JPWO2016009516A1 - 冷凍空調装置 - Google Patents

冷凍空調装置 Download PDF

Info

Publication number
JPWO2016009516A1
JPWO2016009516A1 JP2016534035A JP2016534035A JPWO2016009516A1 JP WO2016009516 A1 JPWO2016009516 A1 JP WO2016009516A1 JP 2016534035 A JP2016534035 A JP 2016534035A JP 2016534035 A JP2016534035 A JP 2016534035A JP WO2016009516 A1 JPWO2016009516 A1 JP WO2016009516A1
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
outside air
dew point
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016534035A
Other languages
English (en)
Other versions
JP6223573B2 (ja
Inventor
智也 藤本
智也 藤本
智隆 石川
智隆 石川
池田 隆
隆 池田
啓三 福原
啓三 福原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2016009516A1 publication Critical patent/JPWO2016009516A1/ja
Application granted granted Critical
Publication of JP6223573B2 publication Critical patent/JP6223573B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段(2)で凝縮された冷媒が、周囲の外気の露点温度以下となった場合でも、液冷媒の温度を調整することで冷媒配管に結露を生じさせない冷凍空調装置を得ることを目的とする。圧縮機(1)、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段(2)、第一の減圧装置(3)及び蒸発器(4)が、冷媒配管を介して環状に接続された主冷媒回路と、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段(2)の入側の冷媒配管と出側の冷媒配管との間に接続されたバイパス回路(11)と、を備え、バイパス回路(11)は、圧縮機(1)から吐出された冷媒の一部を、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段(2)をバイパスして外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段(2)の出側の冷媒配管へ送る。

Description

本発明は、冷凍空調装置に関し、特に、液配管の結露に関する。
従来の冷凍空調装置は、液配管の温度が周囲の温度より最低限、低くならないように、制御器によって冷却装置の冷却動作を制御している。これにより、冷媒循環回路を構成する液配管の結露の発生を防止しながら、冷却能力の増強を図ることができるように制御している(例えば、特許文献1参照)。
また、従来の冷凍空調装置は、液冷媒のサブクールを大きくすることにより、冷却能力を大きくし、より省エネとなるようにしているものもある(例えば、非特許文献1参照)。
特許第4444220号公報(請求項2) 三菱電機、「三菱電機R410A低温機器総合カタログ」、2014年1月版、p.6
特許文献1に記載の冷凍空調装置は、装置を更新する場合、現地の既設配管を再利用することがある。この場合、既設の液配管には断熱がされていないことがある。冷凍空調装置のみを更新し、既設の液配管を断熱せずに使用すると、液配管の表面温度が、外気の露点温度以下となった場合、液配管に結露が発生する。この結露により生じた水滴が室内に落ち、室内が水浸しになったり、カビが発生するなどの問題点があった。
また、非特許文献1に記載の冷凍空調装置は、液配管に断熱処理をしていない場合には、液配管に結露が発生しないように、液冷媒の温度を液配管の周囲の外気の露点温度までしか下げられない。このため、液冷媒のサブクールが大きく取れず、冷却能力を大きくできないため、省エネ性が確保できないなどの問題点があった。
更に、冷却能力を大きくし、省エネとなるように液冷媒のサブクールを大きくした場合、凝縮器の出口の冷媒温度が液配管の周囲の外気の露点温度以下となることがある。これにより、液配管が結露してしまうため、液配管に断熱処理をしなければならないなどの問題点があった。
本発明は、上記のような問題点を解決するためになされたもので、第1の目的は、外気露点温度を下回る熱源で凝縮された液冷媒が周囲の外気の露点温度以下となるような場合でも、液配管に結露を生じさせない冷凍空調装置を得ることにある。
本発明の第2の目的は、現地の配管に断熱処理をすると工事費が多く必要になり、かつ工事時間も多くかかってくる。このため、液冷媒の温度を調整することで、1つの機種で、現地の液配管に結露を防止するための断熱処理をするか否かを選択できるようにし、客先の断熱処理等の費用や納期の要求に柔軟に対応できる冷凍空調装置を得ることにある。
本発明に係る冷凍空調装置は、圧縮機、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段、第一の減圧装置及び蒸発器が、冷媒配管を介して環状に接続された主冷媒回路と、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段の入側の冷媒配管と出側の冷媒配管との間に接続されたバイパス回路と、を備え、バイパス回路は、圧縮機から吐出された冷媒の一部を、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段をバイパスして外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段の出側の冷媒配管へ送るものである。
本発明によれば、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段をバイパスするバイパス回路を持つ構成とした。これにより、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段で凝縮された冷媒が周囲の外気の露点温度以下となった場合でも、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段で凝縮された冷媒に圧縮機からの過熱ガスを加えることで、液冷媒の温度を露点温度を超えるように調整する。このようにすることで、冷媒配管(液配管)に結露を生じさせない、という効果を得ることができる。
本発明の実施の形態1に係る冷凍空調装置の冷媒回路の概略構成を示す図である。 本発明の実施の形態2に係る冷凍空調装置の冷媒回路の概略構成を示す図である。 本発明の実施の形態3に係る冷凍空調装置の冷媒回路の概略構成を示す図である。 本発明の実施の形態4に係る冷凍空調装置の冷媒回路の概略構成を示す図である。 図4のバイパス回路の流量制御装置の制御動作を示すフローチャートである。
実施の形態1.
図1は、本発明の実施の形態1に係る冷凍空調装置の冷媒回路図である。
図1に示されるように、冷凍空調装置の冷媒回路100は、圧縮機1、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2、利用側膨張弁3及び利用側熱交換器4が冷媒配管を介して環状に接続された構成となっている。これらの構成からなる回路を主冷媒回路と呼ぶ。
なお、圧縮機1及び外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2は熱源側ユニットを構成し、利用側膨張弁3及び利用側熱交換器4は利用側ユニットを構成している。外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2と利用側膨張弁3とは液配管5によって接続されており、液配管5には現地接続液配管20が含まれる。利用側熱交換器4と圧縮機1とはガス配管7によって接続されており、ガス配管7には現地接続ガス配管21が含まれる。現地接続液配管20及び現地接続ガス配管21は、既設配管を利用する場合も含まれる。
冷凍空調装置の冷媒回路100は、バイパス回路11(サブ冷媒回路)を更に備えている。バイパス回路11は、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の入側の冷媒配管と、出側の冷媒配管との間に接続されている。バイパス回路11は、圧縮機1から吐出された冷媒の一部を、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2をバイパスして液配管5に送る。
なお、本実施の形態1において、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2は、例えば水道水、地下水、地熱、別の冷凍装置の蒸発器などの外気露点温度を下回る温度の熱源(第一の熱源)と熱交換する。これにより、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の冷媒は冷却される。
次に、本実施の形態1に係る冷凍空調装置の動作を図1を参照しながら説明する。
冷媒回路100内の冷媒は、圧縮機1において高温高圧の過熱ガスに圧縮された後、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2へ送られる。外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2を通過する冷媒は、上記の第一の熱源と熱交換を行うことで高温高圧の液冷媒に凝縮される。そして、液冷媒は、液配管5を通過し、利用側膨張弁3に通されて低温低圧の気液2相冷媒となる。低温低圧の気液2相冷媒は、利用側熱交換器4内で周囲の空気や水と熱交換されて低温低圧の過熱ガスの状態となり、ガス配管7を通過し、再度、圧縮機1に吸入される。この一連の動作を行うことで、主冷媒回路の冷媒サイクルが構成されている。
外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の両端に接続されたバイパス回路11は、圧縮機1で高温高圧の過熱ガスとなった冷媒の一部を、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の上流側で分岐して外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2をバイパスし、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2から流れる冷却された冷媒と外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の下流側で合流させ、液配管5へ送る。バイパス回路11へ分岐される冷媒の流量は、例えば、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段2の流路抵抗(管径、長さ)とバイパス回路11の流路抵抗(管径、長さ)との割合によって調整される。
以上のように、本実施の形態1においては、主冷媒回路にバイパス回路11(サブ冷媒回路)を設け、高温高圧の液冷媒と過熱ガスとを合流させることで、液冷媒の温度を液配管5の周囲の外気温度より高くすることができる。これにより、液配管5(特に、現地接続液配管20)への断熱処理の有無にかかわらず、液配管5(特に、現地接続液配管20)に結露が発生しない冷凍空調装置を得ることができる。
このため、本実施の形態1によれば、従来の問題点、つまり、液配管5の表面温度が周囲の外気の露点温度を下回る場合に、液配管5の表面に結露が生じ、液配管5が配置されている天井裏などに結露水が垂れ、天井裏や室内が水浸しになったり、カビが発生する、という従来の問題点が解消されている。
なお、本実施の形態1において、液冷媒の温度を外気の温度より高くすることで、液配管5への結露の発生を防いでいるが、本発明はこれに限定されない。例えば、液冷媒の温度を外気の露点温度より高くしても同様に結露の発生を防ぐことができる。
なお、利用側膨張弁3は、本発明の「第一の減圧装置」に相当し、利用側熱交換器4は、本発明の「蒸発器」に相当する。また、液配管5は、本発明の「外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段と第一の減圧装置との間の冷媒配管」に相当する。
実施の形態2.
本実施の形態2は、上記の実施の形態1の冷媒回路に過冷却冷媒回路を付加したものである。本実施の形態2において、主冷媒回路の基本的な構成は、実施の形態1における主冷媒回路の構成と同様であるため、以下、実施の形態1との相違点を中心に本実施の形態2を説明する。
図2に示されるように、冷凍空調装置の冷媒回路100は、過冷却冷媒回路30を備える。過冷却冷媒回路30は、絞り装置12、熱交換器13及び冷媒配管14が順に接続される構成となっている。
バイパス回路11の入口は、凝縮器6の出側と熱交換器13の上流側の冷媒配管との間に設けられ、バイパス回路11の出口は、熱交換器13の下流側の冷媒配管と分岐部16との間に設けられている。これにより、バイパス回路11は、熱交換器13をバイパスする構成となっている。
過冷却冷媒回路30は、バイパス回路11の出口の下流にある分岐部16と接続され、その後、絞り装置12を経由して熱交換器13に接続される。熱交換器13は、バイパス回路11の入口とバイパス回路11の出口との間に設けられ、絞り装置12で減圧された冷媒(第一の冷媒)と、凝縮器6の出側の分岐する前の冷媒(第二の冷媒)とを熱交換する。熱交換器13で熱交換された冷媒は、冷媒配管14を経由して、圧縮機1が有するインジェクション配管1aに送り出される。圧縮機1は、インジェクション配管1aから流入した中温中圧の冷媒を、圧縮機1の圧縮行程の中間部分に流入させる。
次に、本実施の形態2に係る冷凍空調装置の動作を図2を参照しながら説明する。
まず、過冷却冷媒回路30の動作について説明する。
過冷却冷媒回路30は、凝縮器6から出た高温高圧の液冷媒の一部を分岐部16で分岐し、絞り装置12に冷媒を流す。絞り装置12は、流量を制御する可変式の流量調整弁であり、高温高圧の液冷媒を中温中圧の気液2相の冷媒(第二の熱源)として、熱交換器13に流す。熱交換器13は、凝縮器6から流出した高温高圧の液冷媒と、過冷却冷媒回路30を流れる中温中圧の気液2相の冷媒(第二の熱源)とを熱交換させ、凝縮器6の出側の液冷媒に過冷却を付加する。その後、過冷却冷媒回路30を流れる冷媒は、冷媒配管14に流入する。
冷媒配管14に流入した冷媒(中温中圧の冷媒)は、インジェクション配管1aを介して圧縮機1の圧縮行程の中間部分に流入する。これにより、圧縮機1を冷却し、吐出冷媒温度及び圧縮機1のモータ温度を下げることができる。
次に、上記の冷媒配管14の動作を踏まえた上で、本実施の形態2に係る冷凍空調装置の動作を説明する。
冷媒回路100内の冷媒は、圧縮機1にて高温高圧の過熱ガスに圧縮された後、凝縮器6において第一の熱源と熱交換されて、高温高圧の液冷媒に凝縮される。凝縮器6を出た液冷媒は、上記のように、過冷却冷媒回路30の熱交換器13によって高圧で過冷却が付加される。
また、バイパス回路11は、圧縮機1で高温高圧の過熱ガスとなった冷媒の一部を凝縮器6の下流側で分岐して熱交換器13をバイパスし、熱交換器13から流れる冷却された冷媒と熱交換器13の下流側で合流させ、液配管5へ送る。
その後は、上記の実施の形態1と同様に、液配管5に送られた冷媒は、利用側膨張弁3を通り、低温低圧の気液2相冷媒となり、利用側熱交換器4内で周囲の空気や水と熱交換されて低温低圧の過熱ガスの状態となり、再度圧縮機1に吸入される。
以上のように、本実施の形態2によれば、凝縮器6を通過した高温高圧の液冷媒が、過冷却冷媒回路30の熱交換器13で過冷却を大きく付加される。そして、液冷媒の温度が外気の温度以下となった場合であっても、バイパス回路11によって、高温高圧の液冷媒を合流させることで、液冷媒の温度を液配管5の周囲の外気温度より高くすることができる。これにより、液配管5(特に、現地接続液配管20)への断熱処理の有無にかかわらず、液配管5(特に、現地接続液配管20)に結露が発生しない冷凍空調装置を得ることができる。
また、過冷却冷媒回路30内の冷媒を圧縮機1に戻すようにしているので、過冷却冷媒回路30の絞り装置12で中温中圧にされ、熱交換器13にて主冷媒回路の冷媒と熱交換した冷媒を圧縮機1に入れ、圧縮機1を冷却することができる。
なお、絞り装置12は、本発明の「第二の減圧装置」に相当する。過冷却冷媒回路30の絞り装置12の下流側の冷媒(中温中圧の冷媒)は、本発明の「第一の冷媒」に相当し、凝縮器6の出側の冷媒(高温高圧の液冷媒)は、本発明における「第二の冷媒」に相当する。また、液配管5は、本発明の「凝縮器と第一の減圧装置との間の冷媒配管」に相当する。
実施の形態3.
本実施の形態3は、上記の実施の形態2のバイパス回路11に可変式の流量調整弁又は開閉可能な切替弁を付加したものである。本実施の形態3において、冷媒回路100の基本的な構成は、実施の形態2における冷媒回路100の構成と同様であるため、以下、実施の形態2との相違点を中心に本実施の形態3を説明する。
図3に示されるように、冷凍空調装置の冷媒回路100は、熱交換器13をバイパスするバイパス回路11に、弁15を更に備えている。バイパス回路11の弁15は、冷媒の流量を制御する可変式の流量調整弁、又は冷媒の流路を開閉可能にする切替弁である。
次に、バイパス回路11の弁15の動作を図3を参照しながら説明する。
液配管5の中の液冷媒の温度が、周囲の外気温度を上回る場合には、液配管5は結露しないため、バイパス回路11の弁15を閉める。
しかし、液配管5の中の液冷媒の温度が、周囲の外気温度以下となる場合には、バイパス回路11の弁15を開けて、高温高圧の液冷媒をバイパス回路11に流す。これにより、液冷媒の温度を上げ、周囲の外気温度を上回るようにし、液配管5の結露を防止する。
また、冷媒の流量を制御する可変式の流量調整弁を使用した場合には、バイパス回路11を流れる冷媒の流量を微調整することが可能となるため、液配管5の温度を液配管5の周囲の温度(又は露点温度)を超えた温度であって、その温度付近に制御することができる。
更に、開閉可能な切替弁を全閉に、あるいは冷媒の流量を制御する可変式の流量調整弁を全閉になるように制御した場合には、冷媒がバイパス回路11を通過しなくなる。これにより、バイパス回路11を設置していない冷媒回路100と同様の構成とすることができる。
以上のように、本実施の形態3に係る冷凍空調装置は、現地の液配管5に断熱処理ができない場合、バイパス回路11の弁15で冷媒の流量の調整等を行い、凝縮器6で凝縮された液冷媒と熱交換器13で過冷却を付加された液冷媒を合流させる。これにより、液冷媒の温度を液配管5の周囲の外気温度より高くすることができ、液配管5に結露が発生しないようにすることができる。
一方で、現地の液配管5(特に、現地接続液配管20)に断熱処理ができる場合(又は現地接続液配管20として断熱処理された既設冷媒配管を利用する場合)、バイパス回路11の弁15を全閉にし、凝縮器6から出た高温高圧の液冷媒を全て熱交換器13で過冷却を付加することで、液冷媒の過冷却を大きく取ることができる。これにより、冷凍空調装置の冷却能力が大きくなり、省エネ性を確保することができる。
これらのことから、1つの機種で、現地の液配管5に結露を防止するための断熱処理をするか否かを選択することで、客先の断熱処理等の費用や納期の要求に柔軟に対応できる冷凍空調装置を得ることができる。
実施の形態4.
本実施の形態4は、上記の実施の形態3のバイパス回路11の弁15の開度を自動的に制御するようにしたものである。本実施の形態4の冷媒回路100の構成は、実施の形態3の構成と同様であるため、以下、実施の形態3との相違点を中心に本実施の形態4を説明する。
図4に示されるように、本実施の形態4の冷媒回路100は、外気温度センサ31、冷媒温度センサ32及び流量制御装置33を更に備えている。流量制御装置33は、例えばマイコンで構成されている。
外気温度センサ31は、周囲の外気温度を検出し、流量制御装置33は、その外気温度のデータを外気温度センサ31から取り込む。同様に、冷媒温度センサ32は、液配管5を流れる液冷媒の温度を検出し、流量制御装置33は、その液冷媒の温度のデータを冷媒温度センサ32から取り込む。
流量制御装置33には、例えば、外気温度と液冷媒温度に対応したバイパス回路11の弁15の開度が予めテーブルに記憶されており、取り込んだ外気温度及び液冷媒温度のデータに基づいて当該テーブルを参照し、バイパス回路11の弁15の開度を求め、その開度に基づいて弁15を制御する。
図5は、流量制御装置33の制御動作を示すフローチャートである。以下、流量制御装置33の制御動作を図5の各ステップに基づき、図4を参照しつつ説明する。
(S1)
冷凍空調装置を起動する。
(S2)
バイパス回路11の流量制御装置33が、外気温度センサ31から液配管5の周囲の外気温度の情報を取り込むと共に、冷媒温度センサ32から液配管5を流れる液冷媒温度の情報を取り込む。
(S3)
外気温度と液冷媒温度を比較する。外気温度が液冷媒温度以上の場合は、ステップS4へ移行する。それ以外は、ステップS5へ移行する。
(S4)
バイパス回路11の弁15を開き、バイパス回路11に流れる冷媒量を増やし、液冷媒温度を上げる。
(S5)
バイパス回路11の弁15を閉じ、バイパス回路11に流れる冷媒量を減らし、液冷媒温度を下げ、液冷媒温度を外気温度付近に調整する。
以上のように、バイパス回路11に弁15及び流量制御装置33を設けて弁15の開度を制御し、凝縮器6で凝縮された液冷媒と熱交換器13で過冷却を付加された液冷媒を合流させることで、液冷媒の温度を液配管5の周囲の外気温度より高くすることができる。これにより、液配管5に結露を防止するための断熱処理をするか否かを、1つの機種で選択でき、客先が負担する費用や納期の要求に柔軟に対応できる冷凍空調装置を得ることができる。
更に、バイパス回路11の流量制御装置33を設け、熱交換器13をバイパスする回路に流れる冷媒量を制御しているので、液冷媒温度を外気の温度付近に制御することができ、液配管5に結露しないようにすることができる冷凍空調装置を得ることができる。
なお、本実施の形態4では、外気温度と液冷媒温度を比較してバイパス回路11の弁15の開度を制御しているが、本発明はこれに限定されず、例えば外気温度センサ31の代わりに露点計を用いて外気の露点温度を求め、外気の露点温度と液冷媒温度を比較してバイパス回路11の弁15の開度を制御しても良い。
1 圧縮機、1a インジェクション配管、2 外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段、3 利用側膨張弁、4 利用側熱交換器、5 液配管、6 凝縮器、7 ガス配管、11 バイパス回路、12 絞り装置、13 熱交換器、14 冷媒配管、15 弁、16 分岐部、20 現地接続液配管、21 現地接続ガス配管、30 過冷却冷媒回路、31 外気温度センサ、32 冷媒温度センサ、33 流量制御装置、100 冷媒回路。
本発明に係る冷凍空調装置は、圧縮機、凝縮器、第一の減圧装置及び蒸発器が、冷媒配管を介して環状に接続された主冷媒回路と、凝縮器の出側の冷媒を更に冷却する熱交換器を備えた過冷却冷媒回路と、熱交換器の上流側の冷媒配管と熱交換器の下流側の冷媒配管との間に接続され、熱交換器をバイパスするバイパス回路と、を備え、バイパス回路は、凝縮器で凝縮された冷媒の一部を、熱交換器をバイパスして熱交換器の下流側の冷媒配管へ送るものである。

Claims (13)

  1. 圧縮機、外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段、第一の減圧装置及び蒸発器が、冷媒配管を介して環状に接続された主冷媒回路と、
    前記外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段の入側の冷媒配管と出側の冷媒配管との間に接続されたバイパス回路と、
    を備え、
    前記バイパス回路は、前記圧縮機から吐出された冷媒の一部を、前記外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段をバイパスして前記外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段の出側の冷媒配管へ送る、
    冷凍空調装置。
  2. 前記バイパス回路は、前記外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段と前記第一の減圧装置との間の冷媒配管内の冷媒の温度が、周囲の外気の露点温度より高くなるように、前記圧縮機から吐出された冷媒の一部を前記凝縮器の出側の冷媒配管へ送る、
    請求項1に記載の冷凍空調装置。
  3. 前記バイパス回路は、前記外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段と前記第一の減圧装置との間の冷媒配管内の冷媒の温度が、周囲の外気の温度より高くなるように、前記圧縮機から吐出された冷媒の一部を前記凝縮器の出側の冷媒配管へ送る、
    請求項1に記載の冷凍空調装置。
  4. 前記外気露点温度を下回る第一の熱源を用いた冷媒を冷却する手段は、水道水、地下水、地熱又は別の冷凍装置の蒸発器と熱交換する、
    請求項1〜3の何れか一項に記載の冷凍空調装置。
  5. 圧縮機、凝縮器、第一の減圧装置及び蒸発器が、冷媒配管を介して環状に接続された主冷媒回路と、
    前記凝縮器の出側の冷媒を更に冷却する熱交換器を備えた過冷却冷媒回路と、
    前記熱交換器の上流側の冷媒配管と前記熱交換器の下流側の冷媒配管との間に接続され、前記熱交換器をバイパスするバイパス回路と、
    を備え、
    前記バイパス回路は、前記凝縮器で凝縮された冷媒の一部を、前記熱交換器をバイパスして前記熱交換器の下流側の冷媒配管へ送る、
    冷凍空調装置。
  6. 前記圧縮機は、インジェクション配管を有し、
    前記過冷却冷媒回路は、
    前記バイパス回路の出口と前記第一の減圧装置との間から分岐した第一の冷媒を減圧する第二の減圧装置と、
    前記第二の減圧装置から送られた前記第一の冷媒と、前記凝縮器を出た第二の冷媒とで熱交換を行い、前記第二の冷媒を過冷却する前記熱交換器と、
    を備え、
    前記熱交換器で熱交換された前記第一の冷媒を前記圧縮機のインジェクション配管へ送る、
    請求項5に記載の冷凍空調装置。
  7. 前記第二の減圧装置は、流量を制御する可変式の流量調整弁である、
    請求項6に記載の冷凍空調装置。
  8. 前記バイパス回路は、前記凝縮器と前記第一の減圧装置との間の冷媒配管内の冷媒の温度が、周囲の外気の露点温度より高くなるように、前記凝縮器で凝縮された冷媒の一部を前記熱交換器の下流側の冷媒配管へ送る、
    請求項5〜7の何れか一項に記載の冷凍空調装置。
  9. 前記バイパス回路は、前記凝縮器と前記第一の減圧装置との間の冷媒配管内の冷媒の温度が、周囲の外気の温度より高くなるように、前記凝縮器で凝縮された冷媒の一部を前記熱交換器の下流側の冷媒配管へ送る、
    請求項5〜7の何れか一項に記載の冷凍空調装置。
  10. 前記バイパス回路は、冷媒の流量を調整する可変式の流量調整弁又は開閉可能な切替弁を備えた、
    請求項5〜9の何れか一項に記載の冷凍空調装置。
  11. 前記凝縮器と前記第一の減圧装置との間の冷媒配管内の冷媒の温度を検出する冷媒温度センサと、
    外気の温度を検出する外気温度センサと、
    前記冷媒温度センサによって検出された前記冷媒の温度と、前記外気温度センサによって検出された前記外気の温度とに基づいて前記流量調整弁又は前記切替弁を制御する流量制御装置と、
    を更に備えた、
    請求項10に記載の冷凍空調装置。
  12. 前記流量制御装置は、前記液配管内の冷媒が周囲の外気の露点温度より高くなるように、前記バイパス回路を流通する冷媒の流量を調整する、
    請求項11に記載の冷凍空調装置。
  13. 前記流量制御装置は、前記液配管内の冷媒が周囲の外気の温度より高くなるように、前記バイパス回路を流通する冷媒の流量を調整する、
    請求項11に記載の冷凍空調装置。
JP2016534035A 2014-07-16 2014-07-16 冷凍空調装置 Active JP6223573B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/068959 WO2016009516A1 (ja) 2014-07-16 2014-07-16 冷凍空調装置

Publications (2)

Publication Number Publication Date
JPWO2016009516A1 true JPWO2016009516A1 (ja) 2017-04-27
JP6223573B2 JP6223573B2 (ja) 2017-11-01

Family

ID=55078035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016534035A Active JP6223573B2 (ja) 2014-07-16 2014-07-16 冷凍空調装置

Country Status (4)

Country Link
EP (1) EP3171096A4 (ja)
JP (1) JP6223573B2 (ja)
CN (1) CN106537062B (ja)
WO (1) WO2016009516A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146068A (ja) * 2016-02-19 2017-08-24 三菱重工業株式会社 冷凍機およびその制御方法
JP6664478B2 (ja) * 2016-06-23 2020-03-13 三菱電機株式会社 二元冷凍装置
JP7267063B2 (ja) * 2019-03-27 2023-05-01 三菱重工サーマルシステムズ株式会社 冷凍サイクル装置
DK3879207T3 (da) * 2020-03-10 2023-11-20 Trane Int Inc Køleapparater og fremgangsmåde til betjening heraf
KR102416452B1 (ko) * 2021-06-16 2022-07-05 호스트웨이아이디씨(주) 상수도 수열에너지를 활용한 친환경 자연 냉각 시스템
CN113613465B (zh) * 2021-08-02 2022-12-02 珠海格力电器股份有限公司 空调防凝露组件及其控制方法和空调系统
WO2024023993A1 (ja) * 2022-07-27 2024-02-01 三菱電機株式会社 冷凍サイクル装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047836A (ja) * 1996-08-06 1998-02-20 Matsushita Refrig Co Ltd 冷凍機能付冷蔵装置
JP2004361019A (ja) * 2003-06-05 2004-12-24 Sharp Corp 空気調和機
JP2005049073A (ja) * 2003-07-31 2005-02-24 Ckd Corp 流体冷却装置
JP2008008523A (ja) * 2006-06-28 2008-01-17 Hitachi Appliances Inc 冷凍サイクル及び温水器
JP2009236404A (ja) * 2008-03-27 2009-10-15 Denso Corp 冷凍サイクル装置
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2013257057A (ja) * 2012-06-12 2013-12-26 Panasonic Corp ヒートポンプ式冷暖房給湯装置
WO2015132967A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 冷凍サイクル装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08285426A (ja) * 1995-04-13 1996-11-01 Matsushita Refrig Co Ltd 冷蔵庫
WO2005116540A1 (en) * 2004-05-24 2005-12-08 Carrier Corporation Two phase or subcooling reheat system
JP2006112708A (ja) * 2004-10-14 2006-04-27 Mitsubishi Electric Corp 冷凍空調装置
CN100480597C (zh) * 2004-10-29 2009-04-22 大金工业株式会社 冷冻装置
CN101666559B (zh) * 2006-03-27 2012-04-04 三菱电机株式会社 冷冻空调装置
JP5120056B2 (ja) * 2008-05-02 2013-01-16 ダイキン工業株式会社 冷凍装置
JP5414598B2 (ja) * 2010-03-30 2014-02-12 三菱電機株式会社 空気調和機
JP5278451B2 (ja) * 2011-01-27 2013-09-04 パナソニック株式会社 冷凍サイクル装置及びそれを用いた温水暖房装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047836A (ja) * 1996-08-06 1998-02-20 Matsushita Refrig Co Ltd 冷凍機能付冷蔵装置
JP2004361019A (ja) * 2003-06-05 2004-12-24 Sharp Corp 空気調和機
JP2005049073A (ja) * 2003-07-31 2005-02-24 Ckd Corp 流体冷却装置
JP2008008523A (ja) * 2006-06-28 2008-01-17 Hitachi Appliances Inc 冷凍サイクル及び温水器
JP2009236404A (ja) * 2008-03-27 2009-10-15 Denso Corp 冷凍サイクル装置
JP2010002109A (ja) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp 冷凍空調装置
JP2013257057A (ja) * 2012-06-12 2013-12-26 Panasonic Corp ヒートポンプ式冷暖房給湯装置
WO2015132967A1 (ja) * 2014-03-07 2015-09-11 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
WO2016009516A1 (ja) 2016-01-21
EP3171096A4 (en) 2018-03-14
EP3171096A1 (en) 2017-05-24
CN106537062A (zh) 2017-03-22
CN106537062B (zh) 2019-04-16
JP6223573B2 (ja) 2017-11-01

Similar Documents

Publication Publication Date Title
JP6223573B2 (ja) 冷凍空調装置
JP6479162B2 (ja) 空気調和装置
US9631826B2 (en) Combined air-conditioning and hot-water supply system
US10161647B2 (en) Air-conditioning apparatus
JP5847366B1 (ja) 空気調和装置
CN104321598B (zh) 冷冻装置
EP3109566B1 (en) Air conditioning device
JP6362780B2 (ja) 冷凍サイクル装置
JP2011179783A (ja) 冷凍装置
JP5872052B2 (ja) 空気調和装置
JP6072264B2 (ja) 冷凍装置
JP2015210026A (ja) 冷凍機
JP6316452B2 (ja) 冷凍サイクル装置
JP6242289B2 (ja) 冷凍サイクル装置
JP5447968B2 (ja) ヒートポンプ装置
JP2009228975A (ja) リモートコンデンサ型の空気調和機
JP2014001916A (ja) 冷凍サイクル装置
JP2017161164A (ja) 空調給湯システム
WO2017138243A1 (ja) 冷凍サイクル装置
JP2019027601A (ja) 冷媒回路装置
KR20090010398U (ko) 병렬 다중 압축기용 냉.난방 시스템
US20150219373A1 (en) Air-conditioning apparatus
JP2005134011A (ja) 空気調和装置
JPH04283358A (ja) 冷凍装置
JP2016166703A (ja) 空気調和装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171003

R150 Certificate of patent or registration of utility model

Ref document number: 6223573

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250