JPWO2018181303A1 - 液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法 - Google Patents

液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法 Download PDF

Info

Publication number
JPWO2018181303A1
JPWO2018181303A1 JP2019509883A JP2019509883A JPWO2018181303A1 JP WO2018181303 A1 JPWO2018181303 A1 JP WO2018181303A1 JP 2019509883 A JP2019509883 A JP 2019509883A JP 2019509883 A JP2019509883 A JP 2019509883A JP WO2018181303 A1 JPWO2018181303 A1 JP WO2018181303A1
Authority
JP
Japan
Prior art keywords
liquid
film forming
liquid film
outer peripheral
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019509883A
Other languages
English (en)
Other versions
JP6789380B2 (ja
Inventor
郁雄 二宮
郁雄 二宮
林 秀和
秀和 林
一輝 澤井
一輝 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JPWO2018181303A1 publication Critical patent/JPWO2018181303A1/ja
Application granted granted Critical
Publication of JP6789380B2 publication Critical patent/JP6789380B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B1/00Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means
    • B05B1/28Nozzles, spray heads or other outlets, with or without auxiliary devices such as valves, heating means with integral means for shielding the discharged liquid or other fluent material, e.g. to limit area of spray; with integral means for catching drips or collecting surplus liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B14/00Arrangements for collecting, re-using or eliminating excess spraying material
    • B05B14/30Arrangements for collecting, re-using or eliminating excess spraying material comprising enclosures close to, or in contact with, the object to be sprayed and surrounding or confining the discharged spray or jet but not the object to be sprayed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C41/00Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor
    • B29C41/24Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length
    • B29C41/26Shaping by coating a mould, core or other substrate, i.e. by depositing material and stripping-off the shaped article; Apparatus therefor for making articles of indefinite length by depositing flowable material on a rotating drum
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Special Spraying Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Nozzles (AREA)

Abstract

装置(50)は、液体を噴霧する吹出し口(51)と、吹出し口に液体を供給する液体供給装置(52)と、吹出し口を画定する筒状の内側カバー部(53)と、内側カバー部の外側に配置されている外側カバー部(54)と、内側カバー部と外側カバー部とによって画定される吸込み口(55)と、吸込み口を介して気体を吸引する気体吸引装置(56)とを有する。吹出し口の第1方向における長さは、第1方向と直交する第2方向における吹出し口の長さよりも大きく、吹出し口は、基材の外周面(100s)に向かって液体を噴霧するとき、第1方向が基材の軸方向と実質的に平行となるように外周面に向けられる。気体吸引装置は、吹出し口から噴霧される液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている。

Description

本発明は、液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法に関する。
テレビや携帯電話などに用いられる表示装置やカメラレンズなどの光学素子には、通常、表面反射を低減して光の透過量を高めるために反射防止技術が施されている。例えば、空気とガラスとの界面に光が入射する場合のように屈折率が異なる媒体の界面を光が通過する場合、フレネル反射などによって光の透過量が低減し、視認性が低下するからである。
近年、反射防止技術として、凹凸の周期が可視光の波長(λ=380nm〜780nm)以下に制御された微細な凹凸パターンを基板表面に形成する方法が注目されている(特許文献1〜3を参照)。反射防止機能を発現する凹凸パターンを構成する凸部の2次元的な大きさは10nm以上500nm未満である。
この方法は、いわゆるモスアイ(Moth−eye、蛾の目)構造の原理を利用したものであり、基板に入射した光に対する屈折率を凹凸の深さ方向に沿って入射媒体の屈折率から基板の屈折率まで連続的に変化させることによって反射を防止したい波長域の反射を抑えている。
モスアイ構造は、広い波長域にわたって入射角依存性の小さい反射防止作用を発揮できるほか、多くの材料に適用でき、凹凸パターンを基板に直接形成できるなどの利点を有している。その結果、低コストで高性能の反射防止膜(または反射防止表面)を提供できる。
本出願人は、モスアイ構造を有する反射防止膜(または反射防止表面)の製造方法として、アルミニウムを陽極酸化することによって得られる陽極酸化ポーラスアルミナ層を用いる方法を開発してきた(例えば特許文献2および3)。
陽極酸化ポーラスアルミナ膜を利用することによって、モスアイ構造を表面に形成するための型(以下、「モスアイ用型」という。)を容易に製造することができる。特に、特許文献2および3に記載されているように、アルミニウムの陽極酸化膜の表面をそのまま型として利用すると、製造コストを低減する効果が大きい。モスアイ構造を形成することができるモスアイ用型の表面の構造を「反転されたモスアイ構造」ということにする。特に、特許文献5に記載されているように、円筒状のモスアイ用型を用いると、ロール・ツー・ロール方式によりモスアイ構造を効率良く製造することができる。
本願明細書において、「型」は、種々の加工方法(スタンピングやキャスティング)に用いられる型を包含し、スタンパということもある。また、印刷(ナノプリントを含む)にも用いられ得る。
特許文献4に記載されているように、本出願人は、反射防止機能を有し、かつ、防汚性(例えば、撥水性、撥油性、油脂の拭き取り易さ、耐擦傷性、滑り易さ)に優れた合成高分子膜を開発した。
特許文献1から5の開示内容の全てを参考のために本明細書に援用する。
特表2001−517319号公報 特表2003−531962号公報 国際公開第2006/059686号 特許第5951165号公報 国際公開第2011/105206号 特開2007−59417号公報
本発明者の検討によると、特許文献4の防汚性に優れた合成高分子膜をロール・ツー・ロール方式で製造すると、製造歩留りが低下することがあった。防汚性に優れた合成高分子膜をロール・ツー・ロール方式で製造する方法は、例えば、円柱状または円筒状のモスアイ用型の表面(外周面)にスプレー法で樹脂を付与する工程を包含する。この工程において、樹脂がモスアイ用型の周辺に飛散することに起因して、製造歩留りが低下することがあった。詳細は後述する。
この問題は、防汚性に優れた合成高分子膜を製造する工程に限られるものではなく、また、モスアイ用型を用いる工程に限られるものでもない。円柱状または円筒状の基材の外周面に液膜を形成する工程に共通の問題である。
本発明は、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる装置および方法を提供すること、ならびにそのような装置または方法を用いた合成高分子膜の製造方法を提供することを目的とする。
本発明の実施形態による液膜形成装置は、円柱状または円筒状の基材の外周面上に液膜を形成する装置であって、液体を噴霧する吹出し口であって、前記吹出し口の第1方向における長さは、前記第1方向と直交する第2方向における前記吹出し口の長さよりも大きく、前記外周面に向かって前記液体を噴霧するとき、前記第1方向が前記基材の軸方向と実質的に平行となるように前記外周面に向けられる吹出し口と、前記吹出し口に前記液体を供給する液体供給装置と、前記吹出し口を画定する筒状の内側カバー部と、前記内側カバー部の外側に配置されている外側カバー部と、前記内側カバー部と前記外側カバー部とによって画定される少なくとも1つの吸込み口であって、前記吹出し口と前記第2方向に隣接して前記第1方向に延びる部分を含む少なくとも1つの吸込み口と、前記少なくとも1つの吸込み口を介して気体を吸引する気体吸引装置とを有し、前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている。
ある実施形態において、前記吹出し口から噴霧される前記液体の平均径は、20μm以下である。
ある実施形態において、前記吹出し口は、前記第1方向および前記第2方向に垂直な第3方向に貫通している。
ある実施形態において、前記液膜形成装置は、前記吹出し口内に、前記第1方向に沿って配列されており、前記液体を噴霧する複数のノズルをさらに有する。
ある実施形態において、前記複数のノズルは、超音波ノズルである。
ある実施形態において、前記複数のノズルは、段違いに配置されている。
ある実施形態において、前記複数のノズルは、隣接するノズルの噴出し孔の水平方向に対する角度が互いに異なるように配置されている。
ある実施形態において、前記液膜形成装置は、前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部および前記外側カバー部が前記外周面に接触しないことが可能であるように構成されている。
ある実施形態において、前記液膜形成装置は、前記外周面に向かって前記液体を噴霧するときの、前記内側カバー部と前記外周面との距離および/または前記外側カバー部と前記外周面との距離を変えることができるように構成されている。
ある実施形態において、前記液膜形成装置は、前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部と前記外周面との最短距離および前記外側カバー部と前記外周面との最短距離をそれぞれ30mm以下とすることができるように構成されている。
ある実施形態において、前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量の、9倍以上15倍以下の流量の気体を吸引するように構成されている。
ある実施形態において、前記液膜形成装置は、前記基材を、前記基材の軸方向が水平方向と実質的に平行になるように、かつ、前記基材の軸の周りに回転可能に支持する、回転支持構造体をさらに有する。
本発明の実施形態による液膜形成方法は、円柱状または円筒状の基材の外周面に液膜を形成する方法であって、前記外周面に向かって液体を噴霧する工程(a)と、前記外周面の周辺の気体を吸引する工程(b)とを包含し、前記工程(b)は、前記工程(a)と同時に行う工程を包含し、前記工程(b)において吸引する気体の流量は、前記工程(a)において噴霧される前記液体を含む気体の流量よりも多い。
ある実施形態において、前記工程(a)において噴霧する前記液体の平均径は、20μm以下である。
ある実施形態において、前記工程(a)において噴霧する前記液体の23℃における粘度は、20cP以下である。
ある実施形態において、前記工程(a)において噴霧する前記液体の、最大泡圧法による23℃での表面寿命が100msである時の動的表面張力は、31mN/m以上である。
ある実施形態において、前記液膜形成方法は、前記基材の軸方向が水平方向と実質的に平行になるように前記基材を配置した状態で、前記基材の軸を中心に、前記基材を回転させる工程(c)をさらに包含する。
ある実施形態において、前記工程(c)において、前記基材の回転速度は、0rpm超20rpm以下である。
ある実施形態において、前記液膜形成方法は、厚さが2μm以下である液膜を形成する。
本発明の実施形態による合成高分子膜の製造方法は、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する、円柱状または円筒状の型を用いて、合成高分子膜を製造する方法であって、前記型と、被加工物とを用意する工程(A)と、前記被加工物の表面に紫外線硬化性樹脂を含む第1樹脂を付与する工程(B)と、上記のいずれかの液膜形成装置を用いてまたは上記のいずれかの液膜形成方法によって、前記型の表面にフッ素含有モノマーを含む第2樹脂を付与する工程(C)と、前記型と前記被加工物の表面との間で前記第1樹脂および前記第2樹脂を互いに接触させた状態で、前記第1樹脂および前記第2樹脂に紫外線を照射することによって前記第1樹脂および前記第2樹脂を硬化させる工程(D)とを包含する。
本発明の実施形態によると、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる装置および方法、ならびにそのような装置または方法を用いた合成高分子膜の製造方法が提供される。
本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図である。 本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図であり、図1中のA−A’線に沿った断面を示している。 本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図である。 液膜形成装置50の構成の一例を説明するための模式的な図である。 基材100Aの外周面100sに向かって液体を噴霧するときの、基材100Aと液膜形成装置50との配置関係を説明するための模式的な斜視図である。 基材100Aの軸方向と平行な方向から液膜形成装置50を見たときの模式的な側面図である。 基材100Aの外周面100sに形成した液膜に生じる円周方向に延びる筋状のむらを示す図である。 液膜形成装置50の構成の一例を説明するための模式的な図である。 合成高分子膜36をロール・ツー・ロール方式で製造する方法を説明するための模式的な断面図である。 (a)〜(e)は、モスアイ用型100Aの製造方法を説明するための模式的な断面図である。 (a)〜(c)は、合成高分子膜36の製造方法および合成高分子膜36の構造を説明するための模式的な断面図である。 合成高分子膜36のフッ素(F)および窒素(N)の元素濃度の厚さ方向における変化(デプスプロファイル)を模式的に示す図である。 ロール・ツー・ロール方式により合成高分子膜36を製造する方法を説明するための模式的な断面図である。 合成高分子膜36をロール・ツー・ロール方式で製造する場合に生じる問題を説明するための模式的な断面図である。 合成高分子膜36をロール・ツー・ロール方式で製造する場合に生じる問題を説明するための模式的な断面図である。
図11および図12を参照して、特許文献4に記載の、防汚性に優れた合成高分子膜およびその製造方法について説明する。
まず、図11を参照して、特許文献4の合成高分子膜36の製造方法および合成高分子膜36の構造を説明する。図11(a)〜(c)は、合成高分子膜36の製造方法および合成高分子膜36の構造を説明するための模式的な断面図である。
なお、後述するように、本発明の実施形態による液膜形成方法または液膜形成装置は、例えば合成高分子膜36を形成する工程において好適に用いることができる。従って、図11〜図13を参照して行う合成高分子膜36についての説明は、本発明の実施形態による液膜形成方法または液膜形成装置を用いて製造される合成高分子膜の一例についてもあてはまる。
図11(c)に示すように、合成高分子膜36は、表面に複数の凸部36pを有している。複数の凸部36pは、モスアイ構造を構成している。ここでは、合成高分子膜36は、ベースフィルム42上に形成されている。図11(c)に示すフィルム30は、ベースフィルム42と、ベースフィルム42上に形成された合成高分子膜36とを有している。合成高分子膜36の法線方向から見たとき、凸部36pの2次元的な大きさDは20nm超500nm未満の範囲内にある。ここで、凸部36pの「2次元的な大きさ」とは、表面の法線方向から見たときの凸部36pの面積円相当径を指す。例えば、凸部36pが円錐形の場合、凸部36pの2次元的な大きさは、円錐の底面の直径に相当する。また、凸部36pの典型的な隣接間距離Dintは20nm超1000nm以下である。図11(c)に例示するように、凸部36pが密に配列されており、隣接する凸部36p間に間隙が存在しない(例えば、円錐の底面が部分的に重なる)場合には、凸部36pの2次元的な大きさDは隣接間距離Dintと等しい。凸部36pの典型的な高さDは、50nm以上500nm未満である。合成高分子膜36の厚さtに特に制限はなく、凸部36pの高さDより大きければよい。
合成高分子膜36は、フッ素元素を含み、フッ素含有率が厚さ方向に連続的に変化しており、凸部36p側において凸部36p側と反対側よりもフッ素含有率が高いプロファイルを有する。フッ素含有率とは、例えばフッ素元素濃度をいう。
合成高分子膜36は、反射防止機能を有し、かつ、防汚性(例えば、表面に付着した油脂の目立ち難さ、油脂の拭き取り易さ、耐擦傷性)に優れている。
合成高分子膜36に優れた反射防止機能を発現させるためには、表面に平坦な部分がなく、凸部36pが密に配列されていることが好ましい。また、凸部36pは、空気側からベースフィルム42側に向かって、断面積(入射光線に直交する面に平行な断面、例えばベースフィルム42の面に平行な断面)が増加する形状、例えば、円錐形であることが好ましい。また、光の干渉を抑制するために、凸部36pを規則性がないように、好ましくはランダムに、配列することが好ましい。しかしながら、合成高分子膜36の用途によっては、これらの特徴は必須ではない。例えば、凸部36pは密に配列される必要はなく、また、規則的に配列されてもよい。
合成高分子膜36の製造方法を説明する。
まず、モスアイ用型100を用意する。モスアイ用型100は、表面に、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満の複数の凹部を有するポーラスアルミナ層を有する。複数の凹部は反転されたモスアイ構造を構成する。モスアイ用型100は、例えば、特許文献3に記載されている方法を用いて、アルミニウムの陽極酸化とエッチングとを繰り返すことによって得られる。モスアイ用型100の製造方法は、後に詳述する。
次いで、図11(a)に示すように、ベースフィルム42の表面に下層樹脂(「第1樹脂」ということがある。)36a’を付与する。モスアイ用型100が有する反転されたモスアイ構造の上に上層樹脂(「第2樹脂」ということがある。)36b’を付与する。
下層樹脂36a’は、例えばアクリル系樹脂(アクリレートモノマー)を用いることができる。なお、本明細書において、モノマーは、光硬化性樹脂の原料の典型的な例として挙げるものであり、オリゴマーを排除しない。下層樹脂36a’は、例えば、紫外線硬化性樹脂を含む。下層樹脂36a’にはフッ素が含まれていなくてもよく、フッ素が含まれていてもよいが、下層樹脂36a’のフッ素含有率は上層樹脂36b’のフッ素含有率よりも低いことが好ましい。下層樹脂36a’は、例えばグラビア方式またはスロットダイ方式で付与される。スリットコータまたはバーコータ等を用いて付与されてもよい。ベースフィルム42の表面に付与されたときの下層樹脂36a’の厚さは、例えば3μm〜30μmであり、例えば5μm〜7μmであることが好ましい。下層樹脂36a’の粘度は、例えば50cP〜200cPであり、例えば100cPであることが好ましい。
ベースフィルム42は、例えば、PET(ポリエチレンテレフタレート)フィルムまたはTAC(トリアセチルセルロース)フィルムである。
上層樹脂36b’は、フッ素含有モノマー38を有する。フッ素含有モノマー38は、例えば、フッ素含有アクリル樹脂である。フッ素含有モノマー38は、例えば、フッ素含有炭化水素鎖38cと、末端にアクリレート基38tとを有する。フッ素含有炭化水素鎖38cは、エーテル結合を含んでいてもよい。フッ素含有モノマー38は、紫外線照射によって硬化することが好ましい。上層樹脂36b’は、例えばスプレー法、グラビア方式またはスロットダイ方式で付与される。スリットコータまたはバーコータ等を用いて付与されてもよい。スプレー法を用いる場合は、例えば、超音波ノズル、二流体ノズル、スワールノズル、または静電ノズルを用いて上層樹脂36b’をモスアイ用型100上に付与する。モスアイ用型100上に付与されたときの上層樹脂36b’の厚さは、特に下限はなく、5μmを超えないことが好ましく、例えば0μm超3μm以下であり、2μm以下がさらに好ましい。上層樹脂36b’の粘度は、例えば1cP〜100cPである。上層樹脂36b’をスプレー法で付与する場合には、上層樹脂36b’の粘度は、例えば、23℃において100cP以下であることが好ましく、20cP以下であることがさらに好ましい。
上層樹脂36b’は、例えば反応性希釈剤をさらに有する。反応性希釈剤は、例えば4−アクリロイルモルホリンを用いることができる。4−アクリロイルモルホリンの化学構造式を[化1]に示すように、4−アクリロイルモルホリンは、アクリロイル基(H2C=CH−C(=O)−)を有し、窒素元素を有する。
Figure 2018181303
下層樹脂36a’に溶剤が含まれている場合は、図11(b)に示す工程の前に、溶剤を蒸発させる工程(例えば加熱処理)を行う。上層樹脂36b’に溶剤が含まれている場合は、例えば、図11(b)に示す工程の前に、溶剤を蒸発させる工程(例えば加熱処理)を行う。下層樹脂36a’および上層樹脂36b’は、溶剤を含まないことが好ましい。下層樹脂36a’および上層樹脂36b’が溶剤を含まないと、溶剤の使用に掛かるコスト、および、環境面での負荷(例えば使用時の臭気等)を低減することができる。さらに、溶剤を蒸発させる工程に掛かる時間、溶剤を蒸発させる装置に掛かるコスト、場所等を抑制することができる。
合成高分子膜36の下層樹脂36a’が溶剤を含有する場合は、上層樹脂36b’中のフッ素含有モノマー38が下層樹脂36a’と混ざりやすい傾向があるので、フッ素元素が合成高分子膜36の凸部36p側に偏在し難くなる懸念がある。合成高分子膜36の下層樹脂36a’が溶剤を含有する場合は、溶剤の乾燥が不充分であると、ベースフィルム42と合成高分子膜36(下層部分36a)との密着性が低下する懸念がある。
特に、円筒状のモスアイ用型100を用いて合成高分子膜36を製造するためには、上層樹脂36b’には、溶剤が含まれていないことが好ましい。溶剤を含まない上層樹脂36b’の粘度は、例えば100cP以下であることが好ましい。
モスアイ用型100は、離型処理されていてもよい。すなわち、上層樹脂36b’が付与される前に、モスアイ用型100の反転されたモスアイ構造に離型剤が付与されていてもよい。モスアイ用型100に離型処理を施すと、フッ素含有モノマー38のフッ素含有炭化水素鎖38cが離型剤に引き寄せられ、上層部分36bのモスアイ用型100側のフッ素元素含有率が高くなり得る。
次に、図11(b)に示すように、ベースフィルム42をモスアイ用型100に押し付けた状態で、紫外線(UV)を照射する。ベースフィルム42をモスアイ用型100に押し付けると、下層樹脂36a’と上層樹脂36b’とが互いに接触し、界面において互いに混ざり合う。ベースフィルム42をモスアイ用型100に押し付けるとき、下層樹脂36a’および上層樹脂36b’は硬化されていないので、下層樹脂36a’と上層樹脂36b’との間に、明確な界面は形成されない。下層樹脂36a’と上層樹脂36b’とが混ざり合った状態で、下層樹脂36a’および上層樹脂36b’に紫外線が照射され、下層樹脂36a’および上層樹脂36b’は硬化される。
硬化されることにより、図11(c)に示すように、フッ素含有モノマー38は、反応性希釈剤と反応する。フッ素含有モノマー38は、他のアクリレートモノマー(下層樹脂に含まれるものを含む)とも反応する。反応後のアクリレート基38tの参照符号に(r)を付して反応済であることを示す。その後、ベースフィルム42からモスアイ用型100を分離することによって、モスアイ用型100の反転されたモスアイ構造が転写された合成高分子膜36がベースフィルム42の表面に形成される。合成高分子膜36が有する凸部36pの、2次元的な大きさD、高さDおよび隣接間距離Dintは、合成高分子膜36の製造に用いるモスアイ用型100の凹部の形状によって決められる。
合成高分子膜36は、例えば、下層樹脂を主に有する下層部分36aと、上層樹脂を主に有する上層部分36bとを有する。上層部分36bのフッ素含有率は、下層部分36aのフッ素含有率よりも高い。上層部分36bと下層部分36aとの間に明確な界面は形成されない。
合成高分子膜36は、上層部分36bがフッ素含有モノマー38を有するので、合成高分子膜36に付着した指紋等の油脂が広がり難い。従って、合成高分子膜36に指紋等の油脂が付着しても目立ち難い。さらに、合成高分子膜36は、付着した指紋等の油脂を容易に拭き取ることができる。油脂を容易に拭き取ることができるので、凸部36pが破壊される恐れも少ない。合成高分子膜36は、耐擦傷性に優れる。
図12は、合成高分子膜36のフッ素(F)および窒素(N)の元素濃度の厚さ方向における変化(デプスプロファイル)を模式的に示す図である。図12の横軸は、合成高分子膜36の表面(複数の凸部36pを有する表面)からの深さ(法線方向の深さ)を示し、縦軸は各元素の元素濃度(at%)を示す。
図12に示すように、合成高分子膜36のフッ素元素濃度は、合成高分子膜36の表面からの深さが大きくなると、上層部分36bのフッ素元素濃度から下層部分36aのフッ素元素濃度へと連続的に(緩やかに)変化する。窒素元素濃度についても、合成高分子膜36の表面からの深さが大きくなると、上層部分36bの窒素元素濃度から下層部分36aの窒素元素濃度へと連続的に(緩やかに)変化する。
合成高分子膜36の表面からの深さが大きくなると、各元素濃度は、下層樹脂中の元素濃度に漸近してもよい。合成高分子膜36の、複数の凸部36pを有する表面の反対側の面(「ベースフィルム42側の面」ということがある。)の組成は、下層樹脂の組成とほぼ等しい。ここで、合成高分子膜36の、ベースフィルム42側の面の組成は、合成高分子膜36のうち、ベースフィルム42側の面を構成する部分の組成をいう。例えば、合成高分子膜36の、ベースフィルム42側の面に含まれる窒素元素の濃度は、合成高分子膜36のうち、ベースフィルム42側の面を構成する部分に含まれる窒素元素の濃度をいう。例えば、ベースフィルム42側の面から、合成高分子膜36の法線方向に、合成高分子膜36の厚さtの少なくとも1/5までの範囲においては、下層樹脂と同じ組成を有すると考えられる。従って、ベースフィルム42側の面の組成を得るためには、例えば上記範囲における組成を測定すればよい。
合成高分子膜36のベースフィルム42側の面から、合成高分子膜36の法線方向に、合成高分子膜36の厚さtの例えば少なくとも1/5までの範囲内においては、上層樹脂に含まれる成分はほぼ存在せず、下層樹脂と同じ組成を有すると考えることができる理由について説明する。図11を参照して上述したように、合成高分子膜36の製造工程において、ベースフィルム42をモスアイ用型100に押し付ける際に下層樹脂36a’と上層樹脂36b’とが互いに接触する。この境界近傍では相互拡散によって混ざり合うが、上層樹脂36b’に含まれる成分、特にフッ素元素は、下層樹脂36a’全体に拡散するわけではない。フッ素元素は、モスアイ用型100側に存在しようとする傾向があるからである。下層樹脂36a’と上層樹脂36b’とが互いに接触してから、紫外線を照射するまでの時間が短いと、拡散の度合いはさらに少なくなり得る。下層樹脂36a’と上層樹脂36b’とが互いに接触してから、紫外線を照射するまでの時間は、例えば3秒〜5秒である。
合成高分子膜36の各元素の元素濃度の厚さ方向に対する変化は、もちろん図示した例に限られない。例えば、図示する例においては、下層部分36aは、ケイ素元素およびフッ素元素を有しないが、下層樹脂の材料を任意に選択することによって、ケイ素元素およびフッ素元素の元素濃度は変化し得る。下層樹脂が、フッ素系潤滑剤および/またはシリコーン系潤滑剤を有してもよい。上層樹脂が反応性希釈剤を有すると、上層部分36bは、例えば窒素元素とアクリロイル基とを有する。
本発明者は、防汚性に優れる合成高分子膜36をロール・ツー・ロール方式で製造することを検討した。本発明者によると、合成高分子膜36をロール・ツー・ロール方式で製造する場合、製造歩留りが低下することがあることが分かった。図13、図14および図15を参照して、本発明者が見出した問題について説明する。図13は、ロール・ツー・ロール方式により合成高分子膜36を製造する方法を説明するための模式的な断面図である。図14および図15は、合成高分子膜36をロール・ツー・ロール方式で製造する場合に生じる問題を説明するための模式的な断面図である。
図13を参照して、ロール・ツー・ロール方式により合成高分子膜36を製造する方法を説明する。
まず、円柱状または円筒状のモスアイ用型100Aを用意する。モスアイ用型100Aは、表面に、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満の複数の凹部14pを有するポーラスアルミナ層14を有する。複数の凹部14pは反転されたモスアイ構造を構成する。円柱状または円筒状のモスアイ用型100Aの製造方法は、後に詳述する。
モスアイ用型100Aは、例えば、モスアイ用型100Aの軸方向が水平方向(鉛直方向に垂直な方向)と実質的に平行になるように配置されている。図13は、モスアイ用型100Aの軸方向から見たときの模式的な断面図である。図14および図15も同様である。
続いて、図13に示すように、下層樹脂36a’が表面に付与されたベースフィルム42を、上層樹脂36b’が表面に付与されたモスアイ用型100Aに押し付けた状態で、(すなわち、モスアイ用型100Aとベースフィルム42の表面との間で下層樹脂36a’および上層樹脂36b’を互いに接触させた状態で、)下層樹脂36a’および上層樹脂36b’に紫外線(UV)を照射することによって、下層樹脂36a’および上層樹脂36b’を硬化させる。
ベースフィルム42は、図示しない巻き出しローラから巻き出され、その後、表面に、例えばスリットコータ等により下層樹脂36a’が付与される。ベースフィルム42は、図13に示すように、支持ローラ46および48によって支持されている。支持ローラ46および48は、回転機構を有し、ベースフィルム42を搬送する。支持ローラ46は、表面に下層樹脂36a’が付与されたベースフィルム42を搬送するためのニップローラであり、支持ローラ48は、硬化された合成高分子膜36を表面に有するベースフィルム42をモスアイ用型100Aから剥離するためのローラである。モスアイ用型100A、支持ローラ46および48は、それぞれ、ベースフィルム42の搬送速度に対応する回転速度で、図13に矢印で示す方向に回転される。
円柱状または円筒状のモスアイ用型100Aの表面(外周面)に上層樹脂36b’を付与するためには、スプレー法が好適に用いられる。スプレー法は、曲面に均一な液膜を容易に形成することできるので、ロール・ツー・ロール方式に好適に用いられる。また、スプレー法は、例えば、形成する液膜の厚さを制御し易い、形成する液膜に対して必要な材料(ここでは樹脂材料)の量が少なくてすむ、装置設置のためのコストおよびスペースを抑えることができる、等の利点を有する。
ここでは、図13に示すように、スプレーノズル92からモスアイ用型100Aの外周面に向かって上層樹脂36b’が噴霧される。モスアイ用型100Aの軸方向に沿って、複数のスプレーノズル92が配列されていてもよい。スプレーノズル92には、例えば液体供給装置93(図14参照)から上層樹脂36b’が供給される。スプレーノズル92は、モスアイ用型100Aの外周面のうち、ベースフィルム42が押し付けられていない部分に向かって上層樹脂36b’を噴霧する。図示する例では、スプレーノズル92はモスアイ用型100Aに対して鉛直方向(水平方向に垂直な方向)下方に設置され、スプレーノズル92から上層樹脂36b’が噴き出される角度は水平方向よりも上向きである。また、図示する例では、紫外線(UV)はモスアイ用型100Aの上側から照射される。例えば露光装置はモスアイ用型100Aに対して鉛直方向上方に配置されている。ただし、スプレーノズル92および露光装置の配置は図示する例に限られない。スプレーノズル92はモスアイ用型100Aの鉛直方向上方に設置され、スプレーノズル92から水平方向よりも下向きに上層樹脂36b’が噴き出されてもよい。この場合、例えば、露光装置はモスアイ用型100Aの鉛直方向下方に配置され、紫外線(UV)はモスアイ用型100Aの鉛直方向下方から照射され得る。
下層樹脂36a’および上層樹脂36b’を硬化させた後、ベースフィルム42からモスアイ用型100Aを分離することによって、モスアイ用型100Aの反転されたモスアイ構造が転写された合成高分子膜36がベースフィルム42の表面に形成される。表面に合成高分子膜36が形成されたベースフィルム42は、図示しない巻き取りローラにより巻き取られる。表面に合成高分子膜36が形成されたベースフィルム42をモスアイ用型100Aから分離した後、合成高分子膜36に再度紫外線を照射してもよい。
合成高分子膜36の表面は、モスアイ用型100Aのナノ表面構造を反転したナノ表面構造を有する。モスアイ用型のナノ表面構造を適宜調整することにより、所望のナノ表面構造を有する合成高分子膜を製造することができる。
下層樹脂36a’は、紫外線硬化性樹脂に限られず、可視光で硬化可能な光硬化性樹脂を含んでいてもよい。
本発明者の検討によると、円柱状または円筒状のモスアイ用型100Aの外周面100sにスプレー法で上層樹脂36b’を付与する工程において、上層樹脂36b’が周辺に飛散することによって製造歩留りが低下することがあった。図14に示すように、スプレーノズル92から上層樹脂36b’を噴霧すると、上層樹脂36b’は、例えばモスアイ用型100Aの外周面100sを伝って、周辺に飛散することがある。モスアイ用型100Aの周囲には、モスアイ用型100A、支持ローラ46および48の回転によって、図15中の矢印で示すような気流が発生すると考えられる。噴霧された上層樹脂36b’は、この気流に乗ってモスアイ用型100Aの周囲に拡散すると考えられる。図15中には、モスアイ用型100A、支持ローラ46および48の回転方向を示す矢印も示している。図示する例では、スプレーノズル92から噴出される気体の流れと、モスアイ用型100Aの回転方向とが相まって、モスアイ用型100Aの外周面を伝って支持ローラ46側へ流れる気流が強く形成される傾向にある。また、モスアイ用型100Aと支持ローラ46との間で、モスアイ用型100Aの表面と支持ローラ46の表面とが互いに近付くように回転している箇所では、特に強い気流が生じていた。なお、モスアイ用型100Aの周囲に回転するローラがない場合であっても、図14に示すように、スプレーノズル92から噴霧された液体がモスアイ用型100Aの外周面100sを伝って周辺に飛散するという問題が生じ得る。
上述したように、モスアイ用型100A上に付与されたときの上層樹脂36b’の厚さは、5μmを超えないことが好ましく、例えば0μm超3μm以下であり、2μm以下がさらに好ましい。このような薄い液膜を形成するために、スプレー法が好適に用いられる。上層樹脂36b’は、ミストとして噴霧されるので、モスアイ用型100Aの周辺の気流に影響され易く、飛散し易い。特に、モスアイ用型100A上に厚さが2μm以下の上層樹脂36b’を形成するためには、スプレーノズル92からミストとして噴霧される上層樹脂36b’の平均径は、例えば20μm以下であることが好ましい。
上記では、円柱状または円筒状のモスアイ用型100Aの外周面100sにスプレー法で上層樹脂36b’を付与する工程における、製造歩留りが低下する問題を説明した。この問題は、防汚性に優れた合成高分子膜を製造する工程に限られるものではなく、また、モスアイ用型を用いる工程に限られるものでもない。円柱状または円筒状の基材の外周面に液膜を形成する工程に共通の問題である。
以下で、図面を参照して、本発明の実施形態による液膜形成方法および液膜形成装置を説明する。なお、本発明は以下で例示する実施形態に限られない。以下の図面において、実質的に同じ機能を有する構成要素は共通の参照符号で示し、その説明を省略することがある。
図1、図2および図3を参照して、本発明の実施形態による、円柱状または円筒状の基材の外周面に液膜を形成する方法(「液膜形成方法」ということがある。)および円柱状または円筒状の基材の外周面に液膜を形成する装置(「液膜形成装置」ということがある。)を説明する。図1、図2および図3は、本発明の実施形態による液膜形成方法および液膜形成装置50を説明するための模式的な図であり、図2は、図1中のA−A’線に沿った断面を示している。図1および図3は、基材100Aの軸方向から見たときの模式的な断面図である。
本発明の実施形態による液膜形成方法は、円柱状または円筒状の基材の外周面に向かって液体を噴霧する工程(a)と、外周面の周辺の気体を吸引する工程(b)とを包含する。工程(b)は、工程(a)と同時に行う工程を包含する。工程(b)において吸引する気体の流量は、工程(a)において噴霧される液体を含む気体の流量よりも多い。
本発明の実施形態による液膜形成方法によると、噴霧された液体が周辺に飛散することが抑制される。本発明の実施形態による液膜形成方法によると、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる。
基材の外周面に向かって液体を噴霧すると同時に、外周面の周辺の気体を吸引することによって、噴霧された液体を周囲に拡散させる気流の生成が抑制される。本発明の実施形態による液膜形成方法によると、基材に接触することなく、噴霧された液体の周囲への拡散を抑制することができる。
本発明の実施形態による液膜形成方法は、例えばロール・ツー・ロール方式において用いられる場合は、基材の軸方向が水平方向と実質的に平行になるように基材を配置した状態で、基材の軸を中心に、基材を回転させる工程(c)をさらに包含してもよい。工程(c)において、基材の回転速度は、例えば0rpm超20rpm以下であることが好ましい。
本発明の実施形態による液膜形成方法は、ロール・ツー・ロール方式にも好適に用いられる。本発明の実施形態による液膜形成方法は、基材に接触することなく、噴霧された液体の周囲への拡散を抑制することができるので、回転している基材に液体を噴霧する場合に好適に用いられる。また、ロール・ツー・ロール方式では、上層樹脂を噴霧する工程を、他の工程(例えば、下層樹脂をベースフィルムの表面に付与する工程、紫外線を照射する工程等)を含む一連の流れの中で行うので、本発明の実施形態による液膜形成方法が好適に用いられる。ロール・ツー・ロール方式では、例えば、モスアイ用型の表面を、他の支持ローラや他の機材から切り離して密閉することは難しい。また、ロール・ツー・ロール方式ではモスアイ用型は回転しているので、モスアイ用型に接触するカバー部材を用いて表面の一部を密閉しようとすると、モスアイ用型の表面に傷が付くことが懸念される。
本発明の実施形態による液膜形成方法は、例えば液膜形成装置50を用いて行うことができる。
図1および図2に示すように、液膜形成装置50は、円柱状または円筒状の基材100Aの外周面100s上に液膜を形成する。円柱状または円筒状の基材は例えばモスアイ用型である。簡単のために、円柱状または円筒状の基材に、モスアイ用型100Aと同じ参照符号を付す。
液膜形成装置50は、液体を噴霧する吹出し口51と、吹出し口51に液体を供給する液体供給装置52と、吹出し口51を画定する筒状の内側カバー部53と、内側カバー部53の外側に配置されている外側カバー部54と、内側カバー部53と外側カバー部54とによって画定される吸込み口55と、吸込み口55を介して気体を吸引する気体吸引装置56とを有する。
図2に示すように、吹出し口51の第1方向(図中のx軸方向)における長さLi1は、第1方向と直交する第2方向(図中のy軸方向)における吹出し口51の長さLi2よりも大きい。基材100Aの外周面100sに向かって液体を噴霧するとき、吹出し口51は、第1方向が基材100Aの軸方向と実質的に平行となるように外周面100sに向けられる。図1では、基材100Aは、基材100Aの軸方向が第1方向と略平行となるように配置されている。図1および図2中では、液膜形成装置50に対してxyz直交座標系を示しているが、液体供給装置52および気体吸引装置56についてはこの限りではない。図示する例では、内側カバー部53および外側カバー部54は、第1方向および第2方向と直交する第3方向(図中のz軸方向)と略平行に延びる筒状である。ただし、内側カバー部53および外側カバー部54が延びる方向は、第3方向と略平行でなくてもよい。
吸込み口55は、吹出し口51と第2方向(図中のy軸方向)に隣接して第1方向(図中のx軸方向)に延びる部分55mを含む。
ここでは、内側カバー部53と外側カバー部54とによって1つの吸込み口55が画定されている。この例では、吹出し口51および吸込み口55を含む断面において、内側カバー部53は、外側カバー部54に囲まれている。この例では、吸込み口55の第1方向(図中のx軸方向)における長さLo1は、吹出し口51の第1方向における長さLi1よりも大きく、吸込み口55の第2方向(図中のy軸方向)における長さLo2は、吹出し口51の第2方向における長さLi2よりも大きい。ただし、内側カバー部53および外側カバー部54の形状、ならびにこれらの配置関係は図示するものに限られない。内側カバー部53と外側カバー部54とによって2つ以上の吸込み口が画定されてもよい。
気体吸引装置56は、吹出し口51から噴霧される液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている。
図2に示すように、液膜形成装置50は、例えば、吹出し口51内に、第1方向に沿って配列されており、液体を噴霧する複数のノズル57をさらに有する。また、液膜形成装置50は、例えば、吸込み口55内に、気体吸引装置56に接続されている複数の吸引口58をさらに有する。図1に示すように、例えば、ノズル57は接続部67を介して液体供給装置52と接続されている。例えば、吸引口58は接続部65を介して気体吸引装置56と接続されている。
液膜形成装置50によると、円柱状または円筒状の基材の外周面に向かって噴霧された液体が周辺に飛散することが抑制される。本発明の実施形態による液膜形成方法によると、円柱状または円筒状の基材の外周面に液膜を形成する工程における製造歩留りの低下を抑制することができる。
気体吸引装置56が、吹出し口51から噴霧される液体を含む気体の流量よりも多い流量の気体を吸引することで、噴霧された液体が基材100Aの外周面100sを伝って拡散することが抑制される。図1中には、斜線を施した矢印で吸込み口55を介して気体吸引装置56が吸引する気体の流れを表し、白抜きの矢印で吹出し口51から噴霧された液体を含む気体の流れを表し、黒塗りの矢印で外側カバー部54の外側の気体の流れを表している。吹出し口51から基材100Aの外周面100sに向かって噴霧された液体を含む気体は、基材100Aの外周面100sに到達した後、吸込み口55から吸引されるので、外周面100sを伝って拡散することが抑制される。特に、吹出し口51の第2方向の長さLi2に対する第1方向における長さLi1のアスペクト比(Li1/Li2)が大きい場合は、吸込み口55の内の部分55mから気体を吸引する気流の寄与が大きい。吸込み口55の内の部分55mは、吹出し口51と基材100Aの円周方向に隣接して基材100Aの軸方向に延びているためである。さらに、外側カバー部54と基材100Aとの間に、外側カバー部54の外側から内側に向かって流れる気流が生成されていることにもよっても、噴霧された液体が外周面100sを伝って拡散することが抑制される。吹出し口51から噴霧される液体は、ミスト化されており、気体とともに噴霧される。吹出し口51からミストとして噴霧される液体の平均径は、例えば20μm以下である。
図2に示すように、吹出し口51は、第1方向および第2方向に垂直な第3方向(図中のz軸方向)に貫通していることが好ましい。液体を噴霧する間、上述した気流を生成し続ける観点から、吹出し口51内の気圧が一定に保たれることが好ましいためである。また、吸込み口55を介して気体吸引装置56から効率よく気体を吸引する観点から、吸込み口55は、第3方向に貫通していないことが好ましい。図示する例では、液膜形成装置50は、吸込み口55の基材100A側と反対側を覆う底面部62をさらに有する。底面部62は、吹出し口51の基材100A側と反対側を覆わないように形成されている。
図3を参照して、基材100Aと液膜形成装置50との位置関係を説明する。
基材100Aと液膜形成装置50との位置関係は、例えば、ノズル57の噴出し孔の先端からモスアイ用型100Aの外周面100sまで最短距離wd、内側カバー部53とモスアイ用型100Aの外周面100sとの最短距離dm1、外側カバー部54とモスアイ用型100Aの外周面100sとの最短距離dm2等によって決められる。図3には、内側カバー部53が筒状に延びる方向における、内側カバー部53とモスアイ用型100Aの外周面100sとの距離dv1および外側カバー部54が筒状に延びる方向における、外側カバー部54とモスアイ用型100Aの外周面100sとの距離dv2もあわせて図示している。また、内側カバー部53が筒状に延びる方向における、内側カバー部53の長さをLi3とし、外側カバー部54が筒状に延びる方向における、外側カバー部54の長さをLo3とする。
液膜形成装置50は、基材100Aの外周面100sに接触することなく、噴霧された液体が周辺に飛散することを抑制することができる。液膜形成装置50は、例えば、基材100Aの外周面100sに向かって液体を噴霧するとき、内側カバー部53および外側カバー部54は、基材100Aの外周面100sに接触しないことが可能であるように構成されている。
本発明者が検討した結果を後述するように、気体吸引装置56が吸引する気体の流量と、内側カバー部53および外側カバー部54と基材100Aとの距離とを調節することで、外側カバー部54の外側から内側に向かって流れる気流(図1中の黒塗りの矢印)を制御することができる。外側カバー部54の外側から内側に向かって流れる気流の速度(流速)が適切な値を有し、かつ、位置による流速のむらが小さくなるように制御することで、円柱状または円筒状の基材100Aの外周面100sに向かって噴霧した液体が周辺に飛散することを抑制し、かつ、基材100Aの外周面100sに均一に液膜を形成することができる。例えば、外側カバー部54の外側から内側に向かって流れる気流の流速が十分でないと、噴霧された液体の飛散を抑制することができないが、気流の流速が大き過ぎると、形成された液膜にむらが生じ得る。なお、本発明の実施形態は、例示する条件に限られるものではない。基材を含む系のスケール(サイズ)、液膜を形成する基材のサイズ、噴霧する液体の特性、形成する液膜の厚さ等に応じて適宜調整され得る。
液膜形成装置50は、例えば、基材100Aの外周面100sに向かって液体を噴霧するときの、内側カバー部53と基材100Aの外周面100sとの距離または外側カバー部54と基材100Aの外周面100sとの距離の少なくとも一方を変えることができるように構成されていてもよい。例えば、後述する図9に示す例では、外側カバー部54は、内側カバー部53と略平行に延びる筒状部54aと、筒状部54aの基材100A側の端に設けられ、筒状部54aに沿ってスライド可能なスライド部54sとを有する。スライド部54sを筒状部54aに沿ってスライドさせることによって、スライド部54sと基材100Aの外周面100sとの距離を変えることができ、これにより、外側カバー部54と基材100Aの外周面100sとの距離を変えることができる。
なお、図3に示すように、内側カバー部53および外側カバー部54は、支持台66に支持されていてもよい。図示する例では、ノズル57も支持台66に支持されている。支持台66は、車輪(キャスタ)68を有していてもよい。内側カバー部53および外側カバー部54が支持台66の上に設置されていると、これらと基材100Aとの距離を容易に調節することができる。支持台66が車輪68を有していると、調節がさらに行いやすい。また、内側カバー部53および外側カバー部54が支持台66に支持されていることによって、内側カバー部53および外側カバー部54を容易に移動させることができ、かつ、液膜形成装置50を設置するためのスペースを削減することができるという利点も得られる。なお、図3では、液体供給装置52および気体吸引装置56の図示を省略している。
本発明者の検討によると、例えば、気体吸引装置56が吸引する気体の流量が、吹出し口51から噴霧される液体を含む気体の流量の9倍以上15倍以下であるように構成されていると、円柱状または円筒状の基材100Aの外周面100sに向かって噴霧した液体が周辺に飛散することを抑制し、かつ、基材100Aの外周面100sに均一に液膜を形成することができる。気体吸引装置56が吸引する気体の流量が、吹出し口51から噴霧される液体を含む気体の流量の9倍未満であると、噴霧された液体が外側カバー部54の外側に付着した。気体吸引装置56が吸引する気体の流量が、吹出し口51から噴霧される液体を含む気体の流量の15倍超であると、基材100Aの外周面100sに形成された液膜にむらが生じた。
本発明者は、図3および図4に示す構造の液膜形成装置50を用いて、適切な吸引流量について検討した。図4は、液膜形成装置50の構成の一例を説明するための模式的な図である。
ノズル57として超音波ノズル(Sono−Tek社製、製品名:vortex)を用いた。図4に示すように、吹出し口51内には、15個のノズル57が段違いに配置されている(図5および図6参照。図6における角度θa=53°、θb=62°とした。)。吸込み口55には、吹出し口51の両側に8個ずつ吸引口58が設けられている。内側カバー部53および外側カバー部54のサイズ、内側カバー部53および外側カバー部54と基材との距離dv1、dv2、最短距離dm1、dm2は、以下の通りである。
Li1=1420mm、Li2=107mm、Li3=152mm
Lo1=1442mm、Lo2=213mm、Lo3=189mm
dL1=50mm、dL2=8mm
dm1=15.2mm、dm2=22.5mm
dv1=25mm、dv2=25mm
ここでは、内側カバー部53は、第1方向において外側カバー部54の中央に配置されており、第2方向において外側カバー部54の中央に配置されている。吸込み口55は、内側カバー部53を包囲するように形成されている。図4には、吸込み口55の第1方向に延びる部分の幅dL2、および第2方向に延びる部分の幅dL1もあわせて示している。
用いた基材100Aの軸方向の長さは1600mm、底面の直径は300mmである。液体を噴霧したときの、ノズル57の先端と基材100Aの外周面100sとの最短距離wdは110.45mmであった。
吹出し口51から噴霧される液体を含む気体の流量は2m/minとした。吸引口58と気体吸引装置56との間に設けられたバルブによって、気体吸引装置56が吸引する気体の流量を変化させた。気体吸引装置56が吸引する気体の流量が17.3m/minの場合には、噴霧された液体が外側カバー部54の外側に付着し、気体吸引装置56が吸引する気体の流量が30.9m/minの場合には、基材100Aの外周面100sに形成された液膜にむらが生じた。気体吸引装置56が吸引する気体の流量が24.3m/minの場合には、噴霧した液体が周辺に飛散することを抑制され、かつ、基材100Aの外周面100sに均一に液膜を形成することができた。
なお、本発明者は、気体吸引装置56が吸引する気体の流量を、吸込み口55の断面積と、吸込み口55を通過する気流の流速との積から見積もった。吸込み口55の断面積は、Lo1×dL2×2とした。吸込み口55の第2方向に延びる部分の幅dL1が、第1方向に延びる部分の幅dL2に比べて小さいので、断面積をこのように近似した。吸込み口55を通過する気流の流速は、図4に白抜きの矢印で示す24箇所で測定した値の平均値とした。流速の測定には(KANOMAX製、製品名:アネモマスタ―風速計6006−00)を用いた。吸引口58と気体吸引装置56との間に設けられたバルブによって、気体吸引装置56が吸引する気体の流量を4通りに変化させ、それぞれの場合の吸引流量を見積もったところ、17.3m/min、24.3m/min、30.9m/minおよび42m/minであった。なお、42m/minと見積もられた場合は、バルブを全開にした場合である。バルブを全開にした場合について、異なる方法で気体吸引装置56の吸引流量を見積もったところ、44m/minであり、ほぼ同じ値が得られた。よって、上記見積もりの妥当性が確かめられた。異なる方法としては、気体吸引装置56の性能と、吸引口58と気体吸引装置56との間に設けられた配管の圧力損失とから、気体吸引装置56の吸引流量を見積もった。
本発明者の検討によると、基材100Aの外周面100sに向かって液体を噴霧するとき、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2は、それぞれ小さいことが好ましい。後述するように、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2が大きいと、位置による流速のむらが大きくなる。上述した検討結果から、液膜形成装置50は、例えば、基材100Aの外周面100sに向かって液体を噴霧するとき、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2を、それぞれ、30mm以下とすることができるように構成されていることが好ましく、25mm以下とすることができるように構成されていることがさらに好ましい。
本発明者は、図4とは別の実験系で、外側カバー部54の外側から内側に向かって流れる気流の流速を複数の位置で計測し、そのばらつきの程度を調べた。例えば図4に白抜きの矢印で示しているように、外側カバー部54の第1方向(図中のx軸方向)に延びる辺に沿って測定位置を変え、気流の流速の変化を調べた。ここでは吸引口58は1つのみ設け、測定位置によって吸引口58からの距離が異なるようにした。本発明者の測定によると、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2を30mmとすると、気流の流速は吸引口58からの距離に依存(例えば吸引口58からの距離に反比例)し、吸引口58からの距離が近いほど流速が大きかった。これに対して、内側カバー部53と基材100Aの外周面100sとの最短距離dm1および外側カバー部54と基材100Aの外周面100sとの最短距離dm2を10mmとすると、吸引口58からの距離が変化しても流速の変化が小さかった。すなわち、外側カバー部54の外側から内側に向かって流れる気流の速度をほぼ一定にすることができた。なお、最短距離dm1およびdm2の好ましい範囲は、例えば基材を含む系のスケール(サイズ)によって変化すると考えられる。
液膜形成装置50は、ロール・ツー・ロール方式にも好適に用いられる。液膜形成装置50は、基材100Aに接触することなく、噴霧された液体の周囲への拡散を抑制することができるので、回転している基材100Aに液体を噴霧する場合に好適に用いられる。また、ロール・ツー・ロール方式では、上層樹脂を噴霧する工程を、他の工程(例えば、下層樹脂をベースフィルムの表面に付与する工程、紫外線を照射する工程等)を含む一連の流れの中で行うので、液膜形成装置50が好適に用いられる。ロール・ツー・ロール方式では、例えば、モスアイ用型の表面を、他の支持ローラや他の機材から切り離して密閉することは難しい。また、ロール・ツー・ロール方式ではモスアイ用型は回転しているので、モスアイ用型に接触するカバー部材を用いて表面の一部を密閉すると、モスアイ用型の表面に傷が付くことが懸念される。
特許文献6は、平板状の基板の洗浄に用いられる基板処理装置を開示している。特許文献6の基板処理装置は、基板に向けて処理液(例えば洗浄液)を噴出する噴出ノズルと、噴出ノズルの両側に配置され、基板の洗浄に用いられた処理液を周囲の気体とともに吸引する2つの吸引ノズルとを有する。特許文献6の基板処理装置は、基板の表面に洗浄液を衝突させることによって、基板の表面に付着した異物を除去し、基板を洗浄する。特許文献6の基板処理装置は、吸引ノズルを有することによって、基板の洗浄に用いられた処理液が基板に再び付着し基板が汚染されることを抑制することができる。なお、基板の洗浄処理を効率よく行う観点からは、噴出ノズルから基板の表面に向かって噴出される洗浄液の速度は大きいことが好ましく、例えば噴出ノズルは一流体ノズルよりも二流体ノズルであることが好ましいとされている。
これに対して、液膜形成装置50は円柱状または円筒状の基材の外周面に液膜を形成することを目的としている。従って、液膜形成装置50において、噴霧される液体の速度および方向は、円柱状または円筒状の基材の外周面に液膜が均一に付与される観点から調節されることが好ましい。液膜形成装置50が有する、液体を噴霧するノズル57としては、例えば、超音波ノズル、二流体ノズル、スワールノズル、または静電ノズル等を用いることができる。
[ノズルについて]
超音波ノズルは、液体を超音波の振動によって霧化して噴霧する方式のスプレーノズルである。二流体ノズルは、2系統に分けられた圧縮空気と液体とを混合して噴出する方式のスプレーノズルである。超音波ノズルを用いることにより、二流体ノズルを用いる場合に比べて噴霧されるミストの平均径を小さくすることができる。例えば超音波ノズルによって噴霧されるミストの平均径は、数μm〜数十μm程度である。また、超音波ノズルでは、液体および気体に圧力が加えられないので、噴霧した液体の飛散や跳ね返りを抑制することができる。超音波ノズルは塗着効率の観点からも優れている。例えば噴霧した液体の塗着効率は、二流体ノズルでは60%以上であるのに対し、超音波ノズルでは95%以上である。
スワールノズルを用いることもできる。スワールノズルを用いることにより、螺旋状の気流を発生させることができるので、液滴を旋回させながら、基材の外周面に付与することができる。このとき、液滴が基材の外周面に到達する際の衝撃を小さくすることができるので、基材の外周面で跳ねる液滴を低減することができる。また、液膜の形成は、静電ノズルを用いて行ってもよい。静電ノズルは、帯電させた液滴を噴霧する方式のスプレーノズルである。例えば、基材の表面とノズルとの間に電圧を印加することによって、液滴を帯電させ、基材の表面に液滴を効率よく付着させることができる。静電ノズルを用いて噴霧した液体の塗着効率は、例えば98%である。
本発明者の検討によると、超音波ノズルを用いることが好ましく、特に螺旋状の気流を発生させることができる超音波ノズルを用いることが好ましい。詳細な検討結果は後述する。
[ミスト化に適した液体]
本発明者は、超音波ノズル(Sono−Tek社製、製品名:vortex)を用いて、ミスト化できる液体の特性を検討した。
噴霧する液体として、3種類の異なる液体(水、A液およびB液)を用い、ミスト化(霧化)された状態が安定かどうかを判定した。液体の流量は3ml/minとし、電力は1〜3Wとした。
表1には、判定結果とともに、各液体の特性をあわせて示す。各液体の粘度、静的表面張力、および動的表面張力の測定は、23℃で行った。
粘度は、東機産業社製のTV25形粘度計(製品名:TVE−25L)を用いて測定した。
静的表面張力は、浸透速度法を用いて測定した。浸透速度法は、カラム中に対象物を一定の圧力で押し固めて充填し、関係式:l/t=(r・γcosθ)/2ηから、水で測定したときの対象物の表面張力を決定する方法である。上記関係式中、lは水の浸透高さを示し、tは時間を示し、rは充填された対象物の毛管半径を示し、γは表面張力を示し、ηは水の粘度を示し、θは接触角を示す。表面張力が小さいほど接触角が大きくなり、撥水性がより高いことを示す。
動的表面張力は、最大泡圧法により求めた。自動動的表面張力計(BP−D5、協和界面科学社製)を用いて、各液体(塗工液)中に挿したプローブ(細管)から気泡を連続的に発生させたときの最大圧力(最大泡圧)を測定し、表面張力を求めた。具体的には、ライフタイム(プローブ先端内で新しい界面が生成した時点から最大泡圧となるまでの時間;「表面寿命」と呼ばれることもある。)が100msである場合の表面張力の値を測定した。
Figure 2018181303
表1に示すように、水およびA液では霧化状態が安定していたが、B液では安定していなかった。A液とB液は、ほぼ同じ値の静的表面張力を有するにもかかわらず、ミスト化された場合の安定性には差があった。ミスト化された場合の安定性には、液体の静的表面張力は寄与しないことが分かる。超音波ノズルとしてvortexを用いた場合、噴霧する液体は、例えば、最大泡圧法による23℃での表面寿命が100msである時の動的表面張力が31mN/m以上であることが好ましいことが分かった。また、噴霧する液体は、例えば、23℃における粘度が20cP以下であることが好ましい。
[ノズルの配置]
図5および図6を参照して、液膜形成装置50が有する複数のノズル57の配置を説明する。図5は、基材100Aの外周面100sに向かって液体を噴霧するときの、基材100Aと液膜形成装置50との配置関係を説明するための模式的な斜視図であり、図6は、基材100Aの軸方向と平行な方向から液膜形成装置50を見たときの模式的な側面図である。図5および図6においては、見やすさのために、内側カバー部53および外側カバー部54の図示を省略している。
図5に示すように、液膜形成装置50は、例えば、基材100Aを、基材100Aの軸方向が水平方向と実質的に平行になるように、かつ、基材100Aの軸の周りに回転可能に支持する回転支持構造体59をさらに有する。
図5に示すように、基材100Aの外周面100sに向かって液体を噴霧するとき、複数のノズル57は、基材100Aの軸方向と略平行に配列されている。図5および図6に示すように、複数のノズル57は、隣接するノズル57の高さが互いに異なるように配置されていることが好ましい。すなわち、複数のノズル57は、段違いに配置されていることが好ましい。また、複数のノズル57は、隣接するノズル57の噴出し孔の水平方向に対する角度が互いに異なるように配置されていることがさらに好ましい。図5および図6に示す例では、複数のノズル57は、互いに高さの異なる第1ノズル57aおよび第2ノズル57bを有している。第2ノズル57bは、第1ノズル57aに比べ、鉛直方向上方に配置されている。図6には、第1ノズル57aの位置と第2ノズル57bの位置との鉛直方向における差Δvおよび水平方向における差Δhを図示している。また、第1ノズル57aおよび第2ノズル57bは、噴出し孔の水平方向に対する角度が互いに異なる。第2ノズル57bの噴出し孔の水平方向に対する角度θbは、第1ノズル57aの噴出し孔の水平方向に対する角度θaに比べて大きい。第1ノズル57aおよび第2ノズル57bは、交互に配置されている。
本発明者の検討によると、隣接するノズル57の高さが同じであり、隣接するノズル57の噴出し孔の水平方向に対する角度が同じであると、図7に示すように、基材100Aの外周面100sに形成した液膜に円周方向に延びる筋状のむらが生じることがあった。図7は、基材100Aの外周面100sに形成した液膜に生じる円周方向に延びる筋状のむらを示す図である。本発明者の検討によると、この筋状のむらは、ノズル57の位置や数によって変化し、例えば隣接するノズル57の間隔に対応して形成されていた。また、筋状のむらは、基材100Aの回転速度が速い方が生じやすい傾向にあった。隣接するノズル57の高さが互いに異なるように配置されていると、複数のノズル57から噴霧された液体が基材100Aの外周面100sに均一に付与され、筋状のむらの形成が抑制された。
本発明者は、表2に示すように、複数のノズル57の配置および基材100Aの回転速度について検討した。なお、ここでは気体の吸引は行わずに実験を行った。
Figure 2018181303
表2に示すように、複数のノズル57の配置および基材100Aの回転速度を変えて、基材100Aの外周面100sに向かって液体を噴霧し、外周面100sに均一に液膜が形成されるかどうかを調べた。条件AおよびBでは、複数のノズル57は直線上に配列されている。条件Aでは液膜にむらが生じたが、基材100Aの回転速度を小さくすると(条件B)、液膜にむらが生じなかった。また、複数のノズル57を段違いに配列すると(条件C)、液膜にむらが生じなかった。
[送液ポンプ]
吹出し口51に液体を供給する液体供給装置52は、例えば、液体を収容する容器と、容器と吹出し口51との間に配置された送液ポンプとを含む。送液ポンプは、例えば、容器と、容器と吹出し口51とを連結するチューブに設けられている。基材100Aの外周面100sに液膜を均一に形成する観点からは、送液ポンプから供給される液体の流量の時間依存性が小さいことが好ましい。例えば、脈動を有しないまたは脈動が小さい送液ポンプを用いることが好ましい。弁構造を有しないポンプを用いてもよい。
本発明者は、液体を収容する容器と送液ポンプとの間に液体流量センサー(センシリオン株式会社製、製品名:SLI−2000)を設置し、送液ポンプから供給される液体の流量の時間依存性を測定した。送液ポンプとしてシリンジポンプ(株式会社ミナトコンセプト製、製品名:MCIP−BOi)を用いて液体を供給した(流量:5ml/min)場合は、およそ4秒周期の脈動が生じていた。これに対し、送液ポンプとしてチューブポンプ(株式会社ミナトコンセプト製、製品名:MCRP204型)を用いて液体を供給した(流量:5ml/min)場合はほとんど脈動が生じていなかった。
[気体吸引装置]
図8を参照して、液膜形成装置50の構成の一例を説明する。図8は、液膜形成装置50の構成の一例を説明するための模式的な図である。
吸込み口55を介して気体を吸引する気体吸引装置56は、例えば、吸引ファン56である。図8に示すように、液膜形成装置50は、例えば、吸込み口55から吸引した気体から液体(ミストを含む)を取り除く分離器(不図示)と、分離器によって気体から分離された液体を収容するドレインタンク72とをさらに有する。吸引ファン56は、分離器によって液体が取り除かれた気体を、フィルター73を介して例えば屋外に排出する。例えば、複数の吸引口58のそれぞれに配管71aが接続され、配管71aは配管71bに接続されている。配管71bの内径は、配管71aの内径よりも大きくてもよい。1つの配管71bに対して複数の配管71aが接続されていてもよい。複数の吸引口58から吸引された気体は、配管71a、71bを通って分離器およびドレインタンク72に送られ、吸引ファン56に送られる。配管71aおよび/または配管71bには、気体吸引装置56が吸引する気体の流量を調節するバルブ(不図示)が設けられていてもよい。
液膜形成装置50は、内側カバー部53に接して吹出し口51内に設けられた液受け部61(図9参照)をさらに有してもよい。本発明者の検討によると、数時間に亘って液体を噴霧し続けると、内側カバー部53に付着したミストが内側カバー部53を伝って流れることがあった。特に、吹出し口51が第3方向(図中のz軸方向)に貫通していると、内側カバー部53に付着したミストが内側カバー部53を伝って流れ、液滴となって落下することがあった。液膜形成装置50が液受け部61をさらに有すると、このような液滴が落下することを防ぐことができる。液受け部61には、例えば管またはチューブ(不図示)が接続され、管またはチューブを介して液受け部61内に収容した液滴を回収するように構成されている。
液膜形成装置50は、吹出し口51の基材100A側の一部を覆う液受け部64(図9参照)をさらに有していてもよい。液受け部64は、例えば金属材料で形成されている。本発明者の検討によると、図9に示すようにロール・ツー・ロール方式による合成高分子膜の製造を行う場合、数時間に亘って液体を噴霧し続けると、外側カバー部54の基材100A側の部分にミストが付着することがあり、外側カバー部54に付着した液滴が支持ローラ48に付着することがあった。本発明者の検討によると、支持ローラ48によってベースフィルム42をモスアイ用型100Aから剥離する際にベースフィルム42の表面に静電気が発生することによって、外側カバー部54に付着した液滴が支持ローラ48に付着すると考えられる。液膜形成装置50が液受け部64を有することによって、このような液滴の飛散が抑制される。
[合成高分子膜の製造方法]
上述したように、本発明の実施形態による液膜形成装置または液膜形成方法は、合成高分子膜の製造方法にも用いることができる。本発明の実施形態による液膜形成装置または液膜形成方法は、防汚性に優れる合成高分子膜の製造方法に好適に用いることができる。図9を参照して、本発明の実施形態による合成高分子膜の製造方法を説明する。図9は、合成高分子膜36をロール・ツー・ロール方式で製造する方法を説明するための模式的な断面図である。図9は、モスアイ用型100Aの軸方向から見たときの断面図である。図11〜図13を参照して説明した合成高分子膜36の製造方法と共通の事項については説明を省略することがある。また、実質的に同じ機能を有する構成要素は、共通の参照符号を付して、その説明を省略する。
本発明の実施形態による合成高分子膜の製造方法は、表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する、円柱状または円筒状の型を用いて、合成高分子膜を製造する方法である。本発明の実施形態による合成高分子膜の製造方法は、型と、被加工物とを用意する工程(A)と、被加工物の表面に紫外線硬化性樹脂を含む第1樹脂を付与する工程(B)と、本発明の実施形態による液膜形成装置を用いてまたは本発明の実施形態による液膜形成方法によって、型の表面にフッ素含有モノマーを含む第2樹脂を付与する工程(C)と、型と被加工物の表面との間で第1樹脂および第2樹脂を互いに接触させた状態で、第1樹脂および第2樹脂に紫外線を照射することによって第1樹脂および第2樹脂を硬化させる工程(D)とを包含する。
本発明の実施形態による合成高分子膜の製造方法によると、製造歩留りの低下を抑制しつつ、ロール・ツー・ロール方式で防汚性に優れた合成高分子膜を製造することができる。
例えば図9に示すように、ノズル57の噴出し孔の先端とモスアイ用型100Aの中心100oとを結ぶ直線と、モスアイ用型100Aの中心100oと支持ローラ48の中心48oとを結ぶ直線とのなす角度をθnとする。支持ローラ46の中心46oは、例えば、モスアイ用型100Aの中心100oと支持ローラ48の中心48oとを結ぶ直線上にあってもよい。
本発明の実施形態による液膜形成装置または液膜形成方法は、上述した合成高分子膜の製造方法に限られず用いることができる。例えば、噴霧する液体は、表面処理剤、離型剤等、型の表面に付与される公知の種々の材料であり得る。また、例えば、本出願人による国際公開第2018/012340号に記載の合成高分子膜の製造方法のうち、製法3においては、離型剤(例えば光反応性基を有するフッ素含有モノマーを含む離型剤)を含む樹脂を型の表面に付与する。この工程において、本発明の実施形態による液膜形成装置または液膜形成方法が用いられ得る。参考のために国際公開第2018/012340号の開示内容のすべてを本明細書に援用する。
[モスアイ用型の製造方法]
図10(a)〜(e)を参照して、モスアイ用型100Aの製造方法を説明する。図10(a)〜(e)は、モスアイ用型100Aの製造方法を説明するための模式的な断面図である。
まず、図10(a)に示すように、型基材として、円筒状のアルミニウム基材12と、アルミニウム基材12の表面に形成された無機材料層16と、無機材料層16の上に堆積されたアルミニウム膜18とを有する型基材10を用意する。
アルミニウム基材12としては、アルミニウムの純度が99.50mass%以上99.99mass%未満である比較的剛性の高いアルミニウム基材を用いる。アルミニウム基材12に含まれる不純物としては、鉄(Fe)、ケイ素(Si)、銅(Cu)、マンガン(Mn)、亜鉛(Zn)、ニッケル(Ni)、チタン(Ti)、鉛(Pb)、スズ(Sn)およびマグネシウム(Mg)からなる群から選択された少なくとも1つの元素を含むことが好ましく、特にMgが好ましい。エッチング工程におけるピット(窪み)が形成されるメカニズムは、局所的な電池反応であるので、理想的にはアルミニウムよりも貴な元素を全く含まず、卑な金属であるMg(標準電極電位が−2.36V)を不純物元素として含むアルミニウム基材12を用いることが好ましい。アルミニウムよりも貴な元素の含有率が10ppm以下であれば、電気化学的な観点からは、当該元素を実質的に含んでいないと言える。Mgの含有率は、全体の0.1mass%以上であることが好ましく、約3.0mass%以下の範囲であることがさらに好ましい。Mgの含有率が0.1mass%未満では十分な剛性が得られない。一方、含有率が大きくなると、Mgの偏析が起こり易くなる。モスアイ用型を形成する表面付近に偏析が生じても電気化学的には問題とならないが、Mgはアルミニウムとは異なる形態の陽極酸化膜を形成するので、不良の原因となる。不純物元素の含有率は、アルミニウム基材12の形状、厚さおよび大きさに応じて、必要とされる剛性に応じて適宜設定すればよい。例えば圧延加工によって板状のアルミニウム基材12を作製する場合には、Mgの含有率は約3.0mass%が適当であるし、押出加工によって円筒などの立体構造を有するアルミニウム基材12を作製する場合には、Mgの含有率は2.0mass%以下であることが好ましい。Mgの含有率が2.0mass%を超えると、一般に押出加工性が低下する。
アルミニウム基材12として、例えば、JIS A1050、Al−Mg系合金(例えばJIS A5052)、またはAl−Mg−Si系合金(例えばJIS A6063)で形成された円筒状のアルミニウム管を用いる。
アルミニウム基材12の表面は、バイト切削が施されていることが好ましい。アルミニウム基材12の表面に、例えば砥粒が残っていると、砥粒が存在する部分において、アルミニウム膜18とアルミニウム基材12との間で導通しやすくなる。砥粒以外にも、凹凸が存在するところでは、アルミニウム膜18とアルミニウム基材12との間で局所的に導通しやすくなる。アルミニウム膜18とアルミニウム基材12との間で局所的に導通すると、アルミニウム基材12内の不純物とアルミニウム膜18との間で局所的に電池反応が起こる可能性がある。
無機材料層16の材料としては、例えば酸化タンタル(Ta)または二酸化シリコン(SiO)を用いることができる。無機材料層16は、例えばスパッタ法により形成することができる。無機材料層16として、酸化タンタル層を用いる場合、酸化タンタル層の厚さは、例えば、200nmである。
無機材料層16の厚さは、100nm以上500nm未満であることが好ましい。無機材料層16の厚さが100nm未満であると、アルミニウム膜18に欠陥(主にボイド、すなわち結晶粒間の間隙)が生じることがある。また、無機材料層16の厚さが500nm以上であると、アルミニウム基材12の表面状態によって、アルミニウム基材12とアルミニウム膜18との間が絶縁されやすくなる。アルミニウム基材12側からアルミニウム膜18に電流を供給することによってアルミニウム膜18の陽極酸化を行うためには、アルミニウム基材12とアルミニウム膜18との間に電流が流れる必要がある。円筒状のアルミニウム基材12の内面から電流を供給する構成を採用すると、アルミニウム膜18に電極を設ける必要がないので、アルミニウム膜18を全面にわたって陽極酸化できるとともに、陽極酸化の進行に伴って電流が供給され難くなるという問題も起こらず、アルミニウム膜18を全面にわたって均一に陽極酸化することができる。
また、厚い無機材料層16を形成するためには、一般的には成膜時間を長くする必要がある。成膜時間が長くなると、アルミニウム基材12の表面温度が不必要に上昇し、その結果、アルミニウム膜18の膜質が悪化し、欠陥(主にボイド)が生じることがある。無機材料層16の厚さが500nm未満であれば、このような不具合の発生を抑制することもできる。
アルミニウム膜18は、例えば、国際公開第2011/125486号に記載されているように、純度が99.99mass%以上のアルミニウムで形成された膜(以下、「高純度アルミニウム膜」ということがある。」)である。アルミニウム膜18は、例えば、真空蒸着法またはスパッタ法を用いて形成される。アルミニウム膜18の厚さは、約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
また、アルミニウム膜18として、高純度アルミニウム膜に代えて、国際公開第2013/183576号に記載されている、アルミニウム合金膜を用いてもよい。国際公開第2013/183576号に記載のアルミニウム合金膜は、アルミニウムと、アルミニウム以外の金属元素と、窒素とを含む。本明細書において、「アルミニウム膜」は、高純度アルミニウム膜だけでなく、国際公開第2013/183576号に記載のアルミニウム合金膜を含むものとする。
上記アルミニウム合金膜を用いると、反射率が80%以上の鏡面を得ることができる。アルミニウム合金膜を構成する結晶粒の、アルミニウム合金膜の法線方向から見たときの平均粒径は、例えば、100nm以下であり、アルミニウム合金膜の最大表面粗さRmaxは60nm以下である。アルミニウム合金膜に含まれる窒素の含有率は、例えば、0.5mass%以上5.7mass%以下である。アルミニウム合金膜に含まれるアルミニウム以外の金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値は0.64V以下であり、アルミニウム合金膜中の金属元素の含有率は、1.0mass%以上1.9mass%以下であることが好ましい。金属元素は、例えば、TiまたはNdである。但し、金属元素はこれに限られず、金属元素の標準電極電位とアルミニウムの標準電極電位との差の絶対値が0.64V以下である他の金属元素(例えば、Mn、Mg、Zr、VおよびPb)であってもよい。さらに、金属元素は、Mo、NbまたはHfであってもよい。アルミニウム合金膜は、これらの金属元素を2種類以上含んでもよい。アルミニウム合金膜は、例えば、DCマグネトロンスパッタ法で形成される。アルミニウム合金膜の厚さも約500nm以上約1500nm以下の範囲にあることが好ましく、例えば、約1μmである。
次に、図10(b)に示すように、アルミニウム膜18の表面18sを陽極酸化することによって、複数の凹部(細孔)14pを有するポーラスアルミナ層14を形成する。ポーラスアルミナ層14は、凹部14pを有するポーラス層と、バリア層(凹部(細孔)14pの底部)とを有している。隣接する凹部14pの間隔(中心間距離)は、バリア層の厚さのほぼ2倍に相当し、陽極酸化時の電圧にほぼ比例することが知られている。この関係は、図10(e)に示す最終的なポーラスアルミナ層14についても成立する。
ポーラスアルミナ層14は、例えば、酸性の電解液中で表面18sを陽極酸化することによって形成される。ポーラスアルミナ層14を形成する工程で用いられる電解液は、例えば、蓚酸、酒石酸、燐酸、硫酸、クロム酸、クエン酸、リンゴ酸からなる群から選択される酸を含む水溶液である。例えば、アルミニウム膜18の表面18sを、蓚酸水溶液(濃度0.3mass%、液温10℃)を用いて、印加電圧80Vで55秒間陽極酸化を行うことにより、ポーラスアルミナ層14を形成する。
次に、図10(c)に示すように、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによって所定の量だけエッチングすることにより凹部14pの開口部を拡大する。エッチング液の種類・濃度、およびエッチング時間を調整することによって、エッチング量(すなわち、凹部14pの大きさおよび深さ)を制御することができる。エッチング液としては、例えば10mass%の燐酸や、蟻酸、酢酸、クエン酸などの有機酸や硫酸の水溶液やクロム酸燐酸混合水溶液を用いることができる。例えば、燐酸水溶液(10mass%、30℃)を用いて20分間エッチングを行う。
次に、図10(d)に示すように、再び、アルミニウム膜18を部分的に陽極酸化することにより、凹部14pを深さ方向に成長させるとともにポーラスアルミナ層14を厚くする。ここで凹部14pの成長は、既に形成されている凹部14pの底部から始まるので、凹部14pの側面は階段状になる。
さらにこの後、必要に応じて、ポーラスアルミナ層14をアルミナのエッチャントに接触させることによってさらにエッチングすることにより凹部14pの孔径をさらに拡大する。エッチング液としては、ここでも上述したエッチング液を用いることが好ましく、現実的には、同じエッチング浴を用いればよい。
このように、上述した陽極酸化工程およびエッチング工程を交互に複数回(例えば5回:陽極酸化を5回とエッチングを4回)繰り返すことによって、図10(e)に示すように、反転されたモスアイ構造を有するポーラスアルミナ層14を有するモスアイ用型100Aが得られる。陽極酸化工程で終わることによって、凹部14pの底部を点にできる。すなわち、先端が尖った凸部を形成することができる型が得られる。
図10(e)に示すポーラスアルミナ層14(厚さt)は、ポーラス層(厚さは凹部14pの深さDに相当)とバリア層(厚さt)とを有する。ポーラスアルミナ層14は、合成高分子膜36が有するモスアイ構造を反転した構造を有するので、その大きさを特徴づける対応するパラメータに同じ記号を用いることがある。
ポーラスアルミナ層14が有する凹部14pは、例えば円錐形であり、階段状の側面を有してもよい。凹部14pの二次元的な大きさ(表面の法線方向から見たときの凹部の面積円相当径)Dは20nm超500nm未満で、深さDは50nm以上1000nm(1μm)未満程度であることが好ましい。また、凹部14pの底部は尖っている(最底部は点になっている)ことが好ましい。凹部14pは密に充填されている場合、ポーラスアルミナ層14の法線方向から見たときの凹部14pの形状を円と仮定すると、隣接する円は互いに重なり合い、隣接する凹部14pの間に鞍部が形成される。なお、略円錐形の凹部14pが鞍部を形成するように隣接しているときは、凹部14pの二次元的な大きさDは隣接間距離Dintと等しい。ポーラスアルミナ層14の厚さtは、例えば、約1μm以下である。
なお、図10(e)に示すポーラスアルミナ層14の下には、アルミニウム膜18のうち、陽極酸化されなかったアルミニウム残存層18rが存在している。必要に応じて、アルミニウム残存層18rが存在しないように、アルミニウム膜18を実質的に完全に陽極酸化してもよい。例えば、無機材料層16が薄い場合には、アルミニウム基材12側から容易に電流を供給することができる。
高精細な表示パネルに用いられる反射防止膜には、高い均一性が要求されるので、上記のようにアルミニウム基材の材料の選択、アルミニウム基材の鏡面加工、アルミニウム膜の純度や成分の制御を行うことが好ましい。一方で、高い均一性が求められない用途の合成高分子膜を製造する場合は、上記の型の製造方法を簡略化することができる。例えば、アルミニウム基材の表面を直接、陽極酸化してもよい。また、このときアルミニウム基材に含まれる不純物の影響でピットが形成されても、最終的に得られる合成高分子膜36のモスアイ構造に局所的な構造の乱れが生じるだけで、例えば合成高分子膜36の殺菌作用に与える影響はほとんどないと考えられる。
上述の型の製造方法によると、反射防止膜の作製に好適な、凹部の配列の規則性が低い型を製造することができる。また、規則的に配列された凸部を有するモスアイ構造を形成するための型は、例えば、以下のようにして製造することができる。
例えば厚さが約10μmのポーラスアルミナ層を形成した後、生成されたポーラスアルミナ層をエッチングにより除去してから、上述のポーラスアルミナ層を生成する条件で陽極酸化を行えばよい。厚さが10μmのポーラスアルミナ層は、陽極酸化時間を長くすることによって形成される。このように比較的厚いポーラスアルミナ層を生成し、このポーラスアルミナ層を除去すると、アルミニウム膜またはアルミニウム基材の表面に存在するグレインによる凹凸や加工ひずみの影響を受けることなく、規則的に配列された凹部を有するポーラスアルミナ層を形成することができる。なお、ポーラスアルミナ層の除去には、クロム酸と燐酸との混合液を用いることが好ましい。長時間にわたるエッチングを行うとガルバニック腐食が発生することがあるが、クロム酸と燐酸との混合液はガルバニック腐食を抑制する効果がある。
[ノズルの選定]
超音波ノズル57の種類を変えて、合成高分子膜36を作製し、作製した合成高分子膜36について評価した。合成高分子膜36は、図13を参照して説明した方法で作製した。すなわち、本発明の実施形態による液膜形成装置および液膜形成方法は用いずに作製した。
表3に示すように、3種類の超音波ノズル(いずれもSono−Tek社製、製品名:Vortex、AccuMistおよびImpact)を周波数120Hzで用いた。Vortexは螺旋状の気流を発生させる。例えば水を噴霧する場合には平均径18μmのミストを噴霧することができる。ただし、噴霧する液体の粘度、表面張力等によってミストの平均径は異なり得る。ミスト化できる液体の条件の検討結果は、例えば表3を参照して述べた。AccuMistおよびImpactは、螺旋状の気流を発生させない。AccuMistは点状のスプレーパターンを生成できる。Impactを用いたスプレー幅は、AccuMistを用いたスプレー幅よりも広い。
表3には、ノズルの種類の他に、スプレー条件として、噴出する気体の圧力(psi)、電力(W)、基材との距離(mm)、温度、噴霧した液体の流量(ml/min)、スキャン速度(mm/sec)、塗布回数を示している。
表3の「噴出する気体の圧力」は、噴霧する液体とともに噴出する気体の圧力である。ここで、1psi=6894.76Paである。
表3の「電力」は、超音波ノズルに供給した電力である。
表3の「基材との距離」は、超音波ノズルの先端とモスアイ用型100Aとの最短距離である。
表3の「温度」は、噴霧を行った空間の温度であり、「R.T」は室温を示す。
表3の「液体の流量」は、噴霧した液体の流量である。
表3の「スキャン速度」は、液体噴霧時の超音波ノズルの移動速度である。
表3の「塗布回数」は、上層樹脂36b’の塗布回数である。
また、表3には、ベースフィルム42上に付与したときの下層樹脂36a’の厚さを「下層樹脂の厚さ」として示し、モスアイ用型100Aの表面に付与したときの上層樹脂36b’の厚さを、「上層樹脂の厚さ」として示している。さらに、作製された合成高分子膜36の評価結果も示している。具体的な評価方法は後述する。
Figure 2018181303
超音波ノズルとして、条件1ではVortexを用い、条件2〜4ではAccuMistを用い、条件5〜7ではImpactを用いた。条件2〜4では、噴霧する液体(ここでは上層樹脂)の流量を変えることによって、異なる厚さの上層樹脂36b’を付与して合成高分子膜36を得た。条件5〜7では、噴霧する液体(上層樹脂)および上層樹脂の塗布回数を変えることによって、異なる厚さの上層樹脂36b’を付与して合成高分子膜36を得た。
表3に示すように、超音波ノズルとしてVortexを用いる条件1で作製された合成高分子膜36(モスアイ用型100Aの表面に付与したときの上層樹脂36b’の厚さ:1.3μm)は、撥水性を有し、かつ、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れている。
超音波ノズルとしてAccuMistを用いる条件2で作製された合成高分子膜36は、条件1で作製された合成高分子膜36とほぼ同じ厚さ(1.2μm)の上層樹脂36b’を有するのにもかかわらず、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さにおいて劣っていた。そこで、条件3および4として、付与する上層樹脂36b’の厚さを増加させて合成高分子膜36を作製して評価を行った。上層樹脂36b’の厚さが増加すると、評価結果は向上した。条件4で作製された合成高分子膜36(モスアイ用型100Aの表面に付与したときの上層樹脂36b’の厚さ:4.5μm)は、条件1で作製された合成高分子膜36と同程度に、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れていた。
超音波ノズルとしてImpactを用いた場合(条件5〜7)についても、付与する上層樹脂36b’の厚さを5.4μmまで増加させること(条件7)で、条件1で作製された合成高分子膜36と同程度に、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れる合成高分子膜36が得られた。
以上の結果から、効率よく、撥水性、撥油性、耐擦傷性、滑り易さ、および油脂の拭き取り易さに優れる合成高分子膜を得るためには、超音波ノズルとしてVortexを用いることが好ましいことが分かった。
作製された合成高分子膜36の各評価は以下のように行った。
・接触角
水およびヘキサデカンの静的接触角(単に「接触角」ということがある。)を測定した。接触角は、協和界面科学社製のポータブル接触角計(製品名:PCA−1)を用い、θ/2法で、θ/2=arctan(h/r)の式により得た。ここで、θは接触角を示し、rは液滴の半径を示し、hは液滴の高さを示す。表3の「接触角」には3箇所の接触角の平均値を示す。ここで、1箇所目の測定点としては、試料の中央部分を選択し、2箇所目および3箇所目の測定点としては、1箇所目の測定点から20mm以上離れ、かつ、1箇所目の測定点に対して互いに点対称な位置にある2点を選択して測定した。
・耐擦傷性
作製された合成高分子膜36のスチールウール(SW)耐性を調べることで、合成高分子膜36の耐擦傷性を評価した。具体的には、合成高分子膜36の表面を、日本スチールウール社製のスチールウール(製品名:#0000)に所定の荷重を加えた状態で擦り、傷が付いた時点の荷重を測定した。この荷重値(表3中の「SW耐性」の値)が大きいほど耐擦傷性に優れている。具体的な擦り方は、新東科学社製の表面性測定機(製品名:14FW)を用い、ストローク幅30mm、速度100mm/sで10往復擦った。また、傷の有無は、照度100lx(蛍光灯)の環境下で目視観察して判断した。
・滑り易さ
合成高分子膜36の滑り易さを、綿棒による触診によって評価した。評価指標として、◎:非常に滑りやすい、○:滑りやすい、△:滑る、×:滑らない、を用いた。
・透明性
合成高分子膜36の透明性を、白濁の有無によって評価した。具体的には、照度100lx(蛍光灯)の環境下で、合成高分子膜36を透過した像を目視で観察し、像が白濁しているかどうかを調べた。評価指標として、○:白濁しているのが見えなかった、△:僅かに白濁が視認された、×:白濁しているのが見えた、を用いた。
・油脂の拭き取り易さ
油脂の拭き取り易さは、合成高分子膜36の表面に付着した油分が容易に拭き取れるかどうかを評価した。具体的には、まず、各試料サンプルの表面に、ニベア花王社製のニベアクリーム(登録商標)を付着させて、温度25℃、湿度40%〜60%の環境下で3日間放置した。その後、不織布(KBセーレン社製、製品名:ザヴィーナ(登録商標))を用いて、各試料サンプルを一方向に50回拭いた。照度100lx(蛍光灯)の環境下において、油分が拭き取れたかどうかを、目視で観察した。評価指標として、◎:汚れが完全に拭き取れた、○:完全ではないものの汚れが拭き取れた、△:大分部の汚れが拭き取れなかった、×:汚れが全く拭き取れなかった、を用いた。
・Y値
合成高分子膜36の視感反射率(Y値)を測定した。具体的には、光源を各例のサンプルの表面に対して極角5°の方位から照射し、入射光の各波長に対する各例のサンプルの正反射率を測定した。波長550nmにおける反射率(Y値)を表3に示す。反射率は、日本分光社製の分光光度計(製品名:V−560)を用い、250nm〜850nmの波長範囲で測定した。反射率の測定は、合成高分子膜36を支持するベースフィルム42に、三菱レイヨン社製の黒色のアクリル板(製品名:アクリライト(登録商標)EX−502)を貼り付けた状態で行い、光源としてC光源を用いた。
・ヘイズ
合成高分子膜36のヘイズ(拡散度)を測定した。具体的には、日本電色工業株式会社製のヘーズメーターNDH2000を用いて拡散透過率および全光線透過率を測定し、ヘイズ(%)=(拡散透過率/全光線透過率)×100から求めた。
[実施例1〜実施例8]
以下に、実施例1〜実施例8を示す。
表4に示す条件を用いる実施例1〜実施例8の製造方法によって、合成高分子膜36を有するフィルム30を作製し、作製した試料フィルムの評価を行った。合成高分子膜36の製造方法は、特筆しない限り、図4および図9を参照して説明した方法と同じである。具体的には、液膜形成装置50を除いて、特許文献4に記載の実施例3と同様にしてフィルム30を作製した。図9中の角度θnは65°とした。支持ローラ46および48の底面の直径は、210mmであった。また、用いた液膜形成装置50およびモスアイ用型100Aの構成は、特筆しない限り図4を参照して説明したものと同じである。試料フィルムの作製に用いた材料および硬化条件、ならびに試料フィルムが有するモスアイ構造を以下に示す。
(ベースフィルム42)
・易接着処理が施された東洋紡社製のPETフィルム(製品名:コスモシャイン(登録商標)A4300)
(下層樹脂36a’)
・ウレタンアクリレート(新中村化学工業社製、製品名:UA−7100):31重量%
・多官能アクリレート(新中村化学工業社製、製品名:ATM−35E):40重量%
・多官能アクリレート(新中村化学工業社製、製品名:A−TMM−3LM−N):27.5重量%
・光重合開始剤(BASF社製、製品名:IRGACURE819):1.5重量%
(上層樹脂36b’)
・フッ素含有モノマー(ダイキン工業社製、フッ素系添加剤製品名:オプツールDAC−HP):10重量%
・反応性希釈剤(アミド基含有モノマー(KJケミカルズ社製、製品名:ACMO)):90重量%
(硬化条件)
上層樹脂36b’が付与されたモスアイ用型100Aを、ベースフィルム42上に付与された下層樹脂36a’に押し付けた状態で、ベースフィルム42側から、Fusion UV systems社製のUVランプ(製品名:LIGHT HAMMAR6J6P3)を用いて、紫外線(照射量:200mJ/cm)を照射し、下層樹脂36a’および上層樹脂36b’を硬化させた。
(試料フィルムのモスアイ構造)
凸部の形状:円錐状(釣鐘状)
凸部の隣接間距離(Dint):200nm
凸部の高さ(D):200〜250nm
表4に示す評価項目の内、「油脂の拭き取り易さ」および「透明性」は、表3を参照して説明した方法と同様に評価した。
表4の「ミストの飛散」は、支持ローラ48に支持され搬送されているベースフィルム42に上層樹脂が付着しているかどうかを評価した結果を示す。評価指標として、○:支持ローラ48上のベースフィルム42に上層樹脂が付着していなかった、△:支持ローラ48上のベースフィルム42に上層樹脂が少し付着していた、×:支持ローラ48上のベースフィルム42に上層樹脂が付着していた、を用いた。
表4の「むら」は、試料フィルムに色味の変化があるかどうかを評価した結果を示す。付与された上層樹脂の厚さにむらがあると、色味の変化(干渉色のむら)として観察される。具体的には、以下の方法によって評価された。まず、黒色のアクリル板を、試料フィルムのベースフィルム42に、粘着剤(パナック社製、PDS1)を介して貼り付けた。そして、照度100lx(蛍光灯)の環境下で、試料フィルムの合成高分子膜36側の表面を、表面の法線方向からの極角およそ60°から目視で観察し、色味の変化があるかどうかを評価した。評価指標として、○:色味の変化が見えなかった、△:わずかに色味の変化が視認された、×:色味の変化が見えた、を用いた。
Figure 2018181303
・実施例1
吹出し口51から噴霧される液体(上層樹脂36b’)の流量を3.0ml/minとし、吹出し口51から噴霧される液体を含む気体の流量および圧力を2.0m/minおよび0.03MPaとした。気体吸引装置56が吸引する気体の流量は18m/minとした。外側カバー部54の外側から内側に向かって流れる気体の流速は2.0m/sであった。流速は、図4に白抜きの矢印で示す24箇所で測定した値の平均値とした。ベースフィルム42の搬送速度を2.0m/minとし、モスアイ用型100Aの温度は30℃として、10mの長さの試料フィルムを作製した。ベースフィルム42の搬送速度は、モスアイ用型100Aおよび支持ローラ46、48の回転速度に対応する。モスアイ用型100の底面の直径を100d(m)とすると、1分間あたりの回転数を表す1rpmは、(π×100d)(m/min)に相当する。従って、実施例1の製造方法におけるモスアイ用型100Aの回転速度は、2.12rpmである。
実施例1の製造方法では、ミストの周辺への飛散を抑制できず、また、得られた合成高分子膜36は、油脂の拭き取り易さおよび透明性に優れず、むらが生じていた。
・実施例2
実施例2の製造方法は、ベースフィルム42の搬送速度が大きい点において、実施例1の製造方法と異なる。実施例2の製造方法においては、ベースフィルム42の搬送速度を5.0m/minとした。すなわち、モスアイ用型100Aの回転速度を5.31rpmとした。
実施例2の製造方法で製造された合成高分子膜36は、透明性において実施例1よりも優れていた。しかしながら、油脂の拭き取り易さにおいては実施例1よりも劣り、むらも生じていた。
・実施例3
実施例3の製造方法は、吹出し口51から噴霧される液体の流量が多い点および吹出し口51から噴出される気体の圧力が大きい点において、実施例2の製造方法と異なる。実施例3の製造方法においては、吹出し口51から噴霧される液体の流量を5.0ml/minとし、吹出し口51から噴出される気体の圧力は0.10MPaとした。また、ここでは50mの長さの試料フィルムを作製した。
実施例3の製造方法で製造された合成高分子膜36は、実施例2に比べて上層部分36bの厚さが大きいので、油脂の拭き取り易さにおいて実施例2よりも優れていた。しかしながら、周辺への飛散したミストの量が実施例2よりも増加した。
・実施例4
実施例4の製造方法は、気体吸引装置56が吸引する気体の流量および外側カバー部54の外側から内側に向かって流れる気体の流速の値が大きい点において、実施例3の製造方法と異なる。実施例4の製造方法においては、それぞれ、31m/minおよび3.6m/sとした。
実施例4の製造方法で製造された合成高分子膜36は、むらの程度において実施例3よりも優れていた。モスアイ用型100Aに付与された上層樹脂の厚さのむらは、実施例3よりも低減された。周辺への飛散したミストの量は、実施例3と同程度であった。
・実施例5
実施例5の製造方法は、気体吸引装置56が吸引する気体の流量および外側カバー部54の外側から内側に向かって流れる気体の流速の値が、実施例3よりも大きく、実施例4よりも小さい点において、実施例3および4の製造方法と異なる。実施例5の製造方法においては、それぞれ、24m/minおよび2.8m/sとした。また、ここでは100mの長さの試料フィルムを作製した。
実施例5の製造方法によると、ミストが周辺に飛散することが防止された。また、実施例5の製造方法で製造された合成高分子膜36は、むらの程度において実施例4よりも優れていた。実施例5の製造方法によると、モスアイ用型100Aの外周面100sに向かって噴霧した液体が周辺に飛散することを抑制し、かつ、基材100Aの外周面100sに均一に液膜を形成することができた。
・実施例6
実施例6の製造方法は、噴霧される液体の流量が多い点において、実施例5の製造方法と異なる。実施例6の製造方法においては、吹出し口51から噴霧される液体の流量を6.0ml/minとした。また、ここでは50mの長さの試料フィルムを作製した。
実施例6の製造方法は、ミストが周辺に飛散することを抑制する観点からは実施例5よりも劣っていた。実施例6の製造方法で製造された合成高分子膜36は、油脂の拭き取り易さにおいて実施例5よりも優れていたが、透明性においては実施例5よりも劣っていた。
・実施例7
実施例7の製造方法は、モスアイ用型100Aの温度が高い点において、実施例5の製造方法と異なる。実施例7の製造方法においては、モスアイ用型100Aの温度を50℃とした。
実施例7の製造方法で製造された合成高分子膜36は、油脂の拭き取り易さにおいて実施例5よりも優れていた。モスアイ用型100Aの温度が高いと、モスアイ用型100Aの表面に付与された上層樹脂の粘度が下がる。これにより、上層樹脂に含まれるフッ素含有モノマーが移動しやすくなり、合成高分子膜36の表面のフッ素元素含有率が高くなったためと考えられる。
・実施例8
実施例8の製造方法は、ベースフィルム42の搬送速度が大きい点において、実施例7の製造方法と異なる。また、ここでは300mの長さの試料フィルムを作製した。
実施例8の製造方法および実施例8の製造方法で製造された合成高分子膜36は、実施例7と同程度優れていた。
本発明の実施形態による液膜形成方法および液膜形成装置ならびに合成高分子膜の製造方法は、スプレー法を用いて円柱状または円筒状の基材の外周面に液膜を形成する工程に好適に用いられる。
30 フィルム
36 合成高分子膜
36a 下層部分
36a’ 下層樹脂
36b 上層部分
36b’ 上層樹脂
36p 凸部
42 ベースフィルム
46、48 支持ローラ
50 液膜形成装置
51 吹出し口
52 液体供給装置
53 内側カバー部
54 外側カバー部
55 吸込み口
56 気体吸引装置
57 ノズル
58 吸引口
100 モスアイ用型
100A 基材(モスアイ用型)
100s 外周面

Claims (20)

  1. 円柱状または円筒状の基材の外周面上に液膜を形成する装置であって、
    液体を噴霧する吹出し口であって、前記吹出し口の第1方向における長さは、前記第1方向と直交する第2方向における前記吹出し口の長さよりも大きく、前記外周面に向かって前記液体を噴霧するとき、前記第1方向が前記基材の軸方向と実質的に平行となるように前記外周面に向けられる吹出し口と、
    前記吹出し口に前記液体を供給する液体供給装置と、
    前記吹出し口を画定する筒状の内側カバー部と、
    前記内側カバー部の外側に配置されている外側カバー部と、
    前記内側カバー部と前記外側カバー部とによって画定される少なくとも1つの吸込み口であって、前記吹出し口と前記第2方向に隣接して前記第1方向に延びる部分を含む少なくとも1つの吸込み口と、
    前記少なくとも1つの吸込み口を介して気体を吸引する気体吸引装置と
    を有し、
    前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量よりも多い流量の気体を吸引するように構成されている、液膜形成装置。
  2. 前記吹出し口から噴霧される前記液体の平均径は、20μm以下である、請求項1に記載の液膜形成装置。
  3. 前記吹出し口は、前記第1方向および前記第2方向に垂直な第3方向に貫通している、請求項1または2に記載の液膜形成装置。
  4. 前記吹出し口内に、前記第1方向に沿って配列されており、前記液体を噴霧する複数のノズルをさらに有する、請求項1から3のいずれかに記載の液膜形成装置。
  5. 前記複数のノズルは、超音波ノズルである、請求項4に記載の液膜形成装置。
  6. 前記複数のノズルは、段違いに配置されている、請求項4または5に記載の液膜形成装置。
  7. 前記複数のノズルは、隣接するノズルの噴出し孔の水平方向に対する角度が互いに異なるように配置されている、請求項4から6のいずれかに記載の液膜形成装置。
  8. 前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部および前記外側カバー部が前記外周面に接触しないことが可能であるように構成されている、請求項1から7のいずれかに記載の液膜形成装置。
  9. 前記外周面に向かって前記液体を噴霧するときの、前記内側カバー部と前記外周面との距離および/または前記外側カバー部と前記外周面との距離を変えることができるように構成されている、請求項1から8のいずれかに記載の液膜形成装置。
  10. 前記外周面に向かって前記液体を噴霧するとき、前記内側カバー部と前記外周面との最短距離および前記外側カバー部と前記外周面との最短距離をそれぞれ30mm以下とすることができるように構成されている、請求項1から9のいずれかに記載の液膜形成装置。
  11. 前記気体吸引装置は、前記吹出し口から噴霧される前記液体を含む気体の流量の、9倍以上15倍以下の流量の気体を吸引するように構成されている、請求項1から10のいずれかに記載の液膜形成装置。
  12. 前記基材を、前記基材の軸方向が水平方向と実質的に平行になるように、かつ、前記基材の軸の周りに回転可能に支持する、回転支持構造体をさらに有する、請求項1から11のいずれかに記載の液膜形成装置。
  13. 円柱状または円筒状の基材の外周面に液膜を形成する方法であって、
    前記外周面に向かって液体を噴霧する工程(a)と、
    前記外周面の周辺の気体を吸引する工程(b)と
    を包含し、
    前記工程(b)は、前記工程(a)と同時に行う工程を包含し、前記工程(b)において吸引する気体の流量は、前記工程(a)において噴霧される前記液体を含む気体の流量よりも多い、液膜形成方法。
  14. 前記工程(a)において噴霧する前記液体の平均径は、20μm以下である、請求項13に記載の液膜形成方法。
  15. 前記工程(a)において噴霧する前記液体の23℃における粘度は、20cP以下である、請求項13または14に記載の液膜形成方法。
  16. 前記工程(a)において噴霧する前記液体の、最大泡圧法による23℃での表面寿命が100msである時の動的表面張力は、31mN/m以上である、請求項13から15のいずれかに記載の液膜形成方法。
  17. 前記基材の軸方向が水平方向と実質的に平行になるように前記基材を配置した状態で、前記基材の軸を中心に、前記基材を回転させる工程(c)をさらに包含する、請求項13から16のいずれかに記載の液膜形成方法。
  18. 前記工程(c)において、前記基材の回転速度は、0rpm超20rpm以下である、請求項17に記載の液膜形成方法。
  19. 厚さが2μm以下である液膜を形成する、請求項13から18のいずれかに記載の液膜形成方法。
  20. 表面の法線方向から見たときの2次元的な大きさが20nm以上500nm未満である複数の凹部を有する、反転されたモスアイ構造を表面に有するポーラスアルミナ層を有する、円柱状または円筒状の型を用いて、合成高分子膜を製造する方法であって、
    前記型と、被加工物とを用意する工程(A)と、
    前記被加工物の表面に紫外線硬化性樹脂を含む第1樹脂を付与する工程(B)と、
    請求項1から12のいずれかに記載の液膜形成装置を用いてまたは請求項13から19のいずれかに記載の液膜形成方法によって、前記型の表面にフッ素含有モノマーを含む第2樹脂を付与する工程(C)と、
    前記型と前記被加工物の表面との間で前記第1樹脂および前記第2樹脂を互いに接触させた状態で、前記第1樹脂および前記第2樹脂に紫外線を照射することによって前記第1樹脂および前記第2樹脂を硬化させる工程(D)と
    を包含する、合成高分子膜の製造方法。
JP2019509883A 2017-03-30 2018-03-27 液膜形成装置 Active JP6789380B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017068126 2017-03-30
JP2017068126 2017-03-30
PCT/JP2018/012419 WO2018181303A1 (ja) 2017-03-30 2018-03-27 液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018181303A1 true JPWO2018181303A1 (ja) 2020-01-09
JP6789380B2 JP6789380B2 (ja) 2020-11-25

Family

ID=63678138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509883A Active JP6789380B2 (ja) 2017-03-30 2018-03-27 液膜形成装置

Country Status (3)

Country Link
JP (1) JP6789380B2 (ja)
CN (1) CN110536754A (ja)
WO (1) WO2018181303A1 (ja)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075629A (ja) * 1973-11-07 1975-06-20
JPS6095957U (ja) * 1983-12-02 1985-06-29 株式会社クボタ 集塵機付き塗布装置
JPH07213961A (ja) * 1994-02-01 1995-08-15 Kyowa Hakko Kogyo Co Ltd スプレー装置とそれを用いたコーティング装置及び造粒装置
JP2006175348A (ja) * 2004-12-22 2006-07-06 Konica Minolta Photo Imaging Inc スプレー塗布方法、スプレー塗布装置及びインクジェット記録用紙
JP2011240315A (ja) * 2010-05-21 2011-12-01 Kansai Paint Co Ltd 塗装用ノズル、及び塗装用ノズルを用いた塗装装置
JP2012005949A (ja) * 2010-06-24 2012-01-12 Fuji Xerox Co Ltd ノズル及び塗布膜の製造方法
JP5750890B2 (ja) * 2011-01-07 2015-07-22 セイコーエプソン株式会社 流体噴射装置及び医療機器
JP2013188694A (ja) * 2012-03-14 2013-09-26 Sharp Corp 成膜装置
US10414108B2 (en) * 2015-04-30 2019-09-17 Sharp Kabushiki Kaisha Method for producing optical film, and optical film

Also Published As

Publication number Publication date
JP6789380B2 (ja) 2020-11-25
WO2018181303A1 (ja) 2018-10-04
CN110536754A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
JP6939573B2 (ja) 透光性構造体
EP2546042B1 (en) Mold release treatment method and mold release treatment device
EP2636501B1 (en) Method for producing article having fine concavo-convex structure on surface
JP2019073710A (ja) 合成高分子膜、合成高分子膜を有する積層体、合成高分子膜を有するフィルム、合成高分子膜の表面を用いた殺菌方法および合成高分子膜の表面の再活性化方法
TWI484071B (zh) 陽極氧化層之形成方法及模具之製造方法
JP6623232B2 (ja) 光学部材、及び、光学部材の製造方法
CN103025923B (zh) 纳米压印用模具的制造装置、以及纳米压印用模具的制造方法
CN102933373A (zh) 表面具有微细凹凸结构的物品的制造方法
JP5605145B2 (ja) 乾燥装置、およびモールドの製造方法
KR100898124B1 (ko) 소수성 내부 표면을 갖는 3차원 형상 구조물의 제조방법
JP2013142821A (ja) 反射防止フィルム
JP2019143042A (ja) 合成高分子膜および合成高分子膜の製造方法
JP6627506B2 (ja) モールドの製造方法およびロール状モールドの製造装置、ならびに微細凹凸構造を表面に有する物品の製造方法
JP6309081B2 (ja) 型の製造方法および反射防止膜の製造方法
JPWO2018181303A1 (ja) 液膜形成装置および液膜形成方法ならびに合成高分子膜の製造方法
JP6605612B2 (ja) 殺菌作用を備えた表面を有する合成高分子膜、合成高分子膜の製造方法および合成高分子膜の表面を用いた殺菌方法
JP2012137534A (ja) 反射防止フィルム製造用金型
JP2015087763A (ja) 区画部材及び監視システム
US20110206837A1 (en) Method of producing laminate film
JP6568563B2 (ja) 離型処理方法、型および反射防止膜の製造方法
JP2016043030A (ja) 粉体化粧料容器、及び粉体化粧料用テスター陳列台
JP6546992B2 (ja) 離型処理方法、反射防止膜の製造方法および離型処理装置
JP6626898B2 (ja) 基材の表面処理方法および型の製造方法
JP2014184626A (ja) ロール状モールドの製造方法、および複数の凸部を表面に有する物品の製造方法
JP2017077982A (ja) 防眩膜付きガラス基材、防眩膜付きガラス基材の製造方法および物品

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201102

R150 Certificate of patent or registration of utility model

Ref document number: 6789380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150