JPWO2017017886A1 - 光電極及びその製造方法、並びに光電気化学セル - Google Patents

光電極及びその製造方法、並びに光電気化学セル Download PDF

Info

Publication number
JPWO2017017886A1
JPWO2017017886A1 JP2017530992A JP2017530992A JPWO2017017886A1 JP WO2017017886 A1 JPWO2017017886 A1 JP WO2017017886A1 JP 2017530992 A JP2017530992 A JP 2017530992A JP 2017530992 A JP2017530992 A JP 2017530992A JP WO2017017886 A1 JPWO2017017886 A1 JP WO2017017886A1
Authority
JP
Japan
Prior art keywords
film
photoelectrode
zno
semiconductor film
atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017530992A
Other languages
English (en)
Other versions
JP6213802B2 (ja
Inventor
野村 幸生
幸生 野村
孝洋 伊東
孝洋 伊東
羽藤 一仁
一仁 羽藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Geomatec Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Geomatec Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd, Geomatec Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Application granted granted Critical
Publication of JP6213802B2 publication Critical patent/JP6213802B2/ja
Publication of JPWO2017017886A1 publication Critical patent/JPWO2017017886A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/025Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/04Pattern deposit, e.g. by using masks
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/60Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape characterised by shape
    • C30B29/68Crystals with laminate structure, e.g. "superlattices"
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Catalysts (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Led Devices (AREA)

Abstract

本開示の光電極(120)は、基板(121)と、基板(121)上に設けられた、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜(122)と、ZnO導電膜(122)に対して基板(121)と反対側に設けられた、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜(123)と、を含む。

Description

本開示は、光電極及びその製造方法と、光電気化学セルとに関する。
従来、光電極として機能する半導体材料に光を照射することにより、水を分解して水素と酸素を採取する技術が知られている(例えば、特許文献1参照)。特許文献1には、電解液中にn型半導体電極(光電極)と対極とを配置し、n型半導体電極の表面に光を照射することにより両電極の表面から水素及び酸素を採取することが開示されている。具体的には、n型半導体電極として、TiO2電極等を用いることが記載されている。しかしながら、TiO2(アナタース型)のバンドギャップが380nmであるため、TiO2電極では約1%の太陽光しか利用できない。これを解決するために、特許文献2では、ITO膜を導電性基板として用い、その上で有機Nb化合物とアンモニアとを接触させるMOCVD法によって得られた、バンドギャップが小さい(700nm〜1010nmの間)Nb35膜を光電極に用いることで、太陽光の利用効率を向上させることが開示されている。
特開昭51−123779号公報 国際公開第2013/084447号
しかしながら、特許文献2のアンモニアを用いる合成方法の場合、従来の導電性基板に用いられていたITO等の導電性材料におけるアンモニア雰囲気中での安定性の問題から、例えば500℃以上の高温下でアンモニアを接触させて合成する必要がある金属窒化物や金属酸窒化物の半導体膜を有する光電極を、ITO等の導電性材料の導電性を低下させずに製造することが困難であった。
そこで、本開示は、アンモニアを用いた合成を比較的高温下で実施する必要がある金属窒化物や金属酸窒化物の半導体膜を含んでいるにも関わらず、光電極に用いられる導電性材料の導電性を低下させずに、かつ高い量子効率(光を照射することにより水を分解して、水素及び酸素を採取する光半導体特性)を実現できる光電極を提供することを目的とする。
本開示は、
基板と、
前記基板上に設けられた、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜と、
前記ZnO導電膜に対して前記基板と反対側に設けられた、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜と、
を含む、光電極を提供する。
本開示によれば、アンモニアを用いた合成を比較的高温下で実施する必要がある金属窒化物や金属酸窒化物の半導体膜を含んでいるにも関わらず、光電極に用いられる導電性材料の導電性を低下させずに、かつ高い量子効率(本開示においては、光を照射することにより水を分解して、水素及び酸素を採取する光半導体特性)を実現できる光電極を提供できる。
図1は、本開示の一実施形態に係る光電極の一例を含む光電気化学セルの構成を示す概略図である。 図2は、本開示の一実施形態に係る光電極の別の例を含む光電気化学セルの構成を示す概略図である。 図3は、実施例1で用いられた、Znの一部がGaで置換されているZnO導電膜(GZO膜)のシート抵抗を示すグラフである。 図4は、実施例1で用いられたGZO膜の薄膜XRD(X-ray diffraction)スペクトルを示す。 図5は、実施例1の光電極のUV−Vis(Ultraviolet Visible Absorption Spectroscopy)スペクトルを示す。 図6は、実施例1の光電極におけるNbON膜の表面から10nm深さのXPS(X-ray Photoelectron Spectroscopy)スペクトルを示す。 図7は、実施例1の光電極におけるNbON膜の表面からのAES(Auger Electron Spectroscopy)スペクトルを示す。 図8は、実施例1及び2の光電極の量子効率を示すグラフである。 図9は、比較例1の光電極におけるNbON膜の表面からのAESスペクトルを示す。 図10は、実施例3の光電極のUV−Visスペクトルを示す。 図11は、実施例3の光電極におけるNb35膜の表面から10nm深さのXPSスペクトルを示す。 図12は、実施例3で用いられたGZO膜のシート抵抗を示すグラフである。 図13は、実施例3及び4の光電極の量子効率を示すグラフである。 図14は、実施例5の光電極におけるTaON膜の表面から10nm深さのXPSスペクトルを示す。 図15は、実施例5で用いられたGZO膜のシート抵抗を示すグラフである。 図16は、実施例5の光電極の量子効率を示すグラフである。 図17は、実施例6の光電極におけるTa35膜の表面から10nm深さのXPSスペクトルを示す。 図18は、実施例6で用いられたGZO膜のシート抵抗を示すグラフである。 図19は、実施例6の光電極の量子効率を示すグラフである。
本開示の第1の態様に係る光電極は、基板と、前記基板上に設けられた、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜と、前記ZnO導電膜に対して前記基板と反対側に設けられた、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜と、を含む。
第1の態様に係る光電極は、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜を用いている。したがって、アンモニアを用いた合成を比較的高温下で実施する必要がある、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜を、ZnO導電膜の導電性を低下させることなく作製することができる。その結果、第1の態様に係る光電極は、高い量子効率を実現できる。
第2の態様において、例えば、第1の態様に係る光電極では、前記ZnO導電膜において、Zn原子とGa原子とAl原子との合計に対する、Ga原子とAl原子との合計の割合を原子百分率で表した場合、前記割合が2原子%以上6原子%以下であってもよい。
第2の態様に係る光電極によれば、ZnO導電膜が優れた導電性有するので、量子効率をさらに向上させることができる。
第3の態様において、例えば、第2の態様に係る光電極では、前記ZnO導電膜において、Zn原子とGa原子とAl原子との合計に対する、Ga原子とAl原子との合計の割合を原子百分率で表した場合、前記割合が2原子%以上4原子%以下であってもよい。
第3の態様に係る光電極によれば、ZnO導電膜がエピタキシャル膜となり得る。ZnO導電膜がエピタキシャル膜である場合、ZnO導電膜の結晶の配向性が極めてよく、膜内、並びに、他の膜との界面に欠陥が生じることが極めて少ないので、量子効率をより一層向上させることができる。
第4の態様において、例えば、第1〜第3の態様のいずれか1つの態様に係る光電極では、前記ZnO導電膜がエピタキシャル膜であってもよい。
第4の態様に係る光電極によれば、ZnO導電膜がエピタキシャル膜であるため、結晶の配向性が極めてよく、膜内、並びに、他の膜との界面に欠陥が生じることが極めて少ないので、量子効率をさらに一層向上させることができる。
第5の態様において、例えば、第1〜第4の態様のいずれか1つの態様に係る光電極は、前記ZnO導電膜と前記半導体膜との間に配置されたZnO半導体膜をさらに含んでもよい。
第5の態様に係る光電極によれば、ZnO半導体膜が電荷分離層として作用し、しかもZnO導電膜と同一結晶材料のZnOが用いられているので、ZnO導電膜との界面に欠陥が生じることが極めて少なく、量子効率を一層向上させることができる。
第6の態様において、例えば、第5の態様に係る光電極では、前記ZnO半導体膜がエピタキシャル膜であってもよい。
第6の態様に係る光電極によれば、ZnO半導体膜がエピタキシャル膜であるため、結晶の配向性が極めてよく、膜内、並びに、他の膜との界面に欠陥が生じることが極めて少ないので、量子効率をさらに一層向上させることができる。
第7の態様において、例えば、第1〜第6の態様のいずれか1つの態様に係る光電極では、前記ZnO導電膜の一部が、前記半導体膜に覆われることなく露出してもよい。
第7の態様に係る光電極では、ZnO導電膜は、金属窒化物又は金属酸窒化物の半導体膜を形成する際に高温下でアンモニアと接触した場合でも導電性が低下しないので、ZnO導電膜の露出部分をそのまま電極取り出し部として利用することが可能である。また、このようなZnO導電膜の露出部分は、保護膜等を用いなくても、簡単な金属マスクで形成できるため、簡単に製造できる。
第8の態様において、例えば、第1〜第7の態様のいずれか1つの態様に係る光電極では、前記半導体膜が、Nb窒化物、Ta窒化物、Nb酸窒化物及びTa酸窒化物から選ばれる少なくともいずれか1種の半導体膜であってもよい。
第8の態様に係る光電極によれば、太陽光の可視光域を利用して水を分解して水素及び酸素を採取できると共に、量子効率も向上させることができる。
第9の態様において、例えば、第8の態様に係る光電極では、前記半導体膜が、Nb35及びTa35から選ばれる少なくともいずれか1種の窒化物の半導体膜であってもよい。
第9の態様に係る光電極によれば、太陽光の可視光域を利用して水を分解して水素及び酸素を採取できると共に、量子効率もより向上させることができる。
第10の態様において、例えば、第8の態様に係る光電極では、前記半導体膜が、NbON及びTaONから選ばれる少なくともいずれか1種の酸窒化物の半導体膜であってもよい。
第10の態様に係る光電極によれば、太陽光の可視光域を利用して水を分解して水素及び酸素を採取できると共に、量子効率もより向上させることができる。
本開示の第11の態様に係る光電気化学セルは、第1〜第10の態様のいずれか1つの態様に係る光電極と、前記光電極のZnO導電膜と電気的に接続された対極と、前記光電極および前記対極を収容する容器と、を備える。
第11の態様に係る光電気化学セルは、第1〜第10の態様のいずれか1つの態様に係る光電極を備えているので、高い量子効率で、水を分解して水素及び酸素を採取できる。
第12の態様において、第11の態様に係る光電気化学セルは、前記容器内に収容され、かつ前記光電極および前記対極の表面と接触する、水を含む電解液をさらに備えてもよい。
第12の態様に係る光電気化学セルによれば、高い量子効率で、水を分解して水素及び酸素を採取できる。
本開示の第13の態様は、
基板上に、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜を作製し、
前記ZnO導電膜に対して前記基板とは反対側に、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜を、アンモニアを用いて作製する、
光電極の製造方法を提供する。
第13の態様に係る光電極の製造方法によれば、半導体膜がアンモニアを用いて作製される際に、ZnO導電膜の導電性が低下しないので、高い量子効率を実現できる光電極を製造できる。
以下、本開示の光電極及び光電気化学セルの実施形態を、図面を参照しながら詳細に説明する。なお、以下の実施形態は一例であり、本開示は以下の形態に限定されない。
図1は、本開示の一実施形態に係る光電極の一例を含む光電気化学セルの構成の一例を示す。図1に示す光電気化学セル100は、光電極120と、対極130と、水を含む電解液140と、光電極120、対極130及び電解液140を収容する容器110と、を備えている。
光電極120は、基板121と、基板121上に設けられた、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜122と、ZnO導電膜122上に設けられた、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜123と、を含む。ここでは、半導体膜123が、Nb酸窒化物の半導体膜である場合、より具体的にはNbON膜である場合を例に挙げて説明する。
容器110内において、光電極120及び対極130は、その表面が電解液140と接触するように配置されている。容器110のうち、容器110内に配置された光電極120の半導体膜123と対向する部分(以下、光入射部111と略称する)は、太陽光等の光を透過させる材料で構成されている。
光電極120におけるZnO導電膜122と対極130とは、導線150により電気的に接続されている。なお、ここでの対極とは、光電極との間で電解液を介さずに電子の授受を行う電極のことを意味する。したがって、本実施形態における対極130は、光電極120を構成しているZnO導電膜122と電気的に接続されていればよく、光電極120との位置関係等は特に限定されない。なお、本実施形態で半導体膜123に用いられるNbONはn型半導体であるので、対極130は光電極120から電解液140を介さずに電子を受け取る電極となる。対極130としては、過電圧の小さい材料を用いることが好ましい。例えば、Pt、Au、Ag、Fe、Niなど金属触媒を用いることで、対極130の活性が高まるので好ましい。
図1に示すように、光電気化学セル100は、さらにセパレータ160も備えている。容器110の内部は、セパレータ160によって、光電極120が配置される側の領域と、対極130が配置される領域との2つの領域に分離されている。電解液140は、両方の領域内に収容されている。容器110には、光電極120が配置されている領域内で発生した酸素を排気するための酸素排気口113と、対極130が配置されている領域内で発生した水素を排気するための水素排気口114とを備えている。容器110は、さらに、容器110の内部に水を供給するための給水口112も備えている。
電解液140は、特には限定されず、水を含んでいればよい。なお、電解液140は、酸性であってもアルカリ性であってもよい。また、電解液140の代わりに、固体電解質を用いることも可能である。
以下、光電極120のより詳しい構成について、光電極120の製造方法の一例と共に説明する。
基板121には、例えばサファイア基板が用いることができる。加熱したサファイア基板上に、不活性ガスフロー雰囲気で、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されたZnOターゲットを用いて、スパッタリングにより、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されたZnO導電膜122が成膜できる。この後、基板121上に成膜されたZnO導電膜122の電極取り出し部に相当する部分に例えば金属マスクを配置した後、MOCVD装置を用いて、ZnO導電膜122上に、不活性ガスフロー雰囲気で気化した出発原料(例えば有機Nb化合物)にアンモニアと水蒸気とを混合したガスを噴射することにより、NbON膜を成膜(MOCVD成膜)できる。なお、MOCVD成膜においては、水蒸気に代わり、酸素を用いてもよい。
基板121として使用できる基板材料は、サファイア以外に、金属、ガラス、セラミックス等が挙げられる。なお、ZnO導電膜122をエピタキシャル成膜によって成膜する場合は、C面サファイアやR面サファイアなどの配向性を有する基板を、基板121として使用することが好ましい。さらに、その基板にステップ処理を施すことがより好ましい。
ZnO導電膜122において、Zn原子とGa原子とAl原子との合計に対する、Ga原子とAl原子との合計の割合を原子百分率で表した場合、Ga原子とAl原子との合計の割合は、例えば2原子%以上6原子%以下としてもよい。Ga原子とAl原子との合計の割合をこのような範囲内とすることにより、ZnO導電膜122のシート抵抗が、例えば30Ω/□以下となり得る。これにより、ZnO導電膜121の抵抗損などが減少し、光電極120の量子効率を向上させることができる。さらに、Ga原子とAl原子との合計の割合が例えば2原子%以上4原子%以下である場合、基板121が配向性基板、例えばC面やR面が露出しているサファイア基板である場合に、ZnO導電膜122がエピタキシャル膜となり得る。したがって、この場合は、光電極120の量子効率をさらに向上させることができる。なお、ZnO導電膜122においてZn原子の一部がGa原子によってのみ置換されている場合は、上記割合は、Zn原子とGa原子との合計に対するGa原子の割合となる。また、ZnO導電膜122においてZn原子の一部がAl原子によってのみ置換されている場合は、上記割合は、Zn原子とAl原子との合計に対するAl原子の割合となる。
ZnO導電膜122をスパッタにより成膜する際の基板121の温度は、例えば、室温から300℃までとしてもよい。基板121の温度が例えば350℃以上になると、スパッタターゲットと膜との組成ずれが生じる場合がある。また、ZnO導電膜122をスパッタ成膜する際に使用される不活性ガスは、例えば、希ガスと呼ばれているHe、Ne、Ar、Kr及びXe等のガスのほかに、窒素ガスなどでもよい。ただし、不活性ガスは、酸素及び水の含有量が小さいものを使用することが望ましい。
半導体膜123を成膜する際に用いられる有機ニオブ化合物には、例えば、R1N=Nb(NR233(ただし、R1、R2及びR3は、各々独立の炭化水素基)を用いることができる。このような有機ニオブ化合物を出発原料として用いることにより、出発原料の自己縮合反応を防ぐことができる。また、R1としては、液体となるため、取り扱いやすく、気化しやすく、均一反応が起こりやすく、さらに分解温度を高くできるという観点から、分鎖炭化水素基が優れ、特にターシャリーブチル基(−C(CH33)が望ましい。またR2及びR3は、分解温度を高くする点で直鎖状炭化水素基が優れており、例えばCH3−及びC25−が望ましい。これ以上炭素鎖が長くなると、分解温度が高くなりすぎる場合がある。また、半導体膜123をMOCVD成膜する際の温度(基板121の温度)は、出発原料の分解温度以上とする。出発原料の分解温度は、不活性ガスフローを用いたTG−DTA測定、密閉容器でのDSC測定などで決定することができる。例えば、R1N=Nb(NR233において、R1がターシャリーブチル基(−C(CH33)、R2及びR3はそれぞれCH3−及びC25−である場合は、成膜時の温度は例えば250℃以上であり、均一膜の観点から500℃以上としてもよい。
次に、光電極120及び光電気化学セル100の動作を、図1を用いて説明する。
光電気化学セル100における容器110の光入射部111から、容器110内に収容され、かつ電解液140に接している半導体膜123に太陽光が照射されると、半導体膜123において、伝導帯に電子が、価電子帯にホールが生じる。このとき生じたホールは、電解液140との接触で生じた空乏層によるバンドベンディングにより、半導体膜123の表面に移動する。半導体膜123の表面では、下記反応式(1)により水が分解されて、酸素が発生する。一方、電子は、上記バンドベンディングによりZnO導電膜122に移動し、さらに対極130に到る。対極130では、下記反応式(2)により水素が発生する。
4h++2H2O→O2↑+4H+ …(1)
4e-+4H+→2H2↑ …(2)
発生した水素及び酸素は、容器内のセパレータ160で分離され、酸素排気口113より酸素が、水素排気口114より水素が排出される。また、分解される水は、供給口112より容器110の内部に供給される。
半導体膜123に用いられているNbONは、優れた半導体特性を有しており、ホールと電子とが再結合する確率が低い。したがって、光電極120は、光の照射による水素生成反応の高い量子効率を有する。さらに、NbONはバンドギャップが小さいので、太陽光の可視光にも応答する。その結果、光電極120は、多くの水素を発生することができる。
本実施形態の光電極の別の構成例として、図2に示す光電気化学セル200に用いられている光電極220が挙げられる。光電極220は、ZnO導電膜122と半導体膜123との間に配置されたZnO半導体膜221をさらに含んでいる点において、光電極120と異なる。ZnO半導体膜221は、ZnO導電膜122とは異なり、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されて導電膜として機能するのではなく、半導体として機能する。したがって、ZnO半導体膜221は、例えば、Ga及びAlの少なくともいずれか1種の元素を含まない。
ZnO半導体膜221は、電荷分離層として作用する。したがって、光電極220は、光を照射することにより発生したホールと電子とを効率よく分離することができるので、光電極120と比較して、量子効率をさらに向上させることができる。しかも、ZnO半導体膜221には、ZnO導電膜122と同一結晶材料であるZnOが用いられているので、ZnO導電膜122との界面に欠陥が生じることが極めて少なく、量子効率をより一層向上させることができる。
ZnO半導体膜221は、エピタキシャル膜であってもよい。ZnO半導体膜221がエピタキシャル膜である場合、ZnO半導体膜221では結晶の配向性が極めてよく、膜内、並びに、ZnO導電膜122や半導体膜123の他の膜との界面に欠陥が生じることが極めて少ないので、量子効率をさらに一層向上させることができる。
光電極220の製造方法の一例について説明すると、例えば、まず光電極120の製造方法と同様に、基板121上にZnO導電膜122を成膜する。次に、ZnO導電膜122上に、不活性ガスフロー雰囲気で、例えば予め準備されたGa及びAlを含有しないZnOターゲットを用いて、スパッタリングによりZnO半導体膜221を成膜するとよい。そして、次に、ZnO半導体膜221上に、光電極120の半導体膜123と同様に、例えばNbON膜を成膜するとよい。
図1及び2に示す光電極の構成例では、半導体膜123の例としてNbON膜を例に挙げて説明したが、半導体膜123はNbON膜には限定されず、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜であればいずれも使用可能である。これらの半導体膜を用いることにより、NbON膜を用いる場合と同様に、高い量子効率が実現され得る。なお、本開示の光電極の構成は、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の中でも、Nb窒化物(例えばNb35)、Ta窒化物(例えばTa35)、Nb酸窒化物(例えばNbON)及びTa酸窒化物(例えばTaON)が用いられる場合に、特に優れた効果を発揮するといえる。これらの窒化物及び酸窒化物は、アンモニアを用いて比較的高温下(例えば500℃以上)で合成されることが求められるため、本開示の光電極において特定されるZnO導電膜と組み合わせて用いられることで、ZnO導電膜の導電性を低下させることなく合成されることが可能となる。さらにこれらの窒化物及び酸窒化物によれば、太陽光の可視光域を利用して水を分解して水素及び酸素を採取できると共に、光電極の量子効率も向上させることができる。
なお、Nb窒化物(例えばNb35)の半導体膜をMOCVD成膜によって成膜する場合は、例えば、上記に例示したNbON膜のMOCVD成膜において、アンモニアと水蒸気とを混合したガスから水蒸気を除いたガスを用いることにより、Nb窒化物の半導体膜を成膜できる。また、Ta酸窒化物(例えばTaON)又はTa窒化物(例えばTa35)の半導体膜をMOCVD成膜によって成膜する場合は、例えば、出発原料となるTa化合物を適宜選択して、その出発原料を用いて、上記に例示したNbON膜やNb35膜のMOCVD成膜と同様のガスを利用して成膜するとよい。Nb及びTa以外の金属元素を含む窒化物及び酸窒化物の半導体膜をMOCVD成膜によって成膜する場合も、同様に、適切な出発原料を用いて、Nb窒化物やNb酸窒化物の半導体膜と同様の方法で成膜することが可能である。
光電極120,220の導電性部材のうち、他の膜で被覆されずに露出している部分(例えば、基板121が金属基板である場合は、基板121のZnO導電膜122が配置されていない側の面等)は、例えば樹脂などの絶縁体によって被覆されていてもよい。このようにすると、光電極の導電体の部分が電解液内に溶解するのを防ぐことができる。
なお、光電気化学セル100及び200における光電極120及び220以外の他の構成、例えば容器110、対極130、導線150及びセパレータ160等は、特には限定されず、水を分解して水素等のガスを発生させる光電気化学セルにおいて用いられる公知の容器、導線及び分離膜等を適宜用いることができる。
以下、実施例により本開示をさらに詳しく説明する。
(実施例1)
Znの1原子%、2原子%、3原子%、4原子%、5原子%、6原子%、7原子%及び8原子%がGaに置換されたZnOターゲットをそれぞれ準備した。なお、以下、特に言及しない限り、「原子%」を単に「%」と表記する。スパッタ装置を用いて、300℃に加熱したR面が露出しているサファイア基板(2インチ角)上に、流量3.38×10-3Pa・m3/s(20sccm)のArガスフロー雰囲気下で、準備した各ZnOターゲットを用いたスパッタリングにより、Znの1%、2%、3%、4%、5%、6%、7%及び8%がGaに置換されたGZO膜をそれぞれ成膜した。得られたGZO膜のシート抵抗を図3に示す。図3に示されたNbON成膜前のシート抵抗からわかるように、Znの2〜6%がGaに置換されたGZO膜は、シート抵抗が30Ω/□以下であった。また、GZO膜の薄膜XRDスペクトルを図4に示す。図4に示すように、Znの4%以下がGaに置換されたGZO膜において、A面配向のみのエピタキシャル膜が成膜されていることがわかる。
サファイア基板上に成膜されたGZO膜(Znの1%、2%、3%、4%、5%、6%、7%及び8%がGaに置換されたGZO膜)の電極取り出し部に相当する部分(10mm×2インチ)に金属マスクを配置した後、MOCVD装置を用いて、GZO膜上に、窒素ガスフロー(2.54×10-1Pa・m3/s(1500sccm))雰囲気で気化したTertiary-butylimino tris-(ethylmethylamino)niobium((CH33CN=Nb(N(C25)CH33)にアンモニア(1.69×10-3Pa・m3/s(10sccm))と水蒸気(1.69×10-5Pa・m3/s(0.1sccm))とを混合したガスをGZO膜上に噴射して、NbON膜を成膜(MOCVD成膜)した。これにより、サファイア基板上にGZO膜が設けられ、そのGZO膜上にNbON膜が設けられた実施例1の光電極が作製された。
図5は、作製された実施例1の光電極のUV−visスペクトルを示す。図6は、実施例1の光電極におけるNbON膜の表面から10nm深さのXPSスペクトルを示す。図7は、実施例1の光電極におけるNbON膜の表面からのAESスペクトルを示す。これらの結果から、NbON膜の膜組成はほぼNb/O/N=1/1/1になっており、NbONの生成が確認できた。さらに、図7のAESスペクトルにより、実施例1の光電極ではGZO膜が変化しておらず、GZO膜とNbON膜との2層構造になっていることも確認できた。また、実施例1の光電極について、GZO膜が露出した部分(電極取り出し部)のシート抵抗値が図3に示されている(図3中の、「NbON成膜後」の結果)。NbON膜の成膜前と成膜後とでシート抵抗値がほとんど変化しておらず、NbON膜の成膜によってGZO膜が変化していないことがわかる。
次に、実施例1の光電極を用いて、図1に示す光電気化学セル100を作製した。この光電気化学セル100では、電解質として1mol/LのNaOH水溶液を用い、対極130にはPt電極を用いた。この光電気化学化学セル100に、光電極120側から太陽光を照射し、発生した光電流から量子効率を測定した。結果を図8に示す(図8の「NbON/GZO」の結果)。この結果から、実施例1の光電極を用いた光電気化学セルは高い量子効率を実現でき、さらに、Gaのドープ量が2〜6%のシート抵抗の低いGZO膜を含む光電極を用いたセルでは特に量子効率が高く、さらに、Gaのドープ量が2〜4%のGZO膜がエピタキシャル膜になっている光電極を用いたセルではより一層量子効率が高くなっていることが確認された。
(比較例1)
導電膜として、GZO膜に代えて、ATO膜(アンチモンドープ酸化錫膜)を成膜した点を除いて、実施例1と同じ方法で比較例1の光電極を作製した。なお、ATO膜の成膜条件は、実施例1のGZO膜の場合と同じであった。
図9は、比較例1の光電極におけるNbON膜の表面からのAESスペクトルを示す。AESスペクトルによれば、ATO膜の成分の錫(Sn)やアンチモン(Sb)がNbON膜に拡散し、NbON膜が破壊されていることがわかる。事実、比較例1の光電極を用いて、実施例1と同様に光電気化学セルを作製し、光電極側から太陽光を照射して、発生した光電流から量子効率を測定しようとしたが、光電流が観察されなかった。
(実施例2)
実施例1の光電極のGZO膜とNbON膜との間にZnO膜を設けたこと以外、実施例1と同じ方法で実施例2の光電極を作製した。すなわち、まず、実施例1と同様に、スパッタ装置を用いて、300℃に加熱したR面が露出しているサファイア基板(2インチ角)上に、流量3.38×10-3Pa・m3/s(20sccm)のArガスフロー雰囲気下で、準備した各ZnOターゲットを用いたスパッタリングにより、Znの1%、2%、3%、4%、5%、6%、7%及び8%がGaに置換されたGZO膜をそれぞれ成膜した。次に、各GZO膜上に、ZnがGaに置換していないZnOターゲットを用いたスパッタリングにより、ZnO半導体膜を厚さ50nmで設けた。次に、ZnO半導体膜上に実施例1と同様の方法でNbON膜を作製して、実施例2の光電極を得た。
実施例2の光電極を用いて、実施例1と同様に光電気化学セルを作製し、光電極側から太陽光を照射して、発生した光電流から量子効率を測定した。結果を図8に示す。(図8の「NbON/ZnO/GZO」の結果)。この結果から、実施例2の光電極を用いた光電気化学セルは高い量子効率を実現でき、さらに、Gaのドープ量が2〜6%のシート抵抗の低いGZO膜を含む光電極を用いたセルでは特に量子効率が高く、さらに、Gaのドープ量が2〜4%のGZO膜がエピタキシャル膜になっている光電極を用いたセルではより一層量子効率が高くなっていることが確認された。さらに、ZnO膜が設けられていない実施例1の光電極と比較して、実施例2の光電極は、ZnO膜による電荷分離効果で量子効率が高くなっていることも確認された。
(実施例3)
実施例1のMOCVD成膜において、アンモニア(1.69×10-3Pa・m3/s(10sccm))と水蒸気(1.69×10-5Pa・m3/s(0.1sccm))とを混合したガスを基板に噴射することに代わり、アンモニア(1.69×10-3Pa・m3/s(10sccm))のみを噴射することで、NbON膜に代わりNb35膜を成膜した。これにより、サファイア基板上にGZO膜が設けられ、そのGZO膜上にNb35膜が設けられた実施例3の光電極が作製された。
図10は、作製された実施例3の光電極のUV−visスペクトルを示す。図11は、実施例3の光電極におけるNb35膜の表面から10nm深さのXPSスペクトルを示す。また、実施例3の光電極におけるNb35膜の表面からのAESスペクトルにより、Nb35膜の膜組成はほぼNb/N=3/5になっており、Nb35の生成が確認できた。また、実施例3の光電極について、GZO膜が露出した部分(電極取り出し部)のシート抵抗値が図12に示されている(図12中の、「Nb35成膜後」の結果)。Nb35膜の成膜前と成膜後とでシート抵抗値がほとんど変化しておらず、Nb35膜の成膜によってGZO膜が変化していないことがわかる。
実施例3の光電極を用いて、実施例1と同様に光電気化学セルを作製し、光電極側から太陽光を照射して、発生した光電流から量子効率を測定した。結果を図13に示す。(図13の「Nb35/GZO」の結果)。この結果から、実施例3の光電極を用いた光電気化学セルは高い量子効率を実現でき、さらに、Gaのドープ量が2〜6%のシート抵抗の低いGZO膜を含む光電極を用いたセルでは特に量子効率が高く、さらに、Gaのドープ量が2〜4%のGZO膜がエピタキシャル膜になっている光電極を用いたセルではより一層量子効率が高くなっていることが確認された。
(実施例4)
実施例3の光電極のGZO膜とNb35膜との間にZnO膜を設けたこと以外、実施例3と同じ方法で実施例4の光電極を作製した。すなわち、まず、実施例3と同様に、スパッタ装置を用いて、300℃に加熱したR面が露出しているサファイア基板(2インチ角)上に、流量3.38×10-3Pa・m3/s(20sccm)のArガスフロー雰囲気下で、準備した各ZnOターゲットを用いたスパッタリングにより、Znの1%、2%、3%、4%、5%、6%、7%及び8%がGaに置換されたGZO膜をそれぞれ成膜した。次に、各GZO膜上に、ZnがGaに置換していないZnOターゲットを用いたスパッタリングにより、ZnO半導体膜を厚さ50nmで設けた。次に、ZnO半導体膜上に実施例3と同様の方法でNb35膜を作製して、実施例4の光電極を得た。
実施例4の光電極を用いて、実施例1と同様に光電気化学セルを作製し、光電極側から太陽光を照射して、発生した光電流から量子効率を測定した。結果を図13に示す。(図13の「Nb35/ZnO/GZO」の結果)。この結果から、実施例4の光電極を用いた光電気化学セルは高い量子効率を実現でき、さらに、Gaのドープ量が2〜6%のシート抵抗の低いGZO膜を含む光電極を用いたセルでは特に量子効率が高く、さらに、Gaのドープ量が2〜4%のGZO膜がエピタキシャル膜になっている光電極を用いたセルではより一層量子効率が高くなっていることが確認された。さらに、ZnO膜が設けられていない実施例3の光電極と比較して、実施例4の光電極は、ZnO膜による電荷分離効果で量子効率が高くなっていることも確認された。
(実施例5)
実施例1のMOCVD成膜で使用したTertiary-butylimino tris-(ethylmethylamino)niobium((CH33CN=Nb(N(C25)CH33)に代えて、Tertiary-butylimino tris-(ethylmethylamino)tantalum((CH33CN=Ta(N(C25)CH33))を使用した以外は、実施例1と同様の方法で光電極を作製した。すなわち、実施例5の光電極は、実施例1の光電極においてNbON膜の代わりにTaON膜が設けられた光電極であった。図14は、実施例5の光電極におけるTaON膜の表面から10nm深さのXPSスペクトルを示す。また、実施例5の光電極におけるTaON膜の表面からのAESスペクトルにより、TaON膜の膜組成はほぼTa/O/N=1/1/1になっており、TaONの生成が確認できた。また、実施例5の光電極について、GZO膜が露出した部分(電極取り出し部)のシート抵抗値が図15に示されている(図15中の、「TaON成膜後」の結果)。TaON膜の成膜前と成膜後とでシート抵抗値がほとんど変化しておらず、TaON膜の成膜によってGZO膜が変化していないことがわかる。
実施例5の光電極を用いて、実施例1と同様に光電気化学セルを作製し、光電極側から太陽光を照射して、発生した光電流から量子効率を測定した。結果を図16に示す。(図16の「TaON/GZO」の結果)。この結果から、実施例5の光電極を用いた光電気化学セルは高い量子効率を実現でき、さらに、Gaのドープ量が2〜6%のシート抵抗の低いGZO膜を含む光電極を用いたセルでは特に量子効率が高く、さらに、Gaのドープ量が2〜4%のGZO膜がエピタキシャル膜になっている光電極を用いたセルではより一層量子効率が高くなっていることが確認された。
また、実施例5の光電極においてGZO膜とTaON膜との間にZnO膜をさらに設けることで、実施例2及び4と同じく、ZnO膜を設けることによる効果も得られることを確認した。
(実施例6)
実施例5のMOCVD成膜において、アンモニア(1.69×10-3Pa・m3/s(10sccm))と水蒸気(1.69×10-5Pa・m3/s(0.1sccm))とを混合したガスを基板に噴射することに代わり、アンモニア(1.69×10-3Pa・m3/s(10sccm))のみを噴射することで、TaON膜に代わりTa35膜を成膜した。これにより、サファイア基板上にGZO膜が設けられ、そのGZO膜上にTa35膜が設けられた実施例6の光電極が作製された。
図17は、実施例6の光電極におけるTa35膜の表面から10nm深さのXPSスペクトルを示す。また、実施例6の光電極におけるTa35膜の表面からのAESスペクトルにより、Ta35膜の膜組成はほぼTa/N=3/5になっており、Ta35の生成が確認できた。また、実施例3の光電極について、GZO膜が露出した部分(電極取り出し部)のシート抵抗値が図18に示されている(図18中の、「Ta35成膜後」の結果)。Ta35膜の成膜前と成膜後とでシート抵抗値がほとんど変化しておらず、Ta35膜の成膜によってGZO膜が変化していないことがわかる。
実施例6の光電極を用いて、実施例1と同様に光電気化学セルを作製し、光電極側から太陽光を照射して、発生した光電流から量子効率を測定した。結果を図19に示す。(図19の「Ta35/GZO」の結果)。この結果から、実施例6の光電極を用いた光電気化学セルは高い量子効率を実現でき、さらに、Gaのドープ量が2〜6%のシート抵抗の低いGZO膜を含む光電極を用いたセルでは特に量子効率が高く、さらに、Gaのドープ量が2〜4%のGZO膜がエピタキシャル膜になっている光電極を用いたセルではより一層量子効率が高くなっていることが確認された。
また、実施例6の光電極においてGZO膜とTa35膜との間にZnO膜をさらに設けることで、実施例2及び4と同じく、ZnO膜を設けることによる効果も得られることを確認した。
本開示の光電極によれば、高温のアンモニアを用いて金属窒化物又は金属酸窒化物の半導体膜を成膜できると共に、金属窒化物又は金属酸窒化物の半導体膜の配向性が向上するため、光を照射することにより水を分解して水素と酸素とを採取する光半導体特性(量子効率)をさらに向上させることができ、その結果、より多くの量の水素と酸素とを採取することができる。さらに、金属窒化物としてTa35又はNb35、金属酸窒化物としてNbON又はTaONを用いることで、可視光も利用することができる。したがって本開示は、産業上の利用の可能性が極めて高いといえる。

Claims (13)

  1. 基板と、
    前記基板上に設けられた、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜と、
    前記ZnO導電膜に対して前記基板と反対側に設けられた、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜と、
    を含む、光電極。
  2. 前記ZnO導電膜において、Zn原子とGa原子とAl原子との合計に対する、Ga原子とAl原子との合計の割合を原子百分率で表した場合、前記割合が2原子%以上6原子%以下である、
    請求項1に記載の光電極。
  3. 前記ZnO導電膜において、Zn原子とGa原子とAl原子との合計に対する、Ga原子とAl原子との合計の割合を原子百分率で表した場合、前記割合が2原子%以上4原子%以下である、
    請求項2に記載の光電極。
  4. 前記ZnO導電膜がエピタキシャル膜である、
    請求項1〜3のいずれか1項に記載の光電極。
  5. 前記ZnO導電膜と前記半導体膜との間に配置されたZnO半導体膜をさらに含む、
    請求項1〜4のいずれか1項に記載の光電極。
  6. 前記ZnO半導体膜がエピタキシャル膜である、
    請求項5に記載の光電極。
  7. 前記ZnO導電膜の一部が、前記半導体膜に覆われることなく露出している、
    請求項1〜6のいずれか1項に記載の光電極。
  8. 前記半導体膜が、Nb窒化物、Ta窒化物、Nb酸窒化物及びTa酸窒化物から選ばれる少なくともいずれか1種の半導体膜である、
    請求項1〜7のいずれか1項に記載の光電極。
  9. 前記半導体膜が、Nb35及びTa35から選ばれる少なくともいずれか1種の窒化物の半導体膜である、
    請求項8に記載の光電極。
  10. 前記半導体膜が、NbON及びTaONから選ばれる少なくともいずれか1種の酸窒化物の半導体膜である、
    請求項8に記載の光電極。
  11. 請求項1〜10のいずれか1項に記載の光電極と、
    前記光電極のZnO導電膜と電気的に接続された対極と、
    前記光電極および前記対極を収容する容器と、
    を備えた光電気化学セル。
  12. 前記容器内に収容され、かつ前記光電極および前記対極の表面と接触する、水を含む電解液をさらに備えた、請求項11に記載の光電気化学セル。
  13. 基板上に、Znの一部がGa及びAlの少なくともいずれか1種の元素で置換されているZnO導電膜を作製し、
    前記ZnO導電膜に対して前記基板とは反対側に、4A族、5A族、6A族及び3B族の金属元素から選ばれる少なくともいずれか1種の金属元素の窒化物又は酸窒化物の半導体膜を、アンモニアを用いて作製する、
    光電極の製造方法。
JP2017530992A 2015-07-24 2016-06-14 光電極及びその製造方法、並びに光電気化学セル Active JP6213802B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015146998 2015-07-24
JP2015146998 2015-07-24
PCT/JP2016/002874 WO2017017886A1 (ja) 2015-07-24 2016-06-14 光電極及びその製造方法、並びに光電気化学セル

Publications (2)

Publication Number Publication Date
JP6213802B2 JP6213802B2 (ja) 2017-10-18
JPWO2017017886A1 true JPWO2017017886A1 (ja) 2017-11-02

Family

ID=57884158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017530992A Active JP6213802B2 (ja) 2015-07-24 2016-06-14 光電極及びその製造方法、並びに光電気化学セル

Country Status (4)

Country Link
US (1) US20180216244A1 (ja)
JP (1) JP6213802B2 (ja)
CN (1) CN107849711B (ja)
WO (1) WO2017017886A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989762B2 (ja) * 2017-08-25 2022-02-03 富士通株式会社 光化学電極、及びその製造方法、並びに光電気化学反応装置
CN112309723B (zh) * 2020-10-29 2021-09-21 齐鲁工业大学 一种基于碳布/镓氧氮化物的工作电极和超级电容器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310252A (ja) * 2005-03-28 2006-11-09 Toyota Central Res & Dev Lab Inc 透明電極、並びにこれを備えた色素増感型太陽電池及び色素増感型太陽電池モジュール
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3715911B2 (ja) * 2000-09-21 2005-11-16 キヤノン株式会社 酸化物針状結晶の製造方法、酸化物針状結晶および光電変換装置
US8822263B2 (en) * 2008-06-30 2014-09-02 National University Corporation Tokyo University Of Agriculture And Technology Epitaxial growth method of a zinc oxide based semiconductor layer, epitaxial crystal structure, epitaxial crystal growth apparatus, and semiconductor device
JP4980497B2 (ja) * 2010-03-04 2012-07-18 パナソニック株式会社 光半導体、それを用いた光半導体電極及び光電気化学セル、並びに、エネルギーシステム
CN101853973A (zh) * 2010-05-07 2010-10-06 北京理工大学 一种用于太阳能制氢的纳米结构光电化学电池及制备方法
CN102651281B (zh) * 2012-02-13 2015-03-04 湖北大学 Ga掺杂ZnO纳米线阵列染料敏化太阳能电池及其制备方法
KR20140041117A (ko) * 2012-09-27 2014-04-04 엘지이노텍 주식회사 전기변색미러 및 그 제조 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006310252A (ja) * 2005-03-28 2006-11-09 Toyota Central Res & Dev Lab Inc 透明電極、並びにこれを備えた色素増感型太陽電池及び色素増感型太陽電池モジュール
WO2013133338A1 (ja) * 2012-03-08 2013-09-12 国立大学法人東京大学 光水分解反応用電極およびその製造方法

Also Published As

Publication number Publication date
CN107849711A (zh) 2018-03-27
WO2017017886A1 (ja) 2017-02-02
CN107849711B (zh) 2019-10-15
US20180216244A1 (en) 2018-08-02
JP6213802B2 (ja) 2017-10-18

Similar Documents

Publication Publication Date Title
Vikraman et al. Improved hydrogen evolution reaction performance using MoS2–WS2 heterostructures by physicochemical process
Wang et al. Amorphous inorganic semiconductors for the development of solar cell, photoelectrocatalytic and photocatalytic applications
Zardetto et al. Atomic layer deposition for perovskite solar cells: research status, opportunities and challenges
Wen et al. Nanoengineering energy conversion and storage devices via atomic layer deposition
Wang et al. Synthesis of nanostructured BaTaO2N thin films as photoanodes for solar water splitting
KR102014990B1 (ko) 광전극 구조체용 복합 보호층, 이를 포함하는 광전극 구조체 및 이를 포함하는 광전기화학 전지
Kulmas et al. Composite nanostructures of TiO2 and ZnO for water splitting application: atomic layer deposition growth and density functional theory investigation
JP5274663B2 (ja) 光電気化学セル及びそれを用いたエネルギーシステム
JP2007239048A (ja) 光エネルギー変換装置及び半導体光電極
Yoshida et al. Photocatalytic CO2 reduction using a pristine Cu2ZnSnS4 film electrode under visible light irradiation
JP4980497B2 (ja) 光半導体、それを用いた光半導体電極及び光電気化学セル、並びに、エネルギーシステム
CN104577166A (zh) 光半导体电极、光电化学电池、氢产生方法和能量系统
JP7068934B2 (ja) 太陽電池および太陽電池モジュール
WO2007029744A1 (ja) Iii /v族窒化物半導体、光触媒半導体素子、光触媒酸化還元反応装置および光電気化学反応実行方法
JP6213802B2 (ja) 光電極及びその製造方法、並びに光電気化学セル
US20160194768A1 (en) Non-uniform doping of photoelectrochemical cell electrodes
KR102295733B1 (ko) 광전기화학 구조체 및 그 제조 방법, 그리고 광전기화학 소자.
JP2018024939A (ja) 小さいキャリア密度を有するストロンチウムニオブ酸窒化物膜の製法およびその用途
Suzuki et al. Ta3N5 Photoanodes Fabricated by Providing NaCl–Na2CO3 Evaporants to Tantalum Substrate Surface under NH3 Atmosphere
JP5515613B2 (ja) 半導体光応答体
CN115152042A (zh) 太阳电池
Choi et al. Suppression of Undesired Losses in Organometal Halide Perovskite‐Based Photoanodes for Efficient Photoelectrochemical Water Splitting
TW200805683A (en) Methods of reducing the bandgap energy of a metal oxide
KR101712240B1 (ko) 광 전기화학 장치 및 그 제조 방법
Kong et al. Recent progress in the development of tin tungstate (α-SnWO 4) photoanodes for solar water oxidation

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20170626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20170707

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170906

R150 Certificate of patent or registration of utility model

Ref document number: 6213802

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250