JPWO2017191820A1 - リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 - Google Patents

リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Download PDF

Info

Publication number
JPWO2017191820A1
JPWO2017191820A1 JP2018515725A JP2018515725A JPWO2017191820A1 JP WO2017191820 A1 JPWO2017191820 A1 JP WO2017191820A1 JP 2018515725 A JP2018515725 A JP 2018515725A JP 2018515725 A JP2018515725 A JP 2018515725A JP WO2017191820 A1 JPWO2017191820 A1 JP WO2017191820A1
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
electrode material
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2018515725A
Other languages
English (en)
Inventor
佐藤 力
力 佐藤
秀介 土屋
秀介 土屋
元宏 伊坂
元宏 伊坂
賢匠 星
賢匠 星
啓太 須賀
啓太 須賀
慶紀 内山
慶紀 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corporation
Showa Denko Materials Co Ltd
Original Assignee
Resonac Corporation
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Resonac Corporation, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Resonac Corporation
Publication of JPWO2017191820A1 publication Critical patent/JPWO2017191820A1/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

下記(1)又は(2)の少なくとも一方を満たすリチウムイオン二次電池用負極材。(1)核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材より結晶性が低い第二炭素材と、を含み、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する。(2)R値が0.1〜1.0であり、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する。

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。
リチウムイオン二次電池は小型、軽量、かつ高エネルギー密度という特性を活かし、従来よりノート型PC、携帯電話、スマートフォン、タブレット型PC等の電子機器に広く使用されている。近年、CO排出による地球温暖化等の環境問題を背景に、電池のみで走行を行うクリーンな電気自動車(EV)、ガソリンエンジンと電池を組み合わせたハイブリッド電気自動車(HEV)等が普及してきている。また最近では、電力貯蔵用にも用いられており、多岐の分野においてその用途は拡大している。
リチウムイオン二次電池の負極材は、その性能が出力特性に大きく影響する。リチウムイオン二次電池用負極材の材料としては、炭素材料が広く用いられている。負極材に使用される炭素材料は、黒鉛と、黒鉛より結晶性の低い炭素材料(非晶質炭素等)とに大別される。黒鉛は、炭素原子の六角網面が規則正しく積層した構造を有し、リチウムイオン二次電池の負極材としたときに六角網面の端部よりリチウムイオンの挿入及び脱離反応が進行し、充放電が行われる。
非晶質炭素は、六角網面の積層が不規則であるか、六角網面を有しない。このため、非晶質炭素を用いた負極材では、リチウムイオンの挿入及び脱離反応が負極材の全表面で進行する。そのため、負極材として黒鉛を用いる場合よりも出力特性に優れるリチウムイオン電池が得られやすい(例えば、特許文献1及び特許文献2参照)。一方、非晶質炭素は黒鉛よりも結晶性が低いため、エネルギー密度が黒鉛よりも低い。
特開平4−370662号公報 特開平5−307956号公報
上記のような炭素材料の特性を考慮し、非晶質炭素と黒鉛とを複合化して高いエネルギー密度を維持しつつ出力特性を高め、かつ黒鉛を非晶質炭素で被覆した状態とすることで表面の反応性を低減させ、初期の充放電効率を良好に維持しつつ出力特性を高めた負極材も提案されている。しかしながら、上述したような背景から、リチウムイオン二次電池の出力特性の一層の向上を実現する負極材が求められている。また、EVやHEV等の車載用リチウムイオン二次電池等においては、高温保存特性も求められている。
本発明は、上記課題に鑑み、出力特性及び高温保存特性に優れるリチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池を提供することを目的とする。
上記課題を解決するための手段には、以下の実施態様が含まれる。
<1>核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材より結晶性が低い第二炭素材と、を含み、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する、リチウムイオン二次電池用負極材。
<2>R値が0.1〜1.0であり、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する、リチウムイオン二次電池用負極材。
<3>前記少なくとも2つのピークは、395eV以上400eV未満の範囲のピークと、400eV以上405eV以下の範囲のピークとを含む、<1>又は<2>に記載のリチウムイオン二次電池用負極材。
<4>前記少なくとも2つのピークは、398eV付近のピークと401eV付近のピークとを含む、<1>〜<3>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<5>X線光電子分光スペクトルにおいて395eV〜405eVの範囲に存在するピークの中で、強度が最大のピークと2番目に大きいピークのうち、395eVに近い方のピークAと、405eVに近い方のピークBとのピーク強度の比(A/B)が0.1〜10である、<1>〜<4>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<6>炭素原子と窒素原子の結合が存在し、かつ炭素原子と窒素原子の結合状態が2種以上である、リチウムイオン二次電池用負極材。
<7>3個の炭素原子と結合している窒素原子と、2個の炭素原子と結合している窒素原子とを含有する、<6>に記載のリチウムイオン二次電池用負極材。
<8>窒素原子の含有率が0.2質量%以上である、<1>〜<7>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<9>X線回折法により求められる平均面間隔(d002)が0.340nm以下である、<1>〜<8>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<10>体積平均粒子径(D50)が1μm〜40μmである、<1>〜<9>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<11>77Kでの窒素吸着測定より求められる比表面積が0.5m/g〜10m/gである、<1>〜<10>のいずれか1項に記載のリチウムイオン二次電池用負極材。
<12>核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、窒素源と、を含む混合物を熱処理する工程を含む、<1>〜<11>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
<13>前記混合物中の前記窒素源の量は、リチウムイオン二次電池用負極材の窒素原子の含有率が0.2質量%以上となる量である、<12>に記載のリチウムイオン二次電池用負極材の製造方法。
<14>前記混合物中の第一炭素材及び第二炭素材の前駆体の量は、リチウムイオン二次電池用負極材の総質量中の第二炭素材の割合が0.1質量%〜30質量%となる量である、<12>又は<13>に記載のリチウムイオン二次電池用負極材の製造方法。
<15>前記熱処理は700℃〜1500℃の温度で行われる、<12>〜<14>のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
<16><1>〜<11>のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む、リチウムイオン二次電池用負極。
<17><16>16に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。
本発明によれば、出力特性及び高温保存特性に優れるリチウムイオン二次電池を製造可能なリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池が提供される。
実施例1と比較例1で作製したリチウムイオン二次電池用負極材のXPS分析で得られたX線光電子分光スペクトルである。
以下、本発明を実施するための形態について詳細に説明する。但し、本発明は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本発明を制限するものではない。
本明細書において「工程」との語には、他の工程から独立した工程に加え、他の工程と明確に区別できない場合であってもその工程の目的が達成されれば、当該工程も含まれる。
本明細書において「〜」を用いて示された数値範囲には、「〜」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。
本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
本明細書において組成物中の各成分の含有率又は含有量は、組成物中に各成分に該当する物質が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
本明細書において組成物中の各成分の粒子径は、組成物中に各成分に該当する粒子が複数種存在する場合、特に断らない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
<リチウムイオン二次電池用負極材>
本実施形態のリチウムイオン二次電池用負極材(以下、単に「負極材」とも称する)は、下記(1)及び(2)の少なくともいずれか一方の条件を満たす。
(1)核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材より結晶性が低い第二炭素材と、を含み、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する。
(2)ラマン分光測定のR値が0.1〜1.0であり、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する。
本発明者らの検討の結果、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する負極材を用いたリチウムイオン二次電池は、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有しない負極材を用いたリチウムイオン二次電池に比べ、高温保存特性を維持しつつ、出力特性に優れていることがわかった。その理由は必ずしも明らかではないが、負極材中の炭素原子の六角網面の端部近傍での電子密度が変化し、電解液と負極材表面との反応で生じる生成物が変化したためと考えられる。
本発明におけるX線光電子分光スペクトルは、X線光電子分光法(X−ray Photoelectron Spectroscopy、XPS)により測定できる。測定は、アルバック・ファイ社の「Versa Probe II」を使用し、後述の実施例に示す測定条件を採用することができる。
X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有することは、負極材中に炭素原子と窒素原子の結合が存在し、かつ炭素原子と窒素原子の結合状態が2種以上であることを意味する。すなわち、本実施形態の負極材は、炭素原子と窒素原子の結合が存在し、かつ炭素原子と窒素原子の結合状態が2種以上でる。
本実施形態の負極材は、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有し、前記少なくとも2つのピークは、395eV以上400eV未満の範囲のピークと、400eV以上405eV以下の範囲のピークとを含むことが好ましい。
高温保存特性の観点からは、本実施形態の負極材は、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に存在するピークの中で、強度が最大のピークと2番目に大きいピークのうち、395eVに近い方のピークAと、405eVに近い方のピークBとのピーク強度の比(A/B)が0.1〜10であることが好ましい。
より好ましくは、X線光電子分光スペクトルにおいて395eV以上400eV未満の範囲と、400eV以上405eV以下の範囲とに少なくとも1つのピークをそれぞれ有し、395eV以上400eV未満の範囲で強度が最大のピークA’と、400eV以上405eV以下の範囲で強度が最大のピークB’とのピーク強度の比(A’/B’)が0.1〜10である。
電子状態のバランスがより良好で、入出力特性と寿命がより優れるリチウムイオン二次電池を得る観点からは、ピーク強度の比(A/B又はA’/B’)は、それぞれ0.3〜3であることがより好ましく、0.5〜2であることが更に好ましい。
本実施形態のある態様では、負極材は3個の炭素原子と結合している窒素原子(グラファイト型)と、2個の炭素原子と結合している窒素原子(ピリジン型)とを含有する。負極材が3個の炭素原子と結合している窒素原子を含有しているか否かは、例えば、X線光電子分光スペクトルにおいて401eV付近にピークが存在しているか否かによって確認でき、負極材が2個の炭素原子と結合している窒素原子を含有しているか否かは、例えば、X線光電子分光スペクトルにおいて398eV付近にピークが存在しているか否かによって確認できる。
本実施形態の負極材において、高温保存特性の観点からは、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有し、その少なくとも2つのピークは、398eV付近のピークと401eV付近のピークとを含むことが好ましい。
本実施形態の負極材において、窒素原子の含有率は特に制限されない。充分な高温保存特性の向上効果を得る観点からは、負極材全体における窒素原子の含有率は、0.2質量%以上であることが好ましく、0.3質量%以上であることがより好ましい。炭素−窒素結合間のバンドギャップを適正にし、電子伝導性を良好に維持する観点からは、負極材全体における窒素原子の含有率は、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。窒素原子の含有率は、不活性ガス融解−熱伝導度法(JIS G 1228 2006に準拠)により求めることができる。
本実施形態の負極材において、炭素原子の含有率は特に制限されない。容量低下の抑制の観点からは、負極材全体における炭素原子の含有率は、90質量%以上であることが好ましく、93質量%以上であることがより好ましく、95質量%以上であることが更に好ましい。炭素原子の含有率は、不活性ガス融解−熱伝導度法(JIS G 1228 2006に準拠)により求めることができる。
充放電時の副反応抑制の観点からは、負極材全体における窒素原子及び炭素原子の合計含有率は、92質量%以上であることが好ましく、95質量%以上であることがより好ましく、99質量%以上であることが更に好ましく、実質的に100質量%であることが特に好ましい。
(第一炭素材及び第二炭素材)
負極材が、核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材より結晶性が低い第二炭素材と、を含む場合、第一炭素材及び第二炭素材は、第二炭素材の結晶性が第一炭素材の結晶性よりも低いという条件を満たすものであれば特に制限されない。第二炭素材及び第一炭素材として具体的には、黒鉛、低結晶性炭素、非晶質炭素、メソフェーズカーボン等の炭素材料が挙げられる。黒鉛としては、人造黒鉛、天然黒鉛、黒鉛化メソフェーズカーボン、黒鉛化炭素繊維等が挙げられる。負極材に含まれる第一炭素材及び第二炭素材は、それぞれ1種のみであっても、2種以上であってもよい。
第一炭素材の表面に第二炭素材が存在することは、透過型電子顕微鏡観察で確認することができる。
充放電容量を大きくする観点からは、第一炭素材は、黒鉛を含むことが好ましい。黒鉛の形状は特に制限されず、鱗片状、球状、塊状、繊維状等が挙げられる。高タップ密度を得る観点からは、球状であることが好ましい。
入出力特性向上の観点からは、第二炭素材は、結晶性炭素又は非晶質炭素の少なくとも一方を含むことが好ましい。具体的には、熱処理により炭素質に変化しうる有機化合物(以下、第二炭素材の前駆体とも称する)から得られる炭素質の物質及び炭素質粒子からなる群より選択される少なくとも1種であることが好ましい。
第二炭素材の前駆体は特に制限されず、ピッチ、有機高分子化合物等が挙げられる。ピッチとしては、例えば、エチレンヘビーエンドピッチ、原油ピッチ、コールタールピッチ、アスファルト分解ピッチ、ポリ塩化ビニル等を熱分解して作製されるピッチ、及びナフタレン等を超強酸存在下で重合させて作製されるピッチが挙げられる。有機高分子化合物としては、ポリ塩化ビニル、ポリビニルアルコール、ポリ酢酸ビニル、ポリビニルブチラール等の熱可塑性樹脂、デンプン、セルロース等の天然物質などが挙げられる。
第二炭素材として用いられる炭素質粒子は特に制限されず、アセチレンブラック、オイルファーネスブラック、ケッチェンブラック、チャンネルブラック、サーマルブラック、土壌黒鉛等の粒子が挙げられる。
負極材における第一炭素材と第二炭素材の量の割合は、特に制限されない。入出力特性向上の観点からは、負極材の総質量における第二炭素材の量の割合は、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましい。容量の低下を抑制する観点からは、負極材の総質量における第二炭素材の割合は、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
負極材における第二炭素材の量は、第二炭素材の前駆体の量から計算する場合は、第二炭素材の前駆体の量にその残炭率(質量%)を乗じることで計算できる。第二炭素材の前駆体の残炭率は、第二炭素材の前駆体を単独で(又は所定割合の第二炭素材の前駆体と第一炭素材の混合物の状態で)第二炭素材の前駆体が炭素質に変化しうる温度で熱処理し、熱処理前の第二炭素材の前駆体の質量と、熱処理後の第二炭素材の前駆体に由来する炭素質の物質の質量とから、熱重量分析等により計算することができる。
負極材における、X線回折法により求められる平均面間隔d002は、0.340nm以下であることが好ましい。平均面間隔d002が0.340nm以下であると、リチウムイオン二次電池の初回充放電効率とエネルギー密度の双方に優れる傾向にある。平均面間隔d002の値は、0.3354nmが黒鉛結晶の理論値であり、この値に近いほどエネルギー密度が大きくなる傾向にある。
負極材の平均面間隔d002は、X線(CuKα線)を負極材である試料に照射し、回折線をゴニオメーターにより測定し得た回折プロファイルより、回折角2θ=24°〜27°付近に現れる炭素002面に対応した回折ピークより、ブラッグの式を用いて算出することができる。
負極材の平均面間隔d002の値は、例えば、負極材を作製する際の熱処理の温度を高くすることで小さくなる傾向がある。従って、負極材を作製する際の熱処理の温度を調節
することで、負極材の平均面間隔d002を制御することができる。
(ラマン分光測定のR値)
負極材のラマン分光測定のR値は0.1〜1.0であることが好ましく、0.2〜0.8であることがより好ましく、0.3〜0.7であることが更に好ましい。R値が0.1以上であると、リチウムイオンの挿入及び脱離に用いられる黒鉛格子欠陥が充分存在し、入出力特性の低下が抑制される傾向にある。R値が1.0以下であると、電解液の分解反応が充分に抑制され、初回効率の低下が抑制される傾向にある。
前記R値は、ラマン分光測定において得られたラマン分光スペクトルにおいて、1580cm−1付近の最大ピークの強度Igと、1360cm−1付近の最大ピークの強度Idの強度比(Id/Ig)と定義する。ここで、1580cm−1付近に現れるピークとは、
通常、黒鉛結晶構造に対応すると同定されるピークであり、例えば1530cm−1〜1630cm−1に観測されるピークを意味する。また1360cm−1付近に現れるピークとは、通常、炭素の非晶質構造に対応すると同定されるピークであり、例えば1300cm−1〜1400cm−1に観測されるピークを意味する。
本明細書においてラマン分光測定は、レーザーラマン分光光度計(型番:NRS−1000、日本分光株式会社)を用い、リチウムイオン二次電池用負極材を平らになるようにセットした試料板にアルゴンレーザー光を照射して測定を行う。測定条件は以下の通りである。
アルゴンレーザー光の波長:532nm
波数分解能:2.56cm−1
測定範囲:1180cm−1〜1730cm−1
ピークリサーチ:バックグラウンド除去
負極材の体積平均粒子径(D50)は、1μm〜40μmであることが好ましく、3μm〜30μmであることがより好ましく、5μm〜25μmであることが更に好ましく、5μm〜20μmであることが特に好ましい。
負極材の体積平均粒子径が1μm以上であると、充分なタップ密度と、負極材組成物としたときの良好な塗工性が得られる傾向にある。一方、負極材の体積平均粒子径が40μm以下であると、負極材の表面から内部へのリチウムの拡散距離が長くなりすぎず、リチウムイオン二次電池の入出力特性が良好に維持される傾向にある。
負極材の体積平均粒子径(D50)は、負極材の粒子径分布において、小径側から体積累積分布曲線を描いた場合に、累積50%となるときの粒子径である。体積平均粒子径(D50)は、例えば、界面活性剤を含んだ精製水に負極材を分散させ、レーザー回折式粒度分布測定装置(例えば、株式会社島津製作所製、SALD−3000J)で測定することができる。
負極材の77Kでの窒素吸着測定より求められる比表面積(以下、N比表面積と呼ぶ場合がある)は、0.5m/g 〜10m/gであることが好ましく、1m/g〜8m/gであることがより好ましく、2m/g〜6m/gであることが更に好ましい。N比表面積が上記範囲内であれば、入出力特性と初回充放電効率の良好なバランスが得られる傾向にある。N比表面積は、具体的には、77Kでの窒素吸着測定より得た吸着等温線からBET法を用いて求めることができる。
負極材の円形度は、0.70以上であることが好ましく、0.80以上であることがより好ましく、0.85以上であることが更に好ましく、0.90以上であることが特に好ましい。円形度が0.70以上であることで、連続での充電受け入れ性が向上する傾向にある。負極材の円形度はフロー式粒子解析で求めることができ、湿式フロー式粒子径・形状分析装置(マルバーン社製FPIA−3000)を用いて測定することができる。
本実施形態の負極材の製造方法は、特に制限されない。上述した条件を満たす負極材を効率よく製造する観点からは、後述する負極材の製造方法により製造することが好ましい。
本実施形態の負極材は、高温保存特性に優れるため、電気自動車(EV)、プラグインハイブリッド電気自動車(PHEV)、ハイブリッド電気自動車(HEV)、パワーツール、電力貯蔵装置等に使用される大容量のリチウムイオン二次電池用の負極材として好適である。特に、様々な環境での適応が求められているEV、PHEV、HEV等に使用されるリチウムイオン二次電池用の負極材として好適である。
<リチウムイオン二次電池用負極材の製造方法>
本実施形態のリチウムイオン二次電池用負極材の製造方法は、核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、窒素源と、を含む混合物を熱処理する工程を含む。
上記方法によれば、上述した実施形態の負極材を効率よく製造することができる。
上記方法において、第一炭素材、第二炭素材及びその前駆体の詳細及び好ましい態様は、リチウムイオン二次電池用負極材について上述したものと同様である。
上記方法における窒素源の種類は、特に制限されない。例えば、熱処理後に窒素原子と炭素原子のみが負極材に残存するような物質であることが好ましい。具体的には、例えば、メラミン、グアナミン、N−メチルピロリドン、ピリジン、ピロール等の窒素含有環状有機物、アニリン、尿素等のアミノ基を有する化合物、アセトアミド、アセトアニリド等のアミド結合を有する化合物、及びアセトニトリル、アクリロニトリル等のニトリル基を有する化合物が挙げられる。窒素源は、上述した窒素原子を含む低分子化合物を原料として得られる高分子化合物であってもよい。窒素源は1種単独であっても、2種以上であってもよい。
上記方法において、熱処理前の混合物中の窒素源の量は、特に制限されない。出力特性の観点からは、製造される負極材の窒素原子の含有率が0.2質量%以上となる量であることが好ましく、0.3質量%以上となる量であることがより好ましい。炭素−窒素結合間のバンドギャップを適正にし、電子伝導性を良好に維持する観点からは、熱処理前の混合物中の窒素源の量は、得られる負極材中の窒素原子の含有率が5質量%以下となる量であることが好ましく、2質量%以下となる量であることがより好ましい。窒素源の混合物中の含有率又は得られる負極材の窒素原子の含有率は、不活性ガス融解−熱伝導度法(JIS G 1228 2006に準拠)により求めることができる。
上記方法において、熱処理前の混合物中の第一炭素材及び第二炭素材の前駆体の量は、特に制限されない。得られる負極材の入出力特性の観点からは、得られる負極材の総質量における第二炭素材の割合が0.1質量%以上となる量であることが好ましく、0.5質量%以上となる量であることがより好ましく、1質量%以上となる量であることが更に好ましい。容量の低下を抑制する観点からは、得られる負極材の総質量における第二炭素材の割合が30質量%以下となる量であることが好ましく、20質量%以下となる量であることがより好ましく、10質量%以下となる量であることが更に好ましい。
上記方法において、第一炭素材と、第二炭素材の前駆体と、窒素源と、を含む混合物の調製方法は、特に制限されない。例えば、第一炭素材、第二炭素材の前駆体及び窒素源を溶媒に混合した後に溶媒を除去する方法(湿式混合)、第一炭素材、第二炭素材の前駆体及び窒素源を粉体の状態で混合する方法(粉体混合)、力学的エネルギーを加えながら混合する方法(メカニカル混合)等が挙げられる。
第一炭素材と、第二炭素材の前駆体と、窒素源と、を含む混合物は、複合化された状態であることが好ましい。複合化された状態とは、それぞれの材料が物理的又は化学的に接触している状態であることを意味する。
第一炭素材と、第二炭素材の前駆体と、窒素源と、を含む混合物を熱処理する際の温度は、特に制限されない。例えば、700℃〜1500℃であることが好ましく、750℃〜1300℃であることがより好ましく、800℃〜1100℃であることが更に好ましい。第二炭素材の前駆体の炭素化を充分に進行させる観点からは、熱処理温度は700℃以上であることが好ましく、窒素の脱離による窒素含有率の低下を抑制する観点からは、熱処理温度は1500℃以下であることが好ましい。熱処理の温度は、熱処理の開始から終了まで一定であっても、変化してもよい。
<リチウムイオン二次電池用負極>
本実施形態のリチウムイオン二次電池用負極は、上述した実施形態のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む。リチウムイオン二次電池用負極は、前述した負極材を含む負極材層及び集電体の他、必要に応じて他の構成要素を含んでもよい。
リチウムイオン二次電池用負極は、例えば、負極材と結着剤を溶剤とともに混練してスラリー状の負極材組成物を調製し、これを集電体上に塗布して負極材層を形成することで作製したり、負極材組成物をシート状、ペレット状等の形状に成形し、これを集電体と一体化することで作製したりすることができる。混練は、撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置を用いて行うことができる。
負極材組成物の調製に用いる結着剤は、特に限定されない。例えば、スチレン−ブタジエン共重合体、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、ブチルアクリレート、ブチルメタクリレート、アクリロニトリル、メタクリロニトリル、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、及び、ポリフッ化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物が挙げられる。負極材組成物が結着剤を含む場合、その量は特に制限されない。例えば、負極材と結着剤の合計100質量部に対して0.5質量部〜20質量部であってもよい。
負極材組成物は、増粘剤を含んでもよい。増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸又はその塩、酸化スターチ、リン酸化スターチ、カゼイン等を使用することができる。負極材組成物が増粘剤を含む場合、その量は特に制限されない。例えば、負極材100質量部に対して0.1質量部〜5質量部であってもよい。
負極材組成物は、導電補助材を含んでもよい。導電補助材としては、カーボンブラック、グラファイト、アセチレンブラック等の炭素材料、導電性を示す酸化物、窒化物等の化合物などが挙げられる。負極材組成物が導電助剤を含む場合、その量は特に制限されない。例えば、負極材100質量部に対して0.5質量部〜15質量部であってもよい。
集電体の材質は特に制限されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等から選択できる。集電体の状態は特に制限されず、箔、穴開け箔、メッシュ等から選択できる。また、ポーラスメタル(発泡メタル)等の多孔性材料、カーボンペーパーなども集電体として使用可能である。
負極材組成物を集電体に塗布して負極材層を形成する場合、その方法は特に制限されず、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、コンマコート法、グラビアコート法、スクリーン印刷法等の公知の方法を採用できる。負極材組成物を集電体に塗布した後は、負極材組成物に含まれる溶剤を乾燥により除去する。乾燥は、例えば、熱風乾燥機、赤外線乾燥機又はこれらの装置の組み合わせを用いて行うことができる。必要に応じて圧延処理を行ってもよい。圧延処理は、平板プレス、カレンダーロール等の方法で行うことができる。
シート、ペレット等の形状に成形された負極組成物を集電体と一体化して負極材層を形成する場合、一体化の方法は特に制限されない。例えば、ロール、平板プレス又はこれらの手段の組み合わせにより行うことができる。一体化する際の圧力は、例えば、1MPa〜200MPa程度であることが好ましい。
負極材の負極密度は、特に制限されない。例えば、1.1g/cm〜1.8g/cmであることが好ましく、1.2g/cm〜1.7g/cmであることがより好ましく、1.3g/cm〜1.6g/cmであることが更に好ましい。負極密度を1.1g/cm以上とすることで、電子抵抗の増加が抑制され、容量が増加する傾向にあり、1.8g/cm以下とすることで、レート特性及びサイクル特性の低下が抑制される傾向がある。
<リチウムイオン二次電池>
本実施形態のリチウムイオン二次電池は、上述した実施形態のリチウムイオン二次電池用負極と、正極と、電解液とを含む。
正極は、上述した負極の作製方法と同様にして、集電体上に正極層を形成することで得ることができる。集電体としては、アルミニウム、チタン、ステンレス鋼等の金属又は合金を、箔状、穴開け箔状、メッシュ状等にしたものを用いることができる。
正極層の形成に用いる正極材料は、特に制限されない。例えば、リチウムイオンをドーピング又はインターカレーション可能な金属化合物(金属酸化物、金属硫化物等)及び導電性高分子材料が挙げられる。より具体的には、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、これらの複酸化物(LiCoNiMn、x+y+z=1)、添加元素M’を含む複酸化物(LiCoNiMnM’、a+b+c+d=1、M’:Al、Mg、Ti、Zr又はGe)、スピネル型リチウムマンガン酸化物(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)等のリチウム含有化合物、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素などが挙げられる。正極材料は、1種単独であっても2種以上であってもよい。
電解液は特に制限されず、例えば、電解質としてのリチウム塩を非水系溶媒に溶解したもの(いわゆる有機電解液)を使用することができる。
リチウム塩としては、LiClO、LiPF、LiAsF、LiBF、LiSOCF等が挙げられる。リチウム塩は、1種単独でも2種以上であってもよい。
非水系溶媒としては、エチレンカーボネート、フルオロエチレンカーボネート、クロロエチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、シクロヘキシルベンゼン、スルホラン、プロパンスルトン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル、トリメチルリン酸エステル、トリエチルリン酸エステル等が挙げられる。非水系溶媒は、1種単独でも2種以上であってもよい。
リチウムイオン二次電池における正極及び負極の状態は、特に限定されない。例えば、正極及び負極と、必要に応じて正極及び負極の間に配置されるセパレータとを、渦巻状に巻回した状態であっても、これらを平板状として積層した状態であってもよい。
セパレータは特に制限されず、例えば、樹脂製の不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。樹脂としては、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とするものが挙げられる。リチウムイオン二次電池の構造上、正極と負極が直接接触しない場合は、セパレータは使用しなくてもよい。
リチウムイオン二次電池の形状は、特に制限されない。例えば、ラミネート型電池、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池及び角型電池が挙げられる。
本実施形態のリチウムイオン二次電池は、出力特性に優れるため、電気自動車、パワーツール、電力貯蔵装置等に使用される大容量のリチウムイオン二次電池として好適である。特に、加速性能及びブレーキ回生性能の向上のために大電流での充放電が求められている電気自動車(EV)、ハイブリッド電気自動車(HEV)、プラグインハイブリッド電気自動車(PHEV)等に使用されるリチウムイオン二次電池として好適である。
以下、実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
<実施例1>
(1)負極材の作製
第一炭素材として100質量部の球形天然黒鉛(体積平均粒子径:10μm)と、第二炭素材の前駆体として10質量部のコールタールピッチ(軟化点:98℃、残炭率:50質量%)と、窒素源として5質量部のメラミン(和光純薬工業株式会社)と、を混合して混合物を得た。次いで、混合物の熱処理を行って、第二炭素材が表面に付着した黒鉛粒子を作製した。熱処理は、窒素流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。第二炭素材が表面に付着した黒鉛粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材とした。
下記に示す方法により、得られた負極材のXPS分析、窒素含有率の測定、平均面間隔d002の測定、R値の測定、N比表面積の測定、体積平均粒子径(D50)の測定、及び円形度の測定を行った。その結果を表1に示す。また、実施例1と比較例1で作製した負極材のXPS分析で得られたX線光電子分光スペクトルを図1に示す。
[XPS分析]
XPS分析は、Versa Probe II(アルバック・ファイ社)を用いて下記の条件で行い、X線光電子分光スペクトルにおいて395eV〜405eVの範囲におけるピークの数を調べた。また、395eV〜405eVの範囲で強度が最大のピークと2番目に大きいピークのうち、395eVに近い方のピークAと、405eVに近い方のピークBとのピーク強度の比(A/B)を調べた。
装置:アルバック・ファイ社、PHI 5000 Versa Probe II
X線源:単色化Al K−L2,3線(1486.6 eV)
検出角度:45度
分析面積:200μmφ
X線ビーム径:200μmφ
X線出力:50W、15kV
パスエネルギー C(1s):23.5eV、N(1s):29.35eV、O(1s):29.35eV
中和銃:使用
帯電補正:C(1s)のピークトップを284.8eVに補正
[窒素含有率の測定]
窒素含有率は、TC−600(LECOジャパン合同会社)を用いて負極材試料を不活性雰囲気下、3000℃で融解させ、窒素を発生させて、熱伝導度法により窒素含有率を求めた。
[平均面間隔d002の測定]
平均面間隔d002の測定は、X線回折法により行った。具体的には、負極材試料を石英製の試料ホルダーの凹部分に充填して測定ステージにセットし、広角X線回折装置(株式会社リガク製)を用いて以下の測定条件で行った。
線源:CuKα線(波長=0.15418nm)
出力:40kV、20mA
サンプリング幅:0.010°
走査範囲:10°〜35°
スキャンスピード:0.5°/min
[R値の測定]
R値は、下記の条件でラマン分光測定を行い、得られたラマン分光スペクトルにおいて、1580cm−1付近の最大ピークの強度Igと、1360cm−1付近の最大ピークの強度Idの強度比(Id/Ig)とした。
ラマン分光測定は、レーザーラマン分光光度計(型番:NRS−1000、日本分光株式会社)を用い、負極材試料が平らになるようにセットした試料板にアルゴンレーザー光を照射して行った。測定条件は以下の通りである。
アルゴンレーザー光の波長:532nm
波数分解能:2.56cm−1
測定範囲:1180cm−1〜1730cm−1
ピークリサーチ:バックグラウンド除去
[N比表面積の測定]
比表面積は、高速比表面積/細孔分布測定装置(フローソープ II 2300、東海理機株式会社)を用いて、液体窒素温度(77K)での窒素吸着を多点法で測定してBET法により算出した。
[体積平均粒子径(50%D)の測定]
負極材試料を界面活性剤とともに精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置(SALD−3000J、株式会社島津製作所製)の試料水槽に入れた。次いで、溶液に超音波をかけながらポンプで循環させ、得られた粒度分布の体積累積50%粒子径(D50)を平均粒子径とした。
[円形度の測定]
10mlの試験管に、界面活性剤(商品名:リポノールT/15、ライオン株式会社製)の濃度が質量比0.2%の水溶液5mlを入れ、粒子濃度が10000〜30000になるように負極材試料を入れた。次いで、前記試験管をボルテックスミキサー(コーニング社製)にて回転数2000rpmで1分間撹拌した後、すぐに湿式フロー式粒子径・形状分析装置(マルバーン社製FPIA−3000)を用いて円形度を測定した。測定条件は下記のとおりである。
測定環境:25℃±3
測定モード:HPF
カウント方式:トータルカウント
有効解析数:10000
粒子濃度:10000〜30000
シース液:パーティクルシース
対物レンズ:10倍
(2)リチウムイオン二次電池の作製
負極材98質量部に対し、増粘剤としてCMC(カルボキシメチルセルロース、第一工業製薬株式会社、セロゲンWS−C)の水溶液(CMC濃度:2質量%)を、CMCの固形分量が1質量部となるように加え、10分間混練を行った。次いで、負極材とCMCの合計の固形分濃度が40質量%〜50質量%となるように精製水を加え、10分間混練を行った。続いて、結着剤としてSBR(BM400−B、日本ゼオン株式会社)の水分散液(SBR濃度:40質量%)を、SBRの固形分量が1質量部となるように加え、10分間混合してペースト状の負極材組成物を作製した。次いで、負極材組成物を、厚さ11μmの電解銅箔に単位面積当りの塗布量が4.5mg/cmとなるようにクリアランスを調整したコンマコーターで塗工して、負極層を形成した。その後、ハンドプレスで1.5g/cmに電極密度を調整した。負極層が形成された電解銅箔を直径14mmの円盤状に打ち抜き、試料電極(負極)を作製した。
作製した試料電極(負極)、セパレータ、対極(正極)の順にコイン型電池容器に入れ、電解液を注入して、コイン型のリチウムイオン二次電池を作製した。電解液としては、エチレンカーボネート(EC)及びメチルエチルカーボネート(MEC)(ECとMECの体積比は3:7)の混合溶媒にLiPFを1.0mol/Lの濃度になるように溶解したものを使用した。対極(正極)としては、金属リチウムを使用した。セパレータとしては、厚み20μmのポリエチレン製微孔膜を使用した。作製したリチウムイオン二次電池を用いて、下記の方法により初回充放電特性、出力特性及び高温保存特性の評価を行った。
[初回充放電特性の評価]
(1)0.48mAの定電流で0V(V vs. Li/Li)まで充電し、次いで電流値が0.048mAになるまで0Vで定電圧充電を行った。このときの容量を初回充電容量とした。
(2)30分の休止時間後に、0.48mAの定電流で1.5V(V vs. Li/Li)まで放電を行った。このときの容量を初回放電容量とした。
(3)上記(1)及び(2)で求めた充放電容量から下記の(式1)を用いて、初回充放電効率を求めた。
初回充放電効率(%)=初回放電容量(mAh)/初回充電容量(mAh)×100 …(式1)
[出力特性の評価]
(1)0.48mAの定電流で0V(V vs.Li/Li)まで充電し、次いで電流値が0.048mAになるまで0Vで定電圧充電を行った。
(2)30分の休止時間後に、0.48mAの定電流で1.5V(V vs. Li/Li)まで放電した。
(3)(1)及び(2)を再度行い、このときの放電容量を「放電容量1」(mAh)とした。
(4)30分の休止時間後に、0.48mAの定電流で0V(V vs. Li/Li)まで充電し、次いで電流値が0.048mAになるまで0Vで定電圧充電を行った。
(5)30分の休止時間後に、12mAの定電流で1.5V(V vs. Li/Li)まで放電し、このときの放電容量を「放電容量2」(mAh)とした。
(6)(3)及び(5)で求めた放電容量から、下記の(式2)を用いて出力特性を求めた。
出力特性(%)=放電容量2(mAh)/放電容量1(mAh)×100 …(式2)
[高温保存特性の評価]
(1)0.48mAの定電流で0V(V vs.Li/Li)まで充電し、次いで電流値が0.048mAになるまで0Vで定電圧充電を行った。
(2)30分の休止時間後に、0.48mAの定電流で1.5V(V vs. Li/Li)まで放電した。
(3)30分の休止時間後に、0.48mAの定電流で0V(V vs. Li/Li)まで充電した。このときの充電容量(mAh)を測定した。
(4)(3)の電池を60℃で5日間放置した。
(5)0.48mAの定電流で1.5V(V vs. Li/Li)まで放電した。このときの放電容量(mAh)を測定した。
(6)(3)で得られる充電容量と(5)で得られる放電容量から、下記の式3を用いて、高温保存特性を求めた。
高温保存特性(%)=放電容量(mAh)/充電容量(mAh)×100 …式3
<実施例2>
第一炭素材として100質量部の球形天然黒鉛(体積平均粒子径:10μm)と、第二炭素材の前駆体として10質量部のコールタールピッチ(軟化点98℃、残炭率50質量%)と、窒素源として5質量部のメラミンと、を混合して混合物を得た。次いで、シリンダー内に回転翼が配置され、シリンダー内壁と回転翼の間で材料を擦り合わせることにより、材料の複合化を行う装置中に混合物を入れて密閉した。24kWの負荷で5分間装置を運転することにより、混合物の複合化を行った。その後、実施例1と同様にして熱処理及び整粒を行い、負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例3>
実施例1において、メラミンの配合量を10質量部に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例4>
実施例1において、窒素源をポリアクリロニトリル20質量部に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例5>
実施例1において、窒素源を尿素10質量部に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例6>
実施例1において、窒素源をピロール10質量部に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例7>
実施例1において、第一炭素材としての球形天然黒鉛の体積平均粒子径を10μmから5μmに変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例8>
実施例1において、第一炭素材としての球形天然黒鉛の体積平均粒子径を10μmから15μmに変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例9>
実施例1において、第二炭素材の前駆体をポリビニルアルコール(残炭率15質量%)30質量部に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例10>
実施例1において、熱処理の温度(最高)を1000℃から800℃に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例11>
実施例1において、熱処理の温度(最高)を1000℃から1300℃に変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例12>
第一炭素材として100質量部の球形天然黒鉛(体積平均粒子径:10μm)と、第二炭素材の前駆体として10質量部のコールタールピッチ(軟化点:98℃、残炭率:50質量%)と、第二炭素材料として市販のケッチェンブラック(ライオン・スペシャリティ・ケミカルズ株式会社)2質量部と、窒素源として5質量部のメラミン(和光純薬工業株式会社)と、を混合して混合物を得た。得られた混合物をシリンダー内に回転翼を有する複合化装置(ホソカワミクロン株式会社、「NOB−300」)中に密閉した。この装置を、24kWの負荷で5分間運転することによりシリンダー内壁と回転翼との間で材料を擦り合わせて、混合物を得た。次いで、混合物の熱処理を行って、第二炭素材が表面に付着した黒鉛粒子を作製した。熱処理は、窒素流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。第二炭素材が表面に付着した黒鉛粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材とした。得られた負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例13>
実施例12において、第二炭素材料としてケッチェンブラックを同量のアセチレンブラック(デンカ株式会社)に変更した以外は、実施例12と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例14>
石炭系コールタールを、オートクレーブを用いて400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でカ焼を行い、コークス塊を得た。このコークス塊を分級機付きの衝撃粉砕機を用いて粉砕後、300メッシュの篩にて粗粉を除去して第一炭素相とした(体積平均粒子径:15μm)。前記第一炭素相100質量部と、第二炭素材の前駆体として10質量部のコールタールピッチ(軟化点:98℃、残炭率:50質量%)と、窒素源として5質量部のメラミンと、を混合して混合物を得た。次いで、混合物の熱処理を行って、第二炭素材が表面に付着した黒鉛粒子を作製した。熱処理は、窒素流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。第二炭素材が表面に付着した黒鉛粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材とした。得られた負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例15>
実施例12において、体積平均粒子径を15μmから3μmに変更した以外は、実施例12と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<実施例16>
実施例1において、第一炭素材としての球形天然黒鉛の体積平均粒子径を10μmから20μmに変更した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<比較例1>
第一炭素材として100質量部の球形天然黒鉛(平均粒子径:10μm)と、窒素源として5質量部のメラミンと、を混合して混合物を得た。次いで、混合物の熱処理を行って、表面に付着した黒鉛粒子を作製した。熱処理は、窒素流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。得られた黒鉛粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材とした。この負極材を用いて、実施例1と同様にしてリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。また、XPSのスペクトルを図1に示す。
<比較例2>
第一炭素材として100質量部の球形天然黒鉛(体積平均粒子径:10μm)と、第二炭素材の前駆体として10質量部のポリ塩化ビニルから調製したピッチと、を混合して混合物を得た。次いで、混合物の熱処理を行って、第二炭素材が表面に付着した黒鉛粒子を作製した。熱処理は、アルゴンガス流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。第二炭素材が表面に付着した黒鉛粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材とした。この負極材を用いて、実施例1と同様にしてリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<比較例3>
実施例1において、熱処理の際の昇温速度を200℃/時間として1800℃まで昇温し、1800℃で1時間保持した以外は、実施例1と同様の方法で負極材及びリチウムイオン二次電池を作製した。負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
<比較例4>
石炭系コールタールを、オートクレーブを用いて400℃で熱処理し、生コークスを得た。この生コークスを粉砕した後、1200℃の不活性雰囲気中でカ焼を行い、コークス塊を得た。このコークス塊を分級機付きの衝撃粉砕機を用いて粉砕した後、300メッシュの篩にて粗粉を除去して第一炭素相とした(体積平均粒子径:15μm)。前記第一炭素相100質量部と、第二炭素材の前駆体として10質量部のコールタールピッチ(軟化点:98℃、残炭率:50質量%)と、を混合して混合物を得た。次いで、混合物の熱処理を行って、第二炭素材が表面に付着した黒鉛粒子を作製した。熱処理は、窒素流通下、200℃/時間の昇温速度で25℃から1000℃まで昇温し、1000℃で1時間保持することで行った。第二炭素材が表面に付着した黒鉛粒子をカッターミルで解砕し、300メッシュ篩で篩分けを行い、その篩下分を負極材とした。得られた負極材及びリチウムイオン二次電池の特性を実施例1と同様に評価した結果を表1に示す。
表1の結果に示されるように、実施例の負極材を用いて作製したリチウムイオン二次電池は、比較例の負極材を用いて作製したリチウムイオン二次電池に比べ、出力特性と高温保存特性に優れている。
日本国特許出願第2016−092585号の開示はその全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。

Claims (17)

  1. 核としての第一炭素材と、前記第一炭素材の表面の少なくとも一部に存在し、前記第一炭素材より結晶性が低い第二炭素材と、を含み、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する、リチウムイオン二次電池用負極材。
  2. R値が0.1〜1.0であり、X線光電子分光スペクトルにおいて395eV〜405eVの範囲に少なくとも2つのピークを有する、リチウムイオン二次電池用負極材。
  3. 前記少なくとも2つのピークは、395eV以上400eV未満の範囲のピークと、400eV以上405eV以下の範囲のピークとを含む、請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。
  4. 前記少なくとも2つのピークは、398eV付近のピークと401eV付近のピークとを含む、請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用負極材。
  5. X線光電子分光スペクトルにおいて395eV〜405eVの範囲に存在するピークの中で、強度が最大のピークと2番目に大きいピークのうち、395eVに近い方のピークAと、405eVに近い方のピークBとのピーク強度の比(A/B)が0.1〜10である、請求項1〜請求項4のいずれか1項に記載のリチウムイオン二次電池用負極材。
  6. 炭素原子と窒素原子の結合が存在し、かつ炭素原子と窒素原子の結合状態が2種以上である、リチウムイオン二次電池用負極材。
  7. 3個の炭素原子と結合している窒素原子と、2個の炭素原子と結合している窒素原子とを含有する、請求項6に記載のリチウムイオン二次電池用負極材。
  8. 窒素原子の含有率が0.2質量%以上である、請求項1〜請求項7のいずれか1項に記載のリチウムイオン二次電池用負極材。
  9. X線回折法により求められる平均面間隔(d002)が0.340nm以下である、請求項1〜請求項8のいずれか1項に記載のリチウムイオン二次電池用負極材。
  10. 体積平均粒子径(D50)が1μm〜40μmである、請求項1〜請求項9のいずれか1項に記載のリチウムイオン二次電池用負極材。
  11. 77Kでの窒素吸着測定より求められる比表面積が0.5m/g〜10m/gである、請求項1〜請求項10のいずれか1項に記載のリチウムイオン二次電池用負極材。
  12. 核となる第一炭素材と、第一炭素材よりも結晶性の低い第二炭素材の前駆体と、窒素源と、を含む混合物を熱処理する工程を含む、請求項1〜請求項11のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  13. 前記混合物中の前記窒素源の量は、リチウムイオン二次電池用負極材の窒素原子の含有率が0.2質量%以上となる量である、請求項12に記載のリチウムイオン二次電池用負極材の製造方法。
  14. 前記混合物中の第一炭素材及び第二炭素材の前駆体の量は、リチウムイオン二次電池用負極材の総質量中の第二炭素材の割合が0.1質量%〜30質量%となる量である、請求項12又は請求項13に記載のリチウムイオン二次電池用負極材の製造方法。
  15. 前記熱処理は700℃〜1500℃の温度で行われる、請求項12〜請求項14のいずれか1項に記載のリチウムイオン二次電池用負極材の製造方法。
  16. 請求項1〜請求項11のいずれか1項に記載のリチウムイオン二次電池用負極材を含む負極材層と、集電体と、を含む、リチウムイオン二次電池用負極。
  17. 請求項16に記載のリチウムイオン二次電池用負極と、正極と、電解液とを含むリチウムイオン二次電池。
JP2018515725A 2016-05-02 2017-04-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池 Withdrawn JPWO2017191820A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016092585 2016-05-02
JP2016092585 2016-05-02
PCT/JP2017/017101 WO2017191820A1 (ja) 2016-05-02 2017-04-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Publications (1)

Publication Number Publication Date
JPWO2017191820A1 true JPWO2017191820A1 (ja) 2019-03-07

Family

ID=60203715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018515725A Withdrawn JPWO2017191820A1 (ja) 2016-05-02 2017-04-28 リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Country Status (8)

Country Link
US (1) US20190097218A1 (ja)
EP (1) EP3454400A4 (ja)
JP (1) JPWO2017191820A1 (ja)
KR (1) KR20190003554A (ja)
CN (1) CN109075339A (ja)
CA (1) CA3022895A1 (ja)
TW (1) TW201810781A (ja)
WO (1) WO2017191820A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7047892B2 (ja) * 2018-02-19 2022-04-05 昭和電工マテリアルズ株式会社 炭素質粒子、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
JP6927102B2 (ja) * 2018-03-16 2021-08-25 トヨタ自動車株式会社 リチウム金属二次電池
JP7175857B2 (ja) * 2019-08-02 2022-11-21 日清紡ホールディングス株式会社 金属担持触媒、電池電極及び電池

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3335366B2 (ja) 1991-06-20 2002-10-15 三菱化学株式会社 二次電池用電極
CA2083001C (en) * 1991-12-17 1996-12-17 Yuzuru Takahashi Lithium secondary battery using a non-aqueous solvent
JP3395200B2 (ja) 1992-04-28 2003-04-07 三洋電機株式会社 非水系二次電池
JP4130048B2 (ja) * 1999-05-25 2008-08-06 三洋電機株式会社 非水電解質二次電池
EP1939141A4 (en) * 2005-09-30 2012-03-21 Asahi Kasei Chemicals Corp NITROGEN CARBON MATERIAL AND PROCESS FOR PRODUCING THE SAME
JP5291617B2 (ja) * 2007-03-28 2013-09-18 旭化成ケミカルズ株式会社 リチウムイオン二次電池用、電気二重層キャパシタ用又は燃料電池用の電極、並びに、それを用いたリチウムイオン二次電池、電気二重層キャパシタ及び燃料電池
JP5731732B2 (ja) * 2007-10-17 2015-06-10 日立化成株式会社 リチウムイオン二次電池用炭素被覆黒鉛負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
EP2397439A1 (en) * 2010-06-17 2011-12-21 Ruhr-Universität Bochum Metal-free carbon catalyst for oxygen reduction reactions in alkaline electrolyte
EP2600449A4 (en) * 2010-07-30 2016-09-28 Hitachi Chemical Co Ltd MINUS POLYMER FOR A LITHIUMION SECONDARY BATTERY, MINUS POLICE FOR A LITHIUMION SECONDARY BATTERY, AND A LITHIUMION SECONDARY BATTERY
JP6003886B2 (ja) * 2011-05-13 2016-10-05 三菱化学株式会社 非水系二次電池用炭素材、該炭素材を用いた負極及び非水系二次電池
US9340894B2 (en) * 2011-08-19 2016-05-17 William Marsh Rice University Anode battery materials and methods of making the same
JP2014216283A (ja) * 2013-04-30 2014-11-17 株式会社豊田中央研究所 負極活物質、その製法及び二次電池
JP2016092585A (ja) 2014-11-04 2016-05-23 日本電波工業株式会社 発振器

Also Published As

Publication number Publication date
EP3454400A1 (en) 2019-03-13
KR20190003554A (ko) 2019-01-09
CA3022895A1 (en) 2017-11-09
US20190097218A1 (en) 2019-03-28
EP3454400A4 (en) 2020-01-15
TW201810781A (zh) 2018-03-16
CN109075339A (zh) 2018-12-21
WO2017191820A1 (ja) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6888722B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5439701B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP7156468B2 (ja) リチウムイオン二次電池用負極材の製造方法、及びリチウムイオン二次電池用負極材
JP5811999B2 (ja) リチウムイオン二次電池用負極材、該負極材を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP7196938B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極、及びリチウムイオン二次電池
WO2017191820A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP5590159B2 (ja) リチウムイオン二次電池用負極材、その製造方法、該負極材を用いたリチウムイオン二次電池用負極およびリチウムイオン二次電池
JP2009187924A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池
JP2011173770A (ja) 黒鉛粒子、これを用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池
JP6524647B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2023073103A (ja) リチウムイオン二次電池用負極材の製造方法、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JPWO2018087928A1 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
KR102608550B1 (ko) 탄소질 입자, 리튬 이온 이차 전지용 음극재, 리튬 이온 이차 전지용 음극, 및 리튬 이온 이차 전지
US20220085370A1 (en) Negative electrode material for lithium ion secondary battery, method of producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7521693B2 (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2019087460A (ja) リチウムイオン二次電池用負極材の製造方法
JP2023047223A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池
JP2020119805A (ja) リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200204

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200424