JPWO2014203382A1 - 圧縮着火式内燃機関 - Google Patents
圧縮着火式内燃機関 Download PDFInfo
- Publication number
- JPWO2014203382A1 JPWO2014203382A1 JP2015522444A JP2015522444A JPWO2014203382A1 JP WO2014203382 A1 JPWO2014203382 A1 JP WO2014203382A1 JP 2015522444 A JP2015522444 A JP 2015522444A JP 2015522444 A JP2015522444 A JP 2015522444A JP WO2014203382 A1 JPWO2014203382 A1 JP WO2014203382A1
- Authority
- JP
- Japan
- Prior art keywords
- nozzle
- fuel
- central axis
- piston
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 69
- 230000006835 compression Effects 0.000 title claims abstract description 29
- 238000007906 compression Methods 0.000 title claims abstract description 29
- 239000000446 fuel Substances 0.000 claims abstract description 261
- 239000007921 spray Substances 0.000 claims abstract description 246
- 238000002347 injection Methods 0.000 claims description 46
- 239000007924 injection Substances 0.000 claims description 46
- 238000001816 cooling Methods 0.000 claims description 23
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 230000014509 gene expression Effects 0.000 claims description 4
- 239000013256 coordination polymer Substances 0.000 description 44
- 238000010586 diagram Methods 0.000 description 12
- 239000000779 smoke Substances 0.000 description 7
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 3
- 238000009751 slip forming Methods 0.000 description 3
- 230000004044 response Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0678—Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets
- F02B23/0693—Unconventional, complex or non-rotationally symmetrical shapes of the combustion space, e.g. flower like, having special shapes related to the orientation of the fuel spray jets the combustion space consisting of step-wise widened multiple zones of different depth
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B23/00—Other engines characterised by special shape or construction of combustion chambers to improve operation
- F02B23/02—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
- F02B23/06—Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
- F02B23/0696—W-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder wall
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02F—CYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
- F02F3/00—Pistons
- F02F3/16—Pistons having cooling means
- F02F3/20—Pistons having cooling means the means being a fluid flowing through or along piston
- F02F3/22—Pistons having cooling means the means being a fluid flowing through or along piston the fluid being liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/40—Squish effect
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
圧縮着火式内燃機関は、シリンダブロック及びシリンダヘッドと、前記シリンダブロック及びシリンダヘッドにより燃焼室を画定するキャビティを含むピストンと、前記燃焼室に燃料を噴射するノズルと、を備え、前記キャビティは、前記ノズルに向けて隆起した隆起部、前記隆起部周囲に形成された底面、前記底面に連続した第1面及び第2面、を含み、前記第1面は、前記ピストンの径方向外側に向かって深さが浅くなり、前記第1面及び第2面は、前記ピストンの中心軸周りの周方向の異なる位置に設けられ、前記ノズルから前記第1面までの距離は、前記ノズルから前記第2面までの距離よりも長く、前記ノズルは、前記第1面及び第2面のそれぞれに向けて第1及び第2燃料噴霧を噴射すると共に前記第1及び第2燃料噴霧の間に第3燃料噴霧を噴射する。
Description
本発明は、圧縮着火式内燃機関に関する。
内燃機関のピストンには、キャビティが形成されている。特許文献1〜4には、キャビティが形成されたピストンが開示されている。キャビティの形状としては、例えばリエントラント型やオープン型がある。
リエントラント型の場合、スキッシュ流により燃料と空気との混合を促進することができる。これにより、例えばスモークを低減できる。しかしながら、既燃ガスがピストン頂面を流動するため、ピストンの熱損失により燃費が悪化するおそれがある。
オープン型の場合、スキッシュエリアが小さいため、既燃ガスがピストン頂面を流動することを抑制でき、燃費の悪化を抑制できる。しかしながら、スキッシュ流を十分に確保できないため、燃料と空気との混合を促進できずに、スモークが悪化するおそれがある。
本発明は上記課題に鑑み、性能が向上した圧縮着火式内燃機関を提供することを目的とする。
上記目的は、シリンダブロック及びシリンダヘッドと、前記シリンダブロック及びシリンダヘッドにより燃焼室を画定するキャビティを含むピストンと、前記燃焼室に燃料を噴射するノズルと、を備え、前記キャビティは、前記ノズルに向けて隆起した隆起部、前記隆起部周囲に形成された底面、前記底面に連続した第1面及び第2面、を含み、前記第1面は、前記ピストンの径方向外側に向かって深さが浅くなり、前記第1面及び第2面は、前記ピストンの中心軸周りの周方向の異なる位置に設けられ、前記ノズルから前記第1面までの距離は、前記ノズルから前記第2面までの距離よりも長く、前記ノズルは、前記第1面及び第2面のそれぞれに向けて第1及び第2燃料噴霧を噴射すると共に前記第1及び第2燃料噴霧の間に第3燃料噴霧を噴射する、圧縮着火式内燃機関によって達成できる。
前記第1面は、前記中心軸を介して互いに対向した2つの第1面を含み、前記中心軸方向から見て2つの前記第1面が並んだ方向は、クランクシャフトの延びた方向に対してずれている、構成であってもよい。
前記中心軸方向から見て2つの吸気バルブが並んだ方向は、前記クランクシャフトの延びた方向に対してずれており、前記燃焼室内に生じるスワール流の方向にずれている、構成であってもよい。
前記底面は、前記隆起部と前記第1面との間に位置し部分的に隆起した隆起底面部を含む、構成であってもよい。
前記ノズルは、前記第3燃料噴霧との間で前記第1燃料噴霧を挟む第4燃料噴霧を噴射し、前記中心軸方向から前記ピストンを見た場合、前記第3燃料噴霧の方向と交差する前記第1面の外周縁上の地点から前記ノズルまでの距離は、前記第4燃料噴霧の方向と交差する前記第1面の外周縁上の地点から前記ノズルまでの距離よりも長い、構成であってもよい。
前記ピストンは、前記第1面よりも前記中心軸方向で高い位置にあり、前記第1面に連続したバルブリセス面が形成されている、構成であってもよい。
前記ピストンは、前記中心軸方向で前記バルブリセス面よりも高い位置にある頂面を含み、前記燃焼室内で生じるスワール流の方向に、前記頂面、前記バルブリセス面、前記第1面、の順で連続している、構成であってもよい。
前記ピストンは、前記中心軸方向で前記バルブリセス面よりも高い位置にある頂面を含み、前記燃焼室内で生じるスワール流の方向に、前記第1面、前記バルブリセス面、前記頂面の順で連続している、構成であってもよい。
前記第1燃料噴霧の前記中心軸方向での高さ位置は、前記第2燃料噴霧の高さ位置よりも高い、構成であってもよい。
前記中心軸方向から見た場合に、前記第1及び第3燃料噴霧間の角度間隔は、前記第2及び第3燃料噴霧間の角度間隔よりも狭い、構成であってもよい。
前記ピストンは、前記第1面に沿ってオイルが流通可能なクーリングチャンネルが設けられ、前記クーリングチャンネルは、前記第2面から径方向外側には設けられていない、構成であってもよい。
前記ピストンは、前記第2面に沿ってオイルが流通可能なクーリングチャンネルが設けられ、前記クーリングチャンネルは、前記第1面から径方向外側には設けられていない、構成であってもよい。
前記第1面に噴射される燃料噴霧の数は、前記第2面に噴射される燃料噴霧の数よりも多い、構成であってもよい。
前記第1面は、前記中心軸を介して対向した2つの第1面を含み、前記第2面は、前記中心軸を介して対向した2つの第2面を含み、前記中心軸方向から見た場合の2つの前記第1面間の最大距離をD1とし、前記中心軸方向から見た場合の2つの前記第2面間の最大距離をD2とし、前記ノズルは、中心軸心周りに等間隔に複数の噴孔が形成され、前記隣接する噴孔間の等角度間隔をA(rad)とすると、以下の数1及び数2の式を満たす、構成であってもよい。
(数1)A×D2/2>5
(数2)2>D1/D2>1.05
(数1)A×D2/2>5
(数2)2>D1/D2>1.05
前記ノズルは、前記第1及び第2燃料噴霧をそれぞれ噴射する第1及び第2噴孔を含み、前記第1噴孔の長さは、前記第2噴孔の長さよりも長い、構成であってもよい。
前記ノズルは、前記第1及び第2燃料噴霧をそれぞれ噴射する第1及び第2噴孔を含み、前記第1噴孔の径は、前記第2噴孔の径よりも大きい、構成であってもよい。
前記第1面は、前記第2面よりも面積が大きい、構成であってもよい。
性能の優れた圧縮着火式内燃機関を提供できる。
図面を用いて本発明の実施例について説明する。
図1は、圧縮着火式の内燃機関の説明図である。圧縮着火式の内燃機関は、例えばディーゼルエンジンである。内燃機関は燃焼室EPにスワール流が生成される内燃機関とすることができる。シリンダブロック80にはシリンダ81が形成されている。シリンダ81内にはピストン1が収容されている。シリンダブロック80の上部にはシリンダヘッド90が固定されている。
シリンダヘッド90、シリンダブロック80、ピストン1は燃焼室EPを形成している。シリンダヘッド90の底壁部のうち燃焼室EPを形成する部分である中央部91はペントルーフ形状を有しているがこれに限定されない。
シリンダヘッド90には不図示の2つの吸気ポート、2つの排気ポートが設けられている。吸気ポート、排気ポートは、それぞれ吸気弁、排気弁により開閉される。
シリンダヘッド90には燃料を噴射するノズルNが設けられている。ノズルNは燃焼室EPに燃料を噴射する。ノズルNは略中心軸CP上に設けられている。中心軸CPは、シリンダ80の中心軸である。尚、ノズルNには、燃料を噴射する噴孔が8つ設けられているがこれに限定されない。
図2は、ピストン1の斜視図である。図3は、ピストン1の上面図である。図4は、図3のA−A断面図である。図5は、図3のB−B断面図である。ピストン1の上部には燃料が噴射されるキャビティが形成されている。ピストン1の下部には、コネクティングロッドを連結するためのピンを挿入する孔Hが形成されている。
キャビティは凹状に形成され、具体的には次のように構成されている。中央部にノズルN側、即ち上方に隆起した隆起部3、隆起部3周囲に形成された底面5、を含む。図3に示すように、上面から見てキャビティは、略楕円形状である。図4、5に示すように、底面5は、断面視で略円弧状となっている。
2つのオープン面11、12、2つのリエントラント面21、22は底面5に連続して形成されている。オープン面11、12は中心軸CPを介して互いに対向する。リエントラント面21、22も同様である。オープン面11、12の間に、リエントラント面21が位置する。換言すれば、周方向に、オープン面11、リエントラント面21、12、22の順に形成されている。上面視でオープン面11、12の略中心を通過する線分と、リエントラント面21、22の略中心を通過する線分とは直交する。オープン面11、リエントラント面21、オープン面12、リエントラント面22は、90度の角度間隔毎に設けられている。図3に示すように、上面から見てオープン面11、12は中心軸CPに対して略点対称である。リエントラント面21、22も同様である。オープン面11、12は、第1面の一例である。リエントラント面21、22は、第2面の一例である。
オープン面11、12は、それぞれ径方向外側に従って深さが浅くなる。図2、3に示すように、各オープン面11、12の面積は、各リエントラント面21、22の面積よりも大きい。各オープン面11、12の周方向での長さは、各リエントラント面21、22の周方向での長さよりも長い。各オープン面11、12の径方向の最大長さは、リエントラント面21、22の径方向の最大長さよりも長い。尚、周方向とは、中心軸CP周りの周方向を意味し、径方向とは中心軸CPを中心とする径方向を意味する。また、中心軸CPに直交する方向でのオープン面11、12間の最大距離は、リエントラント面21、22間の最大距離よりも長い。オープン面11、12、リエントラント面21、22は、周方向の異なる位置に設けられている。
稜線111は、オープン面11と底面5との境界を示す。同様に、稜線121、211、212は、それぞれ、オープン面12と底面5との境界、リエントラント面21と底面5との境界、リエントラント面22と底面5との境界を示す。各稜線111、121は、各稜線211、212よりも中心軸CPの方向で低い位置にある。
尚、リエントラント面21、22のそれぞれの稜線211、221は、上面視で見える部分に形成されているが、見えなくてもよい。即ち、リエントラント面上の、最も中心軸に近いリップ部よりも底面5側に稜線が形成されていてもよい。
ピストン1のキャビティの形状は、図4の断面図ではオープン型であり、図5の断面図ではリエントラント型である。図5では、キャビティの形状は、内径が上方に向かって部分的に縮小するリエントラント型である。これに対し、図4では、キャビティの形状は、内径が上方に向かって縮小しないオープン型である。このように、ピストン1のキャビティの形状は、部分的にオープン型であり部分的にリエントラント型である。図4、5に示すように、底面5は、断面視で円弧状である。図5に示すように、中心軸CPからの底面5の最大半径は、中心軸CPに垂直な方向で中心軸CPからリエントラント面21までの距離よりも大きいがこれに限定されない。オープン面11、12に交差する断面視で、キャビティの形状は内径が上方に向かって拡大するオープン型であってもよい。
図4、5には、ピストン1が上死点に位置する場合でのノズルNの位置を示している。ノズルNの先端からオープン面11までの距離L1は、ノズルNの先端からリエントラント面21までの距離L2よりも長い。距離L1は、ノズルNからオープン面11へ噴射される燃料噴霧の噴射方向での距離である。距離L2は、ノズルNからリエントラント面21へ噴射される燃料噴霧の噴射方向での距離である。換言すれば、距離L1、L2は、それぞれオープン面11、リエントラント面21へ燃料を噴射する噴孔の軸心方向での距離である。尚、中心軸CPに対するオープン面11へ噴射される燃料噴霧の方向の角度と、中心軸CPに対するリエントラント面21へ噴射される燃料噴霧の方向の角度とは等しいがこれに限定されない。
オープン面11、12、リエントラント面21、22よりも径方向外側には、バルブリセス面51〜54が形成されている。バルブリセス面51、52は、2つの吸気弁との接触を回避する底の浅い凹状である。バルブリセス面53、54は、2つの排気弁との接触を回避する底の浅い凹状である。バルブリセス面51〜54は、中心軸CPの方向で略同じ高さに位置する。バルブリセス面51〜54は、オープン面11、12、リエントラント面21、22よりも高い位置にある。
頂面71〜74は、バルブリセス面51〜54よりも高い位置にある。頂面71〜74は、同一の平面上にある。頂面71は、オープン面11よりも径方向外側にありバルブリセス面52、53の間にある。頂面72は、中心軸CPを介して頂面71と対向する位置にあり、オープン面12よりも径方向外側にあり、バルブリセス面51、54の間にある。頂面73は、リエントラント面21よりも径方向外側にありバルブリセス面53、54の間にある。頂面74は、中心軸CPを介して頂面73と対向する位置にあり、リエントラント面22よりも径方向外側にある。各頂面73、74の面積は、各頂面71、72の面積よりも大きい。
また、図4、5に示すように、ピストン1には、内部にオイルの流通を許容する連通路CHP、クーリングチャンネルCHが形成されている。クーリングチャンネルCHは、キャビティ周囲に形成されている。オイルがクーリングチャンネルCH内を流れることにより、ピストン1が冷却される。
図6A〜6Cは、ピストン1の上面の概略図である。図6Aに示すように、燃料室内には時計方向にスワール流が発生する。面積が大きい頂面73、74付近では、頂面71、72付近よりも強いスキッシュ流、逆スキッシュ流が発生する。従って、リエントラント面21、22付近では空気の流動が大きく、オープン面11の中心付近、オープン面12の中心付近では空気の流動は小さい。ここで、オープン面11の中心とは、中心軸CP方向から見た場合での、オープン面11の周方向での長さの中心を意味する。オープン面12の中心についても同様である。
図6Bに示すように、ノズルNは等角度間隔(45度間隔)で8つの燃料噴霧を噴射する。オープン面11、12、リエントラント面21、22に向けてそれぞれ燃料噴霧F11、F12、F21、F22が噴射される。燃料噴霧F11、F21間には燃料噴霧F31が噴射され、燃料噴霧F11、F22間には燃料噴霧F41が噴射される。燃料噴霧F12、F22間には燃料噴霧F32が噴射される。燃料噴霧F21、F12間には燃料噴霧F42が噴射される。燃料噴霧F31は、オープン面11の中心とリエントラント面21との間にあるオープン面11上の位置に噴射される。燃料噴霧F41は、オープン面11の中心とリエントラント面22との間にあるオープン面11上の位置に噴射される。燃料噴霧F32は、オープン面12の中心とリエントラント面22との間にあるオープン面12上の位置に噴射される。燃料噴霧F42は、オープン面12の中心とリエントラント面22との間にあるオープン面12上の位置に噴射される。燃料噴霧F11、F12は、第1燃料噴霧の一例である。燃料噴霧F21、F22は、第2燃料噴霧の一例である。燃料噴霧F31、F32は、第3燃料噴霧の一例である。燃料噴霧F41、F42は、第4燃料噴霧の一例である。
これらの燃料噴霧は同時に噴射される。従って、最初に燃料噴霧F21、F22がそれぞれリエントラント面21、22に衝突する。次に、燃料噴霧F31、F41はオープン面11に、燃料噴霧F32、F42はオープン面12に衝突する。最後に燃料噴霧F11、F12はそれぞれオープン面11、12に衝突する。このように燃料噴霧がピストン1のキャビティに衝突して、燃料と空気とが攪拌されて燃料が着火する。
従って、最初に燃料噴霧F21、F22が着火する。次に燃料噴霧F31、F32、F41、F42が着火する。最後に、燃料噴霧F11、F12が着火する。従って、燃料噴霧F21、F22が、パイロット噴射に相当する。燃料噴霧F31、F32、F41、F42はメイン噴射に相当する。燃料噴霧F11、F12はアフター噴射に相当する。
上述したようにリエントラント面21、22付近では空気の流動が大きいため、燃料噴霧F21、F22は早く着火してそれぞれリエントラント面21、22付近での強い空気の流動により速く燃える。これに対して、オープン面11の中心、オープン面12の中心付近では空気の流動が小さいため、燃料噴霧F11、F12は遅く着火してオープン面11、12の中心付近での弱い空気の流動により遅く燃える。燃料噴霧F31が噴射されるオープン面11上の位置での空気の流動の強さは、リエントラント面21付近での空気の流動の強さよりも弱く、オープン面11の中心付近での空気の流動の強さよりも強い。燃料噴霧F32、F41、F42が噴射される位置での空気の流動の強さも同様である。このため、燃料噴霧F31は、燃料噴霧F21が着火して燃料噴霧F11が着火する前に着火して、中程度の強さの空気の流動により燃える。燃料噴霧F32、F41、F42についても同様である。
これにより、燃料噴霧毎に燃焼速度差を確保することができる。これにより、複数の燃料噴霧が同時に着火して燃焼速度差が小さい場合と比較して、熱量のピーク値を抑制して燃焼温度を抑制できる。これにより、NOxを低減でき、燃焼騒音も抑制できる。このように本実施例の内燃機関は性能が向上している。
また、図6Cに示すように、リエントラント面21、22に噴射された燃料噴霧F21、F22は、強い空気の流動を受けて大きく拡散する。これに対して、オープン面11、オープン面12に噴射された燃料噴霧F11、F12は、比較的拡散しない。これにより、部分的に当量比を低減でき、スモークを抑制できる。また、キャビティに衝突した後の複数の燃料噴霧は、径方向にずれて拡散する。これにより、燃焼室全体に燃料を均質に拡散できる。ピストン1のキャビティをこのような形状にすることにより、燃料の着火時期を制御したり、燃焼速度差を確保できる。
また、ピストン1のキャビティの形状によれば、一回の燃料噴射で、パイロット噴射、メイン噴射、及びアフター噴射に相当する燃料噴霧を形成できる。ここで、一回の行程でパイロット噴射、メイン噴射、アフター噴射を実行する場合には、噴射の切替の応答性が優れたノズルを用意する必要がある。また噴射の切替の応答性には制約があるため、パイロット噴射、メイン噴射、アフター噴射の時間間隔は所定以上に短縮化できない。本実施例では、このようなノズルの制約を受けずに、所望の燃焼状態を確保することができる。
図7A、7Bは、ピストン1のキャビティの形状の説明図である。図7Bには、キャビティの内面に衝突した噴霧の流動を示している。図8A〜8Cは、各燃料噴霧の時間経過による変化を示したグラフである。図8Aは、各燃料噴霧の幅を示している。燃料噴霧F11等は、噴射されてキャビティの内面に衝突して拡散した後に幅が大きくなる。図8Bは、各燃料噴霧が噴射されてからの各先端部の位置を示している。図8Cは、各燃料噴霧の先端の厚さを示している。
中心軸CPに直交する方向でのオープン面11、12間の最大距離D1とする。中心軸CPに直交する方向でのリエントラント面21、22間の最大距離D2とする。燃料噴霧F11、F21、F31のそれぞれの長さをr1、r2、r3とする。燃料噴霧F11、F21、F31の先端部がピストン1の径方向で重ならないようにするためには、r1−t>r3、r3−t>r2を満たす必要がある。即ち、燃料噴霧F11、F21、F31がそれぞれ衝突する位置が、ピストン1の径方向で接近しすぎていると、各噴霧の先端が重なるおそれがある。
また、各噴霧がピストン1のキャビティに最初に衝突するためには、r2=D2/2、r1=D1/2を満たす必要がある。上記式により、D1/2−t>D2/2を求めることができる。時間的な変化に伴う変数C1がC1<D1/D2を満たすとすると、2>D1/D2>1.05を満たすことが望まれる。
また、各燃料噴霧がピストン1の周方向で重ならないようにするためには、隣接する燃焼噴霧の等角度間隔をA(rad)とすると、A(rad)×r1>A(rad)×r3>A(rad)×r2>w2/2を満たす必要がある。ここでw2は、ノズルNから最も近いリエントラント面21に噴射される燃料噴霧F21がリエントラント面21に衝突して拡散した後の噴霧の幅を意味する。r2=D2/2である。従って上記式から、A(rad)×D2/2(mm)>5を満たすことが望まれる。
また、図7Bに示すように、燃料噴霧F11がオープン面11に衝突して噴霧f1が形成されると、噴霧f1はスワール流により半径をr1とする周方向へ流動する。燃料噴霧F21がリエントラント面21に衝突して噴霧f2が形成されると、噴霧f2はスワール流と共に比較的強いスキッシュ流により周方向及び径方向に広く拡散される。燃料噴霧F31がキャビティの内面に衝突して噴霧f3が形成されると、噴霧f3は、噴霧f2が受けるスキッシュ流よりも弱いスキッシュ流を受ける。
スワール流の下流にこれら噴霧f1〜f3が拡散することにより、燃焼室内で燃料と空気とが均一に混合される。噴霧f1は、オープン面11の傾斜角度等によりスキッシュエリアに誘導されやすくなっている。これにより、オープン面11からスキッシュエリアに燃料噴霧が誘導される過程で空気利用率が向上している。これによりスモークを低減でき、熱効率も改善されている。また、噴霧f2は、噴霧f1と比較してスキッシュエリアには誘導され難く、圧縮行程では強いスキッシュ流により、膨張行程では逆スキッシュ流により強く流動され、空気利用率が向上している。これによっても、スモークを低減でき、熱効率も改善されている。
次に、ピストンの複数の変形例について説明する。尚、同一、類似の部分には同一、類似の符号を付することにより重複する説明を省略する。図9は、変形例のピストン1´の上面図である。図10は、図9のC−C断面図である。底面5´には、部分的に隆起している2つの隆起部5aが設けられている。隆起部5aは、底面5´の他の部分よりも高い位置にある。2つの隆起部5aは、上面視でそれぞれオープン面11、12と対向している。隆起部5aは、隆起底面部の一例である。
上述したピストン1では、オープン面11、12に噴射される燃料噴霧F11、F12は、スキッシュエリアに誘導されやすいため、オープン面11、12近傍の底面5付近の空気は燃焼に利用しにくい。変形例のピストン1´では底面5´に隆起部5aが部分的に隆起しているため、燃焼に利用されない空気の量を減らしてスモークを低減することができる。
また、2つのクーリングチャンネルCH´はそれぞれ、上面視でオープン面11、12と重なるように、オープン面11、12に沿って形成され、リエントラント面21、22から避けた位置に形成されている。具体的には、リエントラント面21、22から径方向外側には、クーリングチャンネルCH´は形成されていない。これにより、オープン面11、12を冷却でき、リエントラント面21、22の温度を確保することができる。これにより、リエントラント面21、22にそれぞれ噴射される燃料噴霧F21、F22の着火を促進でき、燃料噴霧F21、F22の着火時期と、オープン面11、12のそれぞれに噴射される燃料噴霧F11、F12の着火時期との差を大きくすることができる。
尚、クーリングチャンネルの一部分が、上面視でリエントラント面21の一部分の径方向外側に位置していてもよい。即ち、リエントラント面21の径方向外側の一部分に、クーリングチャンネルが形成されていない領域があればよい。クーリングチャンネルは、上面視でオープン面11の径方向外側に位置する部分での長さは、リエントラント面21の径方向外側に位置する部分での長さよりも長くてもよい。また、2つのリエントラント面21、22のうち、何れか一方の径方向外側にまでクーリングチャンネルが延びて形成されていてもよい。
図11A、11Bは、ノズルNの説明図である。図11A、11Bは、ノズルNの先端部の断面を示している。ノズルNは、複数の噴孔が形成されたボディN2、ボディN2内を昇降するニードルN1を含む。ボディN2の内側のシート面からニードルN1が上昇することにより、ボディN2とニードルN1の隙間から燃料がサック室FHに流れる。サック室FHに流れた燃料は、ニードルN1の噴孔H1から噴射される。噴孔H1は、燃料噴霧F11を噴射する。噴孔H2は、燃料噴霧F21を噴射する。
噴孔H2は、上流側は径が大きく、途中から下流側にかけて径が小さい。具体的には、噴孔H2の上流側の径は噴孔H1の径よりも大きく、噴孔H2の下流側の径は噴孔H1の径と同じである。従って、噴孔H2の径が小さい部分の長さが実質的な噴孔H2の長さである。よって、実質的な噴孔H2の長さは、噴孔H1よりも短い。これにより、噴孔H1から噴射される燃料噴霧F11の噴射距離の方が、噴孔H2から噴射される燃料噴霧F21の噴射距離よりも長くなる。このように、ノズルNから離れたオープン面11に燃料を噴射するための噴孔H1を長くし、ノズルNに近いリエントラント面21に燃料を噴射するための噴孔H2の長さを短くしてもよい。
尚、燃料噴霧F31を噴射する噴孔は、噴孔H1、H2の何れかと長さが同じであってもよいし、噴孔H1よりも短く噴孔H2よりも長くてもよい。尚、燃料噴霧F12を噴射するための噴孔は噴孔H1と同じであり、燃料噴霧F22を噴射するための噴孔は噴孔H2と同じである。尚、ノズルNの複数の噴孔は、径、長さ、形状が全て同じものであってもよい。
図11C、11Dは、変形例であるノズルN´の説明図である。噴孔H1´、H2´は、長さが同じであるが、噴孔H1´の径は、噴孔H2´の径よりも大きい。これにより、噴孔H1´から噴射される燃料噴霧F11の噴射距離の方が、噴孔H2´から噴射される燃料噴霧F21の噴射距離よりも長くなる。尚、燃料噴霧F31を噴射する噴孔は、噴孔H1、H2の何れかと径が同じであってもよいし、噴孔H1よりも径が小さく噴孔H2よりも径が大きくてもよい。尚、燃料噴霧F12を噴射するための噴孔は噴孔H1´と同じであり、燃料噴霧F22を噴射するための噴孔は噴孔H2´と同じである。
図11E、11Fは、変形例であるノズルN´´の説明図である。噴孔H1、H2´´は径が同じであるが、水平方向に対する角度が異なっている。噴孔H2´´の方が、噴孔H1よりも下方側に延びている。これにより、噴孔H1から噴射される燃料噴霧F11の中心軸方向での高さ位置は、噴孔H2´´から噴射される燃料噴霧F21よりも高くなる。よって、噴孔H1から噴射される燃料噴霧F11をスキッシュエリア側に誘導でき、噴孔H2´´から噴射される燃料噴霧F21をキャビティの底面5側に誘導できる。尚、燃料噴霧F31を噴射する噴孔は、噴孔H1と角度が同じであってもよいし、噴孔H1、H2´´の間の角度であってもよい。尚、燃料噴霧F12を噴射するための噴孔は噴孔H1と同じであり、燃料噴霧F22を噴射するための噴孔は噴孔H2´´と同じである。燃料噴霧F11、F21をそれぞれ噴射するための噴孔は、径及び角度は同じであり高さ位置が異なっていてもよい。
図12は、燃料噴霧間の角度が異なる場合の説明図である。図12に示すように、各燃料噴霧間の角度間隔は異なっていてもよい。具体的には、燃料噴霧F11、F31の角度間隔は、燃料噴霧F21、F31の角度間隔よりも狭い。同様に、燃料噴霧F11、F41の角度間隔は、燃料噴霧F41、F22の角度間隔よりも狭い。これにより、オープン面11により多くの燃料を接触させることができる。同様に、燃料噴霧F12、F42間の角度間隔、燃料噴霧F12、F32間の角度間隔も、燃料噴霧F21、F42間の角度間隔、燃料噴霧F22、F32間の角度間隔よりも狭くなっている。尚、燃料噴霧F11、F31の角度間隔、燃料噴霧F11、F41の角度間隔、燃料噴霧F12、F42間の角度間隔、燃料噴霧F12、F32間の角度間隔は、互いに異なっていてもよいし、これらの角度間隔のうち少なくとも2つの角度間隔が同じであってもよい。燃料噴霧の角度間隔は、ノズルの噴孔間の角度間隔に依存する。
図13Aは、変形例であるピストン1´´の上面の概略図である。図13Aには、2つの吸気弁IV、2つの排気弁EVの位置を点線で示している。図13Aに示すように、中心軸CPに直交しオープン面11、12の中心を通過する中心線CAは、クランクシャフトの方向CSDに対してスワール流の方向SWに角度αだけずれている。角度αは0度から90度未満である。ここで、クランクシャフトの方向CSDは、コネクティングロッドとピストンとを連結するピンの延びた方向とも同じである。クランクシャフトの方向CSDと直交する直線上でのピストン1´´の頂面の両端の位置PFには、鉛直下方に大きな燃焼圧力を受ける。これにより、クランクシャフトの方向CSD上でのピストン1´´の頂面の両端の位置PPには、ピンを略中心とする周方向に引張応力tsが作用する。
例えば、クランクシャフトの方向CSDと、オープン面11、12の中心を通過する中心線CAとが一致する場合、オープン面11、12の径方向外側の頂面の面積が小さい部分にこのような引張応力が作用する。このような頂面の面積が小さい部分に大きな引張応力が作用する、その部分が変形するおそれがある。本変形例のピストン1´´では、クランクシャフトの方向CSDは、オープン面11、12の中心を通過する中心線CAからずれている。これにより、面積が比較的大きい部分に引張応力を作用させることができる。これによりピストン1´´の変形が抑制されている。
図13Bは、図13Aとは吸気弁IV、排気弁EVの位置が異なっている変形例の説明図である。2つの吸気弁IVを通過する吸気弁中心軸IVCは、クランクシャフトの方向CSDに対してスワール流の方向SWに角度βだけずれている。角度βは0度から90度未満である。このような構成であってもよい。
図14は、変形例のピストンAの斜視図であり、図15は、変形例のピストンAの上面図である。図15には、等角度間隔に8つの燃料噴霧が噴射される場合を示している。図15に示すように、燃料噴霧F31の方向とオープン面11aの円弧状の外周縁部とが交差する地点P31から中心軸CPまでの距離は、燃料噴霧F41の方向とオープン面11aの円弧状の外周縁部とが交差する地点P41から中心軸CPまでの距離よりも長い。これにより、燃料噴霧F31、F41がオープン面11aに衝突するタイミングをずらすことができる。これにより、燃料噴霧F31、F41が着火するタイミングをずらすことができ、熱発生のピークを抑制することができる。
同様に、燃料噴霧F32の方向とオープン面12aの円弧状の外周縁部とが交差する地点P32から中心軸CPまでの距離は、燃料噴霧F42の方向とオープン面12aの円弧状の外周縁部と交差する地点P42から中心軸CPまでの距離よりも長い。これにより、燃料噴霧F32、F42が着火するタイミングをずらすことができる。
また、燃料噴霧F31がオープン面11aに衝突する位置の径方向の距離と、燃料噴霧F41がそれぞれオープン面11aに衝突する位置の径方向の距離とは異なっている。このため、燃料噴霧F31、F41がオープン面11aに衝突した後に生じる噴霧を拡散できる。このため、キャビティ内で均質に燃料と空気とを混合させることができる。オープン面12aに衝突する燃料噴霧F32、F42についても同様である。
ここで、オープン面11aは略球面状である。中心軸CP方向から見た場合に、オープン面11aを含む仮想の球体の中心位置は、燃料噴霧F11の中心軸からずれている。オープン面11aの略中心付近に噴射される燃料噴霧F11の中心軸からずれた位置を中心としてオープン面11aが加工されている。同様に、オープン面12aは球面状である。中心軸CP方向から見た場合に、オープン面12aを含む仮想の球体の中心位置は、燃料噴霧F12の中心軸からずれている。尚、各燃料噴霧の角度間隔は等しいが、これに限定されない。
尚、オープン面11a、12aに交差する断面視では、キャビティの内径が上方に向かって拡大している。尚、オープン面11a、12aのそれぞれの稜線111a、121a、は、稜線211、221よりも低い位置にある。また、ピストンAが上死点に位置する場合でのノズルからオープン面11aまでの距離は、ノズルからリエントラント面21までの距離よりも長い。オープン面12a、リエントラント面22についても同様である。
クーリングチャンネルCH´´は、上面視でリエントラント面21、22の径方向外側に沿うように形成され、オープン面11a、12aに重ならない位置に設けられている。ここで、オープン面11a、12aよりもリエントラント面21、22のほうが燃料が強く衝突するため、リエントラント面21、22の方が熱負荷が大きくなるおそれがある。リエントラント面21、22側にクーリングチャンネルCH´´を設けることにより、リエントラント面21、22側を冷却して熱負荷を低減できる。
また、例えば、クーリングチャンネルは、上面視でリエントラント面21の径方向外側に位置し、オープン面11aに部分的に重なるように設けてもよい。具体的には、オープン面11aの中心付近又は燃料噴霧F11が噴射される付近を避けて、クーリングチャンネルを設けてもよい。クーリングチャンネルは、上面視でオープン面11aの径方向外側に位置する部分での長さは、リエントラント面21の径方向外側に位置する部分での長さよりも短くてもよい。また、2つのオープン面11a、12aのうち一方の径方向外側にまでクーリングチャンネルが延びて形成されていてもよい。
図16は、ピストンBの斜視図である。図17は、ピストンBの上面図である。ピストンBには、4つのオープン面11b、12b、13b、14bが略90度間隔で周方向に形成されている。また、4つのリエントラント面21b、22b、23b、24bが90度間隔で周方向に形成されている。リエントラント面21bは、周方向でオープン面11b、13b間にある。リエントラント面とオープン面とが周方向に交互に並ぶように形成されている。オープン面11b、12bは対向し、オープン面13b、14bは対向している。リエントラント面21b、22bは対向し、リエントラント面23b、24bは対向している。
ノズルから噴射される8つの燃料噴霧F11、F12、F21、F22、F31、F32、F41、F42は、それぞれ、オープン面11b、12b、13b、14b、リエントラント面21b、22b、23b、24bに向けて噴射される。バルブリセス面51b、52b、53b、54bは、それぞれオープン面14b、11b、13b、12bの径方向外側に位置している。
バルブリセス面51b、52b、53b、54bは、それぞれオープン面14b、11b、13b、12bの大部分と重なる位置に形成されている。換言すると、オープン面14b、11b、13b、12bは、それぞれバルブリセスを兼ねている。このため、底が浅いため燃焼に寄与しにくいバルブリセス面の面積を抑制されている。このため、オープン面とバルブリセス面とが離れて形成されている場合と比較し、ピストンBの体積を確保でき、燃焼室の燃焼に寄与しない無駄な容積を低減して小型化でき、圧縮比を確保できる。
尚、図16、17に示すように、中心軸CP方向から見て互いに対向するオープン面11b、12bが並んだ方向は、孔Hの延びた方向に対して、即ち、クランクシャフトの延びた方向に対してずれている。同様に、オープン面13b、14bが並んだ方向もクランクシャフトの延びた方向に対してずれている。これにより、頂面74b、73bに比較的大きな燃焼圧が作用し、頂面71b、72bに引張応力が作用する。ここで、頂面71b、72bは、それぞれ、リエントラント面21b、22bの径方向外側に位置して、比較的面積が確保されている。このため、頂面71b、72bに引張応力が作用しても、ピストンBの変形が抑制される。
尚、各稜線111b、121b、131b、141bは、各稜線211b、221b、231b、241bよりも低い位置にある。また、ピストンAが上死点に位置する場合でのノズルからオープン面11bまでの距離は、ノズルからリエントラント面21bまでの距離よりも長い。オープン面12b、13b、14b、22b、23b、24bについても同様である。
図18は、ピストンCの斜視図である。図19は、ピストンCの上面図である。オープン面11cは、バルブリセス面52cよりもスワール流の方向SWにずれている。オープン面12c〜14cもそれぞれバルブリセス面54c、53c、51cに対して方向SWにずれている。ここで、頂面74c、バルブリセス面52c、オープン面11cの順に高さが低くなっている。また、頂面74c、バルブリセス面52c、オープン面11cは方向SWで順に連続している。頂面71c、バルブリセス面53c、オープン面13cも同様である。頂面73c、バルブリセス面54c、オープン面12cも同様である。頂面72c、バルブリセス面51c、オープン面14cも同様である。
これにより、吸気行程の初期である吸気弁の開き始めにおいて、気筒内に流入した空気が頂面74cに接触し、頂面74cからバルブリセス面52cへ、バルブリセス面52cからオープン面11cへと案内される。このように、気筒内に導入された空気は、スワール流の方向SWに徐々に深くなっていく頂面74c、バルブリセス面51c、オープン面11cによりスワール流の方向SWへと案内されやすくなる。これにより、スワール流を強化することができる。
尚、ピストンCにおいて、スワール流の方向が逆方向であった場合には、例えばオープン面11cへ噴射された燃料噴霧は、スワール流の方向に徐々に深さが浅くなっていくオープン面11c、バルブリセス面52c、頂面74cへと順に案内されやすくなる。これにより、燃料をスワール流の方向へスムーズに流して燃料を攪拌することができる。
面21c〜24cと底面5cとの間には稜線は設けられていない。即ち、面21c〜24cは、底面5cから滑らかに連続して形成されている。面21c〜24cは、底面5cから鉛直上方に延び、途中で径方向外側に傾斜して延びている。即ち、ピストンCにおいては、中心軸CPからの半径が底面5cの最大半径よりも小さくなるリップ部は設けられていない。底面5cの中心軸CPからの最大半径と、中心軸CPから面21cの鉛直面までの距離とは、略同じであるがこれに限定されない。面22c〜24cについても同様である。
面21c〜24c、オープン面11c〜14cは、周方向にずれて配置されている。即ち、面21cは、オープン面11c、13cの間に位置する。各オープン面11c〜14cの周方向での長さは、各面21c〜24cの周方向での長さよりも長い。オープン面11c〜14c、面21c〜24cにそれぞれ燃料噴霧が噴射される。また、隆起部3cは、他のピストンの隆起部3よりも低く形成されている。また、ピストンCが上死点に位置する場合でのノズルからオープン面11cまでの距離は、ノズルから面21cまでの距離よりも長い。オープン面12c〜14c、面22c〜24cについても同様である。面21c〜24cは、第2面の一例である。
図20は、ピストンDの斜視図である。図21は、ピストンDの上面図である。ピストンDは、3つのオープン面11d、12d、13dが略120度間隔で周方向に設けられ、3つのリエントラント面21d、22d、23dが周方向に略120度間隔で設けられている。尚、これらは等間隔に設けられていることに限定されない。オープン面11dには2つの燃料噴霧F111、F112が噴射される。同様に、オープン面12dには、2つの燃料噴霧F121、F122が噴射され、オープン面13dには、2つの燃料噴霧F131、F132が噴射される。リエントラント面21d、22d、23dは、それぞれ一つの燃料噴霧F21、F22、F23が噴射される。従って、ピストンDに採用されるノズルの噴孔数は9つである。このように、各オープン面11d、12d、13dに噴射される燃料噴霧の数が、各リエントラント面21d、22d、23dに噴射される燃料噴霧の数よりも多くてもよい。
尚、頂面72dの中心付近、頂面73dとバルブリセス面51dを含む全体の中心付近、頂面71dとバルブリセス面52dを含む全体の中心付近で、強いスキッシュ流Sが生じる。このため、燃料と空気の拡散を促進でき、スモークを低減できる。
尚、各稜線111d、121d、131dは、各稜線211d、221d、231dよりも低い位置にある。また、ピストンCが上死点に位置する場合でのノズルからオープン面11cまでの距離は、ノズルからリエントラント面21dまでの距離よりも長い。オープン面12d、13d、14d、リエントラント面22d、23d、24dについても同様である。
図22は、ピストンEの斜視図である。図23は、ピストンEの状面視である。図24は、図23の部分D−D断面図である。面21e、22eは、中心軸CPを介して互いに対向している。図23に示すように、面21e、22eは、底面5eから略鉛直上方に延びて径方向外側に傾斜して延びている。ピストンEは、リップ部は設けられていない。面21eは、オープン面11e、12eの間に位置している。図22、23に示すように、中心軸CPに直交してオープン面11e、12eの中心を通過する中心線CAは、クランクシャフトの方向CSDに対してスワール流の方向SWに所定の角度だけずれている。この角度は0度から90度未満である。上述したように、このような位置にオープン面11e、12eを形成することにより、ピストンEの変形が抑制される。
図25は、ピストンFの斜視図である。図26は、ピストンFの上面図である。図27は、図26のE−E断面図である。図28は、図26のF−F断面図である。ピストンFのキャビティは、上面視で略楕円形状又は長孔形状である。上面視で各面11f、12fは、略半円状に湾曲している。上面視で各面21f、22fは、略直線状に延びている。中心軸CPから面11fの中心までの距離は、中心軸CPから面21fの中心までの距離よりも長い。面12f、22fについても同様である。尚、ピストンEと同様に、中心軸CPに直交し面11f、12fの中心を通過する線分は、クランクシャフトの方向に対してスワール流の方向SWに所定の角度だけずれている。
図27に示すように、面21fは底面5fから鉛直よりも若干径方向外側に傾斜して上方に延び、途中でゆるい傾斜角度で径方向外側に延びている。即ち、面21fは、鉛直方向には延びていない。従って、面21fの最大傾斜角度は、ピストンCの面21cやピストンEの面21eの傾斜角度よりもゆるやかである。面22fも同様である。また、図28に示すように、面11f、12fも同様である。従って、ピストンFはリップ部は設けられておらず、ピストンFのキャビティの形状は、内径が上方に向かって拡大するオープン型である。面11f、12fは、第1面の一例であり、面21f、22fは第2面の一例である。
面11f、21fにそれぞれ接触する燃料噴霧が噴射されると共に、この2つの燃料噴霧の間にも燃料噴霧が噴射される。具体的には、各面11f、12f、21f、22fの略中心に燃料噴霧が噴射されると共に、これらの隣接する燃料噴霧間にも燃料噴霧が噴射される。合計、8つの燃料噴霧が噴射される。具体的には、各面11f、12fには、3つの燃料噴霧が噴射され、各面21f、22fには1つの燃料噴霧が噴射される。尚、燃料噴霧の数はこの限りではない。
面11fの略中心と面21fにそれぞれ接触する燃料噴霧が噴射されると共に、この2つの燃料噴霧の間にも燃料噴霧が噴射される。このため、面21fへ噴射された燃料噴霧が先に面21fに衝突し、面11fの略中心へ噴射された燃料噴霧が最後に面11fに衝突する。これにより、各燃料噴霧が着火するタイミングを異ならせることができ、燃料噴霧毎に燃焼速度差を確保することができる。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
本発明は、上述した複数例の一例の一部分を、他の例に採用した構成も含む。
ノズルから同時に噴射される燃料噴霧の数は、上記例に記載した数に限定されない。
第1面及び第2面は、形状、大きさの少なくとも一方が異なるオープン面であってもよい。また、第1面及び第2面は、中心軸からの距離が異なるオープン面であってもよい。
1 ピストン
3 隆起部
5 底面
5a 隆起部(隆起底面部)
11、12 オープン面
21、22 リエントラント面
21c〜24c、21e、22e、11f、12f、21f、22f 面
111、112、211、221 稜線
51〜54 バルブリセス面
71〜74 頂面
N ノズル
CP 中心軸
CH クーリングチャンネル
3 隆起部
5 底面
5a 隆起部(隆起底面部)
11、12 オープン面
21、22 リエントラント面
21c〜24c、21e、22e、11f、12f、21f、22f 面
111、112、211、221 稜線
51〜54 バルブリセス面
71〜74 頂面
N ノズル
CP 中心軸
CH クーリングチャンネル
上記目的は、シリンダブロック及びシリンダヘッドと、前記シリンダブロック及びシリンダヘッドにより燃焼室を画定するキャビティを含むピストンと、前記燃焼室に燃料を噴射するノズルと、を備え、前記キャビティは、前記ノズルに向けて隆起した隆起部、前記隆起部周囲に形成された底面、前記底面に連続した第1面及び第2面、を含み、前記第1面は、前記ピストンの径方向外側に向かって深さが浅くなり、前記第1面及び第2面は、前記ピストンの中心軸周りの周方向の異なる位置に設けられ、前記ノズルから前記第1面までの距離は、前記ノズルから前記第2面までの距離よりも長く、前記ノズルは、前記第1面及び第2面のそれぞれに向けて第1及び第2燃料噴霧を、前記第1及び第2燃料噴霧の間に第3燃料噴霧を、及び前記第3燃料噴霧との間で前記第1燃料噴霧を挟む第4燃料噴霧を噴射し、前記中心軸方向から前記ピストンを見た場合、前記第3燃料噴霧の方向と交差する前記第1面の外周縁上の地点から前記ノズルまでの距離は、前記第4燃料噴霧の方向と交差する前記第1面の外周縁上の地点から前記ノズルまでの距離よりも長い、圧縮着火式内燃機関によって達成できる。
前記第1面は、前記中心軸を介して対向した2つの第1面を含み、前記第2面は、前記中心軸を介して対向した2つの第2面を含み、前記中心軸方向から見た場合の2つの前記第1面間の最大距離をD1(mm)とし、前記中心軸方向から見た場合の2つの前記第2面間の最大距離をD2(mm)とし、前記ノズルは、中心軸心周りに等間隔に複数の噴孔が形成され、隣接する前記噴孔間の等角度間隔をA(rad)とすると、以下の数1及び数2の式を満たす、構成であってもよい。
(数1)A×D2/2>5
(数2)2>D1/D2>1.05
(数1)A×D2/2>5
(数2)2>D1/D2>1.05
シリンダヘッド90には燃料を噴射するノズルNが設けられている。ノズルNは燃焼室Eに燃料を噴射する。ノズルNは略中心軸CP上に設けられている。中心軸CPは、シリンダブロック80の中心軸である。尚、ノズルNには、燃料を噴射する噴孔が8つ設けられているがこれに限定されない。
2つのオープン面11、12、2つのリエントラント面21、22は底面5に連続して形成されている。オープン面11、12は中心軸CPを介して互いに対向する。リエントラント面21、22も同様である。オープン面11、12の間に、リエントラント面21が位置する。換言すれば、周方向に、オープン面11、リエントラント面21、オープン面12、リエントラント面22の順に形成されている。上面視でオープン面11、12の略中心を通過する線分と、リエントラント面21、22の略中心を通過する線分とは直交する。オープン面11、リエントラント面21、オープン面12、リエントラント面22は、90度の角度間隔毎に設けられている。図3に示すように、上面から見てオープン面11、12は中心軸CPに対して略点対称である。リエントラント面21、22も同様である。
稜線111は、オープン面11と底面5との境界を示す。同様に、稜線121、211、221は、それぞれ、オープン面12と底面5との境界、リエントラント面21と底面5との境界、リエントラント面22と底面5との境界を示す。各稜線111、121は、各稜線211、212よりも中心軸CPの方向で低い位置にある。
図6A〜6Cは、ピストン1の上面の概略図である。図6Aに示すように、燃焼室内には時計方向にスワール流が発生する。面積が大きい頂面73、74付近では、頂面71、72付近よりも強いスキッシュ流、逆スキッシュ流が発生する。従って、リエントラント面21、22付近では空気の流動が大きく、オープン面11の中心付近、オープン面12の中心付近では空気の流動は小さい。ここで、オープン面11の中心とは、中心軸CP方向から見た場合での、オープン面11の周方向での長さの中心を意味する。オープン面12の中心についても同様である。
図6Bに示すように、ノズルNは等角度間隔(45度間隔)で8つの燃料噴霧を噴射する。オープン面11、12、リエントラント面21、22に向けてそれぞれ燃料噴霧F11、F12、F21、F22が噴射される。燃料噴霧F11、F21間には燃料噴霧F31が噴射され、燃料噴霧F11、F22間には燃料噴霧F41が噴射される。燃料噴霧F12、F22間には燃料噴霧F32が噴射される。燃料噴霧F21、F12間には燃料噴霧F42が噴射される。燃料噴霧F31は、オープン面11の中心とリエントラント面21との間にあるオープン面11上の位置に噴射される。燃料噴霧F41は、オープン面11の中心とリエントラント面22との間にあるオープン面11上の位置に噴射される。燃料噴霧F32は、オープン面12の中心とリエントラント面21との間にあるオープン面12上の位置に噴射される。燃料噴霧F42は、オープン面12の中心とリエントラント面22との間にあるオープン面12上の位置に噴射される。燃料噴霧F11、F12は、第1燃料噴霧の一例である。燃料噴霧F21、F22は、第2燃料噴霧の一例である。燃料噴霧F31、F32は、第3燃料噴霧の一例である。燃料噴霧F41、F42は、第4燃料噴霧の一例である。
また、各燃料噴霧がピストン1の周方向で重ならないようにするためには、隣接する燃料噴霧の等角度間隔をA(rad)とすると、A(rad)×r1>A(rad)×r3>A(rad)×r2>w2/2を満たす必要がある。ここでw2は、ノズルNから最も近いリエントラント面21に噴射される燃料噴霧F21がリエントラント面21に衝突して拡散した後の噴霧の幅を意味する。r2=D2/2である。従って上記式から、A(rad)×D2/2(mm)>5を満たすことが望まれる。
図11C、11Dは、変形例であるノズルN´の説明図である。噴孔H1´、H2´は、長さが同じであるが、噴孔H1´の径は、噴孔H2´の径よりも大きい。これにより、噴孔H1´から噴射される燃料噴霧F11の噴射距離の方が、噴孔H2´から噴射される燃料噴霧F21の噴射距離よりも長くなる。尚、燃料噴霧F31を噴射する噴孔は、噴孔H1´、H2´の何れかと径が同じであってもよいし、噴孔H1よりも径が小さく噴孔H2よりも径が大きくてもよい。尚、燃料噴霧F12を噴射するための噴孔は噴孔H1´と同じであり、燃料噴霧F22を噴射するための噴孔は噴孔H2´と同じである。
また、燃料噴霧F31がオープン面11aに衝突する位置の径方向の距離と、燃料噴霧F41がオープン面11aに衝突する位置の径方向の距離とは異なっている。このため、燃料噴霧F31、F41がオープン面11aに衝突した後に生じる噴霧を拡散できる。このため、キャビティ内で均質に燃料と空気とを混合させることができる。オープン面12aに衝突する燃料噴霧F32、F42についても同様である。
尚、各稜線111b、121b、131b、141bは、各稜線211b、221b、231b、241bよりも低い位置にある。また、ピストンAが上死点に位置する場合でのノズルからオープン面11bまでの距離は、ノズルからリエントラント面21bまでの距離よりも長い。オープン面12b、13b、14b、リエントラント面22b、23b、24bについても同様である。
面21c〜24cは、底面5から鉛直上方に延び、途中で径方向外側に延びている。底面5cの中心軸CPからの最大半径と、中心軸CPから面21cの鉛直面までの距離とは、略同じであるがこれに限定されない。面22c〜24cについても同様である。
尚、各稜線111d、121d、131dは、各稜線211d、221d、231dよりも低い位置にある。また、ピストンDが上死点に位置する場合でのノズルからオープン面11dまでの距離は、ノズルからリエントラント面21dまでの距離よりも長い。オープン面12d、13d、14d、リエントラント面22d、23d、24dについても同様である。
Claims (17)
- シリンダブロック及びシリンダヘッドと、
前記シリンダブロック及びシリンダヘッドにより燃焼室を画定するキャビティを含むピストンと、
前記燃焼室に燃料を噴射するノズルと、を備え、
前記キャビティは、前記ノズルに向けて隆起した隆起部、前記隆起部周囲に形成された底面、前記底面に連続した第1面及び第2面、を含み、
前記第1面は、前記ピストンの径方向外側に向かって深さが浅くなり、
前記第1面及び第2面は、前記ピストンの中心軸周りの周方向の異なる位置に設けられ、
前記ノズルから前記第1面までの距離は、前記ノズルから前記第2面までの距離よりも長く、
前記ノズルは、前記第1面及び第2面のそれぞれに向けて第1及び第2燃料噴霧を噴射すると共に前記第1及び第2燃料噴霧の間に第3燃料噴霧を噴射する、圧縮着火式内燃機関。 - 前記第1面は、前記中心軸を介して互いに対向した2つの第1面を含み、
前記中心軸方向から見て2つの前記第1面が並んだ方向は、クランクシャフトの延びた方向に対してずれている、請求項1の圧縮着火式内燃機関。 - 前記中心軸方向から見て2つの吸気バルブが並んだ方向は、前記クランクシャフトの延びた方向に対してずれており、前記燃焼室内に生じるスワール流の方向にずれている、請求項2の圧縮着火式内燃機関。
- 前記底面は、前記隆起部と前記第1面との間に位置し部分的に隆起した隆起底面部を含む、請求項1乃至3の何れかの圧縮着火式内燃機関。
- 前記ノズルは、前記第3燃料噴霧との間で前記第1燃料噴霧を挟む第4燃料噴霧を噴射し、
前記中心軸方向から前記ピストンを見た場合、前記第3燃料噴霧の方向と交差する前記第1面の外周縁上の地点から前記ノズルまでの距離は、前記第4燃料噴霧の方向と交差する前記第1面の外周縁上の地点から前記ノズルまでの距離よりも長い、請求項1の圧縮着火式内燃機関。 - 前記ピストンは、前記第1面よりも前記中心軸方向で高い位置にあり、前記第1面に連続したバルブリセス面が形成されている、請求項1乃至5の何れかの圧縮着火式内燃機関。
- 前記ピストンは、前記中心軸方向で前記バルブリセス面よりも高い位置にある頂面を含み、
前記燃焼室内で生じるスワール流の方向に、前記頂面、前記バルブリセス面、前記第1面、の順で連続している、請求項6の圧縮着火式内燃機関。 - 前記ピストンは、前記中心軸方向で前記バルブリセス面よりも高い位置にある頂面を含み、
前記燃焼室内で生じるスワール流の方向に、前記第1面、前記バルブリセス面、前記頂面の順で連続している、請求項6の圧縮着火式内燃機関。 - 前記第1燃料噴霧の前記中心軸方向での高さ位置は、前記第2燃料噴霧の高さ位置よりも高い、請求項1乃至8の何れかの圧縮着火式内燃機関。
- 前記中心軸方向から見た場合に、前記第1及び第3燃料噴霧間の角度間隔は、前記第2及び第3燃料噴霧間の角度間隔よりも狭い、請求項1乃至9の何れかの圧縮着火式内燃機関。
- 前記ピストンは、前記第1面に沿ってオイルが流通可能なクーリングチャンネルが設けられ、
前記クーリングチャンネルは、前記第2面から径方向外側には設けられていない、請求項1乃至10の何れかの圧縮着火式内燃機関。 - 前記ピストンは、前記第2面に沿ってオイルが流通可能なクーリングチャンネルが設けられ、
前記クーリングチャンネルは、前記第1面から径方向外側には設けられていない、請求項1乃至10の何れかの圧縮着火式内燃機関。 - 前記第1面に噴射される燃料噴霧の数は、前記第2面に噴射される燃料噴霧の数よりも多い、請求項1乃至12の何れかの圧縮着火式内燃機関。
- 前記第1面は、前記中心軸を介して対向した2つの第1面を含み、
前記第2面は、前記中心軸を介して対向した2つの第2面を含み、
前記中心軸方向から見た場合の2つの前記第1面間の最大距離をD1とし、
前記中心軸方向から見た場合の2つの前記第2面間の最大距離をD2とし、
前記ノズルは、中心軸心周りに等間隔に複数の噴孔が形成され、
前記隣接する噴孔間の等角度間隔をA(rad)とすると、
以下の数1及び数2の式を満たす、請求項1乃至13の何れかの圧縮着火式内燃機関。
(数1)A×D2/2>5
(数2)2>D1/D2>1.05 - 前記ノズルは、前記第1及び第2燃料噴霧をそれぞれ噴射する第1及び第2噴孔を含み、
前記第1噴孔の長さは、前記第2噴孔の長さよりも長い、請求項1乃至14の何れかの圧縮着火式内燃機関。 - 前記ノズルは、前記第1及び第2燃料噴霧をそれぞれ噴射する第1及び第2噴孔を含み、
前記第1噴孔の径は、前記第2噴孔の径よりも大きい、請求項1乃至14の何れかの圧縮着火式内燃機関。 - 前記第1面は、前記第2面よりも面積が大きい、請求項1乃至16の何れかの圧縮着火式内燃機関。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/066997 WO2014203382A1 (ja) | 2013-06-20 | 2013-06-20 | 圧縮着火式内燃機関 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPWO2014203382A1 true JPWO2014203382A1 (ja) | 2017-02-23 |
Family
ID=52104144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015522444A Ceased JPWO2014203382A1 (ja) | 2013-06-20 | 2013-06-20 | 圧縮着火式内燃機関 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20160138461A1 (ja) |
EP (1) | EP3012433A4 (ja) |
JP (1) | JPWO2014203382A1 (ja) |
CN (1) | CN105378246A (ja) |
WO (1) | WO2014203382A1 (ja) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9732665B2 (en) * | 2013-06-20 | 2017-08-15 | Toyota Jidosha Kabushiki Kaisha | Compression ignition internal combustion engine |
JP6079654B2 (ja) * | 2014-01-21 | 2017-02-15 | トヨタ自動車株式会社 | 圧縮着火式内燃機関の制御装置 |
CN107427395B (zh) | 2015-03-18 | 2021-01-01 | 宝洁公司 | 带有腰衬圈元件和腿箍的吸收制品 |
USD792469S1 (en) * | 2015-03-26 | 2017-07-18 | Cummins Inc. | Combustion bowl |
JP6566000B2 (ja) * | 2017-06-02 | 2019-08-28 | マツダ株式会社 | エンジン |
JP6565999B2 (ja) * | 2017-06-02 | 2019-08-28 | マツダ株式会社 | エンジン |
US10400663B2 (en) * | 2017-12-18 | 2019-09-03 | Caterpillar Inc. | Piston bowl for improved combustion stability |
JP7124731B2 (ja) * | 2019-01-29 | 2022-08-24 | マツダ株式会社 | 圧縮着火エンジンの制御装置 |
JP7124735B2 (ja) * | 2019-01-29 | 2022-08-24 | マツダ株式会社 | 圧縮着火エンジンの制御装置 |
WO2021066708A1 (en) * | 2019-10-01 | 2021-04-08 | Scania Cv Ab | Compression ignition engine with improved fuel distribution and vehicle comprising the engine |
US11371466B2 (en) * | 2019-12-17 | 2022-06-28 | Caterpillar Inc. | Piston for internal combustion engine having valve pocket step for slowing combustion gas flow |
JP7403405B2 (ja) * | 2020-07-29 | 2023-12-22 | ヤンマーホールディングス株式会社 | ディーゼルエンジン |
CN112682163A (zh) * | 2020-12-22 | 2021-04-20 | 中国北方发动机研究所(天津) | 一种基于深避阀坑的分层防爆燃燃烧室 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725117U (ja) * | 1980-07-18 | 1982-02-09 | ||
EP0261538A2 (en) * | 1986-09-23 | 1988-03-30 | IVECO FIAT S.p.A. | Internal combustion engine piston incorporating an internal combustion chamber |
JPH0290326U (ja) * | 1988-12-27 | 1990-07-18 | ||
JPH0469635U (ja) * | 1990-10-24 | 1992-06-19 | ||
JPH08296442A (ja) * | 1995-04-28 | 1996-11-12 | Isuzu Motors Ltd | 直接噴射式ディーゼルエンジン |
JP2002048001A (ja) * | 2000-07-31 | 2002-02-15 | Toyota Motor Corp | 内燃機関用ピストンの冷却構造 |
JP2004084618A (ja) * | 2002-08-28 | 2004-03-18 | Toyota Motor Corp | 燃料噴射ノズル |
JP2005194971A (ja) * | 2004-01-09 | 2005-07-21 | Mitsubishi Heavy Ind Ltd | ガスエンジンのピストン |
JP2011185242A (ja) * | 2010-03-11 | 2011-09-22 | Isuzu Motors Ltd | ディーゼルエンジンの燃焼室 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB967126A (en) * | 1962-12-06 | 1964-08-19 | John Peter Hindley | Improvements in internal combustion engines |
GB2169656B (en) * | 1985-01-15 | 1988-01-20 | Yanmar Diesel Engine Co | Diesel engine piston combustion chamber |
JPH07122405B2 (ja) | 1990-12-17 | 1995-12-25 | 株式会社新燃焼システム研究所 | 直接噴射式ディーゼル機関の燃焼室 |
JP2001090542A (ja) | 1999-09-21 | 2001-04-03 | Kubota Corp | エンジンのピストン燃焼室 |
DE60115841T2 (de) * | 2000-01-25 | 2006-08-17 | Kabushiki Kaisha Toyota Chuo Kenkyusho | Direkteingespritzte brennkraftmaschine |
JP2001214742A (ja) | 2000-02-01 | 2001-08-10 | Kubota Corp | ディーゼルエンジンの直噴式燃焼室 |
JP2002089267A (ja) * | 2000-09-19 | 2002-03-27 | Honda Motor Co Ltd | ガソリン直噴エンジン |
KR100471202B1 (ko) * | 2001-09-26 | 2005-03-07 | 현대자동차주식회사 | 가솔린 직접 분사식 엔진 |
US7028662B2 (en) * | 2003-11-06 | 2006-04-18 | Nissan Motor Co., Ltd. | Direct fuel injection engine |
CN101099031B (zh) * | 2005-01-06 | 2010-08-18 | 三菱自动车工业株式会社 | 缸内喷射型火花点火式内燃机 |
JP4906055B2 (ja) * | 2006-02-08 | 2012-03-28 | 日野自動車株式会社 | 直噴式ディーゼルエンジンの燃焼室構造 |
US7318406B2 (en) * | 2006-04-10 | 2008-01-15 | Ford Global Technologies Llc | Bowl-in-piston of a cylinder in a direct injection engine |
EP2112348B1 (en) * | 2008-04-23 | 2012-02-08 | Honda Motor Co., Ltd. | Direct fuel injection engine |
US8459229B2 (en) * | 2010-04-20 | 2013-06-11 | Southwest Research Institute | Piston bowl with spray jet targets |
US8978621B2 (en) * | 2010-04-20 | 2015-03-17 | Caterpillar Inc. | Piston having combustion bowl shaped to balance combustion efficiency and emission properties |
DE102010027637A1 (de) * | 2010-07-19 | 2012-01-19 | Mtu Friedrichshafen Gmbh | Kolben für Brennkraftmaschinen, sowie Brennkraftmaschine hierzu |
DE102010032442B4 (de) * | 2010-07-28 | 2014-10-30 | Audi Ag | Selbstzündende Brennkraftmaschine mit Kolbenmulden mit Drallstufung |
CN203584599U (zh) * | 2011-03-17 | 2014-05-07 | 康明斯知识产权公司 | 用于内燃发动机的活塞 |
KR101262577B1 (ko) * | 2011-07-18 | 2013-05-08 | 현대자동차주식회사 | 디젤엔진 피스톤 |
JP6020856B2 (ja) * | 2015-01-09 | 2016-11-02 | マツダ株式会社 | エンジンの燃焼室構造 |
-
2013
- 2013-06-20 WO PCT/JP2013/066997 patent/WO2014203382A1/ja active Application Filing
- 2013-06-20 JP JP2015522444A patent/JPWO2014203382A1/ja not_active Ceased
- 2013-06-20 US US14/900,129 patent/US20160138461A1/en not_active Abandoned
- 2013-06-20 CN CN201380077611.XA patent/CN105378246A/zh active Pending
- 2013-06-20 EP EP13887468.0A patent/EP3012433A4/en not_active Withdrawn
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5725117U (ja) * | 1980-07-18 | 1982-02-09 | ||
EP0261538A2 (en) * | 1986-09-23 | 1988-03-30 | IVECO FIAT S.p.A. | Internal combustion engine piston incorporating an internal combustion chamber |
JPH0290326U (ja) * | 1988-12-27 | 1990-07-18 | ||
JPH0469635U (ja) * | 1990-10-24 | 1992-06-19 | ||
JPH08296442A (ja) * | 1995-04-28 | 1996-11-12 | Isuzu Motors Ltd | 直接噴射式ディーゼルエンジン |
JP2002048001A (ja) * | 2000-07-31 | 2002-02-15 | Toyota Motor Corp | 内燃機関用ピストンの冷却構造 |
JP2004084618A (ja) * | 2002-08-28 | 2004-03-18 | Toyota Motor Corp | 燃料噴射ノズル |
JP2005194971A (ja) * | 2004-01-09 | 2005-07-21 | Mitsubishi Heavy Ind Ltd | ガスエンジンのピストン |
JP2011185242A (ja) * | 2010-03-11 | 2011-09-22 | Isuzu Motors Ltd | ディーゼルエンジンの燃焼室 |
Also Published As
Publication number | Publication date |
---|---|
WO2014203382A1 (ja) | 2014-12-24 |
US20160138461A1 (en) | 2016-05-19 |
EP3012433A4 (en) | 2016-06-29 |
CN105378246A (zh) | 2016-03-02 |
EP3012433A1 (en) | 2016-04-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014203382A1 (ja) | 圧縮着火式内燃機関 | |
JP6044712B2 (ja) | 圧縮着火式内燃機関 | |
JP3743896B2 (ja) | 筒内噴射式エンジン | |
US20120186555A1 (en) | Ducted combustion chamber for direct injection engines and method | |
JP7047785B2 (ja) | 圧縮着火エンジン | |
JP2009535561A (ja) | 内燃機関の運転方法及びこの方法用の内燃機関 | |
CN108071516B (zh) | 火花点火直喷式发动机燃烧系统 | |
US10125667B2 (en) | Structure of combustion chamber for direct injection engine | |
WO2018163742A1 (ja) | ディーゼルエンジン | |
JP6508238B2 (ja) | 火花点火式内燃機関 | |
JP6508239B2 (ja) | 火花点火式内燃機関 | |
JP2007270749A (ja) | 内燃機関 | |
JP2018162733A (ja) | 火花点火式内燃機関 | |
US10876464B2 (en) | Piston design for flow re-direction | |
JP6515941B2 (ja) | 火花点火式内燃機関 | |
JP4930365B2 (ja) | 筒内直接噴射式内燃機関 | |
JP6515942B2 (ja) | 火花点火式内燃機関 | |
CN110446835B (zh) | 火花点火式内燃机 | |
JP2005194942A (ja) | 筒内噴射式内燃機関 | |
JP6443479B2 (ja) | 火花点火式内燃機関 | |
JP6515943B2 (ja) | 火花点火式内燃機関 | |
JP2024128247A (ja) | 内燃機関 | |
JP2024129887A (ja) | 内燃機関 | |
JP2010144593A (ja) | 燃料直噴エンジン | |
JPH06221158A (ja) | 副室式エンジン |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20161018 |
|
A045 | Written measure of dismissal of application [lapsed due to lack of payment] |
Free format text: JAPANESE INTERMEDIATE CODE: A045 Effective date: 20170228 |