純物であるアレン類、及びアセチレン類を有機金属化合物で処理することで、高濃度の活性末端を有する共役ジエン系重合体が得られる傾向にあり、高い変性率の変性共役ジエン系重合体が得られる傾向にあるため好ましい。
重合工程においては、極性化合物を添加してもよい。これにより、芳香族ビニル化合物を共役ジエン化合物とランダムに共重合させることができ、共役ジエン部のミクロ構造を制御するためのビニル化剤としても用いることができる傾向にある。また、重合反応の促進等にも効果がある傾向にある。
極性化合物としては、以下のものに限定されないが、例えば、テトラヒドロフラン、ジエチルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジメトキシベンゼン、2,2−ビス(2−オキソラニル)プロパン等のエーテル類;テトラメチルエチレンジアミン、ジピペリジノエタン、トリメチルアミン、トリエチルアミン、ピリジン、キヌクリジン等の第3級アミン化合物;カリウム−tert−アミラート、カリウム−tert−ブチラート、ナトリウム−tert−ブチラート、ナトリウムアミラート等のアルカリ金属アルコキシド化合物;トリフェニルホスフィン等のホスフィン化合物等が挙げられる。
これらの極性化合物は、1種のみを単独で用いてもよいし、2種以上を併用してもよい。
極性化合物の使用量は、特に限定されず、目的等に応じて選択することができるが、重合開始剤1モルに対して、0.01モル以上100モル以下であることが好ましい。極性化合物は重合体共役ジエン部分のミクロ構造の調節剤、すなわちビニル化剤として、所望のビニル結合量に応じて、適量を用いることができる。
多くの極性化合物は、同時に共役ジエン化合物と芳香族ビニル化合物との共重合において有効なランダム化効果を有し、芳香族ビニル化合物の分布の調整やスチレンブロック量の調整剤として用いることができる傾向にある。
共役ジエン化合物と芳香族ビニル化合物とをランダム化する方法としては、例えば、特開昭59−140211号公報に記載されているような、スチレンの全量と1,3−ブタジエンの一部とで共重合反応を開始させ、共重合反応の途中に残りの1,3−ブタジエンを断続的に添加する方法を用いてもよい。
重合工程において得られる、後述する変性反応工程前の共役ジエン系重合体は、好ましくは110℃で測定されるムーニー粘度が10以上90以下であり、より好ましくは15以上85以下であり、よりさらに好ましくは20以上60以下である。
共役ジエン系重合体のムーニー粘度が前記範囲であると、本実施形態の変性共役ジエン系重合体は加工性及び耐摩耗性が優れる傾向にある。
本実施形態の共役ジエン系重合体又は変性共役ジエン系重合体中の結合共役ジエン量は、特に限定されないが、40質量%以上100質量%以下であることが好ましく、55質量%以上80質量%以下であることがより好ましい。
また、本実施形態の共役ジエン系重合体又は変性共役ジエン系重合体中の結合芳香族ビニル量は、特に限定されないが、0質量%以上60質量%以下であることが好ましく、20質量%以上45質量%以下であることがより好ましい。
結合共役ジエン量及び結合芳香族ビニル量が前記範囲であると、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスと、破壊特性及び耐摩耗性と、がより優れる傾向にある。
ここで、結合芳香族ビニル量は、フェニル基の紫外吸光によって測定でき、ここから結合共役ジエン量も求めることができる。具体的には、後述する実施例に記載の方法に準じて測定することができる。
本実施形態の共役ジエン系重合体又は変性共役ジエン系重合体において、共役ジエン結合単位中のビニル結合量は、特に限定されないが、10モル%以上75モル%以下であることが好ましく、20モル%以上65モル%以下であることがより好ましい。
ビニル結合量が前記範囲であると、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性のバランスと、耐摩耗性及び破壊強度がより優れる傾向にある。
ここで、変性共役ジエン系重合体がブタジエンとスチレンの共重合体である場合には、ハンプトンの方法(R.R.Hampton,Analytical Chemistry,21,923(1949))により、ブタジエン結合単位中のビニル結合量(1,2−結合量)を求めることができる。具体的には、後述する実施例に記載の方法により測定することができる。
変性共役ジエン系重合体のミクロ構造については、本実施形態の変性共役ジエン系重合体中の各結合量が上述した数値範囲にあり、かつ、変性共役ジエン系重合体のガラス転移温度が−50℃以上−20℃未満の範囲にあるときに、低ヒステリシスロス性とウェットスキッド抵抗性のバランスがより一層優れた加硫物を得ることができる傾向にある。
ガラス転移温度については、ISO 22768:2006に従い、所定の温度範囲で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とする。具体的には、後述する実施例に記載の方法により測定することができる。
本実施形態の変性共役ジエン系重合体が、共役ジエン−芳香族ビニル共重合体である場合、芳香族ビニル単位が30以上連鎖しているブロックの数が、少ないか又はないものであることが好ましい。より具体的には、共重合体がブタジエン−スチレン共重合体の場合、Kolthoffの方法(I.M.KOLTHOFF,et al.,J.Polym.Sci.1,429(1946)に記載の方法)により共重合体を分解し、メタノールに不溶なポリスチレン量を分析する公知の方法において、芳香族ビニル単位が30以上連鎖しているブロックが、共重合体の総量に対して、好ましくは5.0質量%以下、より好ましくは3.0質量%以下である。
(変性反応工程)
変性反応工程においては、上述のような方法で得た共役ジエン系重合体と、当該共役ジエン系重合体の活性末端と反応する結合基を有し、さらに充填剤に親和性又は結合反応性を有する所定の官能基を有する変性剤とを反応させる。
この場合、結合基としての効果も併せ持つ所定の官能基を有する変性剤であってもよい。また、重合工程の後、ただちに変性反応工程を実施することが好ましい。その場合、変性率が高い変性共役ジエン系重合体が得られる傾向にある。
変性剤として、結合基が単官能又は2官能の化合物を用いると、直鎖状の末端変性ジエン系重合体が得られ、結合基が3官能以上の多官能化合物を用いると、分岐状の変性ジエン系重合体が得られる。
変性剤としては、窒素、ケイ素、スズ、リン、酸素、硫黄、ハロゲンのうち、少なくとも1種の元素を含む単官能又は多官能の化合物が用いることが好ましい。また、オニウム生成剤を含む末端変性剤を加えて反応させることにより、前記変性共役ジエン系重合体にオニウム構造を導入することができる。さらに、これらの元素を含む官能基を分子中に複数含有する変性剤、又はこれらの元素を複数含む官能基を含有する変性剤を用いてもよい。
変性反応工程で用いる変性剤としては、水酸基、カルボキシル基、1級又は2級アミノ基等の、活性水素は少ないか、無い官能基を有する化合物が好ましい。活性水素は、共役ジエン系重合体の活性末端を失活させる傾向にある。
<変性剤の具体的記載>
窒素含有化合物としては、以下に限定するものではないが、例えば、イソシアナート化合物、イソチオシアナート化合物、イソシアヌル酸誘導体、窒素基含有カルボニル化合物、窒素基含有ビニル化合物、窒素基含有エポキシ化合物等が挙げられる。
ケイ素含有化合物としては、以下に限定されるものではないが、例えば、ハロゲン化ケイ素化合物、エポキシ化ケイ素化合物、ビニル化ケイ素化合物、アルコキシケイ素化合物、窒素基含有アルコキシケイ素化合物等が挙げられる。
スズ含有化合物としては、以下に限定されるものではないが、例えば、ハロゲン化スズ化合物、有機スズカルボキシレート化合物等が挙げられる。
リン含有化合物としては、以下に限定されるものではないが、例えば、亜リン酸エステル化合物、ホスフィノ化合物等が挙げられる。
酸素含有化合物としては、以下に限定されるものではないが、例えば、エポキシ化合物、エーテル化合物、エステル化合物等が挙げられる。
硫黄含有化合物としては、以下に限定されるものではないが、例えば、メルカプト基誘導体、チオカルボニル化合物、イソチオシアナート等が挙げられる。
ハロゲン含有化合物としては、以下に限定されるものではないが、上記のハロゲン化ケイ素化合物、ハロゲン化スズ化合物等が挙げられる。
オニウム生成剤としては、1級又は2級のアミンを形成しうる保護化アミン化合物(アンモニウムを生成する)、ヒドロホスフィンを形成しうる保護化ホスフィン化合物(ホスフォニウムを生成する)、水酸基、チオールを形成しうる化合物(オキソニウム、スルホニウムを生成する)等が挙げられ、オニウム生成剤と上記変性共役ジエン系重合体を結合するための官能基をそれぞれ分子中に有する末端変性剤を用いることが好ましい。
前記変性共役ジエン系重合体を結合するための官能基としては、カルボニル基(ケトン、エステル等)、ビニル基等の不飽和基、エポキシ基、ハロゲン化ケイ素基、アルコキシケイ素基等が挙げられる。
変性剤は、窒素含有化合物であって、窒素含有官能基を有するものが好ましく、当該窒素含有官能基を有するものとしては、活性水素を有さないアミン化合物が好ましく、例えば、3級アミン化合物、上記の活性水素を保護基で置換した保護化アミン化合物、一般式−N=Cで表されるイミン化合物が挙げられる。
変性剤である窒素含有化合物のイソシアナート化合物としては、以下に限定されるものではないが、例えば、2,4−トリレンジイソシアナート、2,6−トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ポリメリックタイプのジフェニルメタンジイソシアナート(C−MDI)、フェニルイソシアナート、イソホロンジイソシアナート、ヘキサメチレンジイソシアナート、ブチルイソシアナート、1,3,5−ベンゼントリイソシアナート等が挙げられる。
イソチオシアナート化合物としては、以下に限定されるものではないが、例えば、2,4−トリレンジイソチオシアナート、2,6−トリレンジイソチオシアナート、ジフェニルメタンジイソチオシアナート、ポリメリックタイプのジフェニルメタンジイソチオシアナート(C−MDI)、フェニルイソチオシアナート、イソホロンジイソチオシアナート、ヘキサメチレンジイソチオシアナート、ブチルイソチオシアナート、1,3,5−ベンゼントリイソチオシアナート等が挙げられる。
イソシアヌル酸誘導体としては、以下に限定されるものではないが、例えば、1,3,5−トリス(3−トリメトキシシリルプロピル)イソシアヌレート、1,3,5−トリス(3−トリエトキシシリルプロピル)イソシアヌレート、1,3,5−トリ(オキシラン−2−イル)−1,3,5−トリアジナン−2,4,6−トリオン、1,3,5−トリス(イソシアナトメチル)−1,3,5−トリアジナン−2,4,6−トリオン、1,3,5−トリビニル−1,3,5−トリアジナン−2,4,6−トリオン、等が挙げられる。
窒素基含有カルボニル化合物としては、以下に限定されるものではないが、例えば、1,3−ジメチル−2−イミダゾリジノン、1−メチル−3−エチル−2−イミダゾリジノン、1−メチル−3−(2−メトキシエチル)−2−イミダゾリジノン、N−メチル−2−ピロリドン、N−メチル−2−ピペリドン、N−メチル−2−キノロン、4,4’−ビス(ジエチルアミノ)ベンゾフェノン、4,4’−ビス(ジメチルアミノ)ベンゾフェノン、メチル−2−ピリジルケトン、メチル−4−ピリジルケトン、プロピル−2−ピリジルケトン、ジ−4−ピリジルケトン、2−ベンゾイルピリジン、N,N,N’,N’−テトラメチル尿素、N,N−ジメチル−N’,N’−ジフェニル尿素、N,N−ジエチルカルバミン酸メチル、N,N−ジエチルアセトアミド、N,N−ジメチル−N’,N’−ジメチルアミノアセトアミド、N,N−ジメチルピコリン酸アミド、N,N−ジメチルイソニコチン酸アミド等が挙げられる。
窒素基含有ビニル化合物としては、以下に限定されるものではないが、例えば、N,N−ジメチルアクリルアミド、N,N−ジメチルメタクリルアミド、N−メチルマレイミド、N−メチルフタルイミド、N,N−ビストリメチルシリルアクリルアミド、モルホリノアクリルアミド、3−(2−ジメチルアミノエチル)スチレン、(ジメチルアミノ)ジメチル−4−ビニルフェニルシラン、4,4’−ビニリデンビス(N,N−ジメチルアニリン)、4,4’−ビニリデンビス(N,N−ジエチルアニリン)、1,1−ビス(4−モルホリノフェニル)エチレン、1−フェニル−1−(4−N,N−ジメチルアミノフェニル)エチレン等が挙げられる。
窒素基含有エポキシ化合物としては、以下に限定されるものではないが、例えば、アミノ基に結合したエポキシ基含有炭化水素化合物が挙げられ、さらにエーテル基に結合したエポキシ基を有しているものも挙げられる。
当該窒素基含有エポキシ化合物としては、例えば、一般式(1)で表わされる化合物が挙げられる。
Figure 2018199267
前記式(1)中、Rは、2価以上の炭化水素基、又は、エーテル、エポキシ、ケトン等の酸素、チオエーテル、チオケトン等の硫黄、3級アミノ基、イミノ基等の窒素から選ばれる少なくとも1種の極性基を有する2価以上の有機基である。
2価以上の炭化水素基は、飽和又は不飽和の直鎖状、分岐状、環状であってもよい炭化水素基であり、アルキレン基、アルケニレン基、フェニレン基等を含む。好ましくは、炭素数が1〜20である。具体例には、例えば、メチレン、エチレン、ブチレン、シクロヘキシレン、1,3−ビス(メチレン)−シクロヘキサン、1,3−ビス(エチレン)−シクロヘキサン、o−、m−、p−フェニレン、m−、p−キシレン、ビス(フェニレン)−メタン等が挙げられる。
前記式(1)中、R、Rは、炭素数1〜10の炭化水素基であり、R、Rは互いに異なっていてもよい。R、Rは、水素又は炭素数1〜10の炭化水素基であり、R、Rは互いに異なっていてもよい。
は炭素数1〜10の炭化水素基、又は下記式(2)の構造である。
、R、Rは、互いに結合して環状構造であってもよい。
また、Rが炭化水素基の場合、Rと互いに結合して環状構造であってもよく、その場合は、Rは単結合であってもよい。
Figure 2018199267
前記式(2)中、R、Rは、前記式(1)のR、Rと同様に定義され、R、Rは互いに異なっていてもよい。
変性剤として用いる窒素基含有エポキシ化合物としては、エポキシ基含有炭化水素基を有するものが好ましく、より好ましくはグリシジル基含有炭化水素基を有するものである。
アミノ基又はエーテル基に結合したエポキシ基含有炭化水素基としては、例えば、グリシジルアミノ基、ジグリシジルアミノ基又はグリシジドキシ基が挙げられる。さらに好ましい分子構造は、グリシジルアミノ基又はジグリシジルアミノ基、及びグリシジドキシ基をそれぞれ有するエポキシ基含有化合物であり、下記一般式(3)で表わされる。
Figure 2018199267
前記式(3)中、Rは、前記式(1)のRと同様に定義され、Rは、炭素数1〜10の炭化水素基又は下記式(4)の構造である。
6が炭化水素基の場合、Rと互いに結合して環状構造であってもよく、その場合は、Rは単結合であってもよい。
式(3)中、nは1以上の整数であって、mは0又は1以上の整数である。
Figure 2018199267
変性剤として用いる窒素基含有エポキシ含有化合物としては、分子中にジグリシジルアミノ基を1個以上及びグリシドキシ基を1個以上有する化合物がより好ましい。
変性剤として用いる窒素基含有エポキシ化合物としては、以下のものに限定されないが、例えば、N,N−ジグリシジル−4−グリシドキシアニリン、1−N,N−ジグリシジルアミノメチル−4−グリシドキシ−シクロヘキサン、4−(4−グリシドキシフェニル)−(N,N−ジグリシジル)アニリン、4−(4−グリシドキシフェノキシ)−(N,N−ジグリシジル)アニリン、4−(4−グリシドキシベンジル)−(N,N−ジグリシジル)アニリン、4−(N,N’−ジグリシジル−2−ピペラジニル)−グリシドキシベンゼン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’−テトラグリシジル−m−キシレンジアミン、4,4−メチレン−ビス(N,N−ジグリシジルアニリン)、1,4−ビス(N,N−ジグリシジルアミノ)シクロヘキサン、N,N,N’,N’−テトラグリシジル−p−フェニレンジアミン、4,4’−ビス(ジグリシジルアミノ)ベンゾフェノン、4−(4−グリシジルピペラジニル)−(N,N−ジグリシジル)アニリン、2−〔2−(N,N−ジグリシジルアミノ)エチル〕−1−グリシジルピロリジン、N,N−ジグリシジルアニリン、4,4’−ジグリシジル−ジベンジルメチルアミン、N,N−ジグリシジルアニリン、N,N−ジグリシジルオルソトルイジン、N,N−ジグリシジルアミノメチルシクロヘキサン等が挙げられる。
これらのうち、N,N−ジグリシジル−4−グリシドキシアニリン、1,3−ビス(N,N−ジグリシジルアミノメチル)シクロヘキサンが、好ましいものとして挙げられる。
変性剤であるハロゲン化ケイ素化合物としては、以下に限定されるものではないが、例えば、ジブチルジクロロシラン、メチルトリクロロシラン、ジメチルジクロロシラン、メチルジクロロシラン、トリメチルクロロシラン、テトラクロロシラン、トリス(トリメチルシロキシ)クロロシラン、トリス(ジメチルアミノ)クロロシラン、ヘキサクロロジシラン、ビス(トリクロロシリル)メタン、1,2−ビス(トリクロロシリル)エタン、1,2−ビス(メチルジクロロシリル)エタン、1,4−ビス(トリクロロシリル)ブタン、1,4ビス(メチルジクロロシリル)ブタン等が挙げられる。
変性剤であるエポキシ化ケイ素化合物としては、以下に限定されるものではないが、例えば、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、エポキシ変性シリコーン等が挙げられる。
変性剤であるアルコキシケイ素化合物としては、以下に限定されるものではないが、例えば、テトラメトキシシラン、テトラエトキシシラン、トリフェノキシメチルシラン、メトキシ置換ポリオルガノシロキサン等が挙げられる。
変性剤である窒素基含有アルコキシケイ素化合物としては、以下に限定されるものではないが、例えば、3−ジメチルアミノプロピルトリメトキシシラン、3−ジメチルアミノプロピルメチルジメトキシシラン、3−ジエチルアミノプロピルトリエトキシシラン、3−モルホリノプロピルトリメトキシシラン、3−ピペリジノプロピルトリエトキシシラン、3−ヘキサメチレンイミノプロピルメチルジエトキシシラン、3−(4−メチル−1−ピペラジノ)プロピルトリエトキシシラン、1−[3−(トリエトキシシリル)−プロピル]−3−メチルヘキサヒドロピリミジン、3−(4−トリメチルシリル−1−ピペラジノ)プロピルトリエトキシシラン、3−(3−トリエチルシリル−1−イミダゾリジニル)プロピルメチルジエトキシシラン、3−(3−トリメチルシリル−1−ヘキサヒドロピリミジニル)プロピルトリメトキシシラン、3−ジメチルアミノ−2−(ジメチルアミノメチル)プロピルトリメトキシシラン、ビス(3−ジメトキシメチルシリルプロピル)−N−メチルアミン、ビス(3−トリメトキシシリルプロピル)−N−メチルアミン、ビス(3−トリエトキシシリルプロピル)メチルアミン、トリス(トリメトキシシリル)アミン、トリス(3−トリメトキシシリルプロピル)アミン、N,N,N’,N’−テトラ(3−トリメトキシシリルプロピル)エチレンジアミン、3−イソシアナトプロピルトリメトキシシラン、3−シアノプロピルトリメトキシシラン、2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−(4−トリメトキシシリルブチル)−1−アザ−2−シラシクロヘキサン、2,2−ジメトキシ−1−(3−ジメトキシメチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−ブチル−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−メチル−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−8−(4−メチルピペラジニル)メチル−1,6−ジオキサ−2−シラシクロオクタン、2,2−ジメトキシ−8−(N,N−ジエチルアミノ)メチル−1,6−ジオキサ−2−シラシクロオクタン等が挙げられる。
変性剤である、1級又は2級のアミンを形成しうる保護化アミン化合物として、不飽和結合と保護化アミンを分子中に有する化合物としては、以下に限定されるものではないが、例えば、4,4’−ビニリデンビス〔N,N−ビス(トリメチルシリル)アニリン〕、4,4’−ビニリデンビス〔N,N−ビス(トリエチルシリル)アニリン〕、4,4’−ビニリデンビス〔N,N−ビス(t−ブチルジメチルシリル)アニリン〕、4,4’−ビニリデンビス〔N−メチル−N−(トリメチルシリル)アニリン〕、4,4’−ビニリデンビス〔N−エチル−N−(トリメチルシリル)アニリン〕、4,4’−ビニリデンビス〔N−メチル−N−(トリエチルシリル)アニリン〕、4,4’−ビニリデンビス〔N−エチル−N−(トリエチルシリル)アニリン〕、4,4’−ビニリデンビス〔N−メチル−N−(t−ブチルジメチルシリル)アニリン〕、4,4’−ビニリデンビス〔N−エチル−N−(t−ブチルジメチルシリル)アニリン〕、1−〔4−N,N−ビス(トリメチルシリル)アミノフェニル〕−1−〔4−N−メチル−N−(トリメチルシリル)アミノフェニル〕エチレン、1−〔4−N,N−ビス(トリメチルシリル)アミノフェニル〕−1−〔4−N,N−ジメチルアミノフェニル〕エチレン等が挙げられる。
変性剤である、1級又は2級のアミンを形成しうる保護化アミン化合物としての、アルコキシシランと保護化アミンを分子中に有する化合物としては、以下に限定されるものではないが、例えば、N,N−ビス(トリメチルシリル)アミノプロピルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジメトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルトリエトキシシラン、N,N−ビス(トリメチルシリル)アミノプロピルメチルジエトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルトリメトキシシラン、N,N−ビス(トリメチルシリル)アミノエチルメチルジエトキシシラン、N,N−ビス(トリエチルシリル)アミノプロピルメチルジエトキシシラン、3−(4−トリメチルシリル−1−ピペラジノ)プロピルトリエトキシシラン、3−(3−トリエチルシリル−1−イミダゾリジニル)プロピルメチルジエトキシシラン、3−(3−トリメチルシリル−1−ヘキサヒドロピリミジニル)プロピルトリメトキシシラン、2,2−ジメトキシ−1−(3−トリメトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−(3−トリエトキシシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−(4−トリメトキシシリルブチル)−1−アザ−2−シラシクロヘキサン、2,2−ジメトキシ−1−(3−ジメトキシメチルシリルプロピル)−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−フェニル−1−アザ−2−シラシクロペンタン、2,2−ジエトキシ−1−ブチル−1−アザ−2−シラシクロペンタン、2,2−ジメトキシ−1−メチル−1−アザ−2−シラシクロペンタン等が挙げられる。
変性剤であるハロゲン化スズ化合物としては、以下に限定されるものではないが、テトラクロロスズ、テトラブロムスズ、トリクロロブチルスズ、トリクロロオクチルスズ、ジブロムジメチルスズ、ジクロロジブチルスズ、クロロトリブチルスズ、クロロトリオクチルスズ、クロロトリフェニルスズ、1,2−ビス(トリクロロスタニル)エタン、1,2−ビス(メチルジクロロスタニル)エタン、1,4−ビス(トリクロロスタニル)ブタン、1,4ビス(メチルジクロロスタニル)ブタン等が挙げられる。
変性剤である有機スズカルボキシレート化合物としては、以下に限定されるものではないが、例えば、エチルスズトリステアレート、ブチルスズトリオクタノエート、ブチルスズトリスステアレート、ブチルスズトリラウレート、ジブチルスズビスオクタノエート等が挙げられる。
変性剤である亜リン酸エステル化合物としては、以下に限定されるものではないが、例えば、亜リン酸トリメチル、亜リン酸トリブチル、亜リン酸トリフェノキシド等が挙げられる。
変性剤であるホスフィノ化合物としては、以下に限定されるものではないが、例えば、P,P−ビス(トリメチルシリル)ホスフィノプロピルトリメトキシシシラン、P,P−ビス(トリエチルシリル)ホスフィノプロピルメチルエトキシシラン等の保護化ホスフィノ化合物;3−ジメチルフォスフィノプロピルトリメトキシシシラン、3−ジフェニルフォスフィノプロピルトリメトキシシシラン等が挙げられる。
変性剤である酸素含有化合物としては、以下に限定されるものではないが、例えば、エチレングリコールジグリシジルエーテル、グリセリントリグリシジルエーテル等のポリグリシジルエーテル;1,4−ジグリシジルベンゼン、1,3,5−トリグリシジルベンゼン、ポリエポキシ化液状ポリブタジエン、エポキシ化大豆油、エポキシ化亜麻仁油等のポリエポキシ化合物;アジピン酸ジメチル、アジピン酸ジエチル、テレフタル酸ジメチル、テレフタル酸ジエチル等のエステル化合物が挙げられ、これらは重合体末端に水酸基を生成する。
変性剤である硫黄含有化合物としては、以下に限定されるものではないが、例えば、S−トリメチルシリルチオプロピルトリメトキシシシラン、S−トリエチルシリルチオプロピルメチルジエチルシラン等の保護化チオール化合物、S−メチルチオプロピルトリメトキシシシラン、S−エチルチオプロピルメチルジエトキシシシラン、N,N−ジエチルジチオカルバミン酸エチル、フェニルイソチオシアナート、フェニル−1,4−ジイソチオシアナート、ヘキサメチレンジイソチオシアナート、ブチルイソチオシアナート等が挙げられる。
変性剤としては、ケイ素含有官能基を有するものが好ましく、そのケイ素含有官能基としては、例えば、アルコキシシリル基又はシラノール基が挙げられる。
前記アルコキシシリル基は、例えば、共役ジエン系重合体が有する活性末端と反応して、アルコキシリチウムが解離し、共役ジエン系重合体鎖の末端と変性剤残基のケイ素との結合を形成する傾向にある。変性剤1分子が有するSiORの総数から、反応により減じたSiOR数を差し引いた値が、変性剤残基が有するアルコキシシリル基の数となる。また、変性剤が有するアザシラサイクル基は、>N−Li結合及び共役ジエン系重合体末端と変性剤残基のケイ素との結合を形成する。なお、>N−Li結合は、仕上げ時の水等により容易に>NH及びLiOHとなる傾向にある。また、変性剤において、未反応で残存したアルコキシシリル基は仕上げ時の水等により容易にシラノール(Si−OH基)となり得る傾向にある。
変性反応工程において、1個のケイ素原子に対し3個のアルコキシ基を有する化合物を反応させる場合、すなわちトリアルコキシシラン基1モルに対し、3モルの共役ジエン系重合体の活性末端を反応させる場合、2モルまでの共役ジエン系重合体との反応は起こるが、1モルのアルコキシ基は未反応で残存する傾向にある。これは、1モルの共役ジエン系重合体が、反応せずに未反応の重合体として残存することから確かめられる。なお、アルコキシ基は共役ジエン系重合体の活性末端と多く反応させることにより、仕上げ時、貯蔵時における縮合反応を抑制することが可能となり、重合体粘度が大きく変わることを抑制できる傾向にある。好ましくは、1つのケイ素原子当たり1個のアルコキシ基を有する変性剤を用いる。
変性反応工程における反応温度は、好ましくは共役ジエン系重合体の重合温度と同様の温度であり、特に重合後に加熱をしない温度が好ましい。具体的には、0℃以上120℃以下であることが好ましく、50℃以上100℃以下がより好ましい。
変性反応工程における反応時間は、好ましくは10秒以上、より好ましくは30秒以上である。
変性反応工程における混合は、機械的な攪拌、スタティックミキサーによる攪拌等のいずれでもよい。重合工程が連続式である場合は、変性反応工程も連続式であることが好ましい。
変性反応工程における反応器は、例えば、撹拌機付きの槽型、管型のものが用いられる。変性剤は、不活性溶媒により希釈して反応器に連続的に供給してもよい。重合工程が回分式の場合は、重合反応器に変性剤を投入する方法を採用してもよく、また、別の反応器に移送して変性反応工程を行ってもよい。
本実施形態の変性共役ジエン系重合体を製造するために用いる変性剤としては、下記一般式(VI)に示す化合物が好ましいものとして挙げられる。
Figure 2018199267
式(VI)中、R12〜R14は、各々独立に、単結合又は炭素数1〜20のアルキレン基を表し、R15〜R18、及びR20は、各々独立に、炭素数1〜20のアルキル基を表し、R19及びR22は、各々独立に、炭素数1〜20のアルキレン基を表し、R21は、炭素数1〜20のアルキル基又はトリアルキルシリル基を表す。
mは、1〜3の整数を表し、pは、1又は2を表す。
複数存在する場合のR12〜R22、m、及びpは、各々独立している。
iは、0〜6の整数を表し、jは0〜6の整数を表し、kは0〜6の整数を表し、(i+j+k)は1〜10の整数を表す。
Aは、単結合、炭素数1〜20の炭化水素基、又は、酸素原子、窒素原子、ケイ素原子、硫黄原子、リン原子からなる群より選ばれる少なくとも1種の原子を有し、活性水素を有しない有機基を表す。
Aが表す炭化水素基としては、飽和、不飽和、脂肪族、及び芳香族の炭化水素基を含む。活性水素を有しない有機基は、共役ジエン系重合体が有する活性末端を不活性化させない有機基である。その有機基としては、水酸基(−OH)、第2級アミノ基(>NH)、第1級アミノ基(−NH)、スルフヒドリル基(−SH)の活性水素を有する官能基がない、有機基である。なお、(i+j+k)が1の場合は、Aは無いものとしてよい。
前記式(VI)において、Aは下記一般式(II)〜(V)のいずれかを表すものであることが好ましい。
Figure 2018199267
前記式(II)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、aは、1〜10の整数を表し、Bは、複数存在する場合には、各々独立している。
Figure 2018199267
前記式(III)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、Bは、炭素数1〜20のアルキル基を表し、aは、1〜10の整数を表し、B及びBは、それぞれ複数存在する場合には、各々独立している。
Figure 2018199267
前記式(IV)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、aは、1〜10の整数を表し、Bは、複数存在する場合は、各々独立している。
Figure 2018199267
前記式(V)中、Bは、単結合又は炭素数1〜20の炭化水素基を表し、aは、1〜10の整数を表し、Bは、複数存在する場合は、各々独立している。
前記式(VI)中のAが、前記式(II)〜(V)のいずれかであることにより、加工時及び加硫時の金属表面への付着性が低く、加硫物としたときに高い耐摩耗性を有するタイヤ用のゴム組成物が得られる変性共役ジエン系重合体を得ることができる傾向にある。
前記式(VI)の変性剤として、(i+j+k)が1〜2のものとしては、(上述した変性剤と重複するものも含む。)以下のものに限定されないが、例えば、3−ジメトキシメチルシリルプロピルジメチルアミン(1官能)、3−トリメトキシシリルプロピルジメチルアミン(2官能)、ビス(3−トリメトキシシリルプロピル)メチルアミン(4官能)、ビス(3−ジメトキシメチルシリルプロピル)メチルアミン(2官能)、(3−トリメトキシシリルプロピル)―[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]エチルアミン(4官能)、[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)メチルアミン(4官能)、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]メチルアミン(4官能)、ビス(3−トリエトキシシリルプロピル)エチルアミン(4官能)、1−(3−トリエトキシシリルプロピル)−2,2−ジエトキシ−1−アザ−2−シラシクロペンタン(4官能)、1−(3−ジメトキシメチルシリルプロピル)−2,2−ジメトキシ−1−アザ−2−シラシクロペンタン(3官能)、[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−ジエトキシエチルシリルプロピル)メチルアミン(3官能)、ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]メチルアミン(4官能)、(3−トリメトキシシリルプロピル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−メチルアミン(3官能)が挙げられる。
変性剤が多官能化合物であり、(i+j+k)が3以上のものであり、前記式(VI)においてAが前記式(II)で表される場合の変性剤としては、以下のものに限定されないが、例えば、トリス(3−トリメトキシシリルプロピル)アミン、ビス(3−トリメトキシシリルプロピル)―[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)アミン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン、トリス(3−エトキシシリルプロピル)アミン、ビス(3−トリエトキシシリルプロピル)―[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン、ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリエトキシシリルプロピル)アミン、トリス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−プロパンジアミン、トリス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、ビス(3−トリメトキシシリルプロピル)−ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)−1,3−プロパンジアミン、テトラキス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス(3−トリメトキシシリルプロピル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、ビス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、テトラキス(3−トリエトキシシリルプロピル)−1,3−プロパンジアミン、トリス(3−トリエトキシシリルプロピル)−[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、ビス(3−トリエトキシシリルプロピル)−ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリエトキシシリルプロピル)−1,3−プロパンジアミン、テトラキス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス(3−トリエトキシシリルプロピル)−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、ビス(3−トリエトキシシリルプロピル)−[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリエトキシシリルプロピル)−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−ビスアミノメチルシクロヘキサン、トリス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、ビス(3−トリメトキシシリルプロピル)−ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)−1,3−ビスアミノメチルシクロヘキサン、テトラキス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス(3−トリメトキシシリルプロピル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、ビス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、テトラキス(3−トリエトキシシリルプロピル)−1,3−プロパンジアミン、トリス(3−トリエトキシシリルプロピル)−[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、ビス(3−トリエトキシシリルプロピル)−ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、トリス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリエトキシシリルプロピル)−1,3−プロパンジアミン、テトラキス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、トリス(3−トリエトキシシリルプロピル)−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、ビス(3−トリエトキシシリルプロピル)−[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリエトキシシリルプロピル)−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、トリス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−エトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−1,3−ビスアミノメチルシクロヘキサン、テトラキス(3−トリメトキシシリルプロピル)−1,6−ヘキサメチレンジアミン、ペンタキス(3−トリメトキシシリルプロピル)−ジエチレントリアミンが挙げられる。
前記式(VI)において、Aが前記式(III)で表される場合の変性剤としては、以下のものに限定されないが、例えば、トリス(3−トリメトキシシリルプロピル)−メチル−1,3−プロパンジアミン、ビス(2−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−メチル−1,3−プロパンジアミン、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)−メチル−1,3−プロパンジアミン、トリス(3−トリエトキシシリルプロピル)−メチル−1,3−プロパンジアミン、ビス(2−トリエトキシシリルプロピル)−[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−メチル−1,3−プロパンジアミン、ビス[3−(2,2−ジエトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリエトキシシリルプロピル)−メチル−1,3−プロパンジアミン、N,N1’−(プロパン−1,3−ジイル)ビス(N−メチル−N,N−ビス(3−(トリメトキシシリル)プロピル)−1,3−プロパンジアミン)、N−(3−(ビス(3−(トリメトキシシリル)プロピル)アミノ)プロピル)−N−メチル−N−(3−(メチル(3−(トリメトキシシリル)プロピル)アミノ)プロピル)−N−(3−(トリメトキシシリル)プロピル)−1,3−プロパンジアミンが挙げられる。
前記式(VI)において、Aが式(IV)で表される場合の変性剤としては、以下のものに限定されないが、例えば、テトラキス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]シラン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)シラン、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]シラン、ビス(3−トリメトキシシリルプロピル)−ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]シラン、(3−トリメトキシシリル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)−ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]シラン、ビス[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)−ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]シラン、トリス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]シラン、ビス(3−トリメトキシシリルプロピル)−[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]シラン、ビス[3−(1−メトキシ−2−トリメチルシリル−1−シラ−2−アザシクロペンタン)プロピル]−ビス(3−トリメトキシシリルプロピル)シラン、ビス(3−トリメトキシシリルプロピル)−ビス[3−(1−メトキシ−2−メチル−1−シラ−2−アザシクロペンタン)プロピル]シランが挙げられる。
前記式(VI)において、Aが前記式(V)で表される場合の変性剤としては、以下のものに限定されないが、例えば、3−トリス[2−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)エトキシ]シリル−1−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロパン、3−トリス[2−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)エトキシ]シリル−1−トリメトキシシリルプロパンが挙げられる。
前記式(VI)において、Aが酸素原子を有し、活性水素を有しない有機基を表すものとしては、例えば、(3−トリメトキシシリルプロピル)―[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]エーテル(4官能)、3,4,5−トリス(3−トリメトキシシリルプロピル)−シクロヘキシル−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]エーテル(8官能)が挙げられる。
前記式(VI)において、Aがリン原子を有し、活性水素を有しない有機基を表すものとしては、以下に限定されるものではないが、例えば、(3−トリメトキシシリルプロピル)ホスフェイト、ビス(3−トリメトキシシリルプロピル)―[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]ホスフェイト、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリメトキシシリルプロピル)ホスフェイト、トリス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]ホスフェイトが挙げられる。
前記式(VI)において、Aが前記式(II)又は前記式(III)を表し、kが0を表すものが好ましい。これにより、入手が容易な変性剤となる傾向にあり、しかも、本実施形態の変性共役ジエン系重合体を加硫物としたときに、耐摩耗性及び低ヒステリシスロス性能がより優れるものとなる傾向にある。
このような変性剤としては、以下のものに限定されないが、例えば、ビス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン、トリス(3−トリメトキシシリルプロピル)アミン、トリス(3−トリエトキシシリルプロピル)アミン、トリス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、テトラキス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−ビスアミノメチルシクロヘキサン、トリス(3−トリメトキシシリルプロピル)−メチル−1,3−プロパンジアミン、ビス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−(3−トリスメトキシシリルプロピル)−メチル−1,3−プロパンジアミンが挙げられる。
前記式(VI)において、Aが前記式(II)又は式(III)を表し、kが0を表し、前記式(II)又は式(III)において、aが2〜10の整数を表すものが好ましい。これにより、本実施形態の変性共役ジエン系重合体を加硫物としたときに、耐摩耗性及び低ヒステリシスロス性がより優れるものとなる傾向にある。
このような変性剤としては、以下のものに限定されないが、例えば、テトラキス[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−プロパンジアミン、テトラキス(3−トリメトキシシリルプロピル)−1,3−ビスアミノメチルシクロヘキサン、N−(3−(ビス(3−(トリメトキシシリル)プロピル)アミノ)プロピル)−N−メチル−N−(3−(メチル(3−(トリメトキシシリル)プロピル)アミノ)プロピル)−N−(3−(トリメトキシシリル)プロピル)−1,3−プロパンジアミンが挙げられる。
変性剤としての前記式(VI)で表される化合物の添加量については、共役ジエン系重合体のモル数対変性剤のモル数に関して、両者を所望の化学量論的比率で反応させるよう調整することができ、それにより所望の分岐度を有する変性共役ジエン系重合体が得られる。
具体的には、共役ジエン系重合体のモル数は、変性剤のモル数に対して、好ましくは1.0倍モル以上、より好ましくは2.0倍モル以上である。この場合、前記式(VI)において、変性剤の官能基数((m−1)×i+p×j+k)は、1〜10の整数であることが好ましく、2〜10の整数であることがより好ましい。
(水素化工程)
本実施形態の変性共役ジエン系重合体は、共役ジエン部を水素化したものであってもよい。共役ジエン部を水素化する方法は、特に限定されず、公知の方法が利用できる。
好適な水素化の方法としては、触媒の存在下、重合体溶液に気体状水素を吹き込む方法が挙げられる。
触媒としては、例えば、貴金属を多孔質無機物質に担持させた触媒等の不均一系触媒;ニッケル、コバルト等の塩を可溶化し有機アルミニウム等と反応させた触媒、チタノセン等のメタロセンを用いた触媒等の均一系触媒が挙げられる。これらの中でも、マイルドな水素化条件を選択できる観点から、チタノセン触媒が好ましい。また、芳香族基の水素化は、貴金属の担持触媒を用いることによって行うことができる。
水素化触媒としては、以下のものに限定されないが、例えば、(1)Ni,Pt,Pd,Ru等の金属をカーボン、シリカ、アルミナ、ケイソウ土等に担持させた担持型不均一系水添触媒、(2)Ni,Co,Fe,Cr等の有機酸塩又はアセチルアセトン塩等の遷移金属塩と有機アルミニウム等の還元剤とを用いる、いわゆるチーグラー型水添触媒、(3)Ti,Ru,Rh,Zr等の有機金属化合物等のいわゆる有機金属錯体等が挙げられる。さらに、水素化触媒としては、例えば、特公昭42−8704号公報、特公昭43−6636号公報、特公昭63−4841号公報、特公平1−37970号公報、特公平1−53851号公報、特公平2−9041号公報、特開平8−109219号公報に記載された公知の水素化触媒も挙げられる。好ましい水素化触媒としては、チタノセン化合物と還元性有機金属化合物との反応混合物が挙げられる。
本実施形態の変性共役ジエン系重合体の製造工程においては、変性反応工程の後、変性共役ジエン系重合体溶液に、必要に応じて、失活剤、中和剤等を添加してもよい。
失活剤としては、以下のものに限定されないが、例えば、水;メタノール、エタノール、イソプロパノール等のアルコール等が挙げられる。
中和剤としては、以下のものに限定されないが、例えば、ステアリン酸、オレイン酸、バーサチック酸(炭素数9〜11個で、10個を中心とする、分岐の多いカルボン酸混合物)等のカルボン酸;無機酸の水溶液、炭酸ガスが挙げられる。
本実施形態の変性共役ジエン系重合体は、重合後のゲル生成を防止する観点、及び加工時の安定性を向上させる観点から、ゴム用安定剤を添加することが好ましい。ゴム用安定剤としては、以下のものに限定されず、公知のものを用いることができるが、例えば、2,6−ジ−tert−ブチル−4−ヒドロキシトルエン(BHT)、n−オクタデシル−3−(4’−ヒドロキシ−3’,5’−ジ−tert−ブチルフェノール)プロピネート、2−メチル−4,6−ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤が好ましいものとして挙げられる。
本実施形態の変性共役ジエン系重合体の加工性をより改善するために、必要に応じて、伸展油を変性共役ジエン系共重合体に添加することができる。
伸展油を変性共役ジエン系重合体に添加する方法としては、以下に限定されないが、伸展油を変性共役ジエン系重合体の溶液に加え、混合して、油展共重合体溶液としたものを脱溶媒する方法が好ましい。
伸展油としては、以下に限定されるものではないが、例えば、アロマ油、ナフテン油、パラフィン油等が挙げられる。これらの中でも、環境安全上の観点、並びにオイルブリード防止及びウェットグリップ特性の観点から、IP346法による多環芳香族(PCA)成分が3質量%以下であるアロマ代替油が好ましい。アロマ代替油としては、Kautschuk Gummi Kunststoffe 52(12)799(1999)に示されるTDAE(Treated Distillate Aromatic Extracts)、MES(Mild Extraction Solvate)等の他、RAE(Residual Aromatic Extracts)が挙げられる。
伸展油の添加量は、特に限定されないが、変性共役ジエン系重合体100質量部に対し、10質量部以上60質量部以下が好ましく、20質量部以上37.5質量部以下がより好ましい。
本実施形態の変性共役ジエン系重合体を、重合体溶液から取得する方法としては、公知の方法を用いることができる。例えば、スチームストリッピング等で溶媒を分離した後、重合体を濾別し、さらにそれを脱水及び乾燥して重合体を取得する方法、フラッシングタンクで濃縮し、さらにベント押出し機等で脱揮する方法、ドラムドライヤー等で直接脱揮する方法が挙げられる。
(ブレンドによる変性共役ジエン系重合体の製造)
本実施形態の変性共役ジエン系重合体の製造工程においては、変性率が高く分子量が高い重合体に、変性率が低く(又は変性していない)分子量が低い重合体を適切に混合することによって、本発明の要件を満たす重合体を調製してもよい。
変性率が高く、分子量が高い重合体としては、例えば、変性率50%〜90%で、重量平均分子量が25×10以上350×10以下の重合体が挙げられる。
変性していない(又は低変性率の)低分子量の重合体としては、例えば、変性率が0%〜60%で、重量平均分子量が10×10以上150×10以下の重合体が挙げられる。
変性率が高く分子量が高い重合体の重量平均分子量(MwH)と変性率が低く分子量が低い重合体の重量平均分子量(MwL)の比率については、MwLをMwHで除すことにより得られる値(MwL/MwH)が0.1以上0.8以下であることが好ましく、0.2以上0.7以下であることがより好ましく、0.3以上0.6以下であることがさらに好ましい。前記(MwL/MwH)が0.1以上0.8以下である場合には、加工時及び加硫時の金属表面への付着性が低く、加硫物としたときに高い耐摩耗性を有する。
ブレンドに際し、変性率が高く分子量が高い重合体の質量(WH)と変性率が低く分子量が低い重合体の質量(WL)の比率(質量分率)は、全質量(WH+WL)に対するWLの比率(WL)/(WH+WL)は0.1以上0.8以下が好ましく、0.15以上0.6以下がより好ましく、0.2以上0.5以下がさらに好ましい。この値が0.1以上0.8以下である場合には、加工時及び加硫時の金属表面への付着性が低く、加硫物としたときに高い耐摩耗性を有する。
重合体のブレンド方法については、特に限定されるものではなく、両方の重合体を溶液にして混合した後に乾燥させる方法、片方の重合体を溶液としてもう片方の重合体(固体)を加えて溶液として混合した後に乾燥する方法、両方の重合体を固体状で混合し、ロール又は押し出し機で溶融混練することにより混合する方法が挙げられ、均一な混合物を得る観点からは、両方の重合体を溶液にして混合した後に乾燥させる方法が好ましく、エネルギー効率の観点からは、両方の重合体を固体状で混合し、ロールあるいは押し出し機で溶融混練することにより混合する方法が好ましい。
〔重合体組成物〕
本実施形態の重合体組成物は、本実施形態の変性共役ジエン系重合体を10質量%以上含む。
本実施形態の重合体組成物は、本実施形態の変性共役ジエン系重合体以外の重合体を含んでもよい。当該本実施形態の変性共役ジエン系重合体以外の重合体としては、ゴム状重合体、又は樹脂状重合体が挙げられる。
本実施形態の変性共役ジエン系重合体以外のゴム状重合体としては、以下に限定されないが、例えば、共役ジエン系重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのランダム共重合体又はその水素添加物、共役ジエン系化合物とビニル芳香族化合物とのブロック共重合体又はその水素添加物、非ジエン系重合体、天然ゴムが挙げられる。
具体的なゴム状重合体としては、以下に限定されないが、例えば、ブタジエンゴム又はその水素添加物、イソプレンゴム又はその水素添加物、スチレン−ブタジエンゴム又はその水素添加物、スチレン−ブタジエンブロック共重合体又はその水素添加物、スチレン−イソプレンブロック共重合体又はその水素添加物等のスチレン系エラストマー、アクリロニトリル−ブタジエンゴム又はその水素添加物が挙げられる。
前記非ジエン系重合体としては、以下に限定されないが、例えば、エチレン−プロピレンゴム、エチレン−プロピレン−ジエンゴム、エチレン−ブテン−ジエンゴム、エチレン−ブテンゴム、エチレン−ヘキセンゴム、エチレン−オクテンゴム等のオレフィン系エラストマー、ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α、β−不飽和ニトリル−アクリル酸エステル−共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴムが挙げられる。
前記天然ゴムとしては、以下のものに限定されないが、例えば、スモークドシートであるRSS3〜5号、SMR、エポキシ化天然ゴムが挙げられる。
本実施形態の変性共役ジエン系重合体と本実施形態の変性共役ジエン系重合体以外の重合体(他の重合体と言う)とを混合し、重合体組成物を得る混合方法としては、変性共役ジエン系重合体の溶液と他の重合体の溶液とを混合する方法、変性共役ジエン系重合体と他の重合体を機械的に混合する方法等、種々の方法が挙げられる。
上述した他の重合体は、水酸基、アミノ基等の極性を有する官能基を付与した変性ゴムであってもよい。
本実施形態の重合体組成物をタイヤ用の材料として用いる場合、他の重合体としては、ブタジエンゴム、イソプレンゴム、スチレン−ブタジエンゴム、天然ゴム、ブチルゴムが好ましく用いられる。
他の重合体がゴム状重合体である場合、性能と加工特性のバランスの観点から、その重量平均分子量は、2,000以上2,000,000以下であることが好ましく、5,000以上1,500,000以下であることがより好ましい。また、低分子量のゴム状重合体、いわゆる液状ゴムを用いることもできる。これらのゴム状重合体は、1種単独で用いてもよいし、2種以上を併用してもよい。
本実施形態の変性共役ジエン系重合体とその他のゴム状重合体とを含む重合体組成物(ゴム組成物)を製造する場合において、その他のゴム状重合体に対する、本実施形態の変性共役ジエン系重合体の含有比率(質量比)(変性共役ジエン系重合体/その他のゴム状重合体)は、10/90以上100/0以下が好ましく、20/80以上90/10以下がより好ましく、50/50以上80/20以下がさらに好ましい。
したがって、本実施形態の重合体組成物は、当該重合体組成物の総量(100質量%)に対して、本実施形態の変性共役ジエン系重合体を、好ましくは10質量%以上100質量%以下含み、より好ましくは20質量%以上90質量%以下含み、さらに好ましくは50質量%以上80質量%以下含む。
(変性共役ジエン系重合体/その他ゴム状重合体)の質量比率が上記範囲であると、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスが優れ、耐摩耗性及び破壊強度も満足する。
本実施形態の変性共役ジエン系重合体は、加硫物として好適に用いられる。加硫物としては、例えば、タイヤ、ホース、靴底、防振ゴム、自動車部品、免振ゴムが挙げられ、また、耐衝撃性ポリスチレン、ABS樹脂等の樹脂強化用ゴムも挙げられる。
特に、変性共役ジエン系重合体は、タイヤ用のトレッドゴムの組成物に好適に用いられる。加硫物は、例えば、本実施形態の変性共役ジエン系重合体を、必要に応じて、シリカ系無機充填剤、カーボンブラック等の無機充填剤、本実施形態の変性共役ジエン系重合体以外のゴム状重合体、シランカップリング剤、ゴム用軟化剤、加硫剤、加硫促進剤、加硫助剤等と混練して、ゴム組成物とした後、加熱して加硫することにより得ることができる。
〔充填剤を含むゴム組成物〕
本実施形態のゴム組成物は、本実施形態の変性共役ジエン系重合体10質量%以上を含むゴム状重合体100質量部と、充填剤5〜150質量部とを含む。
また、当該充填剤は、シリカ系無機充填剤を含むことが好ましい。
ゴム組成物は、シリカ系無機充填剤を分散させることで、加硫物とする際の加工性により優れる傾向にあり、加硫物としたときに、低ヒステリシスロス性とウェットスキッド抵抗性とのバランスに優れ、破壊強度及び耐摩耗性により優れる傾向にある。
本実施形態のゴム組成物が、タイヤ、防振ゴム等の自動車部品、靴等の加硫ゴム用途に用いられる場合にも、シリカ系無機充填剤を含むことが好ましい。
充填剤としては、以下に限定されないが、例えば、シリカ系無機充填剤、カーボンブラック、金属酸化物、金属水酸化物が挙げられる。これらの中でも、シリカ系無機充填剤が好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
本実施形態のゴム組成物中の充填剤の含有量は、本実施形態の変性共役ジエン系重合体を含むゴム状重合体100質量部に対して、5.0質量部以上150質量部以下であり、10質量部以上120質量部以下が好ましく、20質量部以上100質量部以下がより好ましい。
充填剤の含有量は、充填剤の添加効果が発現する観点から、5.0質量部以上であり、充填剤を十分に分散させ、ゴム組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下である。
シリカ系無機充填剤としては、特に限定されず、公知のものを用いることができるが、SiO又はSiAlを構成単位として含む固体粒子が好ましく、SiO又はSiAlを構成単位の主成分として含む固体粒子がより好ましい。ここで、主成分とは、シリカ系無機充填剤中に50質量%以上、好ましくは70質量%以上、より好ましくは80質量%以上含有される成分をいう。
シリカ系無機充填剤としては、以下に限定されないが、例えば、シリカ、クレイ、タルク、マイカ、珪藻土、ウォラストナイト、モンモリロナイト、ゼオライト、ガラス繊維等の無機繊維状物質が挙げられる。
また、表面を疎水化したシリカ系無機充填剤、シリカ系無機充填剤とシリカ系以外の無機充填剤との混合物も挙げられる。
これらの中でも、強度及び耐摩耗性等の観点から、シリカ及びガラス繊維が好ましく、シリカがより好ましい。
シリカとしては、例えば、乾式シリカ、湿式シリカ、合成ケイ酸塩シリカが挙げられる。これらのシリカの中でも、破壊特性の改良効果及びウェットスキッド抵抗性のバランスに優れる観点から、湿式シリカが好ましい。
本実施形態のゴム組成物において、実用上良好な耐摩耗性及び破壊特性を得る観点から、シリカ系無機充填剤のBET吸着法で求められる窒素吸着比表面積は、100m/g以上300m/g以下が好ましく、170m/g以上250m/g以下がより好ましい。また必要に応じて、比較的比表面積が小さい(例えば、比表面積が200m/g未満の)シリカ系無機充填剤と、比較的比表面積の大きい(例えば、200m/g以上の)シリカ系無機充填剤と、を組み合わせて用いることができる。
特に比較的比表面積の大きい(例えば、200m/g以上の)シリカ系無機充填剤を用いと、シリカの分散性が改善され、耐摩耗性の向上に効果があり、良好な破壊特性と低ヒステリシスロス性とを高度にバランスさせることができる傾向にある。
本実施形態のゴム組成物中のシリカ系無機充填剤の含有量は、変性共役ジエン系重合体を含むゴム状重合体100質量部に対して、5.0質量部以上150質量部であることが好ましく、10質量部以上120質量部以下であることがより好ましく、20質量部以上100質量部以下であることがさらに好ましい。
シリカ系無機充填剤の含有量は、添加効果が発現する観点から、5.0質量部以上であることが好ましく、十分に分散させ、ゴム組成物の加工性及び機械強度を実用的に十分なものとする観点から、150質量部以下であることが好ましい。
カーボンブラックとしては、以下のものに限定されないが、例えば、SRF、FEF、HAF、ISAF、SAF等の各クラスのカーボンブラックが挙げられる。これらの中でも、窒素吸着比表面積が50m/g以上、かつ、ジブチルフタレート(DBP)吸油量が80mL/100g以下のカーボンブラックが好ましい。
カーボンブラックの含有量は、変性共役ジエン系重合体を含むゴム状重合体100質量部に対して、0.5質量部以上100質量部以下が好ましく、3.0質量部以上100質量部以下がより好ましく、5.0質量部以上50質量部以下がさらに好ましい。
カーボンブラックの含有量は、ドライグリップ性能、導電性等のタイヤ等の用途に求められる性能を発現する観点から、0.5質量部以上とすることが好ましく、分散性の観点から、100質量部以下とすることが好ましい。
金属酸化物とは、化学式MxOy(Mは、金属原子を表し、x及びyは、各々独立して、1〜6の整数を表す。)を構成単位の主成分とする固体粒子のことをいう。金属酸化物としては、以下のものに限定されないが、例えば、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛が挙げられる。
金属水酸化物としては、以下のものに限定されないが、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化ジルコニウムが挙げられる。
本実施形態のゴム組成物は、シランカップリング剤を含んでもよい。シランカップリング剤は、ゴム状重合体と充填剤との相互作用を緊密にする機能を有しており、特に、ゴム状重合体及びシリカ系無機充填剤のそれぞれに対する親和性又は結合性の基を有しており、硫黄結合部分とアルコキシシリル基又はシラノール基部分とを一分子中に有する化合物が好ましい。
このような化合物としては、例えば、ビス−[3−(トリエトキシシリル)−プロピル]−テトラスルフィド、ビス−[3−(トリエトキシシリル)−プロピル]−ジスルフィド、ビス−[2−(トリエトキシシリル)−エチル]−テトラスルフィドが挙げられる。
シランカップリング剤の含有量は、上述した充填剤100質量部に対して、0.1質量部以上30質量部以下が好ましく、0.5質量部以上20質量部以下がより好ましく、1.0質量部以上15質量部以下がさらに好ましい。シランカップリング剤の含有量が上記範囲であると、シランカップリング剤による添加効果を一層顕著なものにできる傾向にある。
本実施形態のゴム組成物は、その加工性の改良を図る観点から、ゴム用軟化剤を含んでもよい。
ゴム用軟化剤としては、鉱物油、又は、液状若しくは低分子量の合成軟化剤が好適である。
ゴムの軟化、増容、及び加工性の向上を図るために使用されているプロセスオイル又はエクステンダーオイルと呼ばれる鉱物油系ゴム用軟化剤は、芳香族環、ナフテン環、及びパラフィン鎖の混合物であり、パラフィン鎖の炭素数が全炭素中50質量%以上を占めるものがパラフィン系と呼ばれ、ナフテン環炭素数が全炭素中30質量%以上45質量%以下を占めるものがナフテン系、芳香族炭素数が全炭素中30質量%を超えて占めるものが芳香族系と呼ばれている。
本実施形態の変性共役ジエン系重合体が、共役ジエン化合物とビニル芳香族化合物との共重合体である場合、用いるゴム用軟化剤としては、芳香族化合物を適量含有するものが共重合体との馴染みがよい傾向にあるため好ましい。
ゴム用軟化剤の含有量は、変性共役ジエン系重合体を含有するゴム状重合体100質量部に対して、0質量部以上100質量部以下が好ましく、10質量部以上90質量部以下がより好ましく、30質量部以上90質量部以下がさらに好ましい。
ゴム用軟化剤の含有量がゴム状重合体100質量部に対して100質量部以下であることで、ブリードアウトを抑制し、本実施形態のゴム組成物表面のベタツキを抑制する傾向にある。
変性共役ジエン系重合体とその他のゴム状重合体、シリカ系無機充填剤、カーボンブラックやその他の充填剤、シランカップリング剤、ゴム用軟化剤等の添加剤を混合する方法については、以下のものに限定されないが、例えば、オープンロール、バンバリーミキサー、ニーダー、単軸スクリュー押出機、2軸スクリュー押出機、多軸スクリュー押出機等の一般的な混和機を用いた溶融混練方法、各成分を溶解混合後、溶剤を加熱除去する方法が挙げられる。これらのうち、ロール、バンバリーミキサー、ニーダー、押出機による溶融混練法が生産性、良混練性の観点から好ましい。
また、ゴム状重合体とその他の充填剤、シランカップリング剤、及び添加剤とを一度に混練する方法、複数の回数に分けて混合する方法のいずれも適用可能である。
本実施形態のゴム組成物は、加硫剤により加硫処理を施した加硫組成物としてもよい。
加硫剤としては、以下のものに限定されないが、例えば、有機過酸化物及びアゾ化合物等のラジカル発生剤、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物が挙げられる。硫黄化合物には、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が含まれる。
加硫剤の含有量は、ゴム状重合体100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
加硫方法としては、従来公知の方法を適用でき、加硫温度は、120℃以上200℃以下が好ましく、より好ましくは140℃以上180℃以下である。
加硫に際しては、必要に応じて加硫促進剤を用いてもよい。加硫促進剤としては、従来公知の材料を用いることができ、以下のものに限定されないが、例えば、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド−アミン系、アルデヒド−アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系の加硫促進剤が挙げられる。また、加硫助剤としては、以下のものに限定されないが、例えば、亜鉛華、ステアリン酸が挙げられる。加硫促進剤の含有量は、ゴム状重合体100質量部に対して、0.01質量部以上20質量部以下が好ましく、0.1質量部以上15質量部以下がより好ましい。
本実施形態のゴム組成物には、本実施形態の目的を損なわない範囲内で、上述した以外のその他の軟化剤及び充填剤、耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、滑剤等の各種添加剤を用いてもよい。
その他の軟化剤としては、公知の軟化剤を用いることができる。その他の充填剤としては、具体的には、炭酸カルシウム、炭酸マグネシウム、硫酸アルミニウム、硫酸バリウムが挙げられる。上記の耐熱安定剤、帯電防止剤、耐候安定剤、老化防止剤、着色剤、潤滑剤としては、それぞれ公知の材料を用いることができる。
〔タイヤ〕
本実施形態の変性共役ジエン系重合体を含有するゴム組成物は、タイヤ用の材料として好適である。
本実施形態のタイヤ用のゴム組成物は、以下に限定されないが、例えば、省燃費タイヤ、オールシーズンタイヤ、高性能タイヤ、スタッドレスタイヤ等の各種タイヤ:トレッド、カーカス、サイドウォール、ビード部等のタイヤ各部位への利用が可能である。
特に、本実施形態の変性共役ジエン系重合体を含有するタイヤ用のゴム組成物は、加硫物としたときに低ヒステリシスロス性とウェットスキッド抵抗性とのバランス及び耐摩耗性に優れているので、省燃費タイヤ、高性能タイヤのトレッド用として、より好適に用いられる。
以下、具体的な実施例及び比較例を挙げて本実施形態を詳細に説明するが、本実施形態は、以下の実施例及び比較例により何ら限定されるものではない。
実施例及び比較例における各種の物性は下記に示す方法により測定した。
<原料の不純物総計>
原料中の不純物として、アレン類、アセチレン類、アミン類の定量分析を行った。
アレン類及びアセチレン類は、ガスクロマトグラフィー法により定性・定量した。
なお、カラムはRt−Alumina BOND/MAPD(島津製作所)を用いた。
また、アミン類は、ホウ酸を用いて抽出し、滴定法により定量し、不純物の総計(ppm)を算出した。
<(物性1)結合スチレン量>
変性共役ジエン系重合体を試料として、試料100mgを、クロロホルムで100mLにメスアップし、溶解して測定サンプルとした。
スチレンのフェニル基による紫外線吸収波長(254nm付近)の吸収量により、試料である変性共役ジエン系重合体100質量%に対する結合スチレン量(質量%)を測定した(島津製作所社製の分光光度計「UV−2450」)。
<(物性2)ブタジエン部分のミクロ構造(1,2−ビニル結合量)>
変性共役ジエン系重合体を試料として、試料50mgを、10mLの二硫化炭素に溶解して測定サンプルとした。
溶液セルを用いて、赤外線スペクトルを600〜1000cm−1の範囲で測定して、所定の波数における吸光度によりハンプトンの方法(R.R.Hampton,Analytical Chemistry 21,923(1949)に記載の方法)の計算式に従い、ブタジエン部分のミクロ構造、すなわち、1,2−ビニル結合量(mol%)を求めた(日本分光社製のフーリエ変換赤外分光光度計「FT−IR230」)。
<(物性3)分子量>
[測定条件]:変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結したGPC測定装置(東ソー社製の商品名「HLC−8320GPC」)を使用して、RI検出器(東ソー社製の商品名「HLC8020」)を用いてクロマトグラムを測定し、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn)、変性共役ジエン系重合体のピークトップ分子量(Mp)、及び分子量100万以上500万以下の成分の割合を求めた。
溶離液はTHF(テトラヒドロフラン)を使用した。
カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ−H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)−H」を接続して使用した。
測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液10μLをGPC測定装置に注入して、オーブン温度40℃、THF流量0.35mL/分の条件で測定した。
前記ピークトップ分子量(Mp)は、以下のようにして求めた。
測定して得られるGPC曲線において、最も高分子量の成分として検出されるピークを選択した。その選択したピークについて、そのピークの極大値に相当する分子量を算出し、ピークトップ分子量とした。
また、上記の分子量100万以上500万以下の成分の割合は、重合体の総質量に対する分子量100万以上500万以下の質量の割合(質量%)として求めた。
<(物性4)重合体ムーニー粘度>
変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定した。
測定温度は、100℃とした。
まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
<(物性5)ガラス転移温度(Tg)>
変性共役ジエン系重合体を試料として、ISO 22768:2006に準拠して、マックサイエンス社製の示差走査熱量計「DSC3200S」を用い、ヘリウム50mL/分の流通下、−100℃から20℃/分で昇温しながらDSC曲線を記録し、DSC微分曲線のピークトップ(Inflection point)をガラス転移温度とした。
<(物性6)共役ジエン系重合体の総量に対する変性率>
変性共役ジエン系重合体を測定用試料として、シリカ系ゲルを充填剤としたGPCカラムに、変性した塩基性重合体成分が吸着する特性を応用することにより測定した。
測定用試料及び低分子量内部標準ポリスチレンを含む試料溶液を、ポリスチレン系カラムで測定したクロマトグラムと、シリカ系カラムで測定したクロマトグラムとの差分よりシリカ系カラムへの吸着量を測定し、変性率を求めた。
具体的には、以下に示すとおりである。
測定用試料溶液の調製:測定用試料10mg及び標準ポリスチレン5mgを20mLのTHF(テトラヒドロフラン)に溶解させて、測定用試料溶液とした。
ポリスチレン系カラムを用いたGPC測定条件:
[測定条件]:東ソー社製の商品名「HLC−8320GPC」を使用して、THFを溶離液として用い、測定用試料溶液10μLを装置に注入し、カラムオーブン温度40℃、THF流量0.35mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、東ソー社製の商品名「TSKgel SuperMultiporeHZ−H」を3本接続し、その前段にガードカラムとして東ソー社製の商品名「TSKguardcolumn SuperMP(HZ)−H」を接続して使用した。
シリカ系カラムを用いたGPC測定条件:東ソー社製の商品名「HLC−8320GPC」を使用して、THFを溶離液として用い、試料溶液50μLを装置に注入し、カラムオーブン温度40℃、THF流量0.5mL/分の条件で、RI検出器を用いてクロマトグラムを得た。カラムは、商品名「Zorbax PSM−1000S」、「PSM−300S」、「PSM−60S」を接続して使用し、その前段にガードカラムとして商品名「DIOL 4.6×12.5mm 5micron」を接続して使用した。
変性率の計算方法:ポリスチレン系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP1、標準ポリスチレンのピーク面積をP2、シリカ系カラムを用いたクロマトグラムのピーク面積の全体を100として、試料のピーク面積をP3、標準ポリスチレンのピーク面積をP4として、下記式により変性率(質量%)を求めた。
変性率(質量%)=[1−(P2×P3)/(P1×P4)]×100
(上記式において、P1+P2=P3+P4=100とする。)
<(物性7)高分子量成分(分子量100万以上500万以下の成分)の変性率>
分子量が100万以上500万以下である成分(高分子量成分)の変性率を、前記(物性6)に記載の変性率の計算方法において、それぞれのピークの100万以上500万以下の範囲でのピーク面積を用いることにより、算出した。
<(物性8)ピークトップの分子量成分の変性率>
前記(物性3)の測定に従い、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と、変性共役ジエン系重合体のピークトップ分子量(Mp)を測定した。
前記ピークトップ分子量(Mp)におけるチャートの高さをL1とした。
シリカカラムを用いて(物性6)の測定に従って測定されたチャートのピークトップ分子量における高さをL2とした。
ピークトップの分子量成分の変性率は、L1/L2により算出した。
<(物性9)ピークトップの分子量成分の変性度>
前記(物性8)ピークトップ分子量成分の変性率(FP)を、前記(物性6)共役ジエン系重合体の総量に対する変性率(FT)で除すことにより算出した。
ピークトップの分子量成分の変性度=(FP/FT)×100(%)
<(物性10)低分子量成分(ピークトップの1/2の分子量成分)の変性率>
前記(物性3)の測定に従い、標準ポリスチレンを使用して得られる検量線に基づいて、重量平均分子量(Mw)と数平均分子量(Mn)と分子量分布(Mw/Mn)と、変性共役ジエン系重合体のピークトップ分子量(Mp)を測定した。
前記ピークトップ分子量(Mp)を2で除すことにより得られた分子量におけるチャートの高さをL3とした。
シリカカラムを用いて(物性6)の測定に従って測定されたチャートの、Mpを2で除すことにより得られた分子量における高さをL4とした。
低分子量成分の変性率は、L3/L4により算出した。
<(物性11)低分子量成分(ピークトップの1/2の分子量成分)の変性度>
(物性10)低分子量成分(ピークトップの1/2の分子量成分)の変性率(FL)を、前記(物性6)共役ジエン系重合体の総量に対する変性率(FT)で除すことにより算出した。
低分子量成分の変性度=(FL/FT)×100(%)
<(物性12)収縮因子(g’)>
変性共役ジエン系重合体を試料として、ポリスチレン系ゲルを充填剤としたカラムを3本連結した粘度検出器付き、GPC−光散乱測定装置を使用して、クロマトグラムを測定し、溶液粘度及び光散乱法に基づいて分子量を求めた。
溶離液はテトラヒドロフランとトリエチルアミンとの混合溶液(THF in TEA:トリエチルアミン5mLをテトラヒドロフラン1Lに混合させ調整した。)を使用した。
カラムは、ガードカラム:東ソー社製の商品名「TSKguardcolumn HHR−H」と、カラム:東ソー社製の商品名「TSKgel G6000HHR」、「TSKgel G5000HHR」、「TSKgel G4000HHR」とを接続して使用した。
オーブン温度40℃、THF流量1.0mL/分の条件で粘度検出器付き、GPC−光散乱測定装置(マルバーン社製の商品名「Viscotek TDAmax」)を用いた。
測定用の試料10mgを20mLのTHFに溶解して測定溶液とし、測定溶液200μLをGPC測定装置に注入して測定した。
得られた測定サンプルの固有粘度と分子量を、固有粘度と分子量の関係式([η][η]=KMα([η]:固有粘度、M:分子量)における定数(K、α)を、logK=−3.883、α=0.771として、分子量Mの範囲を1000〜20000000まで入力して作成した標準固有粘度[η]と分子量Mとの関係に対して、各分子量Mでの固有粘度[η]を標準固有粘度[η]に対する固有粘度[η]の関係として[η]/[η]を各分子量Mで算出し、その平均値を収縮因子(g’)とした。
<(物性13)ケイ素含有量>
ICP質量分析装置(アジレント・テクノロジー社製Agilent7700s)を用いてケイ素含有量の測定を行った。
<(物性14)窒素含有量>
微量全窒素分析装置(三菱化学アナリテック製TN−2100H)を用いて窒素含有量の測定を行った。
〔(実施例1)変性共役ジエン系重合体(試料1)〕
内容積が10Lで、内部の高さ(L)と直径(D)との比(L/D)が4.0であり、底部に入口、頂部に出口を有し、攪拌機及び温度制御用のジャケットを有する槽型圧力容器を重合反応器とした。
予め水分除去した、1,3−ブタジエンを18.8g/分、スチレンを10.3g/分、n−ヘキサンを143.9g/分の条件で混合した。この混合物に含まれるアレン類は26ppmであり、アセチレン類は23ppmであり、アミン類は6ppmであった。不純物総計は55ppmであった。
この混合溶液を反応基の入口に供給する配管の途中に設けたスタティックミキサーにおいて、残存不純物不活性処理用のn−ブチルリチウムを0.109mmol/分で添加、混合した後、反応基の底部に連続的に供給した。
更に、極性物質として2,2−ビス(2−オキソラニル)プロパンを0.0227g/分の速度で、重合開始剤としてn−ブチルリチウムを0.265mmol/分の速度で、攪拌機で激しく混合する重合反応器の底部へ供給し、連続的に重合反応を継続させた。
攪拌機の回転数は200rpmであった。
反応器頂部出口における重合溶液の温度が82℃となるように温度を制御した。
重合が十分に安定したところで、反応器頂部出口より、カップリング剤添加前の重合体溶液を少量抜出し、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように添加した後に溶媒を除去し、110℃のムーニー粘度(変性前)及び各種の分子量を測定した。
次に、反応器の出口より流出した重合体溶液に、変性剤としてビス(3−トリメトキシシリルプロピル)−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]アミン(表中、「A」と略す。)を0.0452mmol/分の速度で連続的に添加し、変性剤を添加された重合体溶液はスタティックミキサーを通ることで混合され変性反応した。
変性反応した重合体溶液に、酸化防止剤(BHT)を重合体100gあたり0.2gとなるように0.0578g/分(n−ヘキサン溶液)で連続的に添加し、カップリング反応を終了した。酸化防止剤と同時に、重合体100gに対してオイル(JX日鉱日石エネルギー社製 JOMOプロセスNC140)が37.5gとなるように連続的に添加し、スタティックミキサーで混合した。スチームストリッピングにより溶媒を除去して、変性共役ジエン系重合体(試料1)を得た。
試料1の物性を下記表に示す。
〔(実施例2)変性共役ジエン系重合体(試料2)〕
変性剤をトリス(3−トリメトキシシリルプロピル)アミン(表中、「B」と略す。)に替えた。その他の条件は(実施例1)と同様にして、変性共役ジエン系重合体(試料2)を得た。試料2の物性を下記表に示す。
〔(実施例3)変性共役ジエン系重合体(試料3)〕
重合開始剤であるn−ブチルリチウムの添加量を0.158mmol/分とし、極性物質添加量を0.0138g/分にし、変性剤をN−(3−トリメトキシシリルプロピル)−2,2−ジメトキシ−1−アザ−2−シラシクロペンタン(表中、「E」と略す。)に替え、変性剤の添加量を0.0389mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料3)を得た。試料3の物性を下記表に示す。
〔(実施例4)変性共役ジエン系重合体(試料4)〕
重合開始剤であるn−ブチルリチウムの添加量を0.084mmol/分とし、極性物質添加量を0.00798g/分にし、変性剤をN−3−トリメトキシシリルプロピルトリアゾール(表中、「F」と略す。)に替え、変性剤の添加量を0.0431mmol/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料4)を得た。試料4の物性を下記表に示す。
〔(実施例5)変性共役ジエン系重合体(試料5)〕
ブタジエン及びスチレンの添加量をそれぞれ24.2g/分及び5.25g/分、極性物質添加量を0.0163g/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料5)を得た。試料5の物性を下記表に示す。
〔(実施例6)変性共役ジエン系重合体(試料6)〕
ブタジエン及びスチレンの添加量をそれぞれ16.8g/分及び12.6g/分、極性物質添加量を0.0252g/分とした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料6)を得た。試料6の物性を下記表に示す。
〔(実施例7)変性共役ジエン系重合体(試料7)〕
変性剤としてN,N−ジメチル−フェニルジメトキシシリルプロピルアミン(表中、「G」と略す。)を、0.0315mmol/分の速度で連続的に添加した。その他の条件は、(実施例4)と同様にして、変性共役ジエン系重合体(試料7)を得た。試料7の物性を表1に示す。
〔(比較例1)変性共役ジエン系重合体(試料8)〕
1,3−ブタジエン、スチレン、n−ヘキサンの混合物に含まれるアレン類は12ppmであり、アセチレン類は11ppmであり、アミン類は1ppmであった。不純物総計は24ppmであった。これを用いた以外は、前記(実施例1)と同様にして、変性共役ジエン系重合体(試料8)を得た。試料8の物性を下記表に示す。
〔(比較例2)変性共役ジエン系重合体(試料9)〕
変性剤の添加量を0.021mmol/分とした。その他の条件は、前記(実施例1)と同様にして、変性共役ジエン系重合体(試料9)を得た。試料9の物性を下記表に示す。
〔(比較例3)変性共役ジエン系重合体(試料10)〕
変性剤としてN,N−ジメチル−フェニルジメトキシシリルプロピルアミン(表中、「G」と略す。)を、0.0315mmol/分の速度で連続的に添加した。その他の条件は、(比較例1)と同様にして、変性共役ジエン系重合体(試料10)を得た。試料10の物性を下記表に示す。
〔(比較例4)変性共役ジエン系重合体(試料11)〕
重合温度を75℃にし、その他の条件は、前記(実施例3)と同様にして、変性共役ジエン系重合体(試料11)を得た。試料11の物性を下記表に示す。
〔(比較例5)変性共役ジエン系重合体(試料12)〕
撹拌回転数を100rpmにし、その他の条件は、前記(実施例3)と同様にして、変性共役ジエン系重合体(試料12)を得た。試料12の物性を下記表に示す。
〔(比較例6)変性共役ジエン系重合体(試料13)〕
変性剤をN,N,N‘−トリス(3−トリメトキシシリルプロピル)−N’−[3−(2,2−ジメトキシ−1−アザ−2−シラシクロペンタン)プロピル]−1,3−プロパンジアミン(表中、「C」と略す。)に替え、重合開始剤であるn−ブチルリチウムの添加量を0.333mmol/分にし、極性物質添加量を0.0284g/分にし、変性剤添加量を0.0431mmol/分にした。その他の条件は、(実施例1)と同様にして、変性共役ジエン系重合体(試料13)を得た。試料13の物性を下記表に示す。
〔(製造例1)非変性共役ジエン系重合体〕
変性剤を使用せず、その他の条件は(実施例3)と同様に共役ジエン共重合体を得た。
重合平均分子量は31.9万、数平均分子量は14.4万であった。
〔(実施例8)変性共役ジエン系重合体(試料14)〕
比較例1で得られた変性共役ジエン系重合体(試料8)と、前記(製造例1)で得られたポリマーとを、質量比、(試料8):(製造例1のポリマー)=70:30で混合し、温度制御装置を備える密閉混練機(内容量0.3L)を使用し、充填率65%、ローター回転数30〜50rpmの条件で混練することにより、変性共役ジエン系重合体(試料14)を得た。試料14の物性を下記表に示す。
〔(実施例9)変性共役ジエン系重合体(試料15)〕
反応器頂部出口における重合溶液の温度が75℃となるように温度を制御した。
その他の条件は(実施例1)と同様にして、変性共役ジエン系重合体(試料15)を得た。試料15の物性を下記表に示す。
〔(実施例10)変性共役ジエン系重合体(試料16)〕
反応器頂部出口における重合溶液の温度が87℃となるように温度を制御した。
その他の条件は(実施例3)と同様にして、変性共役ジエン系重合体(試料16)を得た。試料16の物性を下記表に示す。
〔(実施例11)変性共役ジエン系重合体(試料17)〕
反応器頂部出口における重合溶液の温度が75℃となるように温度を制御した。
その他の条件は(実施例3)と同様にして、変性共役ジエン系重合体(試料17)を得た。試料17の物性を下記表に示す。
Figure 2018199267
Figure 2018199267
Figure 2018199267
〔(実施例12〜22)、及び(比較例7〜12)〕
上述した(試料1〜17)を原料ゴムとして、以下に示す配合に従い、それぞれの原料ゴムを含有するゴム組成物を得た。
変性共役ジエン系重合体(試料1〜17):100質量部(オイル抜き)
シリカ1(エボニック デグサ社製の商品名「Ultrasil 7000GR」窒素吸着比表面積170m2/g):50.0質量部
シリカ2(ローディア社製の商品名「Zeosil Premium 200MP」窒素吸着比表面積220m2/g):25.0質量部
カーボンブラック(東海カーボン社製の商品名「シーストKH(N339)」):5.0質量部
シランカップリング剤(エボニック デグサ社製の商品名「Si75」、ビス(トリエトキシシリルプロピル)ジスルフィド):6.0質量部
S−RAEオイル(JX日鉱日石エネルギー社製の商品名「プロセスNC140」):37.5質量部
亜鉛華:2.5質量部
ステアリン酸:1.0質量部
老化防止剤(N−(1,3−ジメチルブチル)−N‘−フェニル−p−フェニレンジアミン):2.0質量部
硫黄:2.2質量部
加硫促進剤1(N−シクロヘキシル−2−ベンゾチアジルスルフィンアミド):1.7質量部
加硫促進剤2(ジフェニルグアニジン):2.0質量部
合計:239.4質量部
上述した材料を次の方法により混練してゴム組成物を得た。
温度制御装置を備える密閉混練機(内容量0.3L)を使用し、第一段の混練として、充填率65%、ローター回転数30〜50rpmの条件で、原料ゴム(試料1〜17)、充填剤(シリカ1、シリカ2、カーボンブラック)、シランカップリング剤、プロセスオイル、亜鉛華、ステアリン酸を混練した。
このとき、密閉混合機の温度を制御し、排出温度は155〜160℃で各ゴム組成物(配合物)を得た。このゴム組成物を後述する(評価2)ロールへの付着性試験に供した。
次に、第二段の混練として、上記で得た配合物を室温まで冷却後、老化防止剤を加え、シリカの分散を向上させるため再度混練した。この場合も、混合機の温度制御により排出温度(配合物)を155〜160℃に調整した。
冷却後、第三段の混練として、JIS K6299に従い、70℃に設定したオープンロールにて、硫黄、加硫促進剤を加えて混練した。その後、成型し、160℃で20分間、加硫プレスにて加硫した。加硫後、ゴム組成物の物性を測定した。
ゴム組成物の物性は、下記の方法により測定した。
(評価1)コンパウンドムーニー粘度
第2段混練後、架橋前の変性共役ジエン系重合体を試料として、ムーニー粘度計(上島製作所社製の商品名「VR1132」)を用い、JIS K6300に準拠し、L形ローターを用いてムーニー粘度を測定した。
測定温度は、110℃とした。
まず、試料を1分間試験温度で予熱した後、ローターを2rpmで回転させ、4分後のトルクを測定してムーニー粘度(ML(1+4))とした。
得られたムーニー粘度の値を、比較例7のゴム組成物の値を100として指数化した。この値が100よりも小さい方がムーニー粘度が大きく、未加硫配合物の流動性が低いことを示す。
(評価2)ロールへの付着性
第1段の混練により得られたゴム組成物を、JIS K6299に従い、オープンロールで5回混練した。その際、ロールに巻き取られる度合いを、比較例7のゴム組成物に対する結果を100として指数化した。100よりも大きい方がロールに巻き取られ難い、すなわち加工時及び加硫時の金属表面への付着性が低いことを示す。
(評価3)粘弾性パラメータ
加硫後のゴム組成物について、レオメトリックス・サイエンティフィック社製の粘弾性試験機「ARES」を使用し、ねじりモードで粘弾性パラメータを測定した。各々の測定値は、比較例7のゴム組成物に対する結果を100として指数化した。
0℃において周波数10Hz、ひずみ1%で測定したtanδをウェットグリップ性の指標とした。値が大きいほどウェットグリップ性が良好であることを示す。
また、50℃において周波数10Hz、ひずみ3%で測定したtanδを省燃費性の指標とした。値が小さいほど省燃費性が良好であることを示す。
(評価4)引張破断強度、引張破断伸び
加硫後のゴム組成物について、JIS K6251の引張試験法に準拠し、引張破断強度及び引張破断伸びを測定し、比較例7の結果を100として指数化した。
値が大きいほど、引張破断強度及び引張破断伸びが大きいことを示している。
(評価5)耐摩耗性
加硫後のゴム組成物について、アクロン摩耗試験機(安田精機製作所社製)を使用し、JIS K6264−2に準拠して、荷重44.4N、1000回転の摩耗量を測定し、比較例7の結果を100として指数化した。指数が大きいほど耐摩耗性が良好であることを示す。
Figure 2018199267
Figure 2018199267
Figure 2018199267
前記表に示す通り、実施例12〜22のゴム組成物は、比較例7〜12のゴム組成物と比較して、ロールへの付着性が良好であることが確認された。また、加硫物としたときに、ウェットグリップ性と省燃費性のバランスに優れ、耐摩耗性にも優れることが確認された。そして、加硫物としたときに実用十分な破壊強度を有していることも確認された。
本出願は、2017年4月28日に日本国特許庁に出願された日本特許出願(特願2007−090342)に基づくものであり、その内容はここに参照として取り込まれる。
本発明に係る変性共役ジエン系重合体は、タイヤトレッド、自動車の内装・外装品、防振ゴム、ベルト、履物、発砲体、各種工業用品用途等の分野において産業上の利用可能性がある。

Claims (8)

  1. 重量平均分子量が、20×10以上300×10以下であり、
    分子量分布Mw/Mnが、1.6以上、4.0以下であり、
    共役ジエン系重合体の総量に対する変性率が30質量%以上80質量%以下であり、
    GPC(ゲルパーミエーションクロマトグラフィー)における分子量が100万以上500万以下の成分が5質量%以上50質量%以下であり、
    前記分子量が100万以上500万以下である成分の変性率が90質量%以上100質量%以下である、
    変性共役ジエン系重合体。
  2. GPCにおけるピークトップ、又はピークが複数存在する場合には分子量が最大であるピークトップの分子量成分の変性率が、変性共役ジエン系重合体全体の変性率の1.10倍以上である、
    請求項1に記載の変性共役ジエン系重合体。
  3. GPCにおけるピークトップ、又はピークが複数存在する場合には分子量が最大であるピークトップの分子量の1/2である分子量成分の変性率が、変性共役ジエン系重合体全体変性率の1/2以下である、
    請求項1又は2に記載の変性共役ジエン系重合体。
  4. GPCにおけるMw/Mnが2.0以上4.0以下であり、
    収縮因子g’が0.64以上1.00以下である、
    請求項1乃至3のいずれか一項に記載の変性共役ジエン系重合体。
  5. 変性共役ジエン系重合体は、窒素とケイ素を、それぞれ3質量ppm以上含有し、
    ケイ素に対する窒素のモル比(窒素/ケイ素)が、1.1以上10未満である、
    請求項1乃至4のいずれか一項に記載の変性共役ジエン系重合体。
  6. 変性共役ジエン系重合体は、窒素とケイ素を、それぞれ3質量ppm以上含有し、
    ケイ素に対する窒素のモル比(窒素/ケイ素)が、0.1以上0.9未満である、
    請求項1乃至4のいずれか一項に記載の変性共役ジエン系重合体。
  7. 請求項1乃至6のいずれか一項に記載の変性共役ジエン共重合体を10質量%以上含有する重合体組成物。
  8. 請求項1乃至6のいずれか一項に記載の変性共役ジエン共重合体10質量%以上を含有するゴム状重合体100質量部と、
    充填剤5〜150質量部と、
    を、含むゴム組成物。
JP2019514641A 2017-04-28 2018-04-26 変性共役ジエン系重合体、重合体組成物、及びゴム組成物 Active JP6888081B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017090342 2017-04-28
JP2017090342 2017-04-28
PCT/JP2018/017087 WO2018199267A1 (ja) 2017-04-28 2018-04-26 変性共役ジエン系重合体、重合体組成物、及びゴム組成物

Publications (2)

Publication Number Publication Date
JPWO2018199267A1 true JPWO2018199267A1 (ja) 2020-02-27
JP6888081B2 JP6888081B2 (ja) 2021-06-16

Family

ID=63920272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019514641A Active JP6888081B2 (ja) 2017-04-28 2018-04-26 変性共役ジエン系重合体、重合体組成物、及びゴム組成物

Country Status (7)

Country Link
US (1) US11225534B2 (ja)
EP (1) EP3617237B1 (ja)
JP (1) JP6888081B2 (ja)
KR (1) KR102201044B1 (ja)
CN (1) CN110506062B (ja)
TW (1) TWI673288B (ja)
WO (1) WO2018199267A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11292862B2 (en) 2017-03-07 2022-04-05 Asahi Kasei Kabushiki Kaisha Modified conjugated diene-based polymer, polymer composition, and rubber composition
US11230620B2 (en) * 2019-05-22 2022-01-25 Momentive Performance Materials Inc. Thioester-functional organic polymers, method for preparing and compositions thereof
KR20220143890A (ko) * 2020-04-03 2022-10-25 아사히 가세이 가부시키가이샤 공액 디엔계 중합체, 공액 디엔계 중합체의 제조 방법, 공액 디엔계 중합체 조성물 및 고무 조성물

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284814A (ja) * 2001-03-26 2002-10-03 Asahi Kasei Corp 変性共役ジエン系重合体の製造方法
JP2006274010A (ja) * 2005-03-29 2006-10-12 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造法
JP2013129693A (ja) * 2011-12-20 2013-07-04 Asahi Kasei Chemicals Corp 変性共役ジエン重合体の製造方法及び変性共役ジエン重合体の組成物
JP2014159579A (ja) * 2010-04-16 2014-09-04 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2016079217A (ja) * 2014-10-10 2016-05-16 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2018028047A (ja) * 2016-08-19 2018-02-22 旭化成株式会社 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3333024A (en) 1963-04-25 1967-07-25 Shell Oil Co Block polymers, compositions containing them and process of their preparation
DE1222260B (de) 1963-12-26 1966-08-04 Shell Int Research Verfahren zur katalytischen Hydrierung von Block-Mischpolymerisaten
JPS59133203A (ja) 1983-01-20 1984-07-31 Asahi Chem Ind Co Ltd 重合体の水添方法
JPS59140211A (ja) 1983-02-01 1984-08-11 Nippon Erasutomaa Kk スチレン−ブタジエン共重合体の製造方法
JPS60220147A (ja) 1984-04-18 1985-11-02 Asahi Chem Ind Co Ltd オレフイン水添触媒および該触媒を用いた重合体の水添方法
JPS6133132A (ja) 1984-07-25 1986-02-17 Asahi Chem Ind Co Ltd オレフインの水添方法
JPS62207303A (ja) 1986-03-07 1987-09-11 Asahi Chem Ind Co Ltd 共役ジエン系ポリマ−の水添法
JP3460005B2 (ja) 1994-10-11 2003-10-27 旭化成株式会社 水添重合体
WO2006076629A1 (en) 2005-01-14 2006-07-20 Bridgestone Corporation Functionalized polymers and improved tires therefrom
CN101906223B (zh) 2005-03-29 2012-08-29 旭化成化学株式会社 制备改性的丁二烯类聚合物组合物的方法
JP4827666B2 (ja) 2005-09-05 2011-11-30 秀樹 古屋仲 炭化水素ガスから水素ガスを製造するための触媒材料とその製造方法、並びにその触媒材料を用いた水素ガスの製造方法
EP2003146B1 (en) 2006-03-31 2012-12-26 Zeon Corporation Use of a conjugated diene rubber for a tire
WO2010044252A1 (ja) * 2008-10-14 2010-04-22 旭化成ケミカルズ株式会社 変性共役ジエン系重合体、その製造方法、変性共役ジエン系重合体組成物、及びタイヤ
WO2013031599A1 (ja) 2011-08-26 2013-03-07 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、変性共役ジエン系重合体組成物、ゴム組成物、及びタイヤ
CN107250172B (zh) 2015-02-19 2021-04-09 旭化成株式会社 改性共轭二烯系聚合物及其制造方法以及改性共轭二烯系聚合物组合物
SG11201706702QA (en) * 2015-02-19 2017-09-28 Asahi Chemical Ind Modified conjugated diene-based polymer and production method therefor, rubber composition and tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284814A (ja) * 2001-03-26 2002-10-03 Asahi Kasei Corp 変性共役ジエン系重合体の製造方法
JP2006274010A (ja) * 2005-03-29 2006-10-12 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体の製造法
JP2014159579A (ja) * 2010-04-16 2014-09-04 Asahi Kasei Chemicals Corp 変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2013129693A (ja) * 2011-12-20 2013-07-04 Asahi Kasei Chemicals Corp 変性共役ジエン重合体の製造方法及び変性共役ジエン重合体の組成物
JP2016079217A (ja) * 2014-10-10 2016-05-16 旭化成ケミカルズ株式会社 変性共役ジエン系重合体の製造方法、変性共役ジエン系重合体、及び変性共役ジエン系重合体組成物
JP2018028047A (ja) * 2016-08-19 2018-02-22 旭化成株式会社 変性共役ジエン系重合体及びそのゴム組成物、並びにタイヤ

Also Published As

Publication number Publication date
EP3617237B1 (en) 2021-08-25
KR20190092559A (ko) 2019-08-07
TWI673288B (zh) 2019-10-01
US20200199258A1 (en) 2020-06-25
EP3617237A1 (en) 2020-03-04
KR102201044B1 (ko) 2021-01-11
WO2018199267A1 (ja) 2018-11-01
CN110506062A (zh) 2019-11-26
TW201841946A (zh) 2018-12-01
EP3617237A4 (en) 2020-05-06
JP6888081B2 (ja) 2021-06-16
US11225534B2 (en) 2022-01-18
CN110506062B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
JP7335928B2 (ja) 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
JP7315409B2 (ja) ゴム組成物
JP7315686B2 (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物。
JP7312638B2 (ja) 変性共役ジエン系重合体組成物の製造方法
JP7385394B2 (ja) 変性共役ジエン系重合体組成物、ゴム組成物、ゴム組成物の製造方法、及びタイヤ
KR102165495B1 (ko) 변성 공액 디엔계 중합체 혼합물의 제조 방법
JP6888081B2 (ja) 変性共役ジエン系重合体、重合体組成物、及びゴム組成物
KR102517642B1 (ko) 분지화 공액 디엔계 중합체의 제조 방법, 분지화 공액 디엔계 중합체, 고무 조성물의 제조 방법 및 타이어의 제조 방법
JP7398901B2 (ja) 変性共役ジエン系重合体組成物、ゴム組成物、及びゴム組成物の製造方法
JP7344709B2 (ja) 変性共役ジエン系重合体組成物、ゴム組成物及びゴム組成物の製造方法
CN110872405A (zh) 改性共轭二烯系聚合物组合物、橡胶组合物、橡胶组合物的制造方法以及轮胎
JP7390819B2 (ja) 変性共役ジエン系重合体組成物、変性共役ジエン系重合体組成物の製造方法、及びタイヤ
JP7377344B2 (ja) 共役ジエン系重合体、共役ジエン系重合体の製造方法、共役ジエン系重合体組成物、及びゴム組成物
JP7356390B2 (ja) ゴム組成物、及びタイヤ
JP2023117613A (ja) 分岐化共役ジエン系重合体の製造方法、分岐化共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤ
JP2023144766A (ja) 分岐化共役ジエン系重合体の製造方法、分岐化共役ジエン系重合体、ゴム組成物、ゴム組成物の製造方法、及びタイヤの製造方法
CN110872406A (zh) 改性共轭二烯系聚合物组合物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210519

R150 Certificate of patent or registration of utility model

Ref document number: 6888081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150