JPWO2016148030A1 - H形鋼の製造方法 - Google Patents

H形鋼の製造方法 Download PDF

Info

Publication number
JPWO2016148030A1
JPWO2016148030A1 JP2017506506A JP2017506506A JPWO2016148030A1 JP WO2016148030 A1 JPWO2016148030 A1 JP WO2016148030A1 JP 2017506506 A JP2017506506 A JP 2017506506A JP 2017506506 A JP2017506506 A JP 2017506506A JP WO2016148030 A1 JPWO2016148030 A1 JP WO2016148030A1
Authority
JP
Japan
Prior art keywords
hole
mold
rolled
hole mold
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017506506A
Other languages
English (en)
Other versions
JP6515355B2 (ja
Inventor
浩 山下
浩 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Publication of JPWO2016148030A1 publication Critical patent/JPWO2016148030A1/ja
Application granted granted Critical
Publication of JP6515355B2 publication Critical patent/JP6515355B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B27/00Rolls, roll alloys or roll fabrication; Lubricating, cooling or heating rolls while in use
    • B21B27/02Shape or construction of rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/08Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling structural sections, i.e. work of special cross-section, e.g. angle steel
    • B21B1/088H- or I-sections
    • B21B1/0883H- or I-sections using forging or pressing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/06Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with axes of rolls arranged vertically, e.g. edgers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/08Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process
    • B21B13/10Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane
    • B21B2013/106Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories with differently-directed roll axes, e.g. for the so-called "universal" rolling process all axes being arranged in one plane for sections, e.g. beams, rails
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/02Roll dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2267/00Roll parameters
    • B21B2267/18Roll crown; roll profile

Abstract

【課題】スラブ等の素材の端面に鋭角の先端形状をした突起部で深く割り込みを入れ、形成されたフランジ部を順次折り曲げることによって、被圧延材における形状不良の発生を抑制させ、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造する。【解決手段】粗圧延工程、中間圧延工程、仕上圧延工程を備えたH形鋼の製造方法であって、前記粗圧延工程を行う圧延機には、被圧延材を造形する4以上の複数の孔型が刻設され、当該複数の孔型では被圧延材の1又は複数パス造形が行われ、前記複数の孔型のうち第1孔型及び第2孔型には、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成され、前記複数の孔型のうち第2孔型以降では少なくとも1パス以上の造形において被圧延材の端面と孔型周面とが接触した状態で圧下が行われ、前記複数の孔型のうち第3孔型以降では前記割り込みによって成形された分割部位を順次折り曲げる工程が行われる。

Description

(関連出願の相互参照)
本願は、2015年3月19日に日本国に出願された特願2015−056638号に基づき、優先権を主張し、その内容をここに援用する。
本発明は、例えば矩形断面であるスラブ等を素材としてH形鋼を製造する製造方法及び製造されるH形鋼製品に関する。
H形鋼を製造する場合には、加熱炉から抽出されたスラブやブルーム等の素材を粗圧延機(BD)によって粗形材(所謂ドッグボーン形状の被圧延材)に造形し、中間ユニバーサル圧延機によって上記粗形材のウェブやフランジの厚さを圧下し、併せて前記中間ユニバーサル圧延機に近接したエッジャー圧延機によって被圧延材のフランジに対し幅圧下や端面の鍛錬と整形が施される。そして、仕上ユニバーサル圧延機によってH形鋼製品が造形される。
このようなH形鋼の製造方法において、矩形断面であるスラブ素材から所謂ドッグボーン形状の粗形材を造形する際には、粗圧延工程の第1の孔型においてスラブ端面に割り込みを入れた後、第2以降の孔型において当該割り込みを割広げる、又は、割り込み深さを深くさせエッジング圧延を行い、それ以降の孔型にてスラブ端面の割り込みを消去する技術が知られている(例えば特許文献1参照)。
また、例えば特許文献2には、スラブ端面に割り込みを入れ当該割り込みを順次深くし、その後ボックス孔型において押し拡げ、H形鋼のフランジ相当部を形成させる技術が開示されている。
特開平7−88501号公報 特開昭60−21101号公報
近年、構造物等の大型化に伴い大型のH形鋼製品の製造が望まれている。特にH形鋼の強度・剛性に大きく寄与するフランジを従来に比べて広幅化した製品が望まれている。フランジが広幅化されたH形鋼製品を製造するためには、粗圧延工程における造形から従来に比べフランジ幅の大きな被圧延材を造形する必要がある。
しかしながら、例えば上記特許文献1に開示されている技術では、スラブ等の素材の端面(スラブ端面)に割り込みを入れ、当該端面をエッジングし、その幅拡がりを利用して粗圧延を行う方法では、フランジの広幅化に限界がある。即ち、従来の粗圧延方法においてフランジの広幅化を図るためにはウェッジ設計(割り込み角度の設計)、圧下調整、潤滑調整といった技術により幅拡がりの向上が図られるが、いずれの方法もフランジ幅に大幅に寄与するものではないため、エッジング量に対するフランジ幅の拡がり量の比率を示す幅拡がり率は、エッジングの初期段階の効率が最も高い条件でも0.8程度であり、同一孔型でエッジングを繰り返す条件では、フランジ幅の拡がり量が大きくなるにつれて低下し、最終的には0.5程度になることが知られている。また、スラブ等の素材自体を大型化し、エッジング量を大きくすることも考えられるが、粗圧延機の設備規模や圧下量等には装置限界があるため十分な製品フランジの広幅化が実現されないといった事情がある。
また、例えば特許文献2に開示されている技術では、割り込みを入れたスラブ等の素材に対して、特に割り込み形状の変遷等を経ずに、即座に底面がフラット形状のボックス孔型によってエッジング圧延を行い、フランジ相当部を造形しており、このような方法では被圧延材の形状を急激に変化させることに伴う形状不良が生じやすい。特に、このような造形における被圧延材の形状変化は、被圧延材とロールとの接触部の力と、被圧延材の曲げ剛性との関係によって定まるものであり、従来に比べフランジ幅の大きなH形鋼を製造する場合には形状不良がより生じやすいといった問題がある。
上記事情に鑑み、本発明の目的は、H形鋼を製造する際の孔型を用いた粗圧延工程において、スラブ等の素材の端面に鋭角の先端形状をした突起部で深く割り込みを入れ、それによって形成されたフランジ部を順次折り曲げることによって、被圧延材における形状不良の発生を抑制させ、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造することが可能なH形鋼の製造方法を提供することにある。
前記の目的を達成するため、本発明によれば、粗圧延工程、中間圧延工程、仕上圧延工程を備えたH形鋼の製造方法であって、前記粗圧延工程を行う圧延機には、被圧延材を造形する4以上の複数の孔型が刻設され、当該複数の孔型では被圧延材の1又は複数パス造形が行われ、前記複数の孔型のうち第1孔型及び第2孔型には、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成され、前記複数の孔型のうち第2孔型以降では少なくとも1パス以上の造形において被圧延材の端面と孔型周面とが接触した状態で圧下が行われ、前記複数の孔型のうち第3孔型以降の2以上の孔型では前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、第1孔型及び第2孔型に形成される前記突起部の先端角度は40°以下であることを特徴とする、H形鋼の製造方法が提供される。
被圧延材の端面と孔型周面とが接触した状態で圧下が行われるパスは、前記複数の孔型のうち第2孔型以降の各孔型での複数パス造形における最終パスであっても良い。
前記第2孔型においては、前記突起部の傾斜面と、当該傾斜面に隣接し被圧延材の端面と対向する孔型周面と、がなす角度が略垂直に構成されても良い。
前記第1孔型及び第2孔型に形成される突起部の先端角度は25°以上35°以下であっても良い。
前記複数の孔型のうち、第3孔型以降の各孔型には、前記分割部位に押し当てることで当該分割部位を折り曲げる突起部が形成され、当該突起部の傾斜面と、当該傾斜面に隣接し被圧延材の端面と対向する孔型周面と、がなす角度が略垂直に構成されても良い。
前記複数の孔型のうち、第2孔型以降の各孔型に形成される突起部の先端角度は、後段の孔型になるほど順次大きな角度となるように構成されても良い。
前記複数の孔型は、被圧延材を造形する第1孔型〜第4孔型の4つの孔型であり、前記複数の孔型のうち第3孔型及び第4孔型において、前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、前記第3孔型に形成される突起部の先端角度は70°以上110°以下であり、前記第4孔型に形成される突起部の先端角度は130°以上170°以下であっても良い。
本発明によれば、H形鋼を製造する際の孔型を用いた粗圧延工程において、スラブ等の素材の端面に鋭角の先端形状をした突起部で深く割り込みを入れ、それによって形成されたフランジ部を順次折り曲げることによって、被圧延材における形状不良の発生を抑制させ、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造することが可能となる。
H形鋼の製造ラインについての概略説明図である。 第1孔型の概略説明図である。 第2孔型の概略説明図である。 第3孔型の概略説明図である。 第4孔型の概略説明図である。 ウェッジ角度θ1bを変えた場合のフランジ幅・フランジ厚の数値との関係を示すグラフである。 第1孔型の途中パスの概略断面図である。 ウェッジ角度θ1aを変えた場合のフランジ幅の数値との関係を示すグラフである。 第4孔型での折り曲げ角度(θ3−θ2)とフランジ厚偏差(フランジ厚バラツキ)との関係を示すグラフである。 第3孔型における先端部角度θ2を変化させた場合のフランジ相当部の先端の厚み変化量(フランジ先端つぶし量)を示すグラフである。 本実施の形態に係る方法で第3孔型の突起部の先端部角度θ2を110°超とした場合の、造形後の被圧延材の形状を示す概略図である。 第4孔型の先端部角度θ3を変化させた場合の、製品疵深さの変化を示すグラフである。 ウェブ減厚孔型におけるウェブ減厚に関する概略説明図である。 θ2とθ3の好適な設計範囲を示すグラフである。
1…圧延設備
2…加熱炉
3…サイジングミル
4…粗圧延機
5…中間ユニバーサル圧延機
8…仕上ユニバーサル圧延機
9…エッジャー圧延機
11…スラブ
12…フランジ対応部
13…H形粗形材
14…中間材
16…H形鋼製品
20…上孔型ロール(第1孔型)
21…下孔型ロール(第1孔型)
25、26…突起部(第1孔型)
28、29…割り込み(第1孔型)
30…上孔型ロール(第2孔型)
31…下孔型ロール(第2孔型)
35、36…突起部(第2孔型)
38、39…割り込み(第2孔型)
40…上孔型ロール(第3孔型)
41…下孔型ロール(第3孔型)
45、46…突起部(第3孔型)
48、49…割り込み(第3孔型)
50…上孔型ロール(第4孔型)
51…下孔型ロール(第4孔型)
55、56…突起部(第4孔型)
58、59…割り込み(第4孔型)
80…フランジ部
K1…第1孔型
K2…第2孔型
K3…第3孔型
K4…第4孔型
T…製造ライン
A…被圧延材
以下、本発明の実施の形態について図面を参照して説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
図1は、本実施の形態にかかる圧延設備1を含むH形鋼の製造ラインTについての説明図である。図1に示すように、製造ラインTには上流側から順に、加熱炉2、サイジングミル3、粗圧延機4、中間ユニバーサル圧延機5、仕上ユニバーサル圧延機8が配置されている。また、中間ユニバーサル圧延機5に近接してエッジャー圧延機9が設けられている。なお、以下では、説明のために製造ラインTにおける鋼材を、総称して「被圧延材A」と記載し、各図において適宜その形状を破線・斜線等を用いて図示する場合がある。
図1に示すように、製造ラインTでは、加熱炉2から抽出された例えばスラブ11等の被圧延材Aがサイジングミル3ならびに粗圧延機4において粗圧延される。次いで、中間ユニバーサル圧延機5において中間圧延される。この中間圧延時には、必要に応じてエッジャー圧延機9によって被圧延材の端部等(フランジ対応部12)に対して圧下が施される。通常の場合、サイジングミル3及び粗圧延機4のロールには、合わせて4〜6個程度の孔型が刻設されており、これらを経由して10数パス程度のリバース圧延でH形粗形材13が造形され、該H形粗形材13を前記中間ユニバーサル圧延機5−エッジャー圧延機9の2つの圧延機からなる圧延機列を用いて、複数パスの圧下が加えられ、中間材14が造形される。そして中間材14は、仕上ユニバーサル圧延機8において製品形状に仕上圧延され、H形鋼製品16が製造される。
次に、以下では図1に示したサイジングミル3及び粗圧延機4に刻設される孔型構成や孔型形状について図面を参照して説明する。なお、通常、粗圧延機4には、以下に説明する第1孔型〜第4孔型に加え、それら孔型にて造形された被圧延材Aをいわゆるドッグボーン形状のH形粗形材13とする孔型が更に設けられているが、この孔型は従来より既知のものであるため本明細書での図示・説明は省略する。また、製造ラインTにおける加熱炉2や中間ユニバーサル圧延機5、仕上ユニバーサル圧延機8、エッジャー圧延機9等は、従来よりH形鋼の製造に用いられている一般的な装置であり、その装置構成等は既知であるため本明細書では説明を省略する。
図2〜図5は粗圧延工程を行うサイジングミル3及び粗圧延機4に刻設される孔型についての概略説明図である。ここで、説明する第1孔型〜第4孔型は、例えばサイジングミル3に全て刻設されても良く、サイジングミル3及び粗圧延機4に第1孔型〜第4孔型の4つの孔型が分けて刻設されても良い。即ち、第1孔型〜第4孔型はサイジングミル3及び粗圧延機4の両方に亘って刻設されても良く、どちらか一方の圧延機に刻設されても良い。通常のH形鋼の製造における粗圧延工程では、これら各孔型において1又は複数パスでの造形が行われる。
また、本実施の形態では刻設される孔型が4つの場合を例示して説明するが、その孔型数についても、必ずしも4孔型である必要はなく、4以上の複数の孔型数であっても良い。即ち、H形粗形材13を造形するために好適な孔型構成であれば良い。なお、図2〜図5では、各孔型における造形時の被圧延材Aの概略最終パス形状を破線にて図示している。
図2は第1孔型K1の概略説明図である。第1孔型K1は、一対の水平ロールである上孔型ロール20と下孔型ロール21に刻設され、これら上孔型ロール20と下孔型ロール21のロール隙において被圧延材Aが圧下・造形される。また、上孔型ロール20の周面(即ち、第1孔型K1の上面)には、孔型内部に向かって突出する突起部25が形成されている。更に、下孔型ロール21の周面(即ち、第1孔型K1の底面)には、孔型内部に向かって突出する突起部26が形成されている。これら突起部25、26はテーパー形状を有しており、その突出長さ等の寸法は、突起部25と突起部26とでそれぞれ等しく構成されている。突起部25、26の高さ(突出長さ)をh1とし、先端部角度をθ1aとする。
この第1孔型K1においては、突起部25、26が被圧延材Aの上下端部(スラブ端面)に押し当てられ、割り込み28、29が形成される。ここで、突起部25、26の先端部角度(ウェッジ角度とも呼称される)θ1aは例えば25°以上40°以下であることが望ましく、更には25°以上35°以下であることが望ましい。この理由については図6〜図8を参照して後述する。
ここで、第1孔型K1の孔型幅は、被圧延材Aの厚み(即ち、スラブ厚)とほぼ等しいことが好ましい。具体的には、第1孔型K1に形成された突起部25、26の先端部における孔型の幅と、スラブ厚を同一にすることで、被圧延材Aの左右センタリング性が好適に確保される。また、このような孔型寸法の構成とすることで、図2に示すように、第1孔型K1での造形時において、被圧延材Aの上下端部(スラブ端面)においては、上記突起部25、26及び孔型側面(側壁)の一部が被圧延材Aと接していて、割り込み28、29により4つの要素(部位)に分割されたスラブ上下端部に対して、第1孔型K1の上面及び底面にて積極的な圧下が行われない方が好ましい。孔型の上面及び底面による圧下は、被圧延材Aの長手方向への伸びを生じさせてしまい、フランジ(後述するフランジ部80)の生成効率を低下させてしまうからである。即ち、第1孔型K1においては、突起部25、26が被圧延材Aの上下端部(スラブ端面)に押し当てられ、割り込み28、29が形成される際の突起部25、26における圧下量(ウェッジ先端圧下量ΔT)は、スラブ上下端部における圧下量(スラブ端面圧下量ΔE)よりも十分に大きなものとされ、これにより割り込み28、29が形成される。
図3は第2孔型K2の概略説明図である。第2孔型K2は、一対の水平ロールである上孔型ロール30と下孔型ロール31に刻設される。上孔型ロール30の周面(即ち、第2孔型K2の上面)には、孔型内部に向かって突出する突起部35が形成されている。更に、下孔型ロール31の周面(即ち、第2孔型K2の底面)には、孔型内部に向かって突出する突起部36が形成されている。これら突起部35、36はテーパー形状を有しており、その突出長さ等の寸法は、突起部35と突起部36とでそれぞれ等しく構成されている。これら突起部35、36の先端部角度は25°以上40°以下のウェッジ角度θ1bであることが望ましく、更には25°以上35°以下であることが望ましい。
ここで、突起部35、36のウェッジ角度θ1bの好適な数値範囲を25°以上40°以下(より好ましくは、25°以上35°以下)とすべき理由と、それに合わせて上記第1孔型K1のウェッジ角度θ1aの数値も好適な数値範囲とする理由について説明する。
ウェッジ角度の下限値は通常ロールの強度により決まる。被圧延材Aがロール(第2孔型K2では上孔型ロール30及び下孔型ロール31、第1孔型K1では上孔型ロール20及び下孔型ロール21)と接触し、その間に受ける熱によりロールが膨張し、被圧延材Aがロールから離れるとロールが冷却され収縮する。造形中はこれらのサイクルが繰り返されるが、ウェッジ角度が小さすぎると、突起部(第2孔型K2では突起部35、36、第1孔型K1では突起部25、26)の厚みが薄いために被圧延材Aからの入熱が当該突起部の左右から入りやすくなり、ロールがより高温になり易い。ロールが高温になると熱振れ幅が大きくなるためにヒートクラックが入り、ロール破損に至る恐れがある。このような理由によりウェッジ角度θ1a、θ1b共に25°以上であることが望ましい。
一方、ウェッジ角度θ1a、θ1bが大きくなると、ウェッジ傾斜角が拡大するために、被圧延材Aに対して摩擦力による上下方向への押し下げ力が作用し易く、割り込み形成時にフランジ相当部の内面部において肉引けが生じ、特に第2孔型K2以降での造形においてフランジの生成効率が低下する。ここで、図6を参照し、第2孔型K2のウェッジ角度θ1bと最終的に造形される被圧延材Aのフランジ幅との関係について説明し、好適なウェッジ角度θ1bの上限値について説明する。
図6はFEMによる解析結果であり、第2孔型K2のウェッジ角度θ1bを変えた場合の後段の工程(以下に説明する第3孔型K3での工程)におけるフランジ厚・フランジ幅の数値との関係を示すグラフである。計算条件としては素材のスラブ幅2300mm、スラブ厚300mmとし、本実施の形態にて説明する方法を用いた際に、ウェッジ角度θ1bを所定の角度である約20°〜約70°で変化させて被圧延材Aの造形を行うものとした。
図6に示すように、ウェッジ角度θ1bを40°超として粗圧延工程を実施し、H形鋼製品を造形した場合、フランジ幅・フランジ厚ともに顕著に低下するようなグラフとなっており、フランジ生成効率が低下していることが分かる。即ち、ウェッジ角度θ1bを40°超とした場合には、グラフの傾きが顕著に上昇しており、ウェッジ角度θ1bが40°以下の場合と比べてフランジ幅・フランジ厚が大きく低下している。ウェッジ角度θ1bの鈍角化によりフランジ相当部の肉引け(被圧延材Aの長手方向へのメタルフローの誘起)が大きくなる。このような観点から、ウェッジ角度θ1bを40°以下とすることで高いフランジ生成効率を実現することが可能であることが分かる。また、図6からは、より高いフランジ生成効率を実現させるためには、ウェッジ角度θ1bを35°以下とすることが望ましいことも分かる。
また、上記第1孔型K1のウェッジ角度θ1aは、誘導性を高め、圧延の安定性を担保するためには、後段の第2孔型K2のウェッジ角度θ1bと同じ角度であることが好ましい。
特に第1孔型K1のウェッジ角度θ1aはフランジ相当部(後のフランジ部80)の先端部厚みに大きく寄与することが知られており、その点からは、ウェッジ角度θ1aはできるだけ小さくすることが好ましい。図7は、第1孔型K1の途中パスの概略断面図であり、一方のスラブ端面(図2における上方端部)に割り込み28、29を付与している状態を示している。図7では割り込み28、29を付与する際のウェッジ角度θ1aの大小による差異について記載しており、それぞれの場合の割り込み形状を図示している。また、図8は第1孔型K1のウェッジ角度θ1aとフランジ相当部の先端厚み(フランジ先端厚)との関係を示すグラフであり、一例としてウェッジ高さが100mm、スラブ厚が300mmの場合を示している。
図7、8に示すように、ウェッジ角度θ1aが小さい場合の断面に比べ、ウェッジ角度θ1aが大きい場合の断面では、スラブ端面のメタルがそがれ、スラブ端面のフランジ相当部(後のフランジ部80)の先端部厚みが減厚される。フランジ相当部(後のフランジ部80)の先端部厚みが減厚されることは後のH形鋼製品の形状に鑑みて好ましくないため、フランジ相当部の先端部厚みを確保するためには、好適なウェッジ角度θ1aの上限値を定める必要がある。
以上説明したように、第2孔型K2のウェッジ角度θ1bを25°以上40°以下とすることに加え、フランジ相当部の先端部厚みを確保し、且つ、誘導性や圧延安定性を担保するといった観点から第1孔型K1のウェッジ角度θ1aも25°以上40°以下とすることが望ましい。更にこれらのウェッジ角度θ1a、θ1bは、高いフランジ生成効率を実現させるとの観点からは25°以上35°以下とすることが望ましい。
また、突起部35、36の高さ(突出長さ)h2は、上記第1孔型K1の突起部25、26の高さh1より高く構成されており、h2>h1となっている。ここで、上述したように、突起部35、36の先端部角度(ウェッジ角度θ1b)は上記第1孔型K1の突起部25、26の先端部角度と同じ(即ち、θ1a=θ1b)であることが好ましい。これら上孔型ロール30と下孔型ロール31のロール隙において、上記第1孔型K1通材後の被圧延材Aが更に造形される。
ここで、第1孔型K1に形成される突起部25、26の高さh1より、第2孔型K2に形成される突起部35、36の高さh2の方が高く、被圧延材Aの上下端部(スラブ端面)への侵入長さも同様に第2孔型K2の方が長くなる。第2孔型K2での突起部35、36の被圧延材Aへの侵入深さは、突起部35、36の高さh2と同じである。即ち、第1孔型K1での突起部25、26の被圧延材Aへの侵入深さh1’と、第2孔型K2での突起部35、36の被圧延材Aへの侵入深さh2はh1’<h2との関係になっている。
また、被圧延材Aの上下端部(スラブ端面)に対向する孔型上面30a、30b及び孔型底面31a、31bと、突起部35、36の傾斜面とのなす角度θfは、図3に示す4箇所ともに約90°(略直角)に構成されている。
図3に示すように、被圧延材Aの上下端部(スラブ端面)へ押し当てられた時の突起部の侵入長さが長いことから、第2孔型K2においては、第1孔型K1において形成された割り込み28、29が更に深くなるように造形が行われ、割り込み38、39が形成される。なお、ここで形成される割り込み38、39の寸法に基づき粗圧延工程でのフランジ造形工程終了時のフランジ片幅が決定される。
また、図3に示す第2孔型K2での造形は多パスにより行われるが、この多パス造形のうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第2孔型K2の上面及び底面)が接触している必要がある。但し、全てのパスにおいて接触していることが望ましいのではなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)ことが望ましい。これは、第2孔型K2での全てのパスにおいて被圧延材Aの上限端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
一方で、その他のパスにおいては、被圧延材Aの上下端部(スラブ端面)において上記突起部35、36を除き孔型と被圧延材Aは接触しておらず、これらのパスにおいて被圧延材Aの積極的な圧下は行われない。これは、圧下により被圧延材Aの長手方向への伸びを生じさせ、フランジ相当部(後述するフランジ部80に相当)の生成効率を低下させてしまうからである。
即ち、第2孔型K2での多パス造形においては、必要最小限のパス(例えば最終パスのみ)において被圧延材Aの上下端部(スラブ端面)と孔型内部を接触させて圧下を行い、その他のパスにおいては積極的な圧下を行わないといったパススケジュールを設定することが好ましい。また、この第2孔型K2においても、上記第1孔型K1同様、突起部35、36における圧下量(ウェッジ先端圧下量ΔT)は、スラブ上下端部における圧下量(スラブ端面圧下量ΔE)よりも十分に大きなものとされ、これにより割り込み38、39が形成される。
図4は第3孔型K3の概略説明図である。第3孔型K3は、一対の水平ロールである上孔型ロール40と下孔型ロール41に刻設される。上孔型ロール40の周面(即ち、第3孔型K3の上面)には、孔型内部に向かって突出する突起部45が形成されている。更に、下孔型ロール41の周面(即ち、第3孔型K3の底面)には、孔型内部に向かって突出する突起部46が形成されている。これら突起部45、46はテーパー形状を有しており、その突出長さ等の寸法は、突起部45と突起部46とでそれぞれ等しく構成されている。
上記突起部45、46の先端部角度θ2は、上記角度θ1bに比べ広角に構成され、突起部45、46の被圧延材Aへの侵入深さh3は、上記突起部35、36の侵入深さh2よりも短くなっている(即ち、h3<h2)。
また、被圧延材Aの上下端部(スラブ端面)に対向する孔型上面40a、40b及び孔型底面41a、41bと、突起部45、46の傾斜面とのなす角度θfは、図4に示す4箇所ともに約90°(略直角)に構成されている。
図4に示すように、第3孔型K3では、第2孔型K2通材後の被圧延材Aに対し、被圧延材Aの上下端部(スラブ端面)において第2孔型K2において形成された割り込み38、39が、突起部45、46が押し当てられることにより、割り込み48、49となる。即ち、第3孔型K3での造形における最終パスでは、割り込み48、49の最深部角度(以下、割り込み角度とも呼称する)がθ2となる。換言すると、第2孔型K2において割り込み38、39の形成と共に造形された分割部位(後述するフランジ部80に対応する部位)が外側に折り曲げられるような造形が行われる。
また、図4に示す第3孔型K3での造形は少なくとも1パス以上によって行われ、このうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第3孔型K3の上面及び底面)が接触している必要がある。但し、全てのパスにおいて接触していることが望ましいのではなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)ことが望ましい。これは、第3孔型K3での全てのパスにおいて被圧延材Aの上限端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
一方で、その他のパスにおいては、被圧延材Aの上下端部(スラブ端面)において上記突起部45、46を除き孔型と被圧延材Aは接触しておらず、これらのパスにおいて被圧延材Aの積極的な圧下は行われない。これは、圧下により被圧延材Aの長手方向への伸びを生じさせ、フランジ相当部(後述するフランジ部80に相当)の生成効率を低下させてしまうからである。
なお、この第3孔型K3における造形では、被圧延材Aの上下端部の4箇所の部位に対する曲げ加工が同時に行われる。そのため、4箇所の部位が均一に曲げ加工されないといった事情により通材が不安定になる恐れがあり、1パスでの造形が好ましい。この場合、1パス造形では被圧延材Aの上下端部(スラブ端面)と孔型内部(第3孔型K3の上面及び底面)が接触した状態で造形が行われる。
図5は第4孔型K4の概略説明図である。第4孔型K4は、一対の水平ロールである上孔型ロール50と下孔型ロール51に刻設される。上孔型ロール50の周面(即ち、第4孔型K4の上面)には、孔型内部に向かって突出する突起部55が形成されている。更に、下孔型ロール51の周面(即ち、第4孔型K4の底面)には、孔型内部に向かって突出する突起部56が形成されている。これら突起部55、56はテーパー形状を有しており、その突出長さ等の寸法は、突起部55と突起部56とでそれぞれ等しく構成されている。
上記突起部55、56の先端部角度θ3は、上記角度θ2に比べ広角に構成され、突起部55、56の被圧延材Aへの侵入深さh4は、上記突起部45、46の侵入深さh3よりも短くなっている(即ち、h4<h3)。
また、被圧延材Aの上下端部(スラブ端面)に対向する孔型上面50a、50b及び孔型底面51a、51bと、突起部55、56の傾斜面とのなす角度θfは、上記第3孔型K3と同様に、図5に示す4箇所ともに約90°(略直角)に構成されている。
第4孔型K4では、第3孔型K3通材後の被圧延材Aに対し、被圧延材Aの上下端部(スラブ端面)において第3孔型K3において形成された割り込み48、49が、突起部55、56が押し当てられることにより押し広げられ、割り込み58、59となる。即ち、第4孔型K4での造形における最終パスでは、割り込み58、59の最深部角度(以下、割り込み角度とも呼称する)がθ3となる。換言すると、第3孔型K3において割り込み48、49の形成と共に造形された分割部位(後述するフランジ部80に対応する部位)が更に外側に折り曲げられるような造形が行われる。このようにして造形された被圧延材Aの上下端部の部位は、後のH形鋼製品のフランジに相当する部位であり、ここではフランジ部80と呼称する。なお、第4孔型K4の割り込み角度θ3は180°よりもやや小さい角度に設定されることが望ましい。これは、割り込み角度θ3を180°としてしまうと、次工程である平造形孔型においてウェブ厚の減厚を行う際に、フランジ部80の外側に拡がりが生じ、平造形孔型での圧延においてかみ出しが生じやすいからである。即ち、次工程の平造形孔型の形状及びウェブ厚の圧下量に応じてフランジ部80の外側での拡がり量が決まるため、ここでの割り込み角度θ3は、平造形孔型の形状及びウェブ厚の圧下量を勘案して好適に定められることが望ましい。
また、図5に示す第4孔型K4での造形は少なくとも1パス以上によって行われ、この多パス造形のうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第4孔型K4の上面及び底面)が接触している必要がある。但し、全てのパスにおいて接触していることが望ましいのではなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)ことが望ましい。これは、第4孔型K4での全てのパスにおいて被圧延材Aの上限端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
一方で、その他のパスにおいては、被圧延材Aの上下端部(スラブ端面)において上記突起部55、56を除き孔型と被圧延材Aは接触しておらず、これらのパスにおいて被圧延材Aの積極的な圧下は行われない。これは、圧下により被圧延材Aの長手方向への伸びを生じさせ、フランジ部80の生成効率を低下させてしまうからである。
なお、この第4孔型K4における造形では、被圧延材Aの上下端部の4箇所の部位に対する曲げ加工が同時に行われる。そのため、4箇所の部位が均一に曲げ加工されないといった事情により通材が不安定になる恐れがあり、1パスでの造形が好ましい。この場合、1パス造形では被圧延材Aの上下端部(スラブ端面)と孔型内部(第4孔型K4の上面及び底面)が接触した状態で造形が行われる。
以上説明した第1孔型K1〜第4孔型K4によって造形された被圧延材Aに対し、既知の孔型を用いて更に圧下・造形が行われ、いわゆるドッグボーン形状であるH形粗形材13が造形される。通常はこの後、スラブ厚に相当する部分を減厚する平造形孔型でウェブ厚が減厚される。その後、図1に示す中間ユニバーサル圧延機5−エッジャー圧延機9の2つの圧延機からなる圧延機列を用いて、通常7〜10数パスの圧下が加えられ、中間材14が造形される。そして中間材14は、仕上ユニバーサル圧延機8において製品形状に仕上圧延され、H形鋼製品16が製造される。
上述したように、本実施の形態にかかる第1孔型K1〜第4孔型K4を用いて被圧延材Aの上下端部(スラブ端面)に割り込みを入れ、それら割り込みによって左右に分かれた各部分を左右に折り曲げる加工を行い、フランジ部80を形成するといった造形をすることで、被圧延材A(スラブ)の上下端面を上下方向に圧下することなくH形粗形材13の造形を行うことができる。即ち、従来行われていたスラブ端面を常に圧下する粗圧延方法に比べ、フランジ幅を広幅化させてH形粗形材13を造形することが可能となり、その結果、フランジ幅の大きな最終製品(H形鋼)を製造することができる。また、サイジングミル3あるいは粗圧延機4における圧下量や設備規模に装置限界があるといったことに影響されずにH形粗形材13の造形を行うことができるため、素材のスラブサイズを従来に比べ小型化(スラブ幅の縮小)させることができ、フランジ幅の大きな最終製品を効率的に製造することができる。
また、特に第2孔型K2での造形においては、必要最小限のパス(例えば最終パスのみ)において被圧延材Aの上下端部(スラブ端面)と孔型内部を接触させて圧下を行い、その他のパスにおいては積極的な圧下を行わないものとしている。これにより、割り込み38、39を形成する際に、左右のフランジ相当部(後のフランジ部80)の肉量が不均一になることにより生じる形状不良を抑制し、効率的で安定した粗圧延工程を実現することが可能となる。
また、特に第3孔型K3、第4孔型K4での造形においては、多パス造形のうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(孔型の上面及び底面)が接触している構成としている。ここで、全てのパスにおいて接触している必要はなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)構成とされる。これにより、分割部位(後のフランジ部80)を折り曲げて造形を行う際に、左右の分割部位の肉量が不均一となり通材が安定しないといった問題を回避することができる。
また、上記のように、各孔型(例えば第2孔型K2〜第4孔型K4)においては、必要最小限のパス数において圧下を行い、その他のパスにおいては積極的な圧下は行われないため、従来に比べ被圧延材Aの圧下に伴う長手方向の伸びが抑えられ、従来のH形鋼の圧延に比べクロップ部の発生が抑制され、歩留まりの向上が実現される。
また、第2孔型K2〜第4孔型K4においては、被圧延材Aの上下端部(スラブ端面)に対向する2箇所の孔型上面及び2箇所の孔型底面と、孔型に形成された突起部の傾斜面とのなす角度θfは約90°(略直角)に構成されている。
これにより、第2孔型K2〜第4孔型K4にて行われる造形時の通材性を向上させることができる。上記角度θfが約90°よりも大きい構成の場合、フランジ相当部(後のフランジ部80)が孔型ロールに沿って折り曲がらない恐れがある。具体的には、孔型ロール形状以上に曲がってしまう恐れがある。その結果、4箇所のフランジ相当部の寸法形状が不均一となり通材性が悪くなってしまうと共に、製品寸法の低下にもつながるからである。
また、フランジ相当部(後のフランジ部80)の先端部を早い造形段階で略直角に造形しておくことで、造形後の製品形状の向上が見込める。特に、大型でフランジが広幅化されたH形鋼製品を製造する場合には、より早い段階でフランジ相当部の造形を好適に行うことで、製造可能なサイズの拡大化が見込める。
以上、本発明の実施の形態の一例を説明したが、本発明は図示の形態に限定されない。当業者であれば、特許請求の範囲に記載された思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
上記実施の形態においては、第3孔型K3の突起部45、46の先端部角度θ2はθ1bよりも大きい角度であり、第4孔型K4の突起部55、56の先端部角度θ3はθ2よりも大きい角度であると説明したが、これらの角度θ2、θ3については、更に好適な範囲を具体的な角度で定めることができる。即ち、第3孔型K3の突起部45、46の先端部角度θ2を70°以上110°以下と規定し、第4孔型K4の突起部55、56の先端部角度θ3を130°以上170°以下と規定することが好ましい。このように規定することで、被圧延材における形状不良の発生を抑制させ、従来に比べフランジ幅の大きなH形鋼製品を効率的且つ安定的に製造することが可能となる。以下では上記θ2及びθ3の好適な角度の範囲が規定される根拠について説明する。
先ず、本発明者らは、第3孔型K3で造形が完了した被圧延材Aに対し、第4孔型K4において実施される折り曲げ加工の加工限界(加工限界角度)について検討を行った。図9は、第4孔型K4での折り曲げ角度(即ち、θ3−θ2)とフランジ厚偏差(フランジ厚バラツキ)との関係を示すグラフである。ここで、図9のグラフの縦軸であるフランジ厚偏差は、割り広げて造形された4つのフランジ相当部の平均フランジ厚からのバラツキ3σを示している。
図9に示すように、第4孔型K4において、折り曲げ角度(即ち、θ3−θ2)が60°を超えると、フランジ厚偏差が5%を超えるため、粗圧延工程の後工程である中間圧延工程や仕上圧延工程において寸法を収束させることが困難となり、好適な寸法精度でもって造形を実施することができなくなる。
なお、左右のフランジ相当部の厚みバラツキは5%以下に抑えられることが好ましい理由は以下の通りである。大型サイズのH形鋼の形状寸法の許容差は、JIS規格(JIS G 3192)によると、フランジ厚が40mmを超える場合、当該フランジ厚の公差範囲は4mm(即ち、±2mm)であり、製品のフランジ厚の10%に相当する。製品のフランジ寸法が上記公差から外れた場合、加工修正は困難であり、所定品質の製品として認められないため、製造効率やコストの面で問題が大きい。従って、各造形工程の工程能力を十分とし、左右のフランジ相当部の厚みバラツキを抑えてH形鋼製品を製造する必要がある。通常、各造形工程の工程能力を十分とするためには、フランジ厚の公差範囲を6σに設定することが望ましい。上記JIS規格に基づき、H形鋼製品のフランジ厚の10%を6σに合わせるため、左右のフランジ相当部の厚みバラツキ3σの目標値は5%以下とすることが望ましい。
図9に示すように、第4孔型K4での加工角度は60°以下である必要がある。即ち、第3孔型K3の突起部45、46の先端部角度θ2と、第4孔型K4の突起部55、56の先端部角度θ3との差は60°以下とする必要があり、以下の式(1)を満たす条件に設計される必要がある。
θ3−θ2≦60° ・・・(1)
次に、本発明者らは、第3孔型K3の突起部45、46の先端部角度θ2の上限値について検討を行った。図10は、第3孔型K3における先端部角度θ2を変化させた場合のフランジ相当部の先端における幅変化量(フランジ先端つぶし量)を示すグラフである。
フランジ先端つぶし量は、第3孔型K3において折り曲げられたフランジ相当部の先端幅方向に関する潰された距離Δi(i=1〜4:4箇所の先端に対応)の平均値によって定義される。なお、以下に説明する図11には、このフランジ先端つぶし量Δ1〜Δ4を図示している。
図10に示すように、上記角度θ2が100°以下であれば、フランジ相当部の先端幅変化量は5mm以下の小さなレベルで留まる。しかしながら、角度θ2が110°以上になると、フランジ相当部の先端幅変化量も大きくなり、4箇所のフランジ相当部の肉量アンバランスが生じてしまう(以下に説明する図11参照)。
図11は、本実施の形態に係る方法で第3孔型K3の突起部45、46の先端部角度θ2を110°超とした場合の、造形後の被圧延材の形状を示す概略図である。図11に示すように、角度θ2を110°超に設定して第3孔型K3での造形を実施すると、曲げ加工による変形よりもフランジ相当部の外側面が押し潰される変形の方が容易となり、フランジ相当部の外側のメタルが削がれる変形モードとなってしまうことが確認される。
以上、図10、11を参照して説明したことから、第3孔型K3の突起部45、46の先端部角度θ2は以下の式(2)を満たす条件に設計される必要がある。
θ2≦110° ・・・(2)
続いて、本発明者らは、ウェブ減厚孔型での造形に基づき、第4孔型K4の突起部55、56の先端部角度θ3の上限値ならびに下限値について検討を行った。図12は、第4孔型K4の突起部55、56の先端部角度θ3を変化させた場合の、ウェブ減厚孔型において実施される後段の工程での肉溜まりの発生に伴って生じる製品疵深さを示すグラフである。なお、ウェブ減厚孔型で生じる肉溜まりとは、フランジ相当部の外面において生じる突起状の形状不良であり、その詳細は図13を参照して後述する。
図12に示すように、上記角度θ3が130°未満である場合には、製品疵が生じてしまい、その製品疵深さは角度θ3が小さければ小さい程、増大してしまう。そして、最終製品のフランジ外面にこの製品疵が残ってしまう。
図13はウェブ減厚孔型におけるウェブ減厚に関する概略説明図であり、(a)は上記角度θ3が170°超である場合にフランジ部の外面に形状不良が生じている場合を示し、(b)は上記角度θ3が130°未満である場合にフランジ部の外面に形状不良が生じている場合を示し、(c)は製品疵を示している。
図13(a)に示すように、ウェブ減厚孔型においてウェブ減厚を行った場合、ウェブ部81の減厚に伴い、フランジ部80の外側(図中左右方向)へのメタルの拡がり量が大きくなる。全断面に対するウェブ部81の断面割合が大きい程、その拡がり量は大きくなる。これにより、図中の破線部に示す突起上の膨らみ部60が形成される。この膨らみ部60は形状不良の要因であるため、対応策として、フランジ部80の外面に拡がりを見込んで凹みを設けておくことが考えられる。その凹み量を調整するために、第4孔型K4の突起部55、56の先端部角度θ3を好適に定めることが有効である。実験上、角度θ3を170°超とした場合に、図13(a)に示すような形状不良が生じることが分かっており、角度θ3の上限値は170°となる。
また、上記式(1)及び式(2)から、角度θ2の上限値は110°であり、角度θ3と角度θ2の差は最大で60°であることからも、角度θ3の上限値は170°と定まる。
また、図13(b)に示すように、ウェブ減厚孔型では、ウェブ部81の減厚と同時にフランジ部80の幅圧下も行われ、フランジ部80の幅圧下により、当該フランジ部80の中央部に上下からの圧下歪が加わるが、角度θ3が130°未満になるとフランジ部80の外側面中央部(図中破線で囲んだ部分)に形成されている溝61が消えずに疵として残存し、それに伴う製品疵が発生し、最終製品であるH形鋼において当該製品疵が残存してしまう。実験上、角度θ3を130°未満とした場合に、図13(b)に示す溝61が疵の起点となり残存し、図13(c)のような製品疵63が生じてしまうことが分かっている。
以上、図12、13を参照して説明したことから、第4孔型K4の突起部55、56の先端部角度θ3は上限値を170°とすることが望ましく、下限値を130°とすることが望ましい。
特に、図12に基づき、角度θ3は以下の式(3)を満たす条件に設計される必要がある。
θ3≧130° ・・・(3)
以上説明した式(1)〜(3)を同時に満たすような設計条件を構成する場合、θ2の下限値は70°(=130°−60°)となり、θ3の上限値は170°(=110°+60°)となる。図14は、上記式(1)〜(3)に示した設計条件をまとめたグラフであり、θ2とθ3の好適な設計範囲を示すものである。図14中の各条件を示す線(図中破線)に囲まれた範囲が好適な設計範囲となる。即ち、角度θ2は以下の式(4)を満たす条件に設計される必要があり、角度θ3は以下の式(5)を満たす条件に設計される必要があり、且つ、上記式(1)を満たすことが必要となる。
70°≦θ2≦110° ・・・(4)
130°≦θ3≦170° ・・・(5)
上記式(1)、(4)、(5)を満たすような設計条件によって第3孔型K3の突起部45、46の先端部角度θ2、ならびに第4孔型K4の突起部55、56の先端部角度θ3が定められる。これにより、左右のフランジ部80の変形アンバランスが生じることなく造形が実施され、更に、フランジ相当部の外側面が押し潰される変形といった形状不良(図11参照)や、ウェブ減厚孔型においてフランジ部80の外側面中央部が肉溜まり形状となり製品疵が発生してしまうといった形状不良(図13参照)が生じることなく、各造形工程を実施することが可能となる。
また、例えば、上記実施の形態において、第1孔型K1〜第4孔型K4の4つの孔型を刻設して被圧延材Aの造形を行うものとして説明したが、粗圧延工程を実施するための孔型数はこれに限られるものではない。即ち、サイジングミル3や粗圧延機4に刻設される孔型の数は任意に変更可能であり、好適に粗圧延工程を実施することができる程度に適宜変更される。
なお、上記実施の形態では、フランジ相当部(後のフランジ部80)を折り曲げる造形を第3孔型K3及び第4孔型K4で行うものとして説明した。これは、折り曲げ角度(即ち、各孔型でのウェッジ角度)を急激に大きくして折り曲げ造形を行うと、突起部と被圧延材Aとの摩擦力によって肉引けが起こり易くなることや、折り曲げ加工力が大きくなり、4箇所のフランジ相当部(後のフランジ部80)の肉量の均等化が損なわれる恐れがあるため、複数の孔型(上記実施の形態では第3孔型K3及び第4孔型K4)にて分担して折り曲げ造形を実施することが望ましいからである。本発明者らの実験結果によれば、上記実施の形態で説明した第3孔型K3及び第4孔型K4の2孔型において折り曲げ造形を実施することが望ましい。
また、H形鋼を製造する際の素材(被圧延材A)としてはスラブを例示して説明したが、類似形状のその他素材についても本発明は当然適用可能である。即ち、例えばビームブランク素材を造形してH形鋼を製造する場合にも適用できる。
本発明は、例えば矩形断面であるスラブ等を素材としてH形鋼を製造する製造方法に適用できる。
H形鋼の製造ラインについての概略説明図である。 第1孔型の概略説明図である。 第2孔型の概略説明図である。 第3孔型の概略説明図である。 第4孔型の概略説明図である。 ウェッジ角度θ1bを変えた場合のフランジ幅・フランジ厚の数値との関係を示すグラフである。 第1孔型の途中パスの概略断面図である。 ウェッジ角度θ1aを変えた場合のフランジ先端厚の数値との関係を示すグラフである。 第4孔型での折り曲げ角度(θ3−θ2)とフランジ厚偏差(フランジ厚バラツキ)との関係を示すグラフである。 第3孔型における先端部角度θ2を変化させた場合のフランジ相当部の先端の厚み変化量(フランジ先端つぶし量)を示すグラフである。 本実施の形態に係る方法で第3孔型の突起部の先端部角度θ2を110°超とした場合の、造形後の被圧延材の形状を示す概略図である。 第4孔型の先端部角度θ3を変化させた場合の、製品疵深さの変化を示すグラフである。 ウェブ減厚孔型におけるウェブ減厚に関する概略説明図である。 θ2とθ3の好適な設計範囲を示すグラフである。
また、上記第1孔型K1のウェッジ角度θ1aは、誘導性を高め、圧延の安定性を担保するためには、後段の第2孔型K2のウェッジ角度θ1bと同じ角度であることが好ましい。
特に第1孔型K1のウェッジ角度θ1aはフランジ相当部(後のフランジ部80)の先端部厚みに大きく寄与することが知られており、その点からは、ウェッジ角度θ1aはできるだけ小さくすることが好ましい。図7は、第1孔型K1の途中パスの概略断面図であり、一方のスラブ端面(図2における上方端部)に割り込み28を付与している状態を示している。図7では割り込み28を付与する際のウェッジ角度θ1aの大小による差異について記載しており、それぞれの場合の割り込み形状を図示している。また、図8は第1孔型K1のウェッジ角度θ1aとフランジ相当部の先端厚み(フランジ先端厚)との関係を示すグラフであり、一例としてウェッジ高さが100mm、スラブ厚が300mmの場合を示している。
また、図3に示す第2孔型K2での造形は多パスにより行われるが、この多パス造形のうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第2孔型K2の上面及び底面)が接触している必要がある。但し、全てのパスにおいて接触していることが望ましいのではなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)ことが望ましい。これは、第2孔型K2での全てのパスにおいて被圧延材Aの上端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
一方で、その他のパスにおいては、被圧延材Aの上下端部(スラブ端面)において上記突起部35、36を除き孔型と被圧延材Aは接触しておらず、これらのパスにおいて被圧延材Aの積極的な圧下は行われない。これは、圧下により被圧延材Aの長手方向への伸びを生じさせ、フランジ相当部(後述するフランジ部80に相当)の生成効率を低下させてしまうからである。
また、図4に示す第3孔型K3での造形は少なくとも1パス以上によって行われ、このうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第3孔型K3の上面及び底面)が接触している必要がある。但し、全てのパスにおいて接触していることが望ましいのではなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)ことが望ましい。これは、第3孔型K3での全てのパスにおいて被圧延材Aの上端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
一方で、その他のパスにおいては、被圧延材Aの上下端部(スラブ端面)において上記突起部45、46を除き孔型と被圧延材Aは接触しておらず、これらのパスにおいて被圧延材Aの積極的な圧下は行われない。これは、圧下により被圧延材Aの長手方向への伸びを生じさせ、フランジ相当部(後述するフランジ部80に相当)の生成効率を低下させてしまうからである。
また、図5に示す第4孔型K4での造形は少なくとも1パス以上によって行われ、この多パス造形のうちの少なくとも1パス以上は、被圧延材Aの上下端部(スラブ端面)と孔型内部(第4孔型K4の上面及び底面)が接触している必要がある。但し、全てのパスにおいて接触していることが望ましいのではなく、例えば最終パスのみ被圧延材Aの上下端部(スラブ端面)と孔型内部が接触し、スラブ端面圧下量ΔEが正の値となる(ΔE>0)ことが望ましい。これは、第4孔型K4での全てのパスにおいて被圧延材Aの上端部と孔型内部とを非接触とすると、フランジ相当部(後述するフランジ部80)が左右非対称に造形されるといった形状不良が生じる恐れがあり、通材性の面で問題があるからである。
一方で、その他のパスにおいては、被圧延材Aの上下端部(スラブ端面)において上記突起部55、56を除き孔型と被圧延材Aは接触しておらず、これらのパスにおいて被圧延材Aの積極的な圧下は行われない。これは、圧下により被圧延材Aの長手方向への伸びを生じさせ、フランジ部80の生成効率を低下させてしまうからである。
図13(a)に示すように、ウェブ減厚孔型においてウェブ減厚を行った場合、ウェブ部81の減厚に伴い、フランジ部80の外側(図中左右方向)へのメタルの拡がり量が大きくなる。全断面に対するウェブ部81の断面割合が大きい程、その拡がり量は大きくなる。これにより、図中の破線部に示す突起の膨らみ部60が形成される。この膨らみ部60は形状不良の要因であるため、対応策として、フランジ部80の外面に拡がりを見込んで凹みを設けておくことが考えられる。その凹み量を調整するために、第4孔型K4の突起部55、56の先端部角度θ3を好適に定めることが有効である。実験上、角度θ3を170°超とした場合に、図13(a)に示すような形状不良が生じることが分かっており、角度θ3の上限値は170°となる。
また、上記式(1)及び式(2)から、角度θ2の上限値は110°であり、角度θ3と角度θ2の差は最大で60°であることからも、角度θ3の上限値は170°と定まる。

Claims (7)

  1. 粗圧延工程、中間圧延工程、仕上圧延工程を備えたH形鋼の製造方法であって、
    前記粗圧延工程を行う圧延機には、被圧延材を造形する4以上の複数の孔型が刻設され、
    当該複数の孔型では被圧延材の1又は複数パス造形が行われ、
    前記複数の孔型のうち第1孔型及び第2孔型には、被圧延材の幅方向に対し鉛直に割り込みを入れる突起部が形成され、
    前記複数の孔型のうち第2孔型以降では少なくとも1パス以上の造形において被圧延材の端面と孔型周面とが接触した状態で圧下が行われ、
    前記複数の孔型のうち第3孔型以降の2以上の孔型では前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、
    第1孔型及び第2孔型に形成される前記突起部の先端角度は40°以下であることを特徴とする、H形鋼の製造方法。
  2. 被圧延材の端面と孔型周面とが接触した状態で圧下が行われるパスは、前記複数の孔型のうち第2孔型以降の各孔型での複数パス造形における最終パスであることを特徴とする、請求項1に記載のH形鋼の製造方法。
  3. 前記第2孔型においては、前記突起部の傾斜面と、当該傾斜面に隣接し被圧延材の端面と対向する孔型周面と、がなす角度が略垂直に構成されることを特徴とする、請求項1又は2に記載のH形鋼の製造方法。
  4. 前記第1孔型及び第2孔型に形成される突起部の先端角度は25°以上35°以下であることを特徴とする、請求項1〜3のいずれか一項に記載のH形鋼の製造方法。
  5. 前記複数の孔型のうち、第3孔型以降の各孔型には、前記分割部位に押し当てることで当該分割部位を折り曲げる突起部が形成され、
    当該突起部の傾斜面と、当該傾斜面に隣接し被圧延材の端面と対向する孔型周面と、がなす角度が略垂直に構成されることを特徴とする、請求項1〜4のいずれか一項に記載のH形鋼の製造方法。
  6. 前記複数の孔型のうち、第2孔型以降の各孔型に形成される突起部の先端角度は、後段の孔型になるほど順次大きな角度となるように構成されることを特徴とする、請求項5に記載のH形鋼の製造方法。
  7. 前記複数の孔型は、被圧延材を造形する第1孔型〜第4孔型の4つの孔型であり、
    前記複数の孔型のうち第3孔型及び第4孔型において、前記割り込みによって成形された分割部位を順次折り曲げる工程が行われ、
    前記第3孔型に形成される突起部の先端角度は70°以上110°以下であり、
    前記第4孔型に形成される突起部の先端角度は130°以上170°以下であることを特徴とする、請求項1〜6のいずれか一項に記載のH形鋼の製造方法。
JP2017506506A 2015-03-19 2016-03-10 H形鋼の製造方法 Active JP6515355B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015056638 2015-03-19
JP2015056638 2015-03-19
PCT/JP2016/057647 WO2016148030A1 (ja) 2015-03-19 2016-03-10 H形鋼の製造方法

Publications (2)

Publication Number Publication Date
JPWO2016148030A1 true JPWO2016148030A1 (ja) 2017-12-28
JP6515355B2 JP6515355B2 (ja) 2019-05-22

Family

ID=56918989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017506506A Active JP6515355B2 (ja) 2015-03-19 2016-03-10 H形鋼の製造方法

Country Status (5)

Country Link
US (1) US10730086B2 (ja)
EP (1) EP3260210B1 (ja)
JP (1) JP6515355B2 (ja)
CN (1) CN107427875B (ja)
WO (1) WO2016148030A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6515355B2 (ja) 2015-03-19 2019-05-22 日本製鉄株式会社 H形鋼の製造方法
CN107427874B (zh) * 2015-03-19 2019-09-13 日本制铁株式会社 H型钢的制造方法和h型钢制品
US20190023307A1 (en) * 2016-01-07 2019-01-24 Nippon Steel & Sumitomo Metal Corporation Method for producing h-shaped steel and h-shaped steel product
US20190009315A1 (en) * 2016-01-07 2019-01-10 Nippon Steel & Sumitomo Metal Corporation Method for producing h-shaped steel and rolling apparatus
US20200206802A1 (en) * 2017-07-12 2020-07-02 Nippon Steel Corporation Method for producing h-shaped steel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220958A (en) * 1975-08-11 1977-02-17 Nippon Steel Corp Method of manufacturing angle steel
JPS58188501A (ja) * 1982-04-30 1983-11-04 Sumitomo Metal Ind Ltd H形鋼用粗形鋼片の製造方法
JPH07164003A (ja) * 1993-12-16 1995-06-27 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法
JPH07178404A (ja) * 1993-12-24 1995-07-18 Nkk Corp 鋼製連壁用形鋼の製造方法
JP2004358541A (ja) * 2003-06-06 2004-12-24 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法及び孔型ロール

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953121B2 (ja) * 1981-03-05 1984-12-24 川崎製鉄株式会社 粗形鋼片用大型素材の幅出し圧延方法とその圧延用ロ−ル
CA1179171A (en) * 1981-07-10 1984-12-11 Yoshiaki Kusaba Method for producing beam blank for universal beam
FR2543027B1 (fr) * 1983-03-21 1986-05-16 Sacilor Procede de laminage universel integral de profiles metalliques du type poutrelle h ou i
JPS6021101A (ja) 1983-07-14 1985-02-02 Sumitomo Metal Ind Ltd 形鋼の粗形鋼片圧延方法
US5009094A (en) 1988-06-27 1991-04-23 Kawasaki Steel Corporation Method of rolling H-shaped steels
JP3457362B2 (ja) 1993-09-21 2003-10-14 新日本製鐵株式会社 H形鋼用中間粗形鋼片の製造方法
JP3678003B2 (ja) 1998-06-03 2005-08-03 Jfeスチール株式会社 粗形鋼片の圧延方法
JP3456438B2 (ja) 1999-03-02 2003-10-14 Jfeスチール株式会社 形鋼用粗形鋼片の圧延方法
JP2002045902A (ja) 2000-08-02 2002-02-12 Sumitomo Metal Ind Ltd 大型h形鋼の圧延方法
CN1745917A (zh) * 2004-09-06 2006-03-15 李宝安 一种轧制h形或工字形钢的工艺方法
CN201070634Y (zh) * 2007-05-30 2008-06-11 南京钢铁集团无锡金鑫轧钢有限公司 不等边不等厚角钢孔型系统
JP5724749B2 (ja) 2011-08-23 2015-05-27 Jfeスチール株式会社 H形鋼の製造方法
CN202762723U (zh) * 2012-06-15 2013-03-06 莱芜钢铁集团有限公司 H型钢开坯轧辊的嵌入式开槽布置结构
CN103056160A (zh) * 2013-01-24 2013-04-24 中冶赛迪工程技术股份有限公司 H型钢的x-i短流程轧制机组
JP6515355B2 (ja) 2015-03-19 2019-05-22 日本製鉄株式会社 H形鋼の製造方法
CN107427874B (zh) * 2015-03-19 2019-09-13 日本制铁株式会社 H型钢的制造方法和h型钢制品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220958A (en) * 1975-08-11 1977-02-17 Nippon Steel Corp Method of manufacturing angle steel
JPS58188501A (ja) * 1982-04-30 1983-11-04 Sumitomo Metal Ind Ltd H形鋼用粗形鋼片の製造方法
JPH07164003A (ja) * 1993-12-16 1995-06-27 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法
JPH07178404A (ja) * 1993-12-24 1995-07-18 Nkk Corp 鋼製連壁用形鋼の製造方法
JP2004358541A (ja) * 2003-06-06 2004-12-24 Sumitomo Metal Ind Ltd 粗形鋼片の製造方法及び孔型ロール

Also Published As

Publication number Publication date
CN107427875A (zh) 2017-12-01
EP3260210A4 (en) 2018-12-12
CN107427875B (zh) 2019-09-10
US10730086B2 (en) 2020-08-04
US20180111178A1 (en) 2018-04-26
WO2016148030A1 (ja) 2016-09-22
EP3260210A1 (en) 2017-12-27
EP3260210B1 (en) 2019-09-11
JP6515355B2 (ja) 2019-05-22

Similar Documents

Publication Publication Date Title
WO2016148030A1 (ja) H形鋼の製造方法
JP6434461B2 (ja) H形鋼の製造方法
WO2016148028A1 (ja) H形鋼の製造方法及びh形鋼製品
JP6447286B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6565691B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6446716B2 (ja) H形鋼の製造方法
JP6593457B2 (ja) H形鋼の製造方法及び圧延装置
JP6597321B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6686809B2 (ja) H形鋼の製造方法
JP6668963B2 (ja) H形鋼の製造方法
JP6447285B2 (ja) H形鋼の製造方法
JP6569535B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6593456B2 (ja) H形鋼の製造方法及びh形鋼製品
JP7360026B2 (ja) H形鋼の製造方法
JP6855885B2 (ja) H形鋼の製造方法及びh形鋼製品
JP6699415B2 (ja) H形鋼の製造方法
JP2019206010A (ja) H形鋼の製造方法
WO2019156078A1 (ja) H形鋼の製造方法
JPWO2019142734A1 (ja) H形鋼の製造方法
JP2017121652A (ja) H形鋼の製造方法
JP2018176188A (ja) H形鋼の製造方法
JP2013202621A (ja) 粗形鋼片の造形圧延方法およびh形鋼の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20181030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190122

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190318

R151 Written notification of patent or utility model registration

Ref document number: 6515355

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151