JPWO2016121939A1 - 変倍光学系、光学機器及び変倍光学系の製造方法 - Google Patents

変倍光学系、光学機器及び変倍光学系の製造方法 Download PDF

Info

Publication number
JPWO2016121939A1
JPWO2016121939A1 JP2016572188A JP2016572188A JPWO2016121939A1 JP WO2016121939 A1 JPWO2016121939 A1 JP WO2016121939A1 JP 2016572188 A JP2016572188 A JP 2016572188A JP 2016572188 A JP2016572188 A JP 2016572188A JP WO2016121939 A1 JPWO2016121939 A1 JP WO2016121939A1
Authority
JP
Japan
Prior art keywords
lens group
lens
group
image
object side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016572188A
Other languages
English (en)
Inventor
壮基 原田
壮基 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Publication of JPWO2016121939A1 publication Critical patent/JPWO2016121939A1/ja
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/144Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only
    • G02B15/1445Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative
    • G02B15/144511Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having four groups only the first group being negative arranged -+-+
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/145Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only
    • G02B15/1455Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative
    • G02B15/145527Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having five groups only the first group being negative arranged -+-++
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/146Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups
    • G02B15/1465Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having more than five groups the first group being negative
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Nonlinear Science (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

変倍光学系は、負の屈折力を有する第1レンズ群(G1)と、正の屈折力を有する第2レンズ群(G2)とを有し、第2レンズ群(G2)より像側に配置された中間群(Gn)を有し、中間群(Gn)より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群(VR)を有し、少なくとも、第1レンズ群(G1)と第2レンズ群(G2)との間隔と、第2レンズ群(G2)と中間群(Gn)との間隔とを変化させることにより変倍を行い、次の条件式(1)を満足する。1.000 < f(1〜Gn)t/ft < 100.000 …(1)

Description

本発明は、変倍光学系、光学機器及び変倍光学系の製造方法に関する。
本願は、2015年1月30日に出願された日本国特許出願2015−017916号に基づき優先権を主張し、その内容をここに援用する。
従来より、手振れ補正機構を備えた広画角の変倍光学系が提案されている(例えば、特許文献1を参照)。
特開平11−231220号公報
近年、このような変倍光学系では、良好な光学性能を備えつつ、よりF値の明るい光学系であることが求められている。
本発明の一態様に係る変倍光学系は、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、前記第2レンズ群より像側に配置された中間群を有し、前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、以下の条件式を満足する。
1.000 < f(1〜Gn)t/ft < 100.000
但し、
f(1〜Gn)t:望遠端状態における前記第1レンズ群から前記中間群までの合成焦点距離、
ft:望遠端状態における全系の焦点距離。
本発明の別の一態様に係る変倍光学系は、物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、前記第2レンズ群より像側に配置され、光軸と直交方向の位置を固定されており負の屈折力を有する第nレンズ群を有し、前記第nレンズ群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記第nレンズ群との間隔とを変化させることにより変倍を行い、次の条件式を満足する。
1.000 < f(1〜Gn)t/ft < 100.000
但し、
f(1〜Gn)t:望遠端状態における前記第1レンズ群から前記第nレンズ群までの合成焦点距離、
ft:望遠端状態における全系の焦点距離。
本発明の別の一態様に係る光学機器は、上述の変倍光学系を搭載する。
本発明の別の一態様に係る変倍光学系の製造方法は、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群より像側に配置された中間群を有し、前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、以下の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
1.000 < f(1〜Gn)t/ft < 100.000
但し、
f(1〜Gn)t:望遠端状態における前記第1レンズ群から前記中間群までの合成焦点距離、
ft:望遠端状態における全系の焦点距離。
本発明の別の一態様に係る変倍光学系の製造方法は、物体側から順に並んだ、負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有する変倍光学系の製造方法であって、前記第2レンズ群より像側に配置され、光軸と直交方向の位置を固定されており負の屈折力を有する第nレンズ群を有し、前記第nレンズ群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記第nレンズ群との間隔とを変化させることにより変倍を行い、次の条件式を満足するように、レンズ鏡筒内に各レンズを配置する。
1.000 < f(1〜Gn)t/ft < 100.000
但し、
f(1〜Gn)t:望遠端状態における前記第1レンズ群から前記第nレンズ群までの合成焦点距離、
ft:望遠端状態における全系の焦点距離。
(W)、(M)、及び(T)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第1実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第2実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第3実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第4実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第5実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第6実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第7実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第8実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第9実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第10実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第11実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 (W)、(M)、及び(T)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における断面図である。 (a)、(b)、及び(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時の諸収差図である。 (a)、(b)、及び(c)はそれぞれ、第12実施例に係る変倍光学系の広角端状態、中間焦点距離状態、及び望遠端状態における無限遠合焦時に像ブレ補正を行った時の横収差図である。 変倍光学系を搭載したカメラの構成の一例を示す図である。 変倍光学系の製造方法の一例の概略を示す図である。
以下、実施形態について、図面を参照しながら説明する。図1は、変倍光学系ZLの構成の一例を示す。他の例において、レンズ群の数、各レンズ群におけるレンズ構成等は適宜変更可能である。
一実施形態において、変倍光学系ZLは、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有し、第2レンズ群G2より像側に配置された中間群(第nレンズ群)Gnを有し、中間群Gnより像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群VRを有し、少なくとも、第1レンズ群G1と第2レンズ群G2との間隔と、第2レンズ群G2と中間群Gnとの間隔とを変化させることにより変倍を行う。一例において、中間群Gnは、光軸と直交方向の位置を固定されており負の屈折力を有することが可能である。
図1に示す第1実施例では、光軸と直交方向の位置を固定され負の屈折力を有する中間群Gnと、中間群の像側に配置された防振レンズ群VRとして、第31レンズ群G31と、第32レンズ群G32とがそれぞれ該当する。また、後述の第2、3、5、7〜11実施例では、中間群Gnと、中間群の像側に配置された防振レンズ群VRとして、第31レンズ群G31と、第32レンズ群G32とが該当する。第4、6、12実施例では、中間群Gnと、中間群の像側に配置された防振レンズ群VRとして、第4レンズ群G4と、第5レンズ群G5とが該当する。
なお、防振レンズ群VRは、負の屈折力を有することが好ましくは可能である。
変倍光学系ZLは、上記のように、負正負正もしくは負正負正正のレンズ群を有し、少なくともこれらの群の間隔が変化することにより、広画角の変倍光学系を実現することができる。また、負の中間群Gnと、中間群の像側に(負の)防振レンズ群VRとを有し、防振レンズ群VRを光軸と直交する方向の成分を持つように移動させて像ブレ補正を行うことにより、像ブレ補正時の偏心コマ収差の発生及び片ボケの発生を抑え、良好な結像性能を実現することができる。
変倍光学系ZLは、次の条件式(1)を満足する。
1.000 < f(1〜Gn)t/ft < 100.000 …(1)
但し、
f(1〜Gn)t:望遠端状態における第1レンズ群G1から中間群Gnまでの合成焦点距離、
ft:望遠端状態における全系の焦点距離。
条件式(1)は、第1レンズ群G1と第2レンズ群G2とにより収束した入射光を、中間群Gnでほぼ平行な光線(ほぼアフォーカルな光線)に戻し、防振レンズ群VRへと導くことにより、防振性能を向上させるための条件式である。条件式(1)を満足することにより、F2.8〜F3.5程度の明るいF値を確保し、球面収差をはじめとする諸収差を良好に補正することができる。
条件式(1)の上限値を上回ると、中間群Gnのパワーが大きくなりすぎ、中間群Gnによる球面収差などの諸収差に対する補正が不十分となり、3倍程度以上のズーム比を得るのが困難となる。
効果を確実なものにするために、条件式(1)の上限値を50.000とすることが好ましくは可能である。効果をより確実なものにするために、条件式(1)の上限値を25.000とすることが好ましくは可能である。
条件式(1)の下限値を下回ると、防振レンズ群VRに対して強い収束光が入ることになり、像ブレ補正時の望遠端状態における偏心コマ収差の発生や、広角端状態における片ボケの発生を抑えることが困難となる。その結果、F値をF2.8〜F3.5程度に明るくするのが困難となる。あるいは、球面収差の発生が甚大となり、良好な結像性能の実現が難しい可能性がある。
効果を確実なものにするために、条件式(1)の下限値を1.500とすることが好ましくは可能である。効果をより確実なものにするために、条件式(1)の下限値を2.000とすることが好ましくは可能である。
変倍光学系ZLは、次の条件式(2)を満足することが好ましくは可能である。
1.360 < −f(Gn〜G(VR))w/fw < 5.000…(2)
但し、
f(Gn〜G(VR))w:広角端状態における中間群Gnから防振レンズ群VRまでの合成焦点距離、
fw:広角端状態における全系の焦点距離。
条件式(2)は、中間群Gnと防振レンズ群VRの広角端状態における合成焦点距離を適切に設定することにより、3倍程度の変倍比と良好な光学性能を両立させるための条件式である。条件式(2)を満足することにより、F2.8〜F3.5程度の明るいF値を確保し、球面収差をはじめとする諸収差を良好に補正することができる。
条件式(2)の上限値を上回ると、中間群Gnと防振レンズ群VRの合成の屈折力が小さくなりすぎ、全系で3倍程度の変倍比を確保することが困難となる。その結果、第2レンズ群G2やほかの群が変倍を担う必要が生じ、結果として球面収差やコマ収差の補正が不十分となる。
効果を確実なものとするために、条件式(2)の上限値を4.000とすることが好ましくは可能である。効果をより確実なものとするために、条件式(2)の上限値を3.000とすることが好ましくは可能である。
条件式(2)の下限値を下回ると、中間群Gnと防振レンズ群VRの合成の屈折力が大きくなりすぎ、球面収差やコマ収差の補正が困難となる。その結果、F値をF2.8〜F3.5程度に明るくしつつ、良好な結像性能を実現するのが難しい。
効果を確実なものとするために、条件式(2)の下限値を1.400とすることが好ましくは可能である。効果をより確実なものとするために、条件式(2)の下限値を1.450とすることが好ましくは可能である。
変倍光学系ZLは、防振レンズ群VRより像側に配置された正の屈折力を有するレンズ群のうち、正の屈折力が最も強い像側レンズ群RPを有し、像側レンズ群RPと防振レンズ群VRとの間隔は変倍の際に変化し、次の条件式(3)を満足することが好ましくは可能である。
0.400 < f(RP)/f(FP) < 2.000…(3)
但し、
f(RP):像側レンズ群RPの焦点距離、
f(FP):第1レンズ群G1より像面側に配置され、中間群Gnより物体側に配置されたレンズの広角端状態における合成焦点距離。
条件式(3)は、像側レンズ群RPの屈折力を適切に設定することにより、3倍程度の変倍比と良好な光学性能を両立させるための条件式である。条件式(3)を満足することにより、F2.8〜F3.5程度の明るいF値を確保し、球面収差をはじめとする諸収差を良好に補正することができる。
条件式(3)の上限値を上回ると、像側レンズ群RPで変倍させることが不十分となり、全系で3倍程度の変倍比を確保することが困難となる。その結果、第2レンズ群G2やほかの群が変倍を担う必要が生じ、結果として球面収差やコマ収差の補正が不十分となる。
効果を確実なものとするために、条件式(3)の上限値を1.800とすることが好ましくは可能である。効果をより確実なものとするために、条件式(3)の上限値を1.700とすることが好ましくは可能である。
条件式(3)の下限値を下回ると、像側レンズ群RPの屈折力が大きくなりすぎ、球面収差やコマ収差の補正が困難となる。その結果、F値をF2.8〜F3.5程度に明るくしつつ、良好な結像性能を実現するのが難しい。
効果を確実なものとするために、条件式(3)の下限値を0.500とすることが好ましくは可能である。効果をより確実なものとするために、条件式(3)の下限値を0.600とすることが好ましくは可能である。
変倍光学系ZLにおいて、中間群Gnは、正レンズ成分と、負レンズ成分を、それぞれ1つ以上有することが好ましくは可能である。
「レンズ成分」とは、単レンズ又は接合レンズをいう。
この構成により、中間群Gnで球面収差、コマ収差を良好に補正することができ、防振性能の向上に寄与することができる。なお、中間群Gnがどちらかのレンズ成分のみで構成された場合、中間群Gnでの球面収差、コマ収差補正が不十分となり、防振レンズ群VRにてそれらの収差補正を担わせる必要が発生する。その結果、像ブレ補正時に発生する偏心コマ収差、あるいは片ボケの発生が増大し、像ブレ補正時に良好な結像性能を維持することが難しい。
効果を確実にするために、中間群Gnは、少なくとも負レンズ成分を2つ、正レンズ成分を1つ以上有することがより好ましくは可能である。
変倍光学系ZLにおいて、第2レンズ群G2は、少なくとも4つ以上のレンズ成分を有することが好ましくは可能である。
この構成により、第2レンズ群G2で球面収差、コマ収差を良好に補正することができ、防振性能の向上に寄与することができる。なお、第2レンズ群G2が3つ以下のレンズ成分で構成された場合、第2レンズ群G2での球面収差、コマ収差補正が不十分となる結果、中間群Gnへそれらの収差補正を担わせる必要が発生する。その結果、像ブレ補正時に発生する偏心コマ収差、あるいは片ボケの発生が増大し、像ブレ補正時に良好な結像性能を維持することが難しい。
効果を確実にするために、第2レンズ群G2は、少なくとも5つ以上のレンズ成分を有することが好ましくは可能である。
変倍光学系ZLにおいて、第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21と、正の屈折力を有する第22レンズ群G22とからなり、第21レンズ群G21を合焦レンズ群として像側に移動させることにより無限遠から近距離物体への合焦を行うことが好ましくは可能である。
この構成により、合焦時に移動させるレンズ群を小型軽量にすることができ、レンズ全系の小型化と、オートフォーカス時の合焦速度の高速化を実現することができる。
変倍光学系ZLは、次の条件式(4)を満足することが好ましくは可能である。
10.00° <ωt< 30.00° …(4)
但し、
ωt:望遠端状態における半画角。
条件式(4)は、望遠端状態における半画角の値を規定する条件である。条件式(4)を満足することにより、所望の画角が得られるとともに、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。
効果を確実なものとするために、条件式(4)の上限値を27.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(4)の上限値を24.00°とすることが好ましくは可能である。
効果を確実なものとするために、条件式(4)の下限値を11.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(4)の下限値を12.00°とすることが好ましくは可能である。
変倍光学系ZLは、次の条件式(5)を満足することが好ましくは可能である。
30.00° <ωw< 50.00° …(5)
但し、
ωw:広角端状態における半画角。
条件式(5)は、広角端状態における半画角の値を規定する条件である。条件式(5)を満足することにより、所望の画角が得られるとともに、コマ収差、歪曲収差、像面湾曲を良好に補正することができる。
効果を確実なものとするために、条件式(5)の上限値を48.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(5)の上限値を45.00°とすることが好ましくは可能である。
効果を確実なものとするために、条件式(5)の下限値を32.00°とすることが好ましくは可能である。効果をより確実なものとするために、条件式(5)の下限値を34.00°とすることが好ましくは可能である。
変倍光学系ZLにおいて、第21レンズ群G21と第22レンズ群G22との間隔は、変倍時、固定でも可変でもよい。
変倍光学系ZLにおいて、中間群Gnと防振レンズ群VRとの間隔は、変倍時、固定でも可変でもよい。固定の場合は、中間群Gnと防振レンズ群VRとの合成の屈折力は、負であることが好ましくは可能である。
変倍光学系ZLにおいて、防振レンズ群VRより像側に配置されるレンズからなる光学系の屈折力は、正であることが好ましくは可能である。
変倍光学系ZLは、防振レンズ群VRより像側に、少なくとも1つの正に屈折力を有するレンズ群を有するのが好ましくは可能である。
変倍光学系ZLは、第2レンズ群G2と中間群Gnとの間に、開口絞りを有することが好ましくは可能である。
以上のように、F値が明るく、広画角を有し、諸収差が良好に補正された変倍光学系ZLを実現することができる。
次に、上述の変倍光学系ZLを備えたカメラ(光学機器)について、図面を参照しながら説明する。図37は、変倍光学系を搭載したカメラの構成の一例を示す。
カメラ1は、図37に示すように、撮影レンズ2として上述の変倍光学系ZLを備えたレンズ交換式のカメラ(所謂ミラーレスカメラ)である。このカメラ1において、不図示の物体(被写体)からの光は、撮影レンズ2で集光されて、不図示のOLPF(Optical low pass filter:光学ローパスフィルタ)を介して撮像部3の撮像面上に被写体像を形成する。そして、撮像部3に設けられた光電変換素子によって被写体像が光電変換されて被写体の画像が生成される。この画像は、カメラ1に設けられたEVF(Electronic view finder:電子ビューファインダ)4に表示される。これにより撮影者は、EVF4を介して被写体を観察することができる。また、撮影者によって不図示のレリーズボタンが押されると、撮像部3で生成された被写体の画像が不図示のメモリーに記憶される。このようにして、撮影者はカメラ1による被写体の撮影を行うことができる。
カメラ1に撮影レンズ2として搭載した変倍光学系ZLは、後述の各実施例からも分かるようにその特徴的なレンズ構成によって、F値が明るく、広画角を有し、諸収差が良好に補正され、良好な光学性能を有している。したがって、カメラ1によれば、F値が明るく、広画角を有し、諸収差が良好に補正され、良好な光学性能を有する光学機器を実現することができる。
なお、カメラ1として、ミラーレスカメラの例を説明したが、これに限定されるものではない。例えば、カメラ本体にクイックリターンミラーを有し、ファインダ光学系によって被写体を観察する一眼レフタイプのカメラに、上述の変倍光学系ZLを搭載した場合でも、上記カメラ1と同様の効果を奏することができる。
続いて、上述の変倍光学系ZLの製造方法の一例について概説する。図38は、変倍光学系ZLの製造方法の一例を示す。
まず、鏡筒内に、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2とを有するように、各レンズを配置する(ステップST10)。第2レンズ群G2より像側に配置された中間群Gnを有するように、各レンズを配置する(ステップST20)。中間群Gnより像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群VRを有するように、各レンズを配置する(ステップST30)。少なくとも、第1レンズ群G1と第2レンズ群G2との間隔と、第2レンズ群G2と中間群Gnとの間隔とを変化させることにより変倍を行うように、各レンズを配置する(ステップST40)。次の条件式(1)を満足するように、各レンズを配置する(ステップST50)。
1.000 < f(1〜Gn)t/ft < 100.000 …(1)
但し、
f(1〜Gn)t:望遠端状態における第1レンズ群G1から中間群Gnまでの合成焦点距離、
ft:望遠端状態における全系の焦点距離。
レンズ配置の一例を挙げると、図1に示すように、物体側から順に、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とを配置して第1レンズ群G1とし、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とを配置して第21レンズ群G21とし、両凸レンズL26を配置して第22レンズ群G22とし、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とを配置して第31レンズ群G31とし、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とを配置して第32レンズ群G32とし、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズとを配置して第4レンズ群G4とする。このように準備した各レンズ群を、上述の手順で配置して変倍光学系ZLを製造する。
上記の製造方法によれば、F値が明るく、広画角を有し、諸収差が良好に補正された変倍光学系ZLを製造することができる。
以下、各実施例について、図面に基づいて説明する。
図1、図4、図7、図10、図13、図16、図19、図22、図25、図28、図31、及び図34は、各実施例に係る変倍光学系ZL(ZL1〜ZL12)の構成及び屈折力配分を示す断面図である。変倍光学系ZL1〜ZL12の断面図の下部には、広角端状態(W)から中間焦点距離状態(M)を経て望遠端状態(T)に変倍する際の各レンズ群の光軸に沿った移動方向を矢印で示す。変倍光学系ZL1〜ZL12の断面図の上部には、無限遠から近距離物体に合焦する際の合焦レンズ群の移動方向を矢印で示すとともに、像ブレを補正する際の防振レンズ群VRの様子も示している。
なお、第1実施例に係る図1に対する各参照符号は、参照符号の桁数の増大による説明の煩雑化を避けるため、実施例ごとに独立して用いている。ゆえに、他の実施例に係る図面と共通の参照符号を付していても、それらは他の実施例とは必ずしも共通の構成ではない。
以下に表1〜表12を示すが、これらは第1実施例〜第12実施例における各諸元の表である。
各実施例では収差特性の算出対象として、d線(波長587.562nm)、g線(波長435.835nm)を選んでいる。
表中の[レンズ諸元]において、面番号は光線の進行する方向に沿った物体側からの光学面の順序、Rは各光学面の曲率半径、Dは各光学面から次の光学面(又は像面)までの光軸上の距離である面間隔、n(d)は光学部材の材質のd線に対する屈折率、νdは光学部材の材質のd線を基準とするアッベ数、(開口絞り)は開口絞りSをそれぞれ示す。曲率半径の「0.00000」は、レンズ面の場合は平面を示し、絞りの場合は開口又は絞り面を示す。光学面が非球面である場合には、面番号に*印を付し、曲率半径Rの欄には近軸曲率半径を示す。
表中の[非球面データ]には、[レンズ諸元]に示した非球面について、その形状を次式(a)で示す。X(y)は非球面の頂点における接平面から高さyにおける非球面上の位置までの光軸方向に沿った距離を、Rは基準球面の曲率半径(近軸曲率半径)を、κは円錐定数を、Aiは第i次の非球面係数をそれぞれ示す。「E-n」は、「×10-n」を示す。例えば、1.234E-05=1.234×10-5である。なお、2次の非球面係数A2は0であり、記載を省略する。
X(y)=(y2/R)/{1+(1−κ×y2/R21/2}+A4×y4+A6×y6+A8×y8+A10×y10+A12×y12 …(a)
表中の[各種データ]において、fはレンズ全系の焦点距離、FNoはFナンバー、ωは半画角(単位:°)、Yは最大像高、TLは無限遠合焦時の光軸上でのレンズ最前面からレンズ最終面までの距離、BFは無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離、BF(空気換算)は無限遠合焦時の光軸上でのレンズ最終面から像面Iまでの距離を空気換算長により表記したもの、をそれぞれ示す。
表中の[可変間隔データ]において、D0は物体面と第1レンズ群G1の最も物体側のレンズ面との軸上空気間隔、Diは第i面と第(i+1)面との面間隔(i=1、2、3…)、fはレンズ全系の焦点距離をそれぞれ示す。
表中の[レンズ群データ]において、各レンズ群の始面と焦点距離を示す。
表中の[フォーカシングデータ]において、合焦時のレンズ移動量と撮影距離を示す。
表中の[条件式対応値]には、上記の条件式(1)〜(5)に対応する値を示す。
以下、全ての諸元値において、掲載されている焦点距離f、曲率半径R、面間隔D、その他の長さ等は、特記のない場合一般に「mm」が使われる。しかし、光学系は比例拡大又は比例縮小しても同等の光学性能が得られるので、これに限られるものではない。また、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。
ここまでの表の説明は全ての実施例において共通であり、以下での説明を省略する。
(第1実施例)
第1実施例について、図1〜図3及び表1を用いて説明する。第1実施例に係る変倍光学系ZL(ZL1)は、図1に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。正メニスカスレンズL46は、像側面が非球面形状である。
第2レンズ群G2と第3レンズ群G3との間に、物体側から順に並んだ、第1のフレアカット絞りFC1と、開口絞りSとを備える。第4レンズ群G4と像面Iとの間に、第2のフレアカット絞りFC2を備える。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第1のフレアカット絞りFC1、開口絞りSおよび第2のフレアカット絞りFC2は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第1実施例では、広角端状態において、防振係数は−0.45であり、焦点距離は24.80mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.29mmである。中間焦点距離状態において、防振係数は−0.51であり、焦点距離は50.01mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.51mmである。望遠端状態において、防振係数は−0.58であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.61mmである。
下記の表1に、第1実施例における各諸元の値を示す。表1における面番号1〜40が、図1に示すm1〜m40の各光学面に対応している。
(表1)
[レンズ諸元]
面番号 R D n(d) νd
1 121.85638 2.900 1.74389 49.5
*2 29.63670 15.360 1.00000
*3 -197.50816 0.200 1.56093 36.6
4 -169.39125 2.100 1.80400 46.6
5 60.51496 0.150 1.00000
6 52.85097 5.600 2.00100 29.1
7 146.47986 D7 1.00000
8 148.41161 3.000 1.59349 67.0
9 -517.10678 0.100 1.00000
10 49.87002 3.500 1.59349 67.0
11 157.35190 4.762 1.00000
12 87.49334 4.800 1.59349 67.0
13 -132.22400 1.500 1.90366 31.3
14 45.76622 1.640 1.00000
15 78.93526 4.450 1.77250 49.6
16 -176.75459 D16 1.00000
17 57.14809 5.300 1.81600 46.6
18 -583.40702 D18 1.00000
19 0.00000 1.200 1.00000
20 (開口絞り) D20 1.00000
21 -141.85186 1.200 1.80400 46.6
22 33.20059 4.360 1.00000
23 -33.72704 1.200 1.60300 65.4
24 -60.09530 0.100 1.00000
25 65.48868 3.150 1.84666 23.8
26 -127.25009 D26 1.00000
27 -119.24441 1.100 1.59349 67.0
28 67.70394 1.150 1.00000
29 62.36800 2.100 1.80518 25.5
30 107.42000 D30 1.00000
*31 119.87584 4.700 1.55332 71.7
32 -115.00129 0.100 1.00000
33 71.95116 1.400 1.83481 42.7
34 38.48800 6.800 1.59319 67.9
35 -237.01429 0.280 1.00000
36 43.00799 9.500 1.49782 82.6
37 -42.99900 1.400 1.80518 25.5
38 98.94100 4.600 1.69350 53.3
*39 462.40647 D39 1.00000
40 0.00000 D40 1.00000

[非球面データ]
第2面
κ = 0.00000e+00
A4 = 2.21510e-06
A6 = 2.57690e-09
A8 =-6.01500e-12
A10= 1.09200e-14
A12=-7.29000e-18

第3面
κ = 1.00000e+00
A4 =-3.83430e-07
A6 = 7.93340e-10
A8 =-3.53630e-12
A10= 5.08120e-15
A12=-3.43370e-18

第31面
κ = 1.00000e+00
A4 = 4.80890e-06
A6 = 5.06980e-10
A8 =-2.73140e-12
A10=-7.78150e-16
A12= 0.00000e+00

第39面
κ = 1.00000e+00
A4 = 7.56540e-06
A6 =-9.88600e-10
A8 = 5.61740e-12
A10=-8.07750e-15
A12= 0.00000e+00

[各種データ]
W M T
f 24.80 50.01 67.85
FNo 2.92 2.92 2.92
ω 42.5 22.7 17.2
Y 21.60 21.60 21.60
TL 220.251 198.419 200.827
BF 41.035 48.522 55.686
BF(空気換算) 41.035 48.522 55.686

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.80 50.01 67.85
D7 48.945 10.930 1.902
D16 7.735 7.735 7.735
D18 1.802 17.931 29.439
D20 2.088 4.668 3.620
D26 1.250 1.250 1.250
D30 17.692 7.680 1.492
D39 2.530 10.000 17.180
D40 38.505 38.522 38.506

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.47
第2レンズ群 8 42.49
第21レンズ群 8 78.58
第22レンズ群 17 64.02
第3レンズ群 21 -39.26
第31レンズ群 21 -65.76
第32レンズ群 27 -121.07
第4レンズ群 31 48.95

[フォーカシングデータ]
W M T
レンズ移動量 6.735 6.735 6.735
撮影距離(m) 0.4183 0.3810 0.3966

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 10.118
条件式(2) −f(Gn〜G(VR))w/fw = 1.583
条件式(3) f(RP)/fw = 1.152
条件式(4) ωt = 17.2
条件式(5) ωw = 42.5
表1から、第1実施例に係る変倍光学系ZL1は、条件式(1)〜(5)を満足することが分かる。
図2は、第1実施例に係る変倍光学系ZL1の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図3は、第1実施例に係る変倍光学系ZL1の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図3のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図において、FNOはFナンバー、Yは像高を示す。dはd線、gはg線における収差を示す。また、これらの記載のないものは、d線における収差を示す。但し、無限遠合焦時の球面収差図では、最大口径に対応するFナンバーの値を示す。非点収差図では、実線はサジタル像面、破線はメリディオナル像面を示す。後述する各実施例の収差図においても、本実施例と同様の符号を用いる。
各収差図から明らかなように、第1実施例に係る変倍光学系ZL1は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第2実施例)
第2実施例について、図4〜図6及び表2を用いて説明する。第2実施例に係る変倍光学系ZL(ZL2)は、図4に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45と物体側に凸面を向けた正メニスカスレンズL46との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。正メニスカスレンズL46は、像側面が非球面形状である。
第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを備える。第4レンズ群G4と像面Iとの間に、フレアカット絞りFCを備える。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。開口絞りSおよびフレアカット絞りFCは、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第2実施例では、広角端状態において、防振係数は−0.44であり、焦点距離は24.80mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.30mmである。中間焦点距離状態において、防振係数は−0.50であり、焦点距離は47.76mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.50mmである。望遠端状態において、防振係数は−0.58であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.62mmである。
下記の表2に、第2実施例における各諸元の値を示す。表2における面番号1〜39が、図4に示すm1〜m39の各光学面に対応している。
(表2)
[レンズ諸元]
面番号 R D n(d) νd
1 123.86834 2.900 1.74389 49.5
*2 29.53373 15.066 1.00000
*3 -163.51331 0.300 1.56093 36.6
4 -139.86223 2.100 1.80400 46.6
5 65.45825 0.150 1.00000
6 56.53091 5.625 2.00100 29.1
7 182.99126 D7 1.00000
8 143.07855 3.200 1.59349 67.0
9 -394.38588 0.200 1.00000
10 55.12400 3.500 1.59349 67.0
11 197.46867 3.900 1.00000
12 77.75166 4.842 1.59349 67.0
13 -158.02225 1.500 1.90366 31.3
14 46.02834 1.844 1.00000
15 83.85157 3.848 1.77250 49.6
16 -277.24360 D16 1.00000
17 59.19194 5.400 1.80400 46.6
18 -354.91781 D18 1.00000
19 (開口絞り) D19 1.00000
20 -140.00000 1.178 1.77250 49.6
21 33.57372 4.337 1.00000
22 -36.69329 1.200 1.59349 67.0
23 -63.63544 0.100 1.00000
24 61.90037 3.102 1.84666 23.8
25 -187.23382 D25 1.00000
*26 -120.15188 1.100 1.61000 65.0
27 78.56667 0.966 1.00000
28 66.22584 1.921 1.80518 25.5
29 108.00000 D29 1.00000
*30 96.36461 5.000 1.55332 71.7
31 -132.37171 0.200 1.00000
32 103.35532 1.300 1.80518 25.5
33 49.66548 6.742 1.59319 67.9
34 -101.36549 0.188 1.00000
35 55.76221 9.450 1.49782 82.6
36 -36.89155 1.400 1.75000 31.4
37 97.48202 4.003 1.69350 53.2
*38 442.81061 D38 1.00000
39 0.00000 D39 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 1.48700e-01 1.33488e-06 1.45328e-09 -6.97898e-13 5.22062e-16
3 4.31460e+00 -4.66997e-07 4.80176e-10 -1.05569e-12 3.62706e-16
26 -2.40000e+01 -1.76198e-06 1.30497e-09 0.00000e+00 0.00000e+00
30 3.97310e+00 3.04836e-06 -6.62447e-10 0.00000e+00 0.00000e+00
38 3.71000e+02 4.89412e-06 1.67774e-10 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.80 47.76 67.85
FNo 2.92 2.92 2.92
ω 42.5 23.7 17.2
Y 21.60 21.60 21.60
TL 219.362 198.056 201.131
BF 41.459 48.894 57.632
BF(空気換算) 41.459 48.894 57.632

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.80 47.76 67.85
D7 48.978 12.578 1.835
D16 7.750 7.750 7.750
D18 3.000 18.144 31.911
D19 2.000 4.200 2.500
D25 1.440 1.440 1.440
D29 18.172 8.487 1.500
D38 1.139 8.574 17.251
D39 40.319 40.320 40.381

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.77
第2レンズ群 8 42.97
第21レンズ群 8 81.61
第22レンズ群 17 63.47
第3レンズ群 20 -40.68
第31レンズ群 20 -68.40
第32レンズ群 26 -123.54
第4レンズ群 30 49.36

[フォーカシングデータ]
W M T
レンズ移動量 6.75 6.75 6.75
撮影距離(m) 0.4124 0.3853 0.4059

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 12.007
条件式(2) −f(Gn〜G(VR))w/fw = 1.640
条件式(3) f(RP)/fw = 1.149
条件式(4) ωt = 17.2
条件式(5) ωw = 42.5
表2から、第2実施例に係る変倍光学系ZL2は、条件式(1)〜(5)を満足することが分かる。
図5は、第2実施例に係る変倍光学系ZL2の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図6は、第2実施例に係る変倍光学系ZL2の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図6のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第2実施例に係る変倍光学系ZL2は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第3実施例)
第3実施例について、図7〜図9及び表3を用いて説明する。第3実施例に係る変倍光学系ZL(ZL3)は、図7に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL45は、像側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と像側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。
第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを備える。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5および開口絞りSは、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第3実施例では、広角端状態において、防振係数は−0.45であり、焦点距離は24.82mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.29mmである。中間焦点距離状態において、防振係数は−0.50であり、焦点距離は47.49mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.49mmである。望遠端状態において、防振係数は−0.58であり、焦点距離は67.84mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.62mmである。
下記の表3に、第3実施例における各諸元の値を示す。表3における面番号1〜40が、図7に示すm1〜m40の各光学面に対応している。
(表3)
[レンズ諸元]
面番号 R D n(d) νd
1 134.61434 2.900 1.74389 49.5
*2 30.98121 14.105 1.00000
*3 -271.55507 0.300 1.56093 36.6
4 -224.01871 2.100 1.80400 46.6
5 65.07720 0.200 1.00000
6 53.84066 5.401 2.00100 29.1
7 113.70514 D7 1.00000
8 259.91458 3.000 1.59349 67.0
9 -443.80327 0.243 1.00000
10 71.84029 3.500 1.69680 55.5
11 238.64880 4.057 1.00000
12 66.72188 5.288 1.59349 67.0
13 -145.97738 1.500 1.90366 31.3
14 49.38387 1.625 1.00000
15 83.91292 4.117 1.77250 49.6
16 -207.54373 D16 1.00000
17 59.58569 5.400 1.80400 46.6
18 -338.02309 D18 1.00000
19 (開口絞り) D19 1.00000
20 -140.00000 1.178 1.77250 49.6
21 34.70000 4.110 1.00000
22 -37.39824 1.200 1.59349 67.0
23 -64.12090 0.100 1.00000
24 62.46432 2.941 1.90200 25.3
25 -277.86426 D25 1.00000
*26 -157.84803 1.100 1.77250 49.6
27 61.66083 1.232 1.00000
28 63.26230 2.386 1.84666 23.8
29 198.11149 D29 1.00000
*30 74.15506 5.000 1.55332 71.7
31 -190.85228 0.100 1.00000
32 414.99863 1.300 1.84666 23.8
33 79.29491 6.640 1.59319 67.9
34 -59.47223 0.188 1.00000
35 77.14715 8.284 1.49700 81.6
36 -39.12349 1.400 1.70600 30.9
*37 467.32553 D37 1.00000
38 74.86867 2.769 1.49700 81.6
39 177.01793 1.400 1.79504 28.7
40 100.00000 D40 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -8.40000e-03 1.76676e-06 1.42633e-09 -6.16355e-13 3.36393e-16
3 5.89560e+00 -4.29758e-07 9.43230e-10 -1.79782e-12 8.72339e-16
26 -2.40000e+01 -5.18855e-07 4.69601e-10 0.00000e+00 0.00000e+00
30 7.93900e-01 2.20229e-06 -7.31449e-10 0.00000e+00 0.00000e+00
37 4.51000e+02 4.05983e-06 9.42292e-10 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.82 47.49 67.84
FNo 2.91 2.91 2.92
ω 42.3 23.8 17.2
Y 21.60 21.60 21.60
TL 220.442 198.936 201.965
BF 42.289 42.290 42.353
BF(空気換算) 42.289 42.290 42.353

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.82 47.49 67.84
D7 49.018 12.832 1.835
D16 7.750 7.750 7.750
D18 3.000 17.679 31.753
D19 2.000 3.989 2.000
D25 1.412 1.412 1.412
D29 18.411 8.690 1.500
D37 1.500 9.233 18.301
D40 42.289 42.290 42.353

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.85
第2レンズ群 8 42.32
第21レンズ群 8 82.21
第22レンズ群 17 63.39
第3レンズ群 20 -41.39
第31レンズ群 20 -69.44
第32レンズ群 26 -122.74
第4レンズ群 30 52.58
第5レンズ群 38 2000.09

[フォーカシングデータ]
W M T
レンズ移動量 6.75 6.75 6.75
撮影距離(m) 0.4144 0.3857 0.4059

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 8.425
条件式(2) −f(Gn〜G(VR))w/fw = 1.668
条件式(3) f(RP)/fw = 1.242
条件式(4) ωt = 17.2
条件式(5) ωw = 42.3
表3から、第3実施例に係る変倍光学系ZL3は、条件式(1)〜(5)を満足することが分かる。
図8は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図9は、第3実施例に係る変倍光学系ZL3の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図9のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第3実施例に係る変倍光学系ZL3は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第4実施例)
第4実施例について、図10〜図12及び表4を用いて説明する。第4実施例に係る変倍光学系ZL(ZL4)は、図10に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、負の屈折力を有する第7レンズ群G7とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2(合焦レンズ群)は、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。
第3レンズ群G3は、両凸レンズL31からなる。
第4レンズ群G4(中間群)は、光軸と直交方向の位置が固定されており、物体側から順に並んだ、両凹レンズL41と、物体側に凹面を向けた負メニスカスレンズL42と、両凸レンズL43とからなる。
第5レンズ群G5(防振レンズ群)は、物体側から順に並んだ、両凹レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。両凹レンズL51は、物体側面が非球面形状である。
第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と、像側に凹面を向けた負メニスカスレンズL62と両凸レンズL63との接合レンズと、両凸レンズL64と両凹レンズL65との接合レンズとからなる。両凸レンズL61は、物体側面が非球面形状である。両凹レンズL65は、像側面が非球面形状である。
第7レンズ群G7は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL71と像側に凹面を向けた負メニスカスレンズL72との接合レンズからなる。
第3レンズ群G3と第4レンズ群G4との間に、開口絞りSを備える。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を一旦像側へ移動させた後、物体側へ移動させ、第5レンズ群G5を一旦像側へ移動させた後、物体側へ移動させ、第6レンズ群G6を物体側へ移動させることにより行う。第7レンズ群G7および開口絞りSは、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第2レンズ群G2を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第5レンズ群G5を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第4実施例では、広角端状態において、防振係数は−0.46であり、焦点距離は25.49mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.29mmである。中間焦点距離状態において、防振係数は−0.53であり、焦点距離は48.81mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.49mmである。望遠端状態において、防振係数は−0.61であり、焦点距離は69.45mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.59mmである。
下記の表4に、第4実施例における各諸元の値を示す。表4における面番号1〜40が、図10に示すm1〜m40の各光学面に対応している。
(表4)
[レンズ諸元]
面番号 R D n(d) νd
1 134.61434 2.900 1.74389 49.5
*2 30.98121 14.105 1.00000
*3 -271.55507 0.300 1.56093 36.6
4 -224.01871 2.100 1.80400 46.6
5 65.07720 0.200 1.00000
6 53.84066 5.401 2.00100 29.1
7 113.70514 D7 1.00000
8 259.91458 3.000 1.59349 67.0
9 -443.80327 0.243 1.00000
10 71.84029 3.500 1.69680 55.5
11 238.64880 4.057 1.00000
12 66.72188 5.288 1.59349 67.0
13 -145.97738 1.500 1.90366 31.3
14 49.38387 1.625 1.00000
15 83.91292 4.117 1.77250 49.6
16 -207.54373 D16 1.00000
17 59.58569 5.400 1.80400 46.6
18 -338.02309 D18 1.00000
19 (開口絞り) D19 1.00000
20 -140.00000 1.178 1.77250 49.6
21 34.70000 4.110 1.00000
22 -37.39824 1.200 1.59349 67.0
23 -64.12090 0.100 1.00000
24 62.46432 2.941 1.90200 25.3
25 -277.86426 D25 1.00000
*26 -157.84803 1.100 1.77250 49.6
27 61.66083 1.232 1.00000
28 63.26230 2.386 1.84666 23.8
29 198.11149 D29 1.00000
*30 74.15506 5.000 1.55332 71.7
31 -190.85228 0.100 1.00000
32 414.99863 1.300 1.84666 23.8
33 79.29491 6.640 1.59319 67.9
34 -59.47223 0.188 1.00000
35 77.14715 8.284 1.49700 81.6
36 -39.50000 1.400 1.70600 30.9
*37 467.32553 D37 1.00000
38 74.86867 2.769 1.48749 70.3
39 300.00000 1.400 1.79504 28.7
40 100.00000 D40 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -8.40000e-03 1.76676e-06 1.42633e-09 -6.16355e-13 3.36393e-16
3 5.89560e+00 -4.29758e-07 9.43230e-10 -1.79782e-12 8.72339e-16
26 -2.40000e+01 -5.18855e-07 4.69601e-10 0.00000e+00 0.00000e+00
30 7.93900e-01 2.20229e-06 -7.31449e-10 0.00000e+00 0.00000e+00
37 4.51000e+02 4.05983e-06 9.42292e-10 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 25.49 48.81 69.45
FNo 2.92 2.92 2.92
ω 41.6 23.3 16.8
Y 21.60 21.60 21.60
TL 222.079 204.772 203.978
BF 44.388 45.157 44.803
BF(空気換算) 44.388 45.157 44.803

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 25.49 48.81 69.45
D7 49.018 12.832 1.900
D16 7.750 12.000 8.300
D18 2.500 16.500 30.700
D19 2.000 3.989 2.000
D25 1.412 3.000 1.412
D29 18.450 7.000 1.500
D37 1.500 9.233 18.301
D40 44.388 45.157 44.803

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.85
第2レンズ群 8 82.21
第3レンズ群 17 63.39
第4レンズ群 20 -69.44
第5レンズ群 26 -122.74
第6レンズ群 30 52.47
第7レンズ群 38 -3528.86

[フォーカシングデータ]
W M T
レンズ移動量 6.75 11.00 7.30
撮影距離(m) 0.4160 0.3019 0.3889

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 9.194
条件式(2) −f(Gn〜G(VR))w/fw = 1.624
条件式(3) f(RP)/fw = 1.240
条件式(4) ωt = 16.8
条件式(5) ωw = 41.6
表4から、第4実施例に係る変倍光学系ZL4は、条件式(1)〜(5)を満足することが分かる。
図11は、第4実施例に係る変倍光学系ZL4の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図12は、第4実施例に係る変倍光学系ZL4の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図12のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第4実施例に係る変倍光学系ZL4は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第5実施例)
第5実施例について、図13〜図15及び表5を用いて説明する。第5実施例に係る変倍光学系ZL(ZL5)は、図13に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。
第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL45は、像側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、両凸レンズL51と両凹レンズL52との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第3レンズ群G3および第5レンズ群G5は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第5実施例では、広角端状態において、防振係数は−0.46であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.28mmである。中間焦点距離状態において、防振係数は−0.52であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.48mmである。望遠端状態において、防振係数は−0.58であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.62mmである。
下記の表5に、第5実施例における各諸元の値を示す。表5における面番号1〜40が、図13に示すm1〜m40の各光学面に対応している。
(表5)
[レンズ諸元]
面番号 R D n(d) νd
1 144.94817 2.900 1.74389 49.5
*2 29.83529 14.301 1.00000
*3 -322.90228 0.300 1.56093 36.6
4 -228.59270 2.100 1.80400 46.6
5 65.19707 0.200 1.00000
6 54.96083 5.379 2.00100 29.1
7 130.46571 D7 1.00000
8 127.91888 3.200 1.59349 67.0
9 -2245.90430 1.780 1.00000
10 81.17716 3.500 1.69680 55.5
11 679.72724 2.453 1.00000
12 61.05134 5.724 1.59349 67.0
13 -130.20006 1.500 1.90366 31.3
14 46.24112 1.694 1.00000
15 77.95470 3.722 1.77250 49.6
16 -564.05655 D16 1.00000
17 60.46759 5.400 1.80400 46.6
18 -263.45861 D18 1.00000
19 (開口絞り) 2.000 1.00000
20 -140.00000 1.178 1.77250 49.6
21 35.60000 4.059 1.00000
22 -35.16240 1.200 1.72916 54.6
23 -51.36153 0.100 1.00000
24 69.55169 2.879 1.90200 25.3
25 -209.71368 D25 1.00000
*26 -118.85935 1.100 1.77250 49.6
27 54.49135 1.415 1.00000
28 60.78441 2.635 1.90200 25.3
29 331.09581 D29 1.00000
*30 118.81221 4.686 1.55332 71.7
31 -102.83315 0.100 1.00000
32 152.27830 1.300 1.72000 28.0
33 85.35751 6.402 1.59319 67.9
34 -54.69093 0.188 1.00000
35 959.47501 7.222 1.49700 81.6
36 -30.23774 1.400 1.70600 29.0
*37 1029.85760 D37 1.00000
38 53.49812 4.770 1.55332 71.7
39 -6970.92580 1.400 1.90366 31.3
40 100.00000 D40 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -1.01100e-01 1.43852e-06 1.71179e-09 -1.42870e-12 1.05723e-15
3 2.81381e+01 -7.54473e-07 4.14335e-10 -5.77466e-13 3.16668e-16
26 -1.90000e+01 -9.14707e-07 9.49568e-10 0.00000e+00 0.00000e+00
30 -1.43460e+00 2.27762e-06 -5.51593e-10 0.00000e+00 0.00000e+00
37 2.44600e+03 4.05698e-06 0.00000e+00 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.50 67.85
FNo 2.90 2.90 2.91
ω 42.4 23.8 17.2
Y 21.60 21.60 21.60
TL 218.725 198.522 200.695
BF 41.843 41.843 41.903
BF(空気換算) 41.843 41.843 41.903

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.50 67.85
D7 49.003 12.690 1.835
D16 7.750 7.750 7.750
D18 1.450 17.610 30.588
D25 1.473 1.473 1.473
D29 17.519 8.681 1.500
D37 1.500 10.288 17.459
D40 41.843 41.843 41.903

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.88
第2レンズ群 8 42.16
第21レンズ群 8 80.98
第22レンズ群 17 61.63
第3レンズ群 19 -42.05
第31レンズ群 19 -71.15
第32レンズ群 26 -121.45
第4レンズ群 30 56.98
第5レンズ群 38 619.99

[フォーカシングデータ]
W M T
レンズ移動量 6.75 6.75 6.75
撮影距離(m) 0.4148 0.3865 0.4059

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 5.464
条件式(2) −f(Gn〜G(VR))w/fw = 1.698
条件式(3) f(RP)/fw = 1.352
条件式(4) ωt = 17.2
条件式(5) ωw = 42.4
表5から、第5実施例に係る変倍光学系ZL5は、条件式(1)〜(5)を満足することが分かる。
図14は、第5実施例に係る変倍光学系ZL5の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図15は、第5実施例に係る変倍光学系ZL5の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図15のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第5実施例に係る変倍光学系ZL5は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第6実施例)
第6実施例について、図16〜図18及び表6を用いて説明する。第6実施例に係る変倍光学系ZL(ZL6)は、図16に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2(合焦レンズ群)は、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。
第3レンズ群G3は、両凸レンズL31からなる。
第4レンズ群G4(中間群)は、光軸と直交方向の位置が固定されており、物体側から順に並んだ、開口絞りSと、両凹レンズL41と、物体側に凹面を向けた負メニスカスレンズL42と、両凸レンズL43とからなる。
第5レンズ群G5(防振レンズ群)は、物体側から順に並んだ、両凹レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。両凹レンズL51は、物体側面が非球面形状である。
第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と、像側に凹面を向けた負メニスカスレンズL62と両凸レンズL63との接合レンズと、両凸レンズL64と両凹レンズL65との接合レンズとからなる。両凸レンズL61は、物体側面が非球面形状である。両凹レンズL65は、像側面が非球面形状である。
第7レンズ群G7は、物体側から順に並んだ、両凸レンズL71と両凹レンズL72との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を像側へ移動させ、第5レンズ群G5を一旦像側へ移動させた後、物体側へ移動させ、第6レンズ群G6を物体側へ移動させることにより行う。第7レンズ群G7は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第2レンズ群G2を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第5レンズ群G5を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第6実施例では、広角端状態において、防振係数は−0.46であり、焦点距離は24.73mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.28mmである。中間焦点距離状態において、防振係数は−0.53であり、焦点距離は47.48mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.48mmである。望遠端状態において、防振係数は−0.58であり、焦点距離は67.41mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.61mmである。
下記の表6に、第6実施例における各諸元の値を示す。表6における面番号1〜40が、図16に示すm1〜m40の各光学面に対応している。
(表6)
[レンズ諸元]
面番号 R D n(d) νd
1 144.94817 2.900 1.74389 49.5
*2 29.83529 14.301 1.00000
*3 -322.90228 0.300 1.56093 36.6
4 -228.59270 2.100 1.80400 46.6
5 65.19707 0.200 1.00000
6 54.96083 5.379 2.00100 29.1
7 130.46571 D7 1.00000
8 127.91888 3.200 1.59349 67.0
9 -2245.90430 1.780 1.00000
10 81.17716 3.500 1.69680 55.5
11 679.72724 2.453 1.00000
12 61.05134 5.724 1.59349 67.0
13 -130.20006 1.500 1.90366 31.3
14 46.24112 1.694 1.00000
15 77.95470 3.722 1.77250 49.6
16 -564.05655 D16 1.00000
17 60.46759 5.400 1.80400 46.6
18 -263.45861 D18 1.00000
19 (開口絞り) 2.000 1.00000
20 -140.00000 1.178 1.77250 49.6
21 35.60000 4.059 1.00000
22 -35.16240 1.200 1.72916 54.6
23 -51.36153 0.100 1.00000
24 69.55169 2.879 1.90200 25.3
25 -209.71368 D25 1.00000
*26 -118.85935 1.100 1.77250 49.6
27 54.49135 1.415 1.00000
28 60.78441 2.635 1.90200 25.3
29 331.09581 D29 1.00000
*30 118.81221 4.686 1.55332 71.7
31 -102.83315 0.100 1.00000
32 152.27830 1.300 1.72000 28.0
33 85.35751 6.402 1.59319 67.9
34 -54.69093 0.188 1.00000
35 959.47501 7.222 1.49700 81.6
36 -30.23774 1.400 1.70600 29.0
*37 1029.85760 D37 1.00000
38 53.49812 4.770 1.55332 71.7
39 -6970.92580 1.400 1.90366 31.3
40 100.00000 D40 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -1.01100e-01 1.43852e-06 1.71179e-09 -1.42870e-12 1.05723e-15
3 2.81381e+01 -7.54473e-07 4.14335e-10 -5.77466e-13 3.16668e-16
26 -1.90000e+01 -9.14707e-07 9.49568e-10 0.00000e+00 0.00000e+00
30 -1.43460e+00 2.27762e-06 -5.51593e-10 0.00000e+00 0.00000e+00
37 2.44600e+03 4.05698e-06 0.00000e+00 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.73 47.48 67.41
FNo 2.90 2.90 2.93
ω 42.5 23.9 17.3
Y 21.60 21.60 21.60
TL 218.388 200.467 201.434
BF 41.880 42.603 42.530
BF(空気換算) 41.880 42.603 42.530

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.73 47.48 67.41
D7 49.003 12.690 1.835
D16 7.750 9.500 8.500
D18 1.450 17.000 30.000
D25 1.100 2.500 1.473
D29 17.519 7.700 1.450
D37 1.500 10.288 17.459
D40 41.880 42.603 42.530

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.88
第2レンズ群 8 80.98
第3レンズ群 17 61.63
第4レンズ群 19 -71.15
第5レンズ群 26 -121.45
第6レンズ群 30 56.98
第7レンズ群 38 619.99

[フォーカシングデータ]
W M T
レンズ移動量 6.75 8.50 7.50
撮影距離(m) 0.4145 0.3406 0.3816

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 5.692
条件式(2) −f(Gn〜G(VR))w/fw = 1.704
条件式(3) f(RP)/fw = 1.352
条件式(4) ωt = 17.3
条件式(5) ωw = 42.5
表6から、第6実施例に係る変倍光学系ZL6は、条件式(1)〜(5)を満足することが分かる。
図17は、第6実施例に係る変倍光学系ZL6の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図18は、第6実施例に係る変倍光学系ZL6の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図18のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第6実施例に係る変倍光学系ZL6は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第7実施例)
第7実施例について、図19〜図21及び表7を用いて説明する。第7実施例に係る変倍光学系ZL(ZL7)は、図19に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸レンズL22と、両凹レンズL23と、両凸レンズL24とからなる。第22レンズ群G22は、両凸レンズL25からなる。
第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、両凸レンズL42と、両凸レンズL43と両凹レンズL44との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第3レンズ群G3および第5レンズ群G5は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第7実施例では、広角端状態において、防振係数は−0.46であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.29mmである。中間焦点距離状態において、防振係数は−0.52であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.48mmである。望遠端状態において、防振係数は−0.58であり、焦点距離は67.86mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.62mmである。
下記の表7に、第7実施例における各諸元の値を示す。表7における面番号1〜38が、図19に示すm1〜m38の各光学面に対応している。
(表7)
[レンズ諸元]
面番号 R D n(d) νd
1 155.89691 2.900 1.74389 49.5
*2 29.88191 12.307 1.00000
*3 -998.95016 0.380 1.56093 36.6
4 -380.00000 2.100 1.75500 52.3
5 54.41504 0.200 1.00000
6 48.25639 5.777 1.90200 25.3
7 111.71017 D7 1.00000
8 75.52522 4.500 1.75000 53.0
9 599.23665 3.427 1.00000
10 65.44832 4.500 1.75500 52.3
11 -536.13486 0.864 1.00000
12 -161.64034 1.550 1.90200 25.3
13 48.60000 1.455 1.00000
14 77.92408 4.650 1.77250 49.6
15 -199.82321 D15 1.00000
16 59.54554 5.676 1.81600 46.6
17 -305.53264 D17 1.00000
18 (開口絞り) 2.000 1.00000
19 -140.00000 1.200 1.77250 49.6
20 34.07853 4.022 1.00000
21 -34.00000 1.200 1.72916 54.6
22 -47.36695 0.100 1.00000
23 60.05931 3.182 1.84666 23.8
24 -160.47286 D24 1.00000
*25 -266.90180 1.100 1.77250 49.6
26 80.68524 0.780 1.00000
27 68.16544 1.736 1.84666 23.8
28 100.00000 D28 1.00000
*29 300.52804 4.082 1.55332 71.7
30 -61.39111 0.100 1.00000
31 178.14990 4.513 1.60300 65.4
32 -65.35343 0.200 1.00000
33 142.59265 7.934 1.65160 58.6
34 -28.88978 1.400 1.90200 29.1
35 300.00000 D35 1.00000
36 137.03160 1.400 1.83000 37.0
37 64.66324 3.650 1.59319 67.9
38 735.00000 D38 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -9.54700e-01 5.69885e-06 -1.82979e-09 8.49633e-13 0.00000e+00
3 -1.40000e+01 -6.77491e-07 -2.49807e-10 0.00000e+00 0.00000e+00
25 -1.90000e+01 3.06942e-07 -6.70956e-10 0.00000e+00 0.00000e+00
29 5.86950e+00 -6.89526e-07 2.25877e-09 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.50 67.86
FNo 2.90 2.90 2.90
ω 42.4 23.9 17.2
Y 21.60 21.60 21.60
TL 210.992 190.994 193.977
BF 39.982 39.983 40.044
BF(空気換算) 39.982 39.983 40.044

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.50 67.86
D7 49.068 12.647 1.800
D15 7.785 7.785 7.785
D17 3.346 19.816 33.635
D24 0.999 0.999 0.999
D28 19.428 10.413 3.291
D35 1.500 10.465 17.538
D38 39.982 39.983 40.044

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -38.96
第2レンズ群 8 42.92
第21レンズ群 8 85.00
第22レンズ群 16 61.50
第3レンズ群 18 -45.09
第31レンズ群 18 -84.08
第32レンズ群 25 -117.85
第4レンズ群 29 56.15
第5レンズ群 36 620.00

[フォーカシングデータ]
W M T
レンズ移動量 6.785 6.785 6.785
撮影距離(m) 0.3997 0.3832 0.4060

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 3.792
条件式(2) −f(Gn〜G(VR))w/fw = 1.820
条件式(3) f(RP)/fw = 1.308
条件式(4) ωt = 17.2
条件式(5) ωw = 42.4
表7から、第7実施例に係る変倍光学系ZL7は、条件式(1)〜(5)を満足することが分かる。
図20は、第7実施例に係る変倍光学系ZL7の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図21は、第7実施例に係る変倍光学系ZL7の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図21のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第7実施例に係る変倍光学系ZL7は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第8実施例)
第8実施例について、図22〜図24及び表8を用いて説明する。第8実施例に係る変倍光学系ZL(ZL8)は、図22に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。両凹レンズL12は、物体側のガラス表面に設けた樹脂層を非球面形状に形成してなる、複合型非球面レンズである。
第2レンズ群G2は、物体側から順に並んだ、フレアカット絞りFCと、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、両凸レンズL22と、両凹レンズL23と、両凸レンズL24とからなる。第22レンズ群G22は、両凸レンズL25からなる。
第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、両凸レンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、物体側に凸面を向けた正メニスカスレンズL35とからなる。両凹レンズL34は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、像側に凸面を向けた正メニスカスレンズL41と、両凸レンズL42と、両凸レンズL43と両凹レンズL44との接合レンズとからなる。正メニスカスレンズL41は、物体側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL51と物体側に凸面を向けた正メニスカスレンズL52との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第3レンズ群G3および第5レンズ群G5は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第8実施例では、広角端状態において、防振係数は−0.50であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.26mmである。中間焦点距離状態において、防振係数は−0.58であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.43mmである。望遠端状態において、防振係数は−0.66であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.54mmである。
下記の表8に、第8実施例における各諸元の値を示す。表8における面番号1〜39が、図22に示すm1〜m39の各光学面に対応している。
(表8)
[レンズ諸元]
面番号 R D n(d) νd
1 171.22378 2.900 1.74389 49.5
*2 29.77139 12.208 1.00000
*3 -2272.73400 0.380 1.56093 36.6
4 -400.00000 2.100 1.75500 52.3
5 59.96509 0.200 1.00000
6 50.35816 7.000 1.90200 25.3
7 111.56759 D7 1.00000
8 0.00000 0.200 1.00000
9 82.35931 3.100 1.75000 51.0
10 869.55661 3.243 1.00000
11 65.70660 4.150 1.77250 49.6
12 -400.15117 0.889 1.00000
13 -142.76803 1.550 1.90200 25.3
14 49.72103 1.379 1.00000
15 78.21406 4.000 1.77250 49.6
16 -195.63433 D16 1.00000
17 58.26284 5.676 1.81600 46.6
18 -346.07444 D18 1.00000
19 (開口絞り) 2.000 1.00000
20 -140.00000 1.200 1.77250 49.6
21 36.40792 4.110 1.00000
22 -39.80791 1.200 1.72916 54.7
23 -59.45079 0.100 1.00000
24 69.32659 3.085 1.84666 23.8
25 -134.48153 D25 1.00000
*26 -251.99331 1.100 1.77250 49.6
27 63.18500 0.868 1.00000
28 59.71324 2.131 1.86000 24.2
29 100.00000 D29 1.00000
*30 -900.00000 3.663 1.55332 71.7
31 -54.18440 0.100 1.00000
32 84.94639 5.806 1.60300 65.5
33 -60.43832 0.200 1.00000
34 278.20778 6.810 1.65160 58.5
35 -32.56689 1.400 1.90200 28.5
36 191.68646 D36 1.00000
37 132.64391 1.400 1.83000 34.0
38 61.28313 3.734 1.59319 67.9
39 735.00000 D39 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -3.84000e-01 2.66465e-06 -1.34312e-10 -5.72743e-14 0.00000e+00
3 3.50000e+00 -9.48227e-07 -3.38888e-10 0.00000e+00 0.00000e+00
26 -2.80000e+01 3.11252e-07 -7.78416e-10 0.00000e+00 0.00000e+00
30 -6.00000e+00 -1.99894e-06 1.27933e-09 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.50 67.85
FNo 2.90 2.90 2.90
ω 42.4 24.0 17.2
Y 21.60 21.60 21.60
TL 209.253 187.862 189.544
BF 40.016 40.020 40.085
BF(空気換算) 40.016 40.020 40.085

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.50 67.85
D7 49.018 12.518 1.800
D16 7.835 7.835 7.835
D18 3.200 18.355 30.700
D25 0.930 0.930 0.930
D29 18.873 9.373 1.900
D36 1.500 10.950 18.413
D39 40.016 40.020 40.085

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -39.60
第2レンズ群 8 41.35
第21レンズ群 8 84.99
第22レンズ群 17 61.50
第3レンズ群 19 -43.44
第31レンズ群 19 -85.70
第32レンズ群 26 -106.03
第4レンズ群 30 54.89
第5レンズ群 37 619.95

[フォーカシングデータ]
W M T
レンズ移動量 6.835 6.835 6.835
撮影距離(m) 0.4055 0.3839 0.4040

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 3.390
条件式(2) −f(Gn〜G(VR))w/fw = 1.754
条件式(3) f(RP)/fw = 1.327
条件式(4) ωt = 17.2
条件式(5) ωw = 42.4
表8から、第8実施例に係る変倍光学系ZL8は、条件式(1)〜(5)を満足することが分かる。
図23は、第8実施例に係る変倍光学系ZL8の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図24は、第8実施例に係る変倍光学系ZL8の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図24のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第8実施例に係る変倍光学系ZL8は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第9実施例)
第9実施例について、図25〜図27及び表9を用いて説明する。第9実施例に係る変倍光学系ZL(ZL9)は、図25に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13とからなる。負メニスカスレンズL11は、像側面が非球面形状である。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、両凸レンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、物体側から順に並んだ、両凸レンズL26と物体側に凹面を向けた負メニスカスレンズL27との接合レンズからなる。
第3レンズ群G3は、物体側から順に並んだ、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凹面を向けた負メニスカスレンズL32と、像側に凸面を向けた正メニスカスレンズL33とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL34と、両凸レンズL35とからなる。両凹レンズL34は、両側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、両凸レンズL42と、両凸レンズL43と両凹レンズL44との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL44は、像側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、両凸レンズL51と両凹レンズL52との接合レンズからなる。
第2レンズ群G2と第3レンズ群G3との間に、開口絞りSを備える。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5および開口絞りSは、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第9実施例では、広角端状態において、防振係数は−0.51であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.25mmである。中間焦点距離状態において、防振係数は−0.57であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.43mmである。望遠端状態において、防振係数は−0.66であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.54mmである。
下記の表9に、第9実施例における各諸元の値を示す。表9における面番号1〜39が、図25に示すm1〜m39の各光学面に対応している。
(表9)
[レンズ諸元]
面番号 R D n(d) νd
1 180.28031 2.900 1.74389 49.5
*2 30.43353 15.281 1.00000
3 -400.00000 2.100 1.80400 46.6
4 61.64102 0.200 1.00000
5 52.74108 5.413 2.00100 29.1
6 127.21255 D6 1.00000
7 250.61095 3.650 1.48749 70.3
8 -249.39202 0.258 1.00000
9 60.71776 3.347 1.69680 55.5
10 223.73133 2.543 1.00000
11 88.72642 4.052 1.59349 67.0
12 -200.28776 1.450 1.90366 31.3
13 46.94856 1.456 1.00000
14 71.21863 4.324 1.77250 49.6
15 -259.88006 D15 1.00000
16 64.61643 5.373 1.80400 46.6
17 -171.33576 1.500 1.85026 32.4
18 -427.99181 D18 1.00000
19 (開口絞り) D19 1.00000
20 -140.00000 1.200 1.77250 49.6
21 98.73269 2.349 1.00000
22 -46.53449 1.200 1.76000 50.0
23 -88.62573 0.100 1.00000
24 -227.14142 2.169 1.90200 25.3
25 -65.70168 D25 1.00000
*26 -82.31022 1.100 1.77250 49.6
*27 41.14809 1.433 1.00000
28 50.51593 3.020 1.90200 25.3
29 -7587.28970 D29 1.00000
*30 445.83969 3.966 1.55332 71.7
31 -73.29859 0.100 1.00000
32 153.51046 3.949 1.60300 65.4
33 -101.27922 0.200 1.00000
34 86.09865 7.212 1.59319 67.9
35 -40.79305 1.200 1.79000 26.0
*36 180.00000 D36 1.00000
37 69.32616 4.432 1.61800 63.3
38 -225.96343 1.200 1.90366 31.3
39 140.29946 D39 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -1.14500e-01 2.30934e-06 4.18972e-10 6.24631e-13 0.00000e+00
26 -4.22870e+00 4.95698e-23 1.31315e-09 0.00000e+00 0.00000e+00
27 5.80700e-01 3.38518e-07 0.00000e+00 0.00000e+00 0.00000e+00
30 1.94200e-01 3.81661e-06 -2.35375e-09 0.00000e+00 0.00000e+00
36 1.00000e+00 4.12000e-06 0.00000e+00 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.50 67.85
FNo 2.90 2.90 2.92
ω 42.3 23.9 17.2
Y 21.60 21.60 21.60
TL 214.110 194.068 198.548
BF 40.318 40.318 40.378
BF(空気換算) 40.318 40.318 40.378

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.50 67.85
D6 49.013 12.596 1.845
D15 7.840 7.840 7.840
D18 3.000 19.375 34.606
D19 2.000 3.243 2.000
D25 0.930 0.930 0.930
D29 20.833 9.633 1.900
D36 1.500 11.458 20.373
D39 40.318 40.318 40.378

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -39.13
第2レンズ群 7 43.78
第21レンズ群 7 80.97
第22レンズ群 16 71.04
第3レンズ群 20 -48.53
第31レンズ群 20 -95.21
第32レンズ群 26 -105.72
第4レンズ群 30 57.82
第5レンズ群 37 700.00

[フォーカシングデータ]
W M T
レンズ移動量 6.840 6.840 6.840
撮影距離(m) 0.4165 0.3788 0.3972

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 3.127
条件式(2) −f(Gn〜G(VR))w/fw = 1.959
条件式(3) f(RP)/fw = 1.321
条件式(4) ωt = 17.2
条件式(5) ωw = 42.3
表9から、第9実施例に係る変倍光学系ZL9は、条件式(1)〜(5)を満足することが分かる。
図26は、第9実施例に係る変倍光学系ZL9の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図27は、第9実施例に係る変倍光学系ZL9の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図27のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第9実施例に係る変倍光学系ZL9は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第10実施例)
第10実施例について、図28〜図30及び表10を用いて説明する。第10実施例に係る変倍光学系ZL(ZL10)は、図28に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、物体側に凸面を向けた正メニスカスレンズL12と両凹レンズL13との接合レンズと、物体側に凸面を向けた正メニスカスレンズL14とからなる。負メニスカスレンズL11は、像側面が非球面形状である。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、両凸レンズL23と両凹レンズL24との接合レンズと、両凸レンズL25とからなる。第22レンズ群G22は、両凸レンズL26からなる。正メニスカスレンズL22は、物体側面が非球面形状である。
第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凸面を向けた正メニスカスレンズL32とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL33と、物体側に凸面を向けた正メニスカスレンズL34とからなる。両凹レンズL33は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凹面を向けた負メニスカスレンズL42と両凸レンズL43との接合レンズと、両凸レンズL44と両凹レンズL45との接合レンズとからなる。両凸レンズL41は、物体側面が非球面形状である。両凹レンズL45は、像側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と像側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第10実施例では、広角端状態において、防振係数は−0.50であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.26mmである。中間焦点距離状態において、防振係数は−0.57であり、焦点距離は47.50mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.44mmである。望遠端状態において、防振係数は−0.66であり、焦点距離は67.84mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.54mmである。
下記の表10に、第10実施例における各諸元の値を示す。表10における面番号1〜38が、図28に示すm1〜m38の各光学面に対応している。
(表10)
[レンズ諸元]
面番号 R D n(d) νd
1 179.73529 2.880 1.74389 49.5
*2 28.00000 13.314 1.00000
3 -709.59863 2.295 1.80518 25.4
4 -228.05154 2.100 1.76500 49.5
5 90.21469 0.200 1.00000
6 56.00020 4.396 2.00100 29.1
7 96.29881 D7 1.00000
8 96.54068 2.840 1.60300 65.4
9 715.47283 0.200 1.00000
*10 57.08059 3.395 1.69680 55.5
11 181.18928 5.604 1.00000
12 98.04986 3.261 1.59319 67.9
13 -796.91447 1.450 1.76182 26.6
14 41.75300 1.983 1.00000
15 73.03256 3.630 1.74100 52.8
16 -3863.66610 D16 1.00000
17 58.79270 5.010 1.80400 46.6
18 -393.67543 D18 1.00000
19 (開口絞り) 1.540 1.00000
20 -142.34068 1.200 1.81600 46.6
21 35.05467 1.301 1.00000
22 38.87328 2.715 1.90200 25.3
23 117.88926 D23 1.00000
*24 -118.17706 1.200 1.73231 53.2
25 44.69744 1.030 1.00000
26 52.10387 2.485 1.90200 25.3
27 195.76461 D27 1.00000
*28 71.27465 4.998 1.49782 82.6
29 -102.88416 0.100 1.00000
30 91.68269 1.200 1.90366 31.3
31 52.62629 6.605 1.60300 65.4
32 -69.88439 0.200 1.00000
33 3314.77510 4.235 1.59319 67.9
34 -54.08421 1.200 1.78500 26.2
*35 216.08233 D35 1.00000
36 56.19817 3.548 1.61800 63.3
37 210.95097 1.200 1.83400 37.2
38 84.00000 D38 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -6.73000e-02 2.59588e-06 7.45638e-10 -2.10470e-14 3.51745e-16
10 1.00000e+00 -4.00000e-07 0.00000e+00 0.00000e+00 0.00000e+00
24 -4.10880e+00 5.35515e-07 2.05353e-09 0.00000e+00 0.00000e+00
28 -1.10460e+00 3.84373e-06 -4.29919e-09 3.81283e-12 0.00000e+00
35 1.00000e+00 5.16409e-06 2.00000e-09 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.50 67.84
FNo 2.90 2.90 2.90
ω 42.2 23.9 17.2
Y 21.60 21.60 21.60
TL 208.124 187.432 190.017
BF 40.315 40.322 40.381
BF(空気換算) 40.315 40.322 40.381

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.50 67.84
D7 48.968 12.510 1.800
D16 7.185 7.185 7.185
D18 1.300 17.853 29.355
D23 2.232 2.232 2.232
D27 19.311 9.731 1.900
D35 1.500 10.287 19.851
D38 40.315 40.322 40.381

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -39.97
第2レンズ群 8 43.09
第21レンズ群 8 80.97
第22レンズ群 17 63.94
第3レンズ群 19 -42.99
第31レンズ群 19 -77.20
第32レンズ群 24 -103.89
第4レンズ群 28 56.10
第5レンズ群 36 419.32

[フォーカシングデータ]
W M T
レンズ移動量 6.185 6.185 6.185
撮影距離(m) 0.4444 0.4101 0.4308

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 3.727
条件式(2) −f(Gn〜G(VR))w/fw = 1.736
条件式(3) f(RP)/fw = 1.302
条件式(4) ωt = 17.2
条件式(5) ωw = 42.2
表10から、第10実施例に係る変倍光学系ZL10は、条件式(1)〜(5)を満足することが分かる。
図29は、第10実施例に係る変倍光学系ZL10の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図30は、第10実施例に係る変倍光学系ZL10の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図30のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第10実施例に係る変倍光学系ZL10は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第11実施例)
第11実施例について、図31〜図33及び表11を用いて説明する。第11実施例に係る変倍光学系ZL(ZL11)は、図31に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、負の屈折力を有する第3レンズ群G3と、正の屈折力を有する第4レンズ群G4と、正の屈折力を有する第5レンズ群G5とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と像側に凹面を向けた負メニスカスレンズL14との接合レンズとからなる。負メニスカスレンズL11は、像側面が非球面形状である。
第2レンズ群G2は、物体側から順に並んだ、正の屈折力を有する第21レンズ群G21(合焦レンズ群)と、正の屈折力を有する第22レンズ群G22とからなる。
第21レンズ群G21は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、像側に凹面を向けた負メニスカスレンズL23と、両凸レンズL24とからなる。第22レンズ群G22は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL25と両凸レンズL26との接合レンズからなる。正メニスカスレンズL22は、物体側面が非球面形状である。
第3レンズ群G3は、物体側から順に並んだ、開口絞りSと、光軸と直交方向の位置が固定され負の屈折力を有する第31レンズ群G31(中間群)と、負の屈折力を有する第32レンズ群G32(防振レンズ群)とからなる。
第31レンズ群G31は、物体側から順に並んだ、両凹レンズL31と、物体側に凸面を向けた正メニスカスレンズL32とからなる。第32レンズ群G32は、物体側から順に並んだ、両凹レンズL33と、物体側に凸面を向けた正メニスカスレンズL34とからなる。両凹レンズL33は、物体側面が非球面形状である。
第4レンズ群G4は、物体側から順に並んだ、両凸レンズL41と、像側に凸面を向けた正メニスカスレンズL42と、像側に凹面を向けた負メニスカスレンズL43と両凸レンズL44との接合レンズとからなる。両凸レンズL44は、像側面が非球面形状である。
第5レンズ群G5は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL51と像側に凹面を向けた負メニスカスレンズL52との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を一旦像側へ移動させた後、物体側へ移動させ、第4レンズ群G4を物体側へ移動させることにより行う。第5レンズ群G5は、変倍時、固定である。
無限遠から近距離物体への合焦は、合焦レンズ群として、第21レンズ群G21を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第32レンズ群G32を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第11実施例では、広角端状態において、防振係数は−0.54であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.24mmである。中間焦点距離状態において、防振係数は−0.61であり、焦点距離は47.53mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.41mmである。望遠端状態において、防振係数は−0.70であり、焦点距離は67.85mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.51mmである。
下記の表11に、第11実施例における各諸元の値を示す。表11における面番号1〜37が、図31に示すm1〜m37の各光学面に対応している。
(表11)
[レンズ諸元]
面番号 R D n(d) νd
1 169.82392 2.880 1.74389 49.5
*2 28.00000 13.823 1.00000
3 -277.92141 2.100 1.69680 55.5
4 89.48130 0.972 1.00000
5 57.53130 5.977 1.90366 31.3
6 288.24720 2.000 1.60311 60.7
7 89.16103 D7 1.00000
8 97.98839 2.906 1.62041 60.3
9 988.16122 0.870 1.00000
*10 52.75776 3.799 1.69680 55.5
11 185.81817 3.941 1.00000
12 244.48174 1.450 1.74077 27.7
13 42.81836 2.225 1.00000
14 81.99098 3.910 1.74100 52.8
15 -359.52152 D15 1.00000
16 56.22525 1.450 1.85000 25.5
17 41.20061 6.609 1.75500 52.3
18 -333.94984 D18 1.00000
19 (開口絞り) 1.488 1.00000
20 -133.09742 1.200 1.81600 46.6
21 40.80390 0.998 1.00000
22 48.84393 2.545 1.90200 25.3
23 197.19167 D23 1.00000
*24 -159.18908 1.200 1.70000 55.0
25 46.35402 0.845 1.00000
26 47.53111 2.169 1.90200 25.3
27 92.34748 D27 1.00000
28 59.48521 4.431 1.59319 67.9
29 -192.71174 0.100 1.00000
30 -6013.33410 3.364 1.59319 67.9
31 -71.43167 0.200 1.00000
32 5300.14030 1.404 1.90366 31.3
33 31.44019 7.197 1.59319 67.9
*34 -117.32485 D34 1.00000
35 57.67894 3.814 1.70000 56.0
36 263.45851 0.763 1.77250 49.6
37 84.00000 D37 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -5.97000e-02 2.62042e-06 7.82559e-10 9.78767e-14 4.33213e-16
10 5.28200e-01 6.32647e-08 1.88164e-10 0.00000e+00 0.00000e+00
24 -6.74850e+00 4.82591e-07 2.86667e-10 0.00000e+00 0.00000e+00
34 -1.67545e+01 1.36811e-06 3.39381e-09 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.53 67.85
FNo 2.90 2.90 2.91
ω 42.2 23.9 17.3
Y 21.60 21.60 21.60
TL 210.949 190.232 192.480
BF 43.417 43.503 43.670
BF(空気換算) 43.417 43.503 43.670

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.53 67.85
D7 48.868 12.444 1.800
D15 7.185 7.185 7.185
D18 0.800 16.872 28.207
D23 1.827 1.827 1.827
D27 20.646 10.368 1.900
D34 1.574 11.401 21.260
D37 43.417 43.503 43.670

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -39.52
第2レンズ群 8 42.67
第21レンズ群 8 81.00
第22レンズ群 16 66.83
第3レンズ群 19 -43.84
第31レンズ群 19 -83.74
第32レンズ群 24 -98.45
第4レンズ群 28 61.94
第5レンズ群 35 285.15

[フォーカシングデータ]
W M T
レンズ移動量 6.185 6.185 6.185
撮影距離(m) 0.4485 0.4038 0.4202

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 2.719
条件式(2) −f(Gn〜G(VR))w/fw = 1.771
条件式(3) f(RP)/fw = 1.452
条件式(4) ωt = 17.3
条件式(5) ωw = 42.2
表11から、第11実施例に係る変倍光学系ZL11は、条件式(1)〜(5)を満足することが分かる。
図32は、第11実施例に係る変倍光学系ZL11の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図33は、第11実施例に係る変倍光学系ZL11の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図33のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第11実施例に係る変倍光学系ZL11は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
(第12実施例)
第12実施例について、図34〜図36及び表12を用いて説明する。第12実施例に係る変倍光学系ZL(ZL12)は、図34に示すように、物体側から順に並んだ、負の屈折力を有する第1レンズ群G1と、正の屈折力を有する第2レンズ群G2と、正の屈折力を有する第3レンズ群G3と、負の屈折力を有する第4レンズ群G4と、負の屈折力を有する第5レンズ群G5と、正の屈折力を有する第6レンズ群G6と、正の屈折力を有する第7レンズ群G7とからなる。
第1レンズ群G1は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL11と、両凹レンズL12と、物体側に凸面を向けた正メニスカスレンズL13と像側に凹面を向けた負メニスカスレンズL14との接合レンズとからなる。負メニスカスレンズL11は、像側面が非球面形状である。
第2レンズ群G2(合焦レンズ群)は、物体側に凸面を向けた正メニスカスレンズL21と、物体側に凸面を向けた正メニスカスレンズL22と、像側に凹面を向けた負メニスカスレンズL23と、両凸レンズL24とからなる。正メニスカスレンズL22は、物体側面が非球面形状である。
第3レンズ群G3は、物体側から順に並んだ、像側に凹面を向けた負メニスカスレンズL31と両凸レンズL32との接合レンズからなる。
第4レンズ群G4(中間群)は、光軸と直交方向の位置が固定されており、物体側から順に並んだ、開口絞りSと、両凹レンズL41と、物体側に凸面を向けた正メニスカスレンズL42とからなる。
第5レンズ群G5(防振レンズ群)は、物体側から順に並んだ、両凹レンズL51と、物体側に凸面を向けた正メニスカスレンズL52とからなる。両凹レンズL51は、物体側面が非球面形状である。
第6レンズ群G6は、物体側から順に並んだ、両凸レンズL61と、像側に凸面を向けた正メニスカスレンズL62と、像側に凹面を向けた負メニスカスレンズL63と両凸レンズL64との接合レンズとからなる。両凹レンズL64は、像側面が非球面形状である。
第7レンズ群G7は、物体側から順に並んだ、物体側に凸面を向けた正メニスカスレンズL71と像側に凹を向けた負メニスカスレンズL72との接合レンズからなる。
広角端状態から望遠端状態への変倍は、各レンズ群間隔が変化するように、第1レンズ群G1を一旦像側へ移動させた後、物体側へ移動させ、第2レンズ群G2を物体側へ移動させ、第3レンズ群G3を物体側へ移動させ、第4レンズ群G4を一旦像側へ移動させた後、物体側へ移動させ、第5レンズ群G5を一旦像側へ移動させた後、物体側へ移動させ、第6レンズ群G6を物体側へ移動させ、第7レンズ群G7を物体側へ移動させることにより行う。
無限遠から近距離物体への合焦は、合焦レンズ群として、第2レンズ群G2を像側へ移動させることにより行う。
像ブレ発生時には、防振レンズ群VRとして、第5レンズ群G5を光軸と直交方向の成分を持つように移動させることにより、像面I上の像ブレ補正(防振)を行う。なお、全系の焦点距離をfとし、防振係数(振れ補正での移動レンズ群の移動量に対する結像面での像移動量の比)をKとした撮影レンズにおいて、角度θの回転ブレを補正するには、像ブレ補正用の防振レンズ群VR(移動レンズ群)を(f×tanθ)/Kだけ光軸と直交な方向に移動させればよい。
第12実施例では、広角端状態において、防振係数は−0.54であり、焦点距離は24.77mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.24mmである。中間焦点距離状態において、防振係数は−0.61であり、焦点距離は47.33mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.41mmである。望遠端状態において、防振係数は−0.72であり、焦点距離は67.34mmであるので、0.30度の回転ブレを補正するための防振レンズ群VRの移動量は−0.50mmである。
下記の表12に、第12実施例における各諸元の値を示す。表12における面番号1〜37が、図34に示すm1〜m37の各光学面に対応している。
(表12)
[レンズ諸元]
面番号 R D n(d) νd
1 169.82392 2.880 1.74389 49.5
*2 28.00000 13.823 1.00000
3 -277.92141 2.100 1.69680 55.5
4 89.48130 0.972 1.00000
5 57.53130 5.977 1.90366 31.3
6 288.24720 2.000 1.60311 60.7
7 89.16103 D7 1.00000
8 97.98839 2.906 1.62041 60.3
9 988.16122 0.870 1.00000
*10 52.75776 3.799 1.69680 55.5
11 185.81817 3.941 1.00000
12 244.48174 1.450 1.74077 27.7
13 42.81836 2.225 1.00000
14 81.99098 3.910 1.74100 52.8
15 -359.52152 D15 1.00000
16 56.22525 1.450 1.85000 25.5
17 41.20061 6.609 1.75500 52.3
18 -333.94984 D18 1.00000
19 (開口絞り) 1.488 1.00000
20 -133.09742 1.200 1.81600 46.6
21 40.80390 0.998 1.00000
22 48.84393 2.545 1.90200 25.3
23 197.19167 D23 1.00000
*24 -159.18908 1.200 1.70000 55.0
25 46.35402 0.845 1.00000
26 47.53111 2.169 1.90200 25.3
27 92.34748 D27 1.00000
28 59.48521 4.431 1.59319 67.9
29 -192.71174 0.100 1.00000
30 -6013.33410 3.364 1.59319 67.9
31 -71.43167 0.200 1.00000
32 5300.14030 1.404 1.90366 31.3
33 31.44019 7.197 1.59319 67.9
*34 -117.32485 D34 1.00000
35 57.67894 3.814 1.70000 56.0
36 263.45851 0.763 1.77250 49.6
37 84.00000 D37 1.00000

[非球面データ]
面 κ A4 A6 A8 A10
2 -5.97000e-02 2.62042e-06 7.82559e-10 9.78767e-14 4.33213e-16
10 5.28200e-01 6.32647e-08 1.88164e-10 0.00000e+00 0.00000e+00
24 -6.74850e+00 4.82591e-07 2.86667e-10 0.00000e+00 0.00000e+00
34 -1.67545e+01 1.36811e-06 3.39381e-09 0.00000e+00 0.00000e+00

[各種データ]
W M T
f 24.77 47.33 67.34
FNo 2.90 2.90 2.91
ω 42.2 24.0 17.4
Y 21.60 21.60 21.60
TL 210.949 193.610 195.380
BF 43.417 43.433 45.688
BF(空気換算) 43.417 43.433 45.688

[可変間隔データ]
無限遠
W M T
D0 ∞ ∞ ∞
倍率 - - -
f 24.77 47.33 67.34
D7 48.868 12.444 1.600
D15 7.185 12.000 9.500
D18 0.800 16.872 26.900
D23 1.827 1.827 2.000
D27 20.646 9.000 1.800
D34 1.574 11.401 21.260
D37 43.417 43.433 45.688

[レンズ群データ]
レンズ群 始面 焦点距離
第1レンズ群 1 -39.52
第2レンズ群 8 81.00
第3レンズ群 16 66.83
第4レンズ群 19 -83.74
第5レンズ群 24 -98.45
第6レンズ群 28 61.94
第7レンズ群 35 285.15

[フォーカシングデータ]
W M T
レンズ移動量 6.185 11.000 8.500
撮影距離(m) 0.4485 0.2946 0.3494

[条件式対応値]
条件式(1) f(1〜Gn)t/ft = 2.898
条件式(2) −f(Gn〜G(VR))w/fw = 1.770
条件式(3) f(RP)/fw = 1.452
条件式(4) ωt = 17.4
条件式(5) ωw = 42.2
表12から、第12実施例に係る変倍光学系ZL12は、条件式(1)〜(5)を満足することが分かる。
図35は、第12実施例に係る変倍光学系ZL12の無限遠合焦時における諸収差図(球面収差図、非点収差図、歪曲収差図、倍率色収差図及び横収差図)であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。図36は、第12実施例に係る変倍光学系ZL12の無限遠合焦時における像ブレ補正を行った時の横収差図であり、(a)は広角端状態、(b)は中間焦点距離状態、(c)は望遠端状態をそれぞれ示す。本実施例では、防振時の光学性能を、図36のように、像高y=0.0を中心に、上下プラスマイナスの像高15.10に対応した横収差図で示す。
各収差図から明らかなように、第12実施例に係る変倍光学系ZL12は、広角端状態から望遠端状態に亘って、諸収差が良好に補正され、良好な光学性能を有することが分かる。また、像ブレ補正時においても、高い結像性能を有することが分かる。
以上の各実施例によれば、F2.8〜F3.5程度とF値が明るく、半画角で50程度以上の広画角を有し、諸収差が良好に補正された変倍光学系を実現することができる。
ここまで本発明の態様を分かりやすくするために、実施形態の要素の符号を付して説明したが、本発明の態様がこれに限定されるものではない。以下の内容は、変倍光学系の光学性能を損なわない範囲で適宜採用することが可能である。
変倍光学系ZLの数値実施例として、4群、5群、7群構成のものを示したが、これに限定されず、他の群構成(例えば、6群や8群等)にも適用可能である。具体的には、最も物体側にレンズまたはレンズ群を追加した構成や、最も像面側にレンズまたはレンズ群を追加した構成でも構わない。第1レンズ群と第2レンズ群との間に正又は負の屈折力を有するレンズ群を追加した構成でも構わない。さらに、防振レンズ群VRの像面側に、負または正の屈折力を有し、光軸と直交方向の位置を固定されたレンズ群(この負または正の屈折力を有し、光軸と直交方向の位置を固定されたレンズ群は、変倍時に防振レンズ群VRとの間隔を変化させても、させなくても構わない)を追加した構成でも構わない。また、防振レンズ群VRより像側に配置された正の屈折力を有するレンズ群のうち、正の屈折力が最も強い像側レンズ群RPとして、上記実施例1〜3、5、7〜11では第4レンズ群G4であり、上記実施例4、6、12では第6レンズ群G6の例を示したが、この限りではない。像側レンズ群RPに含まれるレンズ間隔は、変倍時には固定である。なお、レンズ群とは、変倍時または合焦時に変化する空気間隔で分離された、少なくとも1枚のレンズを有する部分を示す。
また、中間群は、第2レンズ群より像側に配置され、防振レンズ群の物体側であって防振レンズ群に対向する位置に配置されるレンズ群である。中間群の物体側であって中間群に対向する位置に開口絞りを配置することとしてもよい。
また、中間群を構成するレンズは、変倍時に光軸方向の位置を一体としてもよく、2以上のレンズ群に分けてその間隔を変倍時に変化させることとしてもよい。
また、中間群の少なくとも一部のレンズを、変倍時に防振レンズ群と一体的に光軸方向に移動(または固定)させることとしてもよい。
変倍光学系ZLにおいて、無限遠から近距離物体への合焦を行うために、レンズ群の一部、1つのレンズ群全体、或いは複数のレンズ群を合焦レンズ群として、光軸方向へ移動させる構成としてもよい。また、斯かる合焦レンズ群は、オートフォーカスに適用することも可能であり、オートフォーカス用のモータ(例えば、超音波モータ等)による駆動にも適している。特に、上記のように、第2レンズ群G2の少なくとも一部を合焦レンズ群とすることがより好ましくは可能である。
変倍光学系ZLにおいて、いずれかのレンズ群全体または部分レンズ群を、光軸に垂直な方向の成分を持つように移動させるか、或いは光軸を含む面内方向に回転移動(揺動)させて、手ブレ等によって生じる像ブレを補正する防振レンズ群VRとしてもよい。特に、開口絞りSより像側に配置された負の屈折力を有する中間群Gnより像側に配置された光学系の少なくとも一部を防振レンズ群VRとすることが好ましくは可能である。また、4群または5群構成の場合、第3レンズ群G3の少なくとも一部を防振レンズ群VRとすることが好ましくは可能である。また、7群構成の場合、第5レンズ群G5の少なくとも一部を防振レンズ群VRとすることが好ましくは可能である。また、防振レンズ群VRの像側に光軸と直交方向の位置を固定したレンズを配置し、そのレンズを防振レンズ群VRと一体で変倍時に移動または固定させることとしてもよい。
変倍光学系ZLにおいて、レンズ面は、球面または平面で形成されても、非球面で形成されても構わない。レンズ面が球面または平面の場合、レンズ加工および組立調整が容易になり、加工および組立調整の誤差による光学性能の劣化を防げる。また、像面がずれた場合でも描写性能の劣化が少ない。レンズ面が非球面の場合、非球面は、研削加工による非球面、ガラスを型で非球面形状に形成したガラスモールド非球面、ガラスの表面に樹脂を非球面形状に形成した複合型非球面のいずれの非球面でも構わない。また、レンズ面は回折面としてもよく、レンズを屈折率分布型レンズ(GRINレンズ)あるいはプラスチックレンズとしてもよい。
変倍光学系ZLにおいて、d線における屈折率ndが70より小さい媒質のレンズに非球面を形成することが好ましくは可能である。d線における屈折率ndが70より小さい媒質のレンズは、防振レンズ群VRより像側に配置されたレンズ群のなかで正の屈折力が最も強いレンズ群に配置するのが好ましくは可能である。また、d線における屈折率ndが70より小さい媒質のレンズは、防振レンズ群VRより像側に配置されたレンズ群のなかで正の屈折力が最も強いレンズ群の最も物体側または最も物体側から2番目のレンズ成分に配置するのがより好ましくは可能である。また、d線における屈折率ndが70より小さい媒質のレンズの非球面は、防振レンズ群VRより像側に配置されたレンズ群のなかで最も正の屈折力が強いレンズ群の最も物体面とするのがより好ましくは可能である。
変倍光学系ZLにおいて、開口絞りSは、上記のように、第2レンズ群と中間群Gnとの間に配置されるのが好ましくは可能であるが、開口絞りとしての部材を設けずに、レンズの枠でその役割を代用してもよい。
変倍光学系ZLにおいて、各レンズ面には、フレアやゴーストを軽減し高コントラストの良好な光学性能を達成するために、広い波長域で高い透過率を有する反射防止膜を施してもよい。
変倍光学系ZLは、変倍比が2.0〜3.5倍程度である。
ZL(ZL1〜ZL12) 変倍光学系
G1 第1レンズ群
G2 第2レンズ群
G3 第3レンズ群
G4 第4レンズ群
VR 防振レンズ群
S 開口絞り
I 像面
1 カメラ(光学機器)。

Claims (9)

  1. 負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有し、
    前記第2レンズ群より像側に配置された中間群を有し、
    前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、
    少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、
    以下の条件式を満足することを特徴とする変倍光学系。
    1.000 < f(1〜Gn)t/ft < 100.000
    但し、
    f(1〜Gn)t:望遠端状態における前記第1レンズ群から前記中間群までの合成焦点距離、
    ft:望遠端状態における全系の焦点距離。
  2. 以下の条件式を満足することを特徴とする請求項1に記載の変倍光学系。
    1.360 < −f(Gn〜G(VR))w/fw < 5.000
    但し、
    f(Gn〜G(VR))w:広角端状態における前記中間群から前記防振レンズ群までの合成焦点距離、
    fw:広角端状態における全系の焦点距離。
  3. 前記防振レンズ群より像側に配置された正の屈折力を有するレンズ群のうち、正の屈折力が最も強い像側レンズ群を有し、
    前記像側レンズ群と前記防振レンズ群との間隔は変倍の際に変化し、
    以下の条件式を満足することを特徴とする請求項1又は2に記載の変倍光学系。
    0.400 < f(RP)/f(FP) < 2.000
    但し、
    f(RP):前記像側レンズ群の焦点距離、
    f(FP):前記第1レンズ群より像面側に配置され、前記中間群より物体側に配置されたレンズの広角端状態における合成焦点距離。
  4. 前記中間群は、光軸と直交方向の位置を固定されており、負の屈折力を有することを特徴とする請求項1〜3のいずれか一項に記載の変倍光学系。
  5. 前記中間群は、正レンズ成分と、負レンズ成分を、それぞれ1つ以上有することを特徴とする請求項1〜4のいずれか一項に記載の変倍光学系。
  6. 前記第2レンズ群は、少なくとも4つ以上のレンズ成分で構成されていることを特徴とする請求項1〜5のいずれか一項に記載の変倍光学系。
  7. 前記第2レンズ群は、物体側から順に並んだ、正の屈折力を有する第21レンズ群と、正の屈折力を有する第22レンズ群とからなり、
    前記第21レンズ群を合焦レンズ群として像側に移動させることにより無限遠から近距離物体への合焦を行うことを特徴とする請求項1〜6のいずれか一項に記載の変倍光学系。
  8. 請求項1〜7のいずれか一項に記載の変倍光学系を搭載することを特徴とする光学機器。
  9. 負の屈折力を有する第1レンズ群と、正の屈折力を有する第2レンズ群とを有する変倍光学系の製造方法であって、
    前記第2レンズ群より像側に配置された中間群を有し、
    前記中間群より像側に配置され、光軸と直交方向の成分を持つように移動可能に構成された防振レンズ群を有し、
    少なくとも、前記第1レンズ群と前記第2レンズ群との間隔と、前記第2レンズ群と前記中間群との間隔とを変化させることにより変倍を行い、
    以下の条件式を満足するように、
    レンズ鏡筒内に各レンズを配置することを特徴とする変倍光学系の製造方法。
    1.000 < f(1〜Gn)t/ft < 100.000
    但し、
    f(1〜Gn)t:望遠端状態における前記第1レンズ群から前記中間群までの合成焦点距離、
    ft:望遠端状態における全系の焦点距離。
JP2016572188A 2015-01-30 2016-01-29 変倍光学系、光学機器及び変倍光学系の製造方法 Pending JPWO2016121939A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015017916 2015-01-30
JP2015017916 2015-01-30
PCT/JP2016/052683 WO2016121939A1 (ja) 2015-01-30 2016-01-29 変倍光学系、光学機器及び変倍光学系の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2018226455A Division JP6683238B2 (ja) 2015-01-30 2018-12-03 変倍光学系、及び光学機器

Publications (1)

Publication Number Publication Date
JPWO2016121939A1 true JPWO2016121939A1 (ja) 2017-10-26

Family

ID=56543542

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2016572188A Pending JPWO2016121939A1 (ja) 2015-01-30 2016-01-29 変倍光学系、光学機器及び変倍光学系の製造方法
JP2018226455A Active JP6683238B2 (ja) 2015-01-30 2018-12-03 変倍光学系、及び光学機器
JP2020052319A Pending JP2020166263A (ja) 2015-01-30 2020-03-24 変倍光学系

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2018226455A Active JP6683238B2 (ja) 2015-01-30 2018-12-03 変倍光学系、及び光学機器
JP2020052319A Pending JP2020166263A (ja) 2015-01-30 2020-03-24 変倍光学系

Country Status (5)

Country Link
US (2) US10527829B2 (ja)
EP (1) EP3252517A4 (ja)
JP (3) JPWO2016121939A1 (ja)
CN (2) CN107430262B (ja)
WO (1) WO2016121939A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019211713A (ja) * 2018-06-07 2019-12-12 キヤノン株式会社 結像光学系およびこれを用いた画像投射装置、画像投射システム
CN112846517B (zh) * 2020-12-31 2022-09-06 武汉华工激光工程有限责任公司 一种滤波器孔状结构内壁镀层的去除装置和方法
CN116047733B (zh) * 2022-12-20 2024-03-15 福建福光股份有限公司 一种变焦镜头结构及工作方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246043A (ja) * 2003-02-13 2004-09-02 Nikon Corp 可変焦点距離レンズ系
US20070206294A1 (en) * 2006-03-01 2007-09-06 Sony Corporation Zoom lens and image pickup apparatus
US20100165480A1 (en) * 2008-12-25 2010-07-01 Panasonic Corporation Zoom lens system, imaging device and camera
JP2010152145A (ja) * 2008-12-25 2010-07-08 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2011215600A (ja) * 2010-03-15 2011-10-27 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、撮影レンズの製造方法
WO2011145288A1 (ja) * 2010-05-19 2011-11-24 コニカミノルタオプト株式会社 ズームレンズ及び撮像装置
US20120069441A1 (en) * 2010-09-21 2012-03-22 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
US20120229902A1 (en) * 2011-03-07 2012-09-13 Panasonic Corporation Zoom Lens System, Imaging Device and Camera
JP2012247687A (ja) * 2011-05-30 2012-12-13 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、及び、撮影レンズの製造方法
JP2013064912A (ja) * 2011-09-20 2013-04-11 Konica Minolta Advanced Layers Inc 撮像レンズ及び撮像装置
US20140028891A1 (en) * 2012-07-27 2014-01-30 Sony Corporation Variable focal length lens system and image pickup unit
US20140211082A1 (en) * 2013-01-25 2014-07-31 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05173071A (ja) * 1991-12-25 1993-07-13 Nikon Corp 広角ズームレンズ
DE69316510T2 (de) * 1992-10-14 1998-05-28 Nippon Kogaku Kk Zoomobjektiv mit Vibrationsdämpfung
JP3395169B2 (ja) * 1993-05-31 2003-04-07 株式会社ニコン 防振機能を備えたズームレンズ
JP3371917B2 (ja) * 1993-07-12 2003-01-27 株式会社ニコン 防振機能を備えたズームレンズ
JPH0792431A (ja) * 1993-09-22 1995-04-07 Nikon Corp 防振機能を備えたズームレンズ
JPH07199124A (ja) * 1993-12-28 1995-08-04 Nikon Corp 防振機能を備えたズームレンズ
US5940631A (en) * 1994-06-17 1999-08-17 Nikon Corporation Optical apparatus having a vibration compensation device operable during photographic preparations
JP3708995B2 (ja) * 1995-09-20 2005-10-19 ペンタックス株式会社 ズームレンズ
US5841588A (en) * 1996-03-06 1998-11-24 Nikon Corporation Zoom lens system with vibration reduction means
JPH1039210A (ja) * 1996-07-24 1998-02-13 Nikon Corp ズームレンズ
US6025962A (en) * 1996-09-12 2000-02-15 Nikon Corporation Zoom lens with an anti-vibration function
JP4046834B2 (ja) 1998-02-13 2008-02-13 キヤノン株式会社 防振機能を有した変倍光学系
JP3503631B2 (ja) * 2001-04-27 2004-03-08 セイコーエプソン株式会社 投映用ズームレンズ及びこれを備えたプロジェクター
EP1494055A1 (en) * 2002-04-11 2005-01-05 Matsushita Electric Industrial Co., Ltd. Zoom lens and electronic still camera using it
JP4387641B2 (ja) 2002-07-26 2009-12-16 キヤノン株式会社 防振ズームレンズ
JP4323793B2 (ja) * 2002-12-16 2009-09-02 キヤノン株式会社 ズームレンズ及びそれを有する光学機器
JP4374853B2 (ja) * 2002-12-27 2009-12-02 株式会社ニコン 防振ズームレンズ
US7158315B2 (en) * 2004-03-30 2007-01-02 Nikon Corporation Zoom lens system
US7253965B2 (en) * 2004-10-01 2007-08-07 Nikon Corporation Zoom lens system with vibration reduction
JP4821237B2 (ja) * 2005-09-29 2011-11-24 株式会社ニコン ズームレンズ
US7515352B2 (en) * 2006-02-17 2009-04-07 Nikon Corporation Zoom lens system and optical device using thereof
EP2045639A4 (en) 2006-07-21 2012-06-13 Nikon Corp VARIABLE POWER OPTICAL SYSTEM, IMAGING DEVICE, VARIABLE ENLARGEMENT METHOD OF OPTICAL SYSTEM WITH VARIABLE POWER
JP4929903B2 (ja) * 2006-07-27 2012-05-09 株式会社ニコン ズームレンズ、撮像装置、ズームレンズの変倍方法
JP5074790B2 (ja) 2007-03-07 2012-11-14 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
EP2045637B1 (en) * 2007-10-02 2019-07-10 Nikon Corporation Zoom lens system
US8416506B2 (en) * 2009-02-20 2013-04-09 Nikon Corporation Zoom lens, optical apparatus equipped therewith and method for manufacturing the zoom lens
WO2012086154A1 (ja) * 2010-12-22 2012-06-28 パナソニック株式会社 ズームレンズ系、交換レンズ装置及びカメラシステム
JP5273184B2 (ja) * 2011-02-24 2013-08-28 株式会社ニコン ズームレンズ、光学装置、ズームレンズの製造方法
WO2013057910A1 (ja) * 2011-10-20 2013-04-25 富士フイルム株式会社 投写用ズームレンズおよび投写型表示装置
JP5699967B2 (ja) * 2012-02-21 2015-04-15 コニカミノルタ株式会社 ズームレンズ,撮像光学装置及びデジタル機器
EP3361300A1 (en) 2012-08-09 2018-08-15 Nikon Corporation Variable magnification optical system comprising four lens groups with positive-negative-positive-positive refractive powers
US9250425B2 (en) * 2012-12-04 2016-02-02 Samsung Electronics Co., Ltd. Zoom lens and electronic device including the same
US9395524B2 (en) * 2013-06-10 2016-07-19 Konica Minolta, Inc. Variable magnification optical system, imaging optical device, and digital appliance
US9541768B2 (en) * 2013-09-10 2017-01-10 Samsung Electronics Co., Ltd. Zoom lens and electronic apparatus
WO2016031256A1 (ja) * 2014-08-29 2016-03-03 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
JP2016126282A (ja) * 2015-01-08 2016-07-11 株式会社タムロン 広角ズームレンズ及び撮像装置
CN107407795B (zh) * 2015-01-30 2020-07-24 株式会社尼康 变倍光学系统以及光学设备
WO2016121966A1 (ja) * 2015-01-30 2016-08-04 株式会社ニコン 変倍光学系、光学機器及び変倍光学系の製造方法
CN111458854B (zh) * 2015-01-30 2022-07-08 株式会社尼康 变焦镜头以及光学设备

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004246043A (ja) * 2003-02-13 2004-09-02 Nikon Corp 可変焦点距離レンズ系
US20070206294A1 (en) * 2006-03-01 2007-09-06 Sony Corporation Zoom lens and image pickup apparatus
JP2007233045A (ja) * 2006-03-01 2007-09-13 Sony Corp ズームレンズ及び撮像装置
US20100165480A1 (en) * 2008-12-25 2010-07-01 Panasonic Corporation Zoom lens system, imaging device and camera
JP2010152145A (ja) * 2008-12-25 2010-07-08 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2011215600A (ja) * 2010-03-15 2011-10-27 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、撮影レンズの製造方法
US20120026589A1 (en) * 2010-03-15 2012-02-02 Nikon Corporation Imaging lens, optical apparatus equipped therewith, and method for manufacturing imaging lens
US20120188436A1 (en) * 2010-05-19 2012-07-26 Konica Minolta Opto, Inc. Zoom lens and imaging device
WO2011145288A1 (ja) * 2010-05-19 2011-11-24 コニカミノルタオプト株式会社 ズームレンズ及び撮像装置
US20120069441A1 (en) * 2010-09-21 2012-03-22 Nikon Corporation Imaging lens, optical apparatus equipped therewith and method for manufacturing imaging lens
US20120229902A1 (en) * 2011-03-07 2012-09-13 Panasonic Corporation Zoom Lens System, Imaging Device and Camera
JP2012198505A (ja) * 2011-03-07 2012-10-18 Panasonic Corp ズームレンズ系、撮像装置及びカメラ
JP2012247687A (ja) * 2011-05-30 2012-12-13 Nikon Corp 撮影レンズ、この撮影レンズを備えた光学機器、及び、撮影レンズの製造方法
JP2013064912A (ja) * 2011-09-20 2013-04-11 Konica Minolta Advanced Layers Inc 撮像レンズ及び撮像装置
US20140028891A1 (en) * 2012-07-27 2014-01-30 Sony Corporation Variable focal length lens system and image pickup unit
JP2014026169A (ja) * 2012-07-27 2014-02-06 Sony Corp 可変焦点距離レンズ系および撮像装置
US20140211082A1 (en) * 2013-01-25 2014-07-31 Panasonic Corporation Zoom lens system, interchangeable lens apparatus and camera system
JP2014160229A (ja) * 2013-01-25 2014-09-04 Panasonic Corp ズームレンズ系、交換レンズ装置及びカメラシステム

Also Published As

Publication number Publication date
US11231567B2 (en) 2022-01-25
US20200142168A1 (en) 2020-05-07
CN111458855B (zh) 2022-06-03
EP3252517A1 (en) 2017-12-06
CN111458855A (zh) 2020-07-28
JP2020166263A (ja) 2020-10-08
JP2019061270A (ja) 2019-04-18
CN107430262B (zh) 2020-04-14
JP6683238B2 (ja) 2020-04-15
US10527829B2 (en) 2020-01-07
CN107430262A (zh) 2017-12-01
EP3252517A4 (en) 2018-11-07
US20180136444A1 (en) 2018-05-17
WO2016121939A1 (ja) 2016-08-04

Similar Documents

Publication Publication Date Title
JP6673420B2 (ja) 変倍光学系、及び光学機器
CN109477952B (zh) 变倍光学系统、光学设备以及变倍光学系统的制造方法
JP2009014766A (ja) 変倍光学系、光学装置、変倍光学系の変倍方法
JPWO2016121966A1 (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP2021096485A (ja) 変倍光学系、光学機器及び変倍光学系の製造方法
JP5344291B2 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2020166263A (ja) 変倍光学系
JP7227572B2 (ja) 変倍光学系及び光学機器
JP6354257B2 (ja) 変倍光学系及び撮像装置
WO2013111539A1 (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2009300993A (ja) 変倍光学系、この変倍光学系を備えた光学機器、及び、変倍光学系の変倍方法
JP6281200B2 (ja) 変倍光学系及び光学装置
JPH0792390A (ja) ズームレンズ
JP6281199B2 (ja) 変倍光学系、光学装置及び変倍光学系の製造方法
JP6446821B2 (ja) 変倍光学系及び光学機器
JP7526394B2 (ja) 変倍光学系及び光学機器
WO2020136745A1 (ja) 変倍光学系、光学機器および変倍光学系の製造方法
JP2016156902A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP2016156903A (ja) ズームレンズ、光学機器及びズームレンズの製造方法
JP6507480B2 (ja) 変倍光学系および撮像装置
JP2014048373A (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP2010276747A (ja) レンズ系、光学機器及び製造方法
JP2019061271A (ja) 変倍光学系及び光学機器
JP2014048372A (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法
JP2014048370A (ja) 変倍光学系、この変倍光学系を有する光学装置、及び、変倍光学系の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170707

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20180124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180904