JPWO2014196299A1 - シリコンウエハ研磨用組成物 - Google Patents

シリコンウエハ研磨用組成物 Download PDF

Info

Publication number
JPWO2014196299A1
JPWO2014196299A1 JP2015521346A JP2015521346A JPWO2014196299A1 JP WO2014196299 A1 JPWO2014196299 A1 JP WO2014196299A1 JP 2015521346 A JP2015521346 A JP 2015521346A JP 2015521346 A JP2015521346 A JP 2015521346A JP WO2014196299 A1 JPWO2014196299 A1 JP WO2014196299A1
Authority
JP
Japan
Prior art keywords
group
polishing
silicon wafer
amide group
polishing composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015521346A
Other languages
English (en)
Other versions
JP6037416B2 (ja
Inventor
公亮 土屋
公亮 土屋
久典 丹所
久典 丹所
大輝 市坪
大輝 市坪
森 嘉男
嘉男 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toagosei Co Ltd
Fujimi Inc
Original Assignee
Toagosei Co Ltd
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toagosei Co Ltd, Fujimi Inc filed Critical Toagosei Co Ltd
Application granted granted Critical
Publication of JP6037416B2 publication Critical patent/JP6037416B2/ja
Publication of JPWO2014196299A1 publication Critical patent/JPWO2014196299A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/04Lapping machines or devices; Accessories designed for working plane surfaces
    • B24B37/042Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor
    • B24B37/044Lapping machines or devices; Accessories designed for working plane surfaces operating processes therefor characterised by the composition of the lapping agent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1436Composite particles, e.g. coated particles
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02008Multistep processes
    • H01L21/0201Specific process step
    • H01L21/02024Mirror polishing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

砥粒の存在下で用いられるシリコンウエハ研磨用組成物が提供される。この組成物は、シリコンウエハ研磨促進剤と、アミド基含有ポリマーと、水と、を含む。また、前記アミド基含有ポリマーは、構成単位Aを主鎖に有する。前記構成単位Aは、前記アミド基含有ポリマーの主鎖を構成する主鎖構成炭素原子と、第二級アミド基または第三級アミド基と、を含む。そして、前記第二級アミド基または第三級アミド基を構成するカルボニル炭素原子は、前記主鎖構成炭素原子に直接結合している。

Description

本発明は、シリコンウエハの研磨に用いられる研磨用組成物に関する。本出願は、2013年6月7日に出願された日本国特許出願2013−120328号および2014年1月23日に出願された日本国特許出願2014−010836号に基づく優先権を主張しており、それらの出願の全内容は本明細書中に参照として組み入れられている。
半導体装置の構成要素等として用いられるシリコンウエハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)とファイナルポリシング工程(最終研磨工程)とを含む。上記ポリシング工程における研磨方法としては、セルロース誘導体等に代表される水溶性ポリマーを研磨液に含ませるケミカルメカニカルポリシング法が知られている。この方法では、上記水溶性ポリマーが砥粒やシリコンウエハに吸着したり脱離したりすることによって、研磨表面の欠陥やヘイズの低減に寄与する。シリコンウエハの研磨用組成物に関する技術文献として、例えば特許文献1が挙げられる。なお、特許文献2は、酸化ケイ素を研磨する用途で使用される研磨剤に関する技術文献である。
日本国特許第4772156号公報 国際公開第2007/055278号
上記セルロース誘導体は天然物(セルロース)に由来するポリマーであるため、人工的にモノマーを重合させて得られるポリマー(以下、合成ポリマーともいう。)に比べて化学構造や純度の制御性に限界がある。例えば、市場において容易に入手し得るセルロース誘導体の重量平均分子量や分子量分布(数平均分子量(Mn)に対する重量平均分子量(Mw)の比)の範囲は限られている。また、天然物を原料とするため、表面欠陥を生じる原因となり得る異物やポリマー構造の局所的な乱れ(ミクロな凝集等)等を高度に低減することは困難であり、そのような異物等の量や程度もばらつきやすい。半導体装置のデザインルールの微細化傾向に伴い、研磨後の表面品位(典型的には低欠陥、低ヘイズ等)に対する要求はさらに強まると見込まれるなか、セルロース誘導体を必須成分としない組成において欠陥やヘイズの低減効果に優れた研磨用組成物が提供されれば有益である。
本発明者らは、上述のような砥粒やシリコンウエハに対する水溶性ポリマーの吸着、脱離の制御性能に優れるポリマーを探索した結果、特定の構造を有するポリマーを含む組成物によると、研磨表面の欠陥やヘイズの低減効果に優れることを見出し、本発明を完成するに至った。すなわち、本発明は、研磨表面の欠陥およびヘイズの低減効果に優れたシリコンウエハ研磨用組成物を提供することを目的とする。
上記目的を達成するため、この明細書によると、砥粒の存在下で用いられるシリコンウエハ研磨用組成物が提供される。この組成物は、シリコンウエハ研磨促進剤と、アミド基含有ポリマーと、水と、を含む。また、前記アミド基含有ポリマーは、構成単位Aを主鎖に有する。前記構成単位Aは、前記アミド基含有ポリマーの主鎖を構成する主鎖構成炭素原子と、第二級アミド基または第三級アミド基と、を含む。そして、前記第二級アミド基または第三級アミド基を構成するカルボニル炭素原子は、前記主鎖構成炭素原子に直接結合している。上記の構成を有するアミド基含有ポリマーは、研磨対象物であるシリコンウエハ表面の欠陥やヘイズの低減に効果的に寄与する。そのため、上記のシリコンウエハ研磨用組成物(以下、単に「研磨用組成物」ともいう。)を用いた研磨によると、研磨表面の欠陥およびヘイズを効果的に低減することができる。
ここに開示される技術の好ましい一態様では、前記構成単位Aは、下記一般式(1):
Figure 2014196299
(式中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。R,Rは、同じかまたは異なり、いずれも水素原子、炭素原子数1〜18のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基または炭素原子数6〜60の芳香族基であり、これらのうち水素原子以外については、置換基を有するものを包含する。ただし、R,Rの両方が水素原子であるものは除く。);で表わされる単量体、
下記一般式(2):
Figure 2014196299
(式中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。Xは、(CH(ただし、nは4〜6の整数である。)、(CHO(CHまたは(CHS(CHである。);で表わされる単量体、および
下記一般式(3):
Figure 2014196299
(式中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。R,Rは、同じかまたは異なり、いずれも水素原子、炭素原子数1〜8のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基または炭素原子数6〜60の芳香族基であり、これらのうち水素原子以外については、置換基を有するものを包含する。aは1〜5の整数である。);で表わされる単量体、からなる群から選ばれる少なくとも1種に由来する。上記構成単位を有するアミド基含有ポリマーを含む研磨用組成物によると、欠陥やヘイズの低減効果がよりよく発揮される。
ここに開示される技術の好ましい一態様では、前記アミド基含有ポリマーはノニオン性である。ノニオン性のアミド基含有ポリマーを含む研磨用組成物を用いることによって、欠陥やヘイズの低減効果が好適に発揮される。
ここに開示される研磨用組成物の好ましい一態様では、前記砥粒はシリカ粒子である。砥粒としてシリカ粒子を用いる研磨において、アミド基含有ポリマーによる欠陥およびヘイズの低減効果が好適に発揮される。
また、この明細書によると、シリコンウエハ研磨促進剤と、アミド基含有ポリマーと、水と、を含むシリコンウエハのリンス用組成物が提供される。この組成物において、前記アミド基含有ポリマーは構成単位Aを主鎖に有する。前記構成単位Aは、前記アミド基含有ポリマーの主鎖を構成する主鎖構成炭素原子と、第二級アミド基または第三級アミド基と、を含む。そして、前記第二級アミド基または第三級アミド基を構成するカルボニル炭素原子は、前記主鎖構成炭素原子に直接結合している。かかるリンス用組成物は、例えば、砥粒の存在下で行われる研磨(典型的には、上記シリコンウエハ研磨促進剤と上記アミド基含有ポリマーと水とを含む研磨用組成物を用いて砥粒の存在下で行う研磨)の後に用いられるリンス液として好適に用いられる。上記リンス液によると、シリコンウエハ表面に吸着した上記アミド基含有ポリマーの作用を阻害せず、欠陥やヘイズをさらに低減することができる。
以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
<アミド基含有ポリマー>
ここに開示される研磨用組成物は、構成単位Aを主鎖に有するアミド基含有ポリマーを含むことによって特徴づけられる。このアミド基含有ポリマーは、典型的には水溶性のポリマーである。上記構成単位Aは、該アミド基含有ポリマーの主鎖を構成する主鎖構成炭素原子と第二級アミド基または第三級アミド基とを含む。ここに開示されるアミド基含有ポリマーは、1種の構成単位Aを含むものであってもよく、2種以上の構成単位Aを含むものであってもよい。
上記構成単位Aにおける主鎖構成炭素原子は、第二級アミド基または第三級アミド基を構成するカルボニル炭素原子との関係において規定されるα−炭素原子を含む。上記構成単位Aはまたβ−炭素原子を含み得る。これらα,β−炭素原子は、後述する重合性単量体中のエチレン性不飽和結合を構成する2つの炭素原子に対応するものであり得る。上記主鎖構成炭素原子(典型的にはα−炭素原子)に結合する水素原子は、メチル基やフェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基、シアノ基等の置換基に置換されていてもよい。
上記第二級アミド基または第三級アミド基を構成するカルボニル炭素原子は、上記主鎖構成炭素原子(α−炭素原子)に直接結合している。上記のような構成単位を主鎖に有するアミド基含有ポリマーを用いて研磨を行うことにより、シリコンウエハ表面の欠陥やヘイズが効果的に低減される。
第二級アミド基は、式:−CONHR;で表わされ、第三級アミド基は、式:−CONR;で表わされる。上記式において、第二級アミド基中のR、第三級アミド基のR、Rは有機基であり、例えば炭素原子(C)数1〜18の有機基であり得る。この有機基は、CやHのほかにNを例えばアミドやアミン、ニトリル等の形態で含んでもよく、また、酸素原子(O)を例えばエステルやエーテル、ケトン、水酸基等の形態で含んでもよく、さらに、硫黄原子(S)を例えばチオエーテル等の形態で含んでもよい。第三級アミド基におけるRとRとは、直接にまたはOやSを介して連結していてもよい。第二級アミド基におけるR、第三級アミド基におけるR、Rの好適例としては、後述する一般式(1)におけるR、Rや、同じく後述する一般式(3)における(CH−NRが挙げられる。第三級アミド基におけるR、Rは互いに連結して、後述する一般式(2)における−X−となっていてもよい。第三級アミド基におけるR、Rは同じであってもよく異なっていてもよい。上記構成単位Aは、第一級アミド基を実質的に含まないものであり得る。
上記構成単位Aは重合性単量体aに由来することが好ましい。したがって、ここに開示されるアミド基含有ポリマーは、重合性単量体aの1種または2種以上を含むモノマー成分を重合または共重合することによって得られるポリマーであることが好ましい。
重合性単量体aは、典型的にはエチレン性不飽和結合を有する重合性基を有する。ここで、エチレン性不飽和結合とは、ラジカル重合することが可能な炭素−炭素二重結合を指す。エチレン性不飽和結合を構成する炭素原子に結合する水素原子は、上述の置換基に置換されていてもよい。エチレン性不飽和結合を有する重合性基としては、例えば、アクリロイル基や、上記の置換基に置換されたα−置換体(例えば、メタクリロイル基、α−フェニルアクリロイル基等)が挙げられる。なかでも、重合性基として(メタ)アクリロイル基を含む重合性単量体aが好ましい。
重合性単量体aは、換言すればα,β−不飽和カルボニル化合物でもある。上記α,β−不飽和カルボニル化合物はα,β−不飽和カルボン酸アミドであることが好ましい。その場合、α,β−不飽和カルボン酸アミド中のカルボン酸アミド基は上述の第二級アミド基または第三級アミド基となる。上記α,β−不飽和カルボニル化合物は、上述の置換基を有するα−置換体であってもよい。
また、構成単位Aは、下記一般式(1)〜(3)で表わされる重合性単量体a(以下、単に「単量体」ともいう。)の少なくとも1種に由来することが好ましい。ここに開示されるアミド基含有ポリマーは、下記一般式(1)〜(3)で表わされる単量体の少なくとも1種を含むモノマー成分を重合または共重合することによって得られるポリマーであることが好ましい。
一般式(1):
Figure 2014196299
;で表わされる単量体。上記一般式(1)中、Rは水素原子、炭素原子数1〜6のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。Rとしては、水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基およびシアノ基から選択される基が好ましく、水素原子、メチル基、フェニル基がより好ましい。R,Rは、水素原子、置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基および芳香族基から選択される基である。上記置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基における炭素原子の総数は1〜40(好ましくは1〜24、より好ましくは1〜14、さらに好ましくは1〜10)であり、置換基を除いた場合の上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基における炭素原子数は1〜18(好ましくは1〜8、より好ましくは1〜4)である。上記置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基は鎖状(直鎖状または分岐状)または環状であり得るが、鎖状であることが好ましい。芳香族基は、置換基を有してよいアリール基である。上記芳香族基における炭素原子の総数は6〜60(好ましくは6〜36、より好ましくは6〜24、さらに好ましくは6〜12)である。上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基および芳香族基が有し得る置換基は、水酸基;塩素原子等のハロゲン原子;シアノ基;を包含する。上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基が有し得る置換基は、さらに上述の芳香族基を包含する。芳香族基が有し得る置換基は、さらに上述のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基を包含する。なかでも、R,Rは、水素原子、炭素原子数1〜18(好ましくは1〜8、例えば1〜4、典型的には1,2または3)のアルキル基が好ましい。アルキル基は直鎖状でもよく分岐状でもよい。また、R,Rはアルコキシ基、アルコキシアルキル基、アルキロール基またはアセチル基であることも好ましい。上記アルコキシ基は、好ましくは炭素原子数1〜8(例えば1〜6、典型的には1〜4)のアルコキシ基(例えばメトキシ基)である。また、アルコキシアルキル基は、好ましくは炭素原子数1〜8(例えば1〜6、典型的には1〜4)のアルコキシアルキル基(例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基)である。上記アルキロール基は、より好ましくは炭素原子数1〜8(例えば1〜6、典型的には1,2または3)のアルキロール基(例えば、メチロール基、エチロール基、プロピロール基)である。R,Rは同じであってもよく異なっていてもよい。ただし、R,Rの両方が水素原子であるものは除く。
一般式(2):
Figure 2014196299
;で表わされる単量体。上記一般式(2)中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。なかでも、水素原子、メチル基、フェニル基が好ましい。Xは(CHであり得る。ただし、nは4〜6の整数である。Xはまた、(CHO(CHまたは(CHS(CHであってもよい。Xを構成する水素原子の少なくとも1つは、上記一般式(1)におけるアルキル基やアルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基、芳香族基に置換されていてもよく、その他、水酸基やハロゲン原子、アミノ基、シアノ基等に置換されていてもよい。
一般式(3):
Figure 2014196299
;で表わされる単量体。上記一般式(3)中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。なかでも水素原子、メチル基、フェニル基が好ましい。R,Rは、水素原子、置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基および芳香族基から選択される基である。上記置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基における炭素原子の総数は1〜40(好ましくは1〜24、より好ましくは1〜14、さらに好ましくは1〜10)であり、置換基を除いた場合の上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基における炭素原子数は1〜18(好ましくは1〜8、より好ましくは1〜4)である。上記置換基を有してよいアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基は鎖状(直鎖状または分岐状)または環状であり得るが、鎖状であることが好ましい。芳香族基は、置換基を有してよいアリール基である。上記芳香族基における炭素原子の総数は6〜60(好ましくは6〜36、より好ましくは6〜24、さらに好ましくは6〜12)である。上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基および芳香族基が有し得る置換基は、水酸基;塩素原子等のハロゲン原子;シアノ基;を包含する。上記アルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基が有し得る置換基は、さらに上述の芳香族基を包含する。芳香族基が有し得る置換基は、さらに上述のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基およびアセチル基を包含する。なかでも、R,Rは、水素原子、炭素原子数1〜8(例えば1〜4、典型的には1,2または3)のアルキル基が好ましい。アルキル基は直鎖状でもよく分岐状でもよい。また、R,Rは、アルコキシ基、アルコキシアルキル基、アルキロール基またはアセチル基であることも好ましい。上記アルコキシ基は、好ましくは炭素原子数1〜8(例えば1〜6、典型的には1〜4)のアルコキシ基(例えばメトキシ基)である。また、アルコキシアルキル基は、好ましくは炭素原子数1〜8(例えば1〜6、典型的には1〜4)のアルコキシアルキル基(例えば、メトキシメチル基、エトキシメチル基、プロポキシメチル基、ブトキシメチル基)である。上記アルキロール基は、好ましくは炭素原子数1〜8(例えば1〜6、典型的には1,2または3)のアルキロール基(例えば、メチロール基、エチロール基、プロピロール基)である。R,Rは同じであってもよく異なっていてもよい。
ここに開示される重合性単量体aとしては、例えば、アクリルアミドのN−モノ置換体、N,N−ジ置換体およびそれらのα−置換体(例えばメタクリルアミドのN−モノ置換体、N,N−ジ置換体)等のアクリルアミド誘導体が挙げられる。上記N−モノ置換体の具体例としては、例えば、N−メチルアクリルアミド、N−エチルアクリルアミド、N−プロピルアクリルアミド、N−イソプロピルアクリルアミド、N−ブチルアクリルアミド、N−イソブチルアクリルアミド、N−tert−ブチルアクリルアミド、N−ヘプチルアクリルアミド、N−オクチルアクリルアミド、N−tert−オクチルアクリルアミド、N−ドデシルアクリルアミド、N−オクタデシルアクリルアミド等のN−モノアルキルアクリルアミド;N−(2−ヒドロキシエチル)アクリルアミド、N−(1,1−ジメチル−2−ヒドロキシエチル)アクリルアミド、N−(1−エチル−ヒドロキシエチル)アクリルアミド、N−(2−クロロエチル)アクリルアミド、N−(2,2,2−トリクロロ−1−ヒドロキシエチル)アクリルアミド、N−(2−ジメチルアミノエチル)アクリルアミド、N−(3−ジメチルアミノプロピル)アクリルアミド、N−[3−ビス(2−ヒドロキシエチル)アミノプロピル]アクリルアミド、N−(1,1−ジメチル−2−ジメチルアミノエチル)アクリルアミド、N−(2−メチル−2−フェニル−3−ジメチルアミノプロピル)アクリルアミド、N−(2,2−ジメチル−3−ジメチルアミノプロピル)アクリルアミド、N−(2−モルホリノエチル)アクリルアミド、N−(2−アミノ−1,2−ジシアノエチル)アクリルアミド等の置換N−モノアルキルアクリルアミド;N−アリルアクリルアミド等のN−モノアルケニルアクリルアミド;N−(1,1−ジメチルプロピニル)アクリルアミド等のN−モノアルキニルアクリルアミド;N−フェニルアクリルアミド、N−ベンジルアクリルアミド、N−[4−(フェニルアミノ)フェニル]アクリルアミド等の芳香族基含有アクリルアミド;N−メチロールアクリルアミド、N−エチロールアクリルアミド、N−プロピロールアクリルアミド等のN−モノアルキロールアクリルアミド;N−メトキシメチルアクリルアミド、N−エトキシメチルアクリルアミド、N−ブトキシメチルアクリルアミド、N−イソブトキシメチルアクリルアミド等のN−アルコキシアルキルアクリルアミド;N−メトキシアクリルアミド、N−エトキシアクリルアミド、N−プロポキシアクリルアミド、N−ブトキシアクリルアミド等のN−アルコキシアクリルアミド;N−アセチルアクリルアミド;N−ジアセトンアクリルアミド;N−メチルメタクリルアミド、N−エチルメタクリルアミド、N−プロピルメタクリルアミド、N−イソプロピルメタクリルアミド、N−ブチルメタクリルアミド、N−イソブチルメタクリルアミド、N−tert−ブチルメタクリルアミド、N−ヘプチルメタクリルアミド、N−オクチルメタクリルアミド、N−tert−オクチルメタクリルアミド、N−ドデシルメタクリルアミド、N−オクタデシルメタクリルアミド等のN−モノアルキルメタクリルアミド;N−(2−ヒドロキシエチル)メタクリルアミド、N−(1,1−ジメチル−2−ヒドロキシエチル)メタクリルアミド、N−(1−エチル−ヒドロキシエチル)メタクリルアミド、N−(2−クロロエチル)メタクリルアミド、N−(2,2,2−トリクロロ−1−ヒドロキシエチル)メタクリルアミド、N−(2−ジメチルアミノエチル)メタクリルアミド、N−(3−ジメチルアミノプロピル)メタクリルアミド、N−[3−ビス(2−ヒドロキシエチル)アミノプロピル]メタクリルアミド、N−(1,1−ジメチル−2−ジメチルアミノエチル)メタクリルアミド、N−(2−メチル−2−フェニル−3−ジメチルアミノプロピル)メタクリルアミド、N−(2,2−ジメチル−3−ジメチルアミノプロピル)メタクリルアミド、N−(2−モルホリノエチル)メタクリルアミド、N−(2−アミノ−1,2−ジシアノエチル)メタクリルアミド等の置換N−モノアルキルメタクリルアミド;N−アリルメタクリルアミド等のN−モノアルケニルメタクリルアミド;N−(1,1−ジメチルプロピニル)メタクリルアミド等のN−モノアルキニルメタクリルアミド;N−フェニルメタクリルアミド、N−ベンジルメタクリルアミド、N−[4−(フェニルアミノ)フェニル]メタクリルアミド等の芳香族基含有メタクリルアミド;N−メチロールメタクリルアミド、N−エチロールメタクリルアミド、N−プロピロールメタクリルアミド等のN−モノアルキロールメタクリルアミド;N−メトキシメチルメタクリルアミド、N−エトキシメチルメタクリルアミド、N−ブトキシメチルメタクリルアミド、N−イソブトキシメチルメタクリルアミド等のN−アルコキシアルキルメタクリルアミド;N−メトキシメタクリルアミド、N−エトキシメタクリルアミド、N−プロポキシメタクリルアミド、N−ブトキシメタクリルアミド等のN−アルコキシメタクリルアミド;N−アセチルメタクリルアミド;N−ジアセトンメタクリルアミド;等が挙げられる。
上記N−モノ置換体はまた、例えば、N,N−ジメチルアミノエチルアクリルアミド、N,N−ジエチルアミノエチルアクリルアミド、N,N−ジメチルアミノプロピルアクリルアミド、N,N−ジエチルアミノプロピルアクリルアミド、N,N−ジメチルアミノエチルメタクリルアミド、N,N−ジエチルアミノエチルメタクリルアミド、N,N−ジメチルアミノプロピルメタクリルアミド、N,N−ジエチルアミノプロピルメタクリルアミド等のジアルキルアミノアルキル(メタ)アクリルアミド等であってもよい。
上記N,N−ジ置換体の具体例としては、N,N−ジメチルアクリルアミド、N,N−ジエチルアクリルアミド、N,N−ジプロピルアクリルアミド、N,N−ジイソプロピルアクリルアミド、N,N−ジブチルアクリルアミド、N,N−ジイソブチルアクリルアミド、N,N−ジ−tert−ブチルアクリルアミド、N,N−ジヘプチルアクリルアミド、N,N−ジオクチルアクリルアミド、N,N−ジ−tert−オクチルアクリルアミド、N,N−ジドデシルアクリルアミド、N,N−ジオクタデシルアクリルアミド等のN,N−ジアルキルアクリルアミド;N,N−ビス(2−ヒドロキシエチル)アクリルアミド、N,N−ビス(2−シアノエチル)アクリルアミド等の置換N,N−ジアルキルアクリルアミド;N,N−ジアリルアクリルアミド等のN,N−ジアルケニルアクリルアミド;N,N−ジフェニルアクリルアミド、N,N−ジベンジルアクリルアミド等の芳香族基含有アクリルアミド;N,N−ジメチロールアクリルアミド、N,N−ジエチロールアクリルアミド、N,N−ジプロピロールアクリルアミド等のN,N−ジアルキロールアクリルアミド;N−メチル−N−メトキシアクリルアミド、N−メチル−N−エトキシアクリルアミド、N−メチル−N−プロポキシアクリルアミド、N−メチル−N−ブトキシアクリルアミド、N−エチル−N−メトキシアクリルアミド、N−エチル−N−エトキシアクリルアミド、N−エチル−N−ブトキシアクリルアミド、N−プロピル−N−メトキシアクリルアミド、N−プロピル−N−エトキシアクリルアミド、N−ブチル−N−メトキシアクリルアミド、N−ブチル−N−エトキシアクリルアミド等のN−アルコキシ−N−アルキルアクリルアミド;N,N−ジアセチルアクリルアミド;N,N−ジアセトンアクリルアミド;N,N−ジメチルメタクリルアミド、N,N−ジエチルメタクリルアミド、N,N−ジプロピルメタクリルアミド、N,N−ジイソプロピルメタクリルアミド、N,N−ジブチルメタクリルアミド、N,N−ジイソブチルメタクリルアミド、N,N−ジ−tert−ブチルメタクリルアミド、N,N−ジヘプチルメタクリルアミド、N,N−ジオクチルメタクリルアミド、N,N−ジ−tert−オクチルメタクリルアミド、N,N−ジドデシルメタクリルアミド、N,N−ジオクタデシルメタクリルアミド等のN,N−ジアルキルメタクリルアミド;N,N−ビス(2−ヒドロキシエチル)メタクリルアミド、N,N−ビス(2−シアノエチル)メタクリルアミド等の置換N,N−ジアルキルメタクリルアミド;N,N−ジアリルメタクリルアミド等のN−ジアルケニルメタクリルアミド;N,N−ジフェニルメタクリルアミド、N,N−ジベンジルメタクリルアミド等の芳香族基含有メタクリルアミド;N,N−ジメチロールメタクリルアミド、N,N−ジエチロールメタクリルアミド、N,N−ジプロピロールメタクリルアミド等のN,N−ジアルキロールメタクリルアミド;N−メチル−N−メトキシメタクリルアミド、N−メチル−N−エトキシメタクリルアミド、N−メチル−N−プロポキシメタクリルアミド、N−メチル−N−ブトキシメタクリルアミド、N−エチル−N−メトキシメタクリルアミド、N−エチル−N−エトキシメタクリルアミド、N−エチル−N−ブトキシメタクリルアミド、N−プロピル−N−メトキシメタクリルアミド、N−プロピル−N−エトキシメタクリルアミド、N−ブチル−N−メトキシメタクリルアミド、N−ブチル−N−エトキシメタクリルアミド等のN−アルコキシ−N−アルキルメタクリルアミド;N,N−ジアセチルメタクリルアミド;N,N−ジアセトンメタクリルアミド;アクリロイルピペリジン;アクリロイルモルホリン;アクリロイルチオモルホリン;アクリロイルピロリジン等が挙げられる。上述の重合性単量体aは1種を単独でまたは2種以上を組み合わせて用いることができる。
上記アミド基含有ポリマーはノニオン性であることが好ましい。換言すれば、アニオン性やカチオン性の構成単位を実質的に含まないポリマーが好ましい。ここで、アニオン性やカチオン性の構成単位を実質的に含まないとは、これらの構成単位のモル比が0.02%未満(例えば0.001%未満)であることをいう。ノニオン性のアミド基含有ポリマーを含む研磨用組成物を用いることによって、欠陥やヘイズの低減効果が好適に発揮される。その理由を明らかにする必要はないが、ノニオン性のアミド基含有ポリマーは、研磨時に砥粒やシリコンウエハに適度に吸着することによりヘイズ低減に寄与していると考えられ得る。また、上記適度な吸着は、洗浄工程における砥粒や研磨屑の残留を好適に抑制して欠陥低減に寄与していると考えられ得る。
上記アミド基含有ポリマーの分子量は特に限定されない。例えばアミド基含有ポリマーのMwは、典型的には40×10未満、好ましくは25×10未満、より好ましくは20×10未満、さらに好ましくは10×10未満、特に好ましくは5×10未満である。また、アミド基含有ポリマーのMwは、典型的には5×10以上であり、ヘイズ低減等の観点から好ましくは1×10以上、より好ましくは1.5×10以上である。
上記アミド基含有ポリマーが、上記一般式(1)で表わされる単量体に由来する構成単位Aを主鎖に有するアミド基含有ポリマー(例えば、上記一般式(1)のR,Rが、炭素原子数1〜8のアルキル基、または炭素原子数1〜8(例えば1または2)のアルキロール基であるポリマー)である場合には、欠陥やヘイズを低減する観点から、そのMwは、5×10未満(例えば4×10未満、典型的には3×10未満)であることが好ましい。上記アミド基含有ポリマーが、上記一般式(2)または(3)で表わされる単量体に由来する構成単位Aを主鎖に有するアミド基含有ポリマーである場合には、そのMwは、例えば40×10未満、好ましくは25×10未満、より好ましくは20×10未満、さらに好ましくは10×10未満である。
上記アミド基含有ポリマーの重量平均分子量(Mw)と数平均分子量(Mn)との関係は特に制限されない。凝集物の発生防止等の観点から、例えば分子量分布(Mw/Mn)が5.0以下であるものを好ましく用いることができる。研磨用組成物の性能安定性等の観点から、アミド基含有ポリマーのMw/Mnは、好ましくは4.0以下、より好ましくは3.5以下、さらに好ましくは3.0以下(例えば2.5以下)である。
なお、原理上、Mw/Mnは1.0以上である。原料の入手容易性や合成容易性の観点から、通常は、Mw/Mnが1.05以上のアミド基含有ポリマーを好ましく使用し得る。
なお、アミド基含有ポリマーのMwおよびMnとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキサイド換算)を採用することができる。
ここに開示されるアミド基含有ポリマーは、実質的に構成単位Aのみからなることが好ましい。換言すると、アミド基含有ポリマーは、該ポリマーの分子構造に含まれる全構成単位のモル数に占める構成単位Aのモル数の割合(モル比)が99モル%以上(例えば99.9モル%以上、典型的には99.9〜100モル%)であることが好ましい。そのようなポリマーの好適例として、ここに開示される重合性単量体aの1種のみからなるホモポリマーや重合性単量体aの2種以上からなる共重合体が挙げられる。
また、ここに開示されるアミド基含有ポリマーは、発明の効果を大きく損なわない範囲で、重合性単量体aと共重合可能な単量体bの1種または2種以上に由来する構成単位(以下、「構成単位B」ともいう。)を含む共重合体であってもよい。上記構成単位Bは、構成単位Aとは異なるものとして定義される。構成単位Bはまた、第二級アミド基および第三級アミド基を含まないものであり得る。アミド基含有ポリマーにおける上記構成単位Bの割合(モル比)は50モル%未満(例えば30モル%未満、典型的には10モル%未満)とすることができる。
なお、上記「モル%」は、一の単量体(重合性単量体aおよび単量体bを包含する。)に由来する一の構成単位を1分子とみなして算出されるモル比である。したがって、上述の構成単位A,Bの割合は、重合に用いられる全モノマー成分に占める重合性単量体aや単量体bのモル比にそれぞれ対応し得る。
<吸着比>
ここに開示されるアミド基含有ポリマーは、以下の吸着比測定における吸着比が10%〜80%であることが好ましい。これによって、砥粒の凝集を抑制し、砥粒がシリコンウエハを機械的に研磨する働きを調整することができる。また、研磨中に発生する研磨屑と砥粒との凝集物の低減や、研磨後のシリコンウエハの表面の洗浄性向上が実現される。上記吸着比は10%〜70%(例えば10〜60%、典型的には15〜50%)であることが好ましい。
上記吸着比測定は、以下のようにして行われる。より詳しくは、例えば、後述する実施例に記載の吸着比測定と同様にして、アミド基含有ポリマーの吸着比を求めることができる。
[吸着比測定]
(1)測定対象ポリマー0.018質量%およびアンモニア0.01質量%を含み、残部が水からなる試験液L0を用意する。
(2)砥粒を0.46質量%、上記測定対象ポリマーを0.018質量%およびアンモニアを0.01質量%の濃度で含み、残部が水からなる試験液L1を用意する。
(3)上記試験液L1に対して遠心分離処理を行って上記砥粒を沈降させる。
(4)上記試験液L0に含まれる上記測定対象ポリマーの質量W0と、上記試験液L1に上記遠心分離処理を施した後の上澄み液に含まれる上記測定対象ポリマーの質量W1とから、以下の式により上記測定対象ポリマーの吸着比を算出する。
吸着比(%)=[(W0−W1)/W0]×100
上記遠心分離処理は、例えば、ベックマン・コールター社製の遠心分離器、型式「Avanti HP−30I」を用いて20000rpmの回転数で30分間遠心分離する条件で行うことができる。また、上記試験液L0に含まれる上記測定対象ポリマーの質量W0および上記試験液L1に上記遠心分離処理を施した後の上澄み液に含まれる上記測定対象ポリマーの質量W1は、上記試験液L1および上記上澄み液の全有機炭素量(TOC)を測定することにより求めることができる。TOCの測定は、例えば島津製作所社製の全有機体炭素計(燃焼触媒酸化方式、型式「TOC−5000A」)またはその相当品を用いて行うことができる。
測定対象ポリマーの吸着比測定に使用する砥粒としては、その測定対象ポリマーを含む研磨用組成物の砥粒と同じ砥粒(例えば、材質、粒子径および粒子形状が同じ砥粒)を用いることが望ましい。ただし、後述するリンス用組成物に含まれるアミド基含有ポリマーの吸着比を測定する場合には、当該リンス用組成物を使用するリンス工程の前のポリシング工程で用いた研磨用組成物に含まれる砥粒と同じ砥粒、あるいはリンス工程の後のポリシング工程で用いる研磨用組成物に含まれる砥粒と同じ砥粒を用いて測定することが望ましい。もっとも、実用上の便宜を考慮して、上記研磨用組成物用の砥粒を用いて吸着比測定を行う場合と比較して吸着比に大きな差がない範囲で(例えば、いずれの砥粒を用いても測定対象ポリマーの吸着比が10%より明らかに大きい、あるいは明らかに小さいといえる範囲で)、研磨用組成物用の砥粒とは異なる砥粒を用いて吸着比測定を行ってもよい。例えば、研磨用組成物用の砥粒と材質が同じであって粒子のサイズや形状(例えば、平均一次粒子径、平均二次粒子径、粒子径分布、アスペクト比、比表面積等のうち1または2以上の特性値)がやや異なる砥粒を用いてもよい。通常は、研磨用組成物用の砥粒と同種の材質であって比表面積が概ね同じ(例えば、研磨用組成物を構成する砥粒との比表面積の相違が±10%以内の)砥粒を用いて吸着比測定を行うことが適当である。
なお、特に限定するものではないが、ここに開示される技術は、比表面積が凡そ20〜200mm/g(典型的には50〜150mm/g)の砥粒を使用する研磨用組成物に好ましく適用され得る。
<水>
ここに開示される研磨用組成物は、典型的には、上記アミド基含有ポリマーのほかに水を含む。水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。
ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。通常は、研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(典型的には99〜100体積%)が水であることがより好ましい。
ここに開示される研磨用組成物(典型的にはスラリー状の組成物)は、例えば、その固形分含量(non-volatile content;NV)が0.01質量%〜50質量%であり、残部が水系溶媒(水または水と上記有機溶剤との混合溶媒)である形態、または残部が水系溶媒および揮発性化合物(例えばアンモニア)である形態で好ましく実施され得る。上記NVが0.05質量%〜40質量%である形態がより好ましい。なお、上記固形分含量(NV)とは、研磨用組成物を105℃で24時間乾燥させた後における残留物が上記研磨用組成物に占める質量の割合を指す。
<砥粒>
ここに開示される研磨用組成物は砥粒の存在下で用いられる。砥粒はシリコンウエハの表面を機械的に研磨する機能を有する。砥粒はまた、ここに開示される研磨用組成物中で、該砥粒表面に吸着した上記アミド基含有ポリマーをシリコンウエハにこすり付ける機能、あるいはシリコンウエハに吸着した上記アミド基含有ポリマーをはがす機能を有する。これによって、シリコンウエハ研磨促進剤による化学的研磨を調整する。なお、本明細書において「研磨用組成物は砥粒の存在下で用いられる」には、研磨用組成物に砥粒が含まれる態様が包含され得るものとする。かかる態様は、ここに開示される研磨用組成物の好適な一態様として把握される。したがって、「研磨用組成物は砥粒の存在下で用いられる」は「研磨用組成物は砥粒を含む」と換言することができる。あるいは、砥粒は、例えば研磨パッドに内包された固定砥粒の形態で用いられてもよい。
ここに開示される砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましい。ここに開示される技術において使用し得る砥粒の好適例としてシリカ粒子が挙げられる。その理由は、研磨対象物(シリコンウエハ)と同じ元素と酸素原子とからなるシリカ粒子を砥粒として使用すれば研磨後にシリコンとは異なる金属または半金属の残留物が発生せず、シリコンウエハ表面の汚染や研磨対象物内部にシリコンとは異なる金属または半金属が拡散することによるシリコンウエハとしての電気特性の劣化などの虞がなくなるからである。かかる観点から好ましい研磨用組成物の一形態として、砥粒としてシリカ粒子のみを含有する研磨用組成物が例示される。また、シリカは高純度のものが得られやすいという性質を有する。このことも砥粒としてシリカ粒子が好ましい理由として挙げられる。シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。研磨対象物表面にスクラッチを生じにくく、よりヘイズの低い表面を実現し得るという観点から、好ましいシリカ粒子としてコロイダルシリカおよびフュームドシリカが挙げられる。なかでもコロイダルシリカが好ましい。なかでも、シリコンウエハのポリシング(特に、ファイナルポリシング)に用いられる研磨用組成物の砥粒として、コロイダルシリカを好ましく採用し得る。
シリカ粒子を構成するシリカの真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の増大によって、シリコンウエハを研磨する際に、研磨速度(単位時間当たりに研磨対象物の表面を除去する量)が向上し得る。研磨対象物の表面(研磨面)に生じるスクラッチを低減する観点からは、真比重が2.2以下のシリカ粒子が好ましい。シリカの真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。
ここに開示される技術において、研磨用組成物中に含まれる砥粒は、一次粒子の形態であってもよく、複数の一次粒子が凝集した二次粒子の形態であってもよい。また、一次粒子の形態の砥粒と二次粒子の形態の砥粒とが混在していてもよい。好ましい一態様では、少なくとも一部の砥粒が二次粒子の形態で研磨用組成物中に含まれている。
砥粒の平均一次粒子径DP1は特に制限されない。研磨効率等の観点から、平均一次粒子径DP1は、5nm以上であることが好ましく、より好ましくは10nm以上である。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、平均一次粒子径DP1は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、より平滑性の高い表面が得られやすいという観点から、砥粒の平均一次粒子径DP1は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは40nm以下である。ここに開示される技術は、より高品位の表面(例えば、LPD(Light Point Defect)やPID(Polishing Induced Defect)等の欠陥が低減された表面)を得やすい等の観点から、平均一次粒子径DP1が35nm以下(より好ましくは32nm以下、例えば30nm未満)の砥粒を用いる態様でも好ましく実施され得る。
なお、ここに開示される技術において、砥粒の平均一次粒子径DP1は、例えば、BET法により測定される比表面積S(m/g)から平均一次粒子径DP1(nm)=2727/Sの式により算出することができる。砥粒の比表面積の測定は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて行うことができる。
砥粒の平均二次粒子径DP2は特に限定されない。研磨速度等の観点から、平均二次粒子径DP2は、10nm以上であることが好ましく、より好ましくは20nm以上である。より高い研磨効果を得る観点から、平均二次粒子径DP2は、30nm以上であることが好ましく、35nm以上であることがより好ましく、40nm以上(例えば40nm超)であることがさらに好ましい。また、より平滑性の高い表面を得るという観点から、砥粒の平均二次粒子径DP2は、200nm以下が適当であり、好ましくは150nm以下、より好ましくは100nm以下である。ここに開示される技術は、より高品位の表面(例えば、LPDやPID等の欠陥が低減された表面)を得やすい等の観点から、平均二次粒子径DP2が70nm未満(より好ましくは60nm以下、例えば50nm未満)の砥粒を用いる態様でも好ましく実施され得る。
砥粒の平均二次粒子径DP2は、対象とする砥粒の水分散液を測定サンプルとして、例えば、日機装株式会社製の型式「UPA−UT151」を用いた動的光散乱法により測定することができる。
砥粒の平均二次粒子径DP2は、一般に砥粒の平均一次粒子径DP1と同等以上(DP2/DP1≧1)であり、典型的にはDP1よりも大きい(DP2/DP1>1)。特に限定するものではないが、研磨効果および研磨後の表面平滑性の観点から、砥粒のDP2/DP1は、通常は1.2〜3の範囲にあることが適当であり、1.5〜2.5の範囲が好ましく、1.7〜2.3(例えば1.9を超えて2.2以下)の範囲がより好ましい。
砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす砥粒の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、砥粒の多くがピーナッツ形状をした砥粒を好ましく採用し得る。
特に限定するものではないが、砥粒の一次粒子の長径/短径比の平均値(平均アスペクト比)は、好ましくは1.05以上、さらに好ましくは1.1以上である。砥粒の平均アスペクト比の増大によって、より高い研磨速度が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。
上記砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。
<シリコンウエハ研磨促進剤>
ここに開示される研磨用組成物は、典型的には、アミド基含有ポリマーおよび水の他に、シリコンウエハ研磨促進剤を含有する。シリコンウエハ研磨促進剤は、研磨用組成物に添加されることによって研磨対象となる面を化学的に研磨する働きをし、研磨速度の向上に寄与する成分である。シリコンウエハ研磨促進剤は、シリコンを化学的にエッチングする作用を有し、典型的には塩基性化合物である。研磨用組成物に含まれる塩基性化合物は、研磨用組成物のpHを増大させ、砥粒やアミド基含有ポリマーの分散状態を向上させるため、研磨用組成物の分散安定性の向上や砥粒による機械的な研磨作用の向上に役立ち得る。
塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、アルカリ金属またはアルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。例えば、アルカリ金属の水酸化物、水酸化第四級アンモニウムまたはその塩、アンモニア、アミン等が挙げられる。アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。水酸化第四級アンモニウムまたはその塩の具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N−(β−アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1−(2−アミノエチル)ピペラジン、N−メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。このような塩基性化合物は、1種を単独でまたは2種以上を組み合わせて用いることができる。
研磨速度向上等の観点から好ましい塩基性化合物として、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウムおよび炭酸ナトリウムが挙げられる。なかでも好ましいものとして、アンモニア、水酸化カリウム、水酸化ナトリウム、水酸化テトラメチルアンモニウムおよび水酸化テトラエチルアンモニウムが例示される。より好ましいものとしてアンモニアおよび水酸化テトラメチルアンモニウムが挙げられる。特に好ましい塩基性化合物としてアンモニアが挙げられる。
<界面活性剤>
ここに開示される研磨用組成物は、界面活性剤(典型的には、分子量1×10未満の水溶性有機化合物)を含む態様で好ましく実施され得る。界面活性剤の使用により、研磨用組成物の分散安定性が向上し得る。また、研磨面のヘイズを低減することが容易となり得る。界面活性剤は、1種を単独でまたは2種以上を組み合わせて用いることができる。
界面活性剤としては、アニオン性またはノニオン性のものを好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン付加物;複数種のオキシアルキレンの共重合体(ジブロック型、トリブロック型、ランダム型、交互型);等のノニオン性界面活性剤が挙げられる。
ノニオン性界面活性剤の具体例としては、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体(ジブロック体、PEO(ポリエチレンオキサイド)−PPO(ポリプロピレンオキサイド)−PEO型トリブロック体、PPO−PEO−PPO型トリブロック体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン−2−エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンステアリルアミド、ポリオキシエチレンオレイルアミド、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。なかでも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO−PPO−PEO型のトリブロック体)、EOとPOとのランダム共重合体およびポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。
界面活性剤の分子量は、典型的には1×10未満である。研磨用組成物の濾過性や研磨対象物の洗浄性等の観点から、界面活性剤の分子量は9500以下が好ましい。また、界面活性剤の分子量は、典型的には200以上である。ヘイズ低減効果等の観点から、界面活性剤の分子量は250以上が好ましく、300以上(例えば500以上)がより好ましい。なお、界面活性剤の分子量としては、GPCにより求められる重量平均分子量(Mw)(水系、ポリエチレングリコール換算)または化学式から算出される分子量を採用することができる。
界面活性剤の分子量のより好ましい範囲は、界面活性剤の種類によっても異なり得る。例えば、界面活性剤としてEOとPOとのブロック共重合体を用いる場合には、Mwが1000以上のものが好ましく、2000以上のものがより好ましく、5000以上のものがさらに好ましい。
<任意ポリマー>
ここに開示される研磨用組成物は、上述したアミド基含有ポリマーに加えて、必要に応じて、上記アミド基含有ポリマーとは異なる水溶性ポリマー(以下「任意ポリマー」ともいう。)を含有し得る。かかる任意ポリマーの種類は特に制限されず、研磨用組成物の分野において公知の水溶性ポリマーのなかから適宜選択することができる。
上記任意ポリマーは、分子中に、カチオン性基、アニオン性基およびノニオン性基から選ばれる少なくとも1種の官能基を有するものであり得る。上記任意ポリマーは、例えば、分子中に水酸基、カルボキシル基、アシルオキシ基、スルホ基、第一級アミド構造、第四級窒素構造、複素環構造、ビニル構造、ポリオキシアルキレン構造等を有するものであり得る。凝集物の低減や洗浄性向上等の観点から、上記任意ポリマーとしてノニオン性のポリマーを好ましく採用し得る。
ここに開示される研磨用組成物における任意ポリマーの好適例として、オキシアルキレン単位を含むポリマーや窒素原子を含有するポリマー、ポリビニルアルコール等が例示される。
オキシアルキレン単位を含むポリマーの例としては、PEO、EOとPOとのブロック共重合体、EOとPOとのランダム共重合体等が挙げられる。EOとPOとのブロック共重合体は、PEOブロックとPPOブロックとを含むジブロック体、トリブロック体等であり得る。上記トリブロック体の例には、PEO−PPO−PEO型トリブロック体およびPPO−PEO−PPO型トリブロック体が含まれる。通常は、PEO−PPO−PEO型トリブロック体がより好ましい。
EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。
窒素原子を含有するポリマーとしては、主鎖に窒素原子を含有するポリマーおよび側鎖官能基(ペンダント基)に窒素原子を有するポリマーのいずれも使用可能である。主鎖に窒素原子を含有するポリマーの例としては、N−アシルアルキレンイミン型モノマーの単独重合体および共重合体が挙げられる。N−アシルアルキレンイミン型モノマーの具体例としては、N−アセチルエチレンイミン、N−プロピオニルエチレンイミン等が挙げられる。ペンダント基に窒素原子を有するポリマーとしては、例えばN−ビニル型のモノマー単位を含むポリマー等が挙げられる。例えば、N−ビニルピロリドンの単独重合体および共重合体等を採用し得る。
任意ポリマーとしてポリビニルアルコールを用いる場合、該ポリビニルアルコールのけん化度は特に限定されない。
ここに開示される研磨用組成物に含有させ得る任意ポリマーの他の例として、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等のセルロース誘導体およびプルランが挙げられる。
上記任意ポリマーの分子量および分子量分布(Mw/Mn)は特に限定されない。例えば、上述したアミド基含有ポリマーにおける好ましいMwおよび分子量分布を、任意ポリマーにおける好ましいMwおよび分子量分布にも適用することができる。
任意ポリマーの使用量は、研磨用組成物に含まれるMw1×10以上の水溶性ポリマー成分(上述したアミド基含有ポリマーおよび必要に応じて使用される任意ポリマーを含む)の総量の50質量%以下とすることが適当であり、30質量%以下とすることが好ましく、15質量%以下(例えば10質量%以下)とすることがより好ましい。ここに開示される研磨用組成物は、任意ポリマーを実質的に含有しない(例えば、上記水溶性ポリマー成分の総量に占める任意ポリマーの割合が1質量%未満であるか、あるいは任意ポリマーが検出されない)態様で好ましく実施され得る。
また、ここに開示される研磨用組成物が任意ポリマーとしてセルロース誘導体を含む場合、その使用量は、該研磨用組成物に含まれるMw1×10以上の水溶性ポリマー成分の総量の10質量%以下に抑えることが好ましく、5質量%以下(典型的には1質量%以下)とすることがさらに好ましい。このことによって、天然物に由来するセルロース誘導体の使用に起因する異物の混入や凝集の発生をより高度に抑制することができる。ここに開示される研磨用組成物は、例えば、セルロース誘導体を実質的に含有しない(例えば、上記水溶性ポリマー成分の総量に占めるセルロース誘導体の割合が1質量%未満であるか、あるいはセルロース誘導体が検出されない)態様で好ましく実施され得る。
<その他の成分>
ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、キレート剤、有機酸、有機酸塩、無機酸、無機酸塩、防腐剤、防カビ剤等の、研磨用組成物(典型的には、シリコンウエハのファイナルポリシングに用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。アミノカルボン酸系キレート剤の例には、エチレンジアミン四酢酸、エチレンジアミン四酢酸ナトリウム、ニトリロ三酢酸、ニトリロ三酢酸ナトリウム、ニトリロ三酢酸アンモニウム、ヒドロキシエチルエチレンジアミン三酢酸、ヒドロキシエチルエチレンジアミン三酢酸ナトリウム、ジエチレントリアミン五酢酸、ジエチレントリアミン五酢酸ナトリウム、トリエチレンテトラミン六酢酸およびトリエチレンテトラミン六酢酸ナトリウムが含まれる。有機ホスホン酸系キレート剤の例には、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、エタン−1−ヒドロキシ−1,1−ジホスホン酸、エタン−1−ヒドロキシ−1,1,2−トリホスホン酸、エタン−1,2−ジカルボキシ−1,2−ジホスホン酸、メタンヒドロキシホスホン酸、2−ホスホノブタン−1,2−ジカルボン酸、1−ホスホノブタン−2,3,4−トリカルボン酸およびα−メチルホスホノコハク酸が含まれる。これらのうち有機ホスホン酸系キレート剤がより好ましく、なかでも好ましいものとしてエチレンジアミンテトラキス(メチレンホスホン酸)およびジエチレントリアミンペンタ(メチレンホスホン酸)が挙げられる。特に好ましいキレート剤として、エチレンジアミンテトラキス(メチレンホスホン酸)が挙げられる。
有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、有機スルホン酸、有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、硫酸、硝酸、塩酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。有機酸およびその塩、ならびに無機酸およびその塩は、1種を単独でまたは2種以上を組み合わせて用いることができる。
防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。
<用途>
ここに開示される研磨用組成物は、単結晶シリコンからなる研磨対象物(シリコンウエハ)の研磨に用いられ得る。研磨対象物の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する研磨対象物の研磨に好ましく適用され得る。
ここに開示される研磨用組成物は、研磨対象物のファイナルポリシングに好ましく使用され得る。したがって、この明細書によると、上記研磨用組成物を用いたファイナルポリシング工程を含む研磨物の製造方法(例えば、シリコンウエハの製造方法)が提供される。なお、ファイナルポリシングとは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される研磨用組成物は、また、ファイナルポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の予備研磨工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)に用いられてもよい。ここに開示される研磨用組成物は、例えばファイナルポリシングの直前に行われるポリシング工程に用いられてもよい。
ここに開示される研磨用組成物は、シリコンウエハの研磨に特に好ましく使用され得る。例えば、シリコンウエハのファイナルポリシングまたはそれよりも上流のポリシング工程に用いられる研磨用組成物として好適である。例えば、上流の工程によって表面粗さ0.01nm〜100nmの表面状態に調製されたシリコンウエハのポリシング(典型的にはファイナルポリシングまたはその直前のポリシング)への適用が効果的である。ファイナルポリシングへの適用が特に好ましい。
<研磨液>
ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で研磨対象物に供給されて、その研磨対象物の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、研磨対象物に供給されて該研磨対象物の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
研磨液におけるアミド基含有ポリマーの含有量は特に制限されず、例えば1×10−4質量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5×10−4質量%以上であり、より好ましくは1×10−3質量%以上、例えば2×10−3質量%以上である。また、研磨速度等の観点から、上記含有量を0.2質量%以下とすることが好ましく、0.1質量%以下(例えば0.05質量%以下)とすることがより好ましい。
ここに開示される研磨用組成物が砥粒を含む場合、研磨液における砥粒の含有量は特に制限されないが、典型的には0.01質量%以上であり、0.05質量%以上であることが好ましく、より好ましくは0.1質量%以上、例えば0.15質量%以上である。砥粒の含有量の増大によって、より高い研磨速度が実現され得る。よりヘイズの低い表面を実現する観点から、通常は、上記含有量は10質量%以下が適当であり、好ましくは7質量%以下、より好ましくは5質量%以下、さらに好ましくは2質量%以下、例えば1質量%以下である。
ここに開示される研磨液におけるシリコンウエハ研磨促進剤の含有量は特に制限されない。研磨速度向上等の観点から、通常は、その含有量を研磨液の0.001質量%以上とすることが好ましく、0.003質量%以上とすることがより好ましい。また、ヘイズ低減等の観点から、上記含有量を0.4質量%未満とすることが好ましく、0.25質量%未満とすることがより好ましい。
研磨液のpHの下限値は8.0以上であることが好ましく、さらに好ましくは9.0以上であり、もっとも好ましくは9.5以上である。研磨液のpHが8.0以上(さらに好ましくは9.0以上、もっとも好ましくは9.5以上)であれば、シリコンウエハの研磨速度が向上し、効率よく表面精度の高いシリコンウエハを得ることができる。また研磨液中粒子の分散安定性が向上する。研磨液のpHの上限値は特に制限されないが、12.0以下であることが好ましく、11.0以下であることがさらに好ましい。研磨液のpHが12.0以下(さらに好ましくは11.0以下)であれば、研磨液に含まれる砥粒(特にコロイダルシリカ、フュームドシリカ、沈降シリカ等のシリカ粒子)が塩基性化合物によって溶解することを防ぎ、砥粒による機械的な研磨作用の低下を抑制することができる。上記pHは、例えば上記塩基性化合物、上記その他の成分のうちの有機酸または無機酸によって調整され得る。上記pHは、シリコンウエハの研磨に用いられる研磨液(例えばファイナルポリシング用の研磨液)に好ましく適用され得る。研磨液のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F−23))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて、3点校正した後で、ガラス電極を研磨液に入れて、2分以上経過して安定した後の値を測定することにより得られる。
ここに開示される研磨用組成物が界面活性剤を含む場合、研磨液における界面活性剤の含有量は特に制限されず、例えば1×10−4質量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5×10−4質量%以上であり、より好ましくは1×10−3質量%以上、例えば2×10−3質量%以上である。また、洗浄性や研磨速度等の観点から、上記含有量は0.2質量%以下が好ましく、0.1質量%以下(例えば0.05質量%以下)がより好ましい。
また、ここに開示される研磨用組成物が界面活性剤を含む場合、アミド基含有ポリマーの含有量w1と界面活性剤の含有量w2との質量比(w1/w2)は特に制限されないが、例えば0.01〜100の範囲とすることができ、0.05〜50の範囲が好ましく、0.1〜30の範囲がより好ましい。
ここに開示される研磨用組成物が砥粒を含む研磨液の形態で使用される場合、該砥粒100質量部に対する界面活性剤の含有量は、例えば20質量部以下とすることが適当であり、15質量部以下が好ましく、10質量部以下(例えば6質量部以下)がより好ましい。界面活性剤の使用効果をよりよく発揮させる観点から、砥粒100質量部に対する界面活性剤含有量は、0.001質量部以上が適当であり、0.005質量部以上が好ましく、0.01質量部以上(例えば0.1質量部以上)がより好ましい。
あるいは、組成の単純化等の観点から、ここに開示される研磨用組成物は、界面活性剤を実質的に含まない態様でも好ましく実施され得る。
<濃縮液>
ここに開示される研磨用組成物は、研磨対象物に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は、例えば、体積換算で2倍〜100倍程度とすることができ、通常は5倍〜50倍程度が適当である。好ましい一態様に係る研磨用組成物の濃縮倍率は10倍〜40倍であり、例えば15倍〜25倍である。
このように濃縮液の形態にある研磨用組成物は、所望のタイミングで希釈して研磨液を調製し、その研磨液を研磨対象物に供給する態様で使用することができる。上記希釈は、典型的には、上記濃縮液に前述の水系溶媒を加えて混合することにより行うことができる。また、上記水系溶媒が混合溶媒である場合、該水系溶媒の構成成分のうち一部の成分のみを加えて希釈してもよく、それらの構成成分を上記水系溶媒とは異なる量比で含む混合溶媒を加えて希釈してもよい。また、後述するように多剤型の研磨用組成物においては、それらのうち一部の剤を希釈した後に他の剤と混合して研磨液を調製してもよく、複数の剤を混合した後にその混合物を希釈して研磨液を調製してもよい。
上記濃縮液のNVは、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、濃縮液のNVは、40質量%以下とすることが適当であり、30質量%以下が好ましく、より好ましくは20質量%以下、例えば15質量%以下である。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液のNVは、0.5質量%以上とすることが適当であり、好ましくは1質量%以上、より好ましくは3質量%以上、例えば5質量%以上である。
上記濃縮液におけるアミド基含有ポリマーの含有量は、例えば3質量%以下とすることができる。研磨用組成物の濾過性や洗浄性等の観点から、通常、上記含有量は、好ましくは1質量%以下であり、より好ましくは0.5質量%以下である。また、上記含有量は、製造、流通、保存等の際における利便性やコスト低減等の観点から、通常は1×10−3質量%以上であることが適当であり、好ましくは5×10−3質量%以上、より好ましくは1×10−2質量%以上である。
ここに開示される研磨用組成物が砥粒を含む場合、上記濃縮液における砥粒の含有量は、例えば50質量%以下とすることができる。研磨用組成物の安定性(例えば、砥粒の分散安定性)や濾過性等の観点から、通常、上記含有量は、好ましくは45質量%以下であり、より好ましくは40質量%以下である。好ましい一態様において、砥粒の含有量を30質量%以下としてもよく、20質量%以下(例えば15質量%以下)としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、砥粒の含有量は、例えば0.5質量%以上とすることができ、好ましくは1質量%以上、より好ましくは3質量%以上(例えば5質量%以上)である。
ここに開示される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、該研磨用組成物の構成成分のうち一部の成分を含むA液(例えば、砥粒(例えばシリカ粒子)とシリコンウエハ研磨促進剤と水とを含む分散液)と、残りの成分を含むB液(例えばアミド基含有ポリマー含有液)とが混合されて研磨対象物の研磨に用いられるように構成され得る。あるいはまた、シリコンウエハ研磨促進剤とアミド基含有ポリマーと水とを含む研磨用組成物に対して、別途用意した砥粒を所定のタイミングで混合する態様で用いられ得る。
<研磨用組成物の調製>
ここに開示される研磨用組成物の製造方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物に含まれる各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。
<研磨>
ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、研磨対象物の研磨に使用することができる。以下、ここに開示される研磨用組成物を用いて研磨対象物を研磨する方法の好適な一態様につき説明する。
すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液(典型的にはスラリー状の研磨液であり、研磨スラリーと称されることもある。)を用意する。上記研磨液を用意することには、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、上記研磨用組成物をそのまま研磨液として使用してもよい。また、多剤型の研磨用組成物の場合、上記研磨液を用意することには、それらの剤を混合すること、該混合の前に1または複数の剤を希釈すること、該混合の後にその混合物を希釈すること、等が含まれ得る。
次いで、その研磨液を研磨対象物に供給し、常法により研磨する。例えば、シリコンウエハのファイナルポリシングを行う場合には、ラッピング工程および予備ポリシング工程を経たシリコンウエハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウエハの表面(研磨対象面)に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウエハの表面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て研磨対象物の研磨が完了する。
なお、上記研磨工程で使用される研磨パッドは特に限定されない。例えば、不織布タイプ、スウェードタイプ、砥粒を含むもの、砥粒を含まないもの等のいずれを用いてもよい。
<リンス>
ここに開示される研磨用組成物であって砥粒を含む研磨用組成物を用いて研磨された研磨物は、砥粒を含まない他は上記研磨用組成物と同じ成分を含むリンス液を用いてリンスされ得る。換言すると、ここに開示される技術では、砥粒を含まない他は上記研磨用組成物と同じ成分を含むリンス液を用いて上記研磨物をリンスする工程(リンス工程)を有してもよい。リンス工程により、研磨物の表面の欠陥やヘイズの原因となる砥粒等の残留物を低減させることができる。リンス工程は、ポリシング工程とポリシング工程との間に行われてもよいし、ファイナルポリシング工程の後であって後述の洗浄工程の前に行われてもよい。砥粒を含まない他は上記研磨用組成物と同じ成分を含むリンス液を用いてリンスすることにより、シリコンウエハ表面に吸着した上記アミド基含有ポリマーの作用を阻害せず、欠陥やヘイズをさらに低減することができる。かかるリンス液は、典型的にはシリコンウエハ研磨促進剤とアミド基含有ポリマーと水とを含むシリコンウエハ研磨用組成物(具体的には、シリコンウエハ研磨のリンスに用いられる組成物。リンス用組成物ともいう。)であり得る。このシリコンウエハのリンス用組成物の組成等については、砥粒を含まない他は上述のシリコンウエハ研磨用組成物と基本的に同じなので、ここでは説明は繰り返さない。
<洗浄>
また、ここに開示される研磨用組成物を用いて研磨された研磨物は、典型的には、研磨後に(必要であればリンス後に)洗浄される。この洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC−1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液。以下、SC−1洗浄液を用いて洗浄することを「SC−1洗浄」という。)、SC−2洗浄液(HClとHとHOとの混合液。)等を用いることができる。洗浄液の温度は、例えば常温〜90℃程度とすることができる。洗浄効果を向上させる観点から、50℃〜85℃程度の洗浄液を好ましく使用し得る。
以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「部」および「%」は、特に断りがない限り質量基準である。
<吸着比の測定>
実施例および比較例で使用する水溶性ポリマーの各々について、砥粒への吸着比を測定した。
上記吸着比の測定に供した水溶性ポリマーは、次のとおりである。
ポリアクリロイルモルホリン(PACMO) Mw4.5×10
ポリ−N−イソプロピルアクリルアミド(PNIPAM) Mw6.0×10
ポリビニルアルコール(PVA) Mw2.6×10
カチオン化PVA Mw2.6×10
ポリビニルピロリドン(PVP) Mw6.0×10
具体的には、測定対象である上記水溶性ポリマー(測定対象ポリマー)、アンモニア水(濃度29%)および脱イオン水を混合して、測定対象ポリマーを0.018%、アンモニア(NH)を0.01%の濃度で含み、残部が水からなる試験液L0を調製した。その試験液L0について、島津製作所社製の全有機体炭素計(燃焼触媒酸化方式、型式「TOC−5000A」)を用いて全有機炭素量(TOC)を測定した。
一方、後述する実施例および比較例で用いたものと同じ砥粒、測定対象ポリマー、アンモニア水(濃度29%)および脱イオン水を混合して、上記砥粒を0.46%、測定対象ポリマーを0.018%、アンモニア(NH)を0.01%の濃度で含み、残部が水からなる試験液L1を調製した。その試験液L1に対し、ベックマン・コールター社製の遠心分離器、型式「Avanti HP−30I」を用いて20000rpmの回転数で30分間の遠心分離処理を行った。上記遠心分離処理後の上澄み液を回収し、その上澄み液のTOCを上記全有機体炭素計を用いて計測した。上記試験液L0のTOC値および上記試験液L1の上澄み液のTOC値から測定対象ポリマーの吸着比を算出した。結果を表1に示した。
<研磨用組成物の調製>
(実施例1)
砥粒、水溶性ポリマー、アンモニア水(濃度29%)および脱イオン水を混合して、研磨用組成物の濃縮液を得た。この濃縮液を脱イオン水で20倍に希釈して、実施例1に係る研磨用組成物を調製した。
砥粒としては、平均一次粒子径35nm、平均二次粒子径66nmのコロイダルシリカを使用した。上記平均一次粒子径は、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定されたものである。また、上記平均二次粒子径は、日機装株式会社製の型式「UPA−UT151」を用いて測定された体積平均二次粒子径である。
水溶性ポリマーとしてはPACMOを使用した。
砥粒、水溶性ポリマーおよびアンモニア水の使用量は、研磨用組成物中における砥粒の含有量が0.46%となり、水溶性ポリマーの含有量が0.018%となり、アンモニア(NH)の含有量が0.01%となる量とした。この研磨用組成物のpHは10.2であった。
(実施例2)
PACMOに代えてPNIPAMを使用した他は実施例1と同様にして、実施例2に係る研磨用組成物を調製した。
(比較例1〜3)
PACMOに代えてPVA(比較例1)、カチオン化PVA(比較例2)、PVP(比較例3)を使用した他は実施例1と同様にして、比較例1〜3に係る研磨用組成物をそれぞれ調製した。
<シリコンウエハの研磨>
各例に係る研磨用組成物をそのまま研磨液として使用して、シリコンウエハの表面を下記の条件で研磨した。シリコンウエハとしては、粗研磨を行い直径が300mm、伝導型がP型、結晶方位が<100>、抵抗率が0.1Ω・cm以上100Ω・cm未満であるものを、研磨スラリー(株式会社フジミインコーポレーテッド製、商品名「GLANZOX 2100」)を用いて予備研磨を行うことにより表面粗さ0.1nm〜10nmに調整して使用した。
[研磨条件]
研磨機:株式会社岡本工作機械製作所製の枚葉研磨機、型式「PNX−332B」
研磨テーブル:上記研磨機の有する3テーブルのうち後段の2テーブルを用いて、予備研磨後のファイナル研磨1段目および2段目を実施した。
(以下の条件は各テーブル同一である。)
研磨荷重:15kPa
定盤回転数:30rpm
ヘッド回転数:30rpm
研磨時間:2分
研磨液の温度:20℃
研磨液の供給速度:2.0リットル/分(掛け流し使用)
<洗浄>
研磨後のシリコンウエハを、NHOH(29%):H(31%):脱イオン水(DIW)=1:3:30(体積比)の洗浄液を用いて洗浄した(SC−1洗浄)。より具体的には、周波数950kHzの超音波発振器を取り付けた洗浄槽を2つ用意し、それら第1および第2の洗浄槽の各々に上記洗浄液を収容して60℃に保持し、研磨後のシリコンウエハを第1の洗浄槽に6分、その後超純水と超音波によるリンス槽を経て、第2の洗浄槽に6分、それぞれ上記超音波発振器を作動させた状態で浸漬した。
<微小パーティクル数評価>
ケーエルエー・テンコール社製のウエハ検査装置、商品名「Surfscan SP2」を用いて、洗浄後の直径300mmのシリコンウエハ表面に存在する37nm以上の大きさのパーティクルの個数(LPD数)をカウントした。得られた結果を、比較例1のLPD数を100%とする相対値に換算して表1に示した。また、LPD数を示す欄において「測定不可」とは、上記ウエハ検査装置による欠陥測定においてData Overloadとなったこと、すなわちLPD数が測定上限を超えたこと、を表している。
<ヘイズ測定>
洗浄後のシリコンウエハ表面につき、ケーエルエー・テンコール社製のウエハ検査装置、商品名「Surfscan SP2」を用いて、DWOモードでヘイズ(ppm)を測定した。得られた結果を、比較例1のヘイズ値を100%とする相対値に換算して表1に示した。
Figure 2014196299
表1に示されるように、水溶性ポリマーとして、第二級アミド基または第三級アミド基を有し、かつそのカルボニル炭素原子がポリマーの主鎖を構成する炭素原子に直接結合しているアミド基含有ポリマー(構成単位Aを主鎖に有するアミド基含有ポリマー)を用いた実施例1および2の研磨用組成物は、PVAやカチオン化PVA、PVPを水溶性ポリマーとして用いた比較例1〜3に比べて、LPD数低減およびヘイズ低減のいずれの効果にも優れたものであった。これらの結果から、上記アミド基含有ポリマーを含むシリコンウエハ研磨用組成物を用いた研磨によると、欠陥およびヘイズを効果的に低減し得ることがわかる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。

Claims (5)

  1. 砥粒の存在下で用いられるシリコンウエハ研磨用組成物であって、
    シリコンウエハ研磨促進剤と、アミド基含有ポリマーと、水と、を含み、
    前記アミド基含有ポリマーは、構成単位Aを主鎖に有しており、
    前記構成単位Aは、前記アミド基含有ポリマーの主鎖を構成する主鎖構成炭素原子と、第二級アミド基または第三級アミド基と、を含み、
    前記第二級アミド基または第三級アミド基を構成するカルボニル炭素原子は、前記主鎖構成炭素原子に直接結合している、シリコンウエハ研磨用組成物。
  2. 前記構成単位Aは、下記一般式(1):
    Figure 2014196299
    (式中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。R,Rは、同じかまたは異なり、いずれも水素原子、炭素原子数1〜18のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基または炭素原子数6〜60の芳香族基であり、これらのうち水素原子以外については、置換基を有するものを包含する。ただし、R,Rの両方が水素原子であるものは除く。);で表わされる単量体、
    下記一般式(2):
    Figure 2014196299
    (式中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。Xは、(CH(ただし、nは4〜6の整数である。)、(CHO(CHまたは(CHS(CHである。);で表わされる単量体、および
    下記一般式(3):
    Figure 2014196299
    (式中、Rは水素原子、メチル基、フェニル基、ベンジル基、クロロ基、ジフルオロメチル基、トリフルオロメチル基またはシアノ基である。R,Rは、同じかまたは異なり、いずれも水素原子、炭素原子数1〜8のアルキル基、アルケニル基、アルキニル基、アラルキル基、アルコキシ基、アルコキシアルキル基、アルキロール基、アセチル基または炭素原子数6〜60の芳香族基であり、これらのうち水素原子以外については、置換基を有するものを包含する。aは1〜5の整数である。);で表わされる単量体、からなる群から選ばれる少なくとも1種に由来する、請求項1に記載のシリコンウエハ研磨用組成物。
  3. 前記アミド基含有ポリマーはノニオン性である、請求項1または2に記載のシリコンウエハ研磨用組成物。
  4. 前記砥粒はシリカ粒子である、請求項1から3のいずれか一項に記載のシリコンウエハ研磨用組成物。
  5. シリコンウエハ研磨促進剤と、アミド基含有ポリマーと、水と、を含み、
    前記アミド基含有ポリマーは、構成単位Aを主鎖に有しており、
    前記構成単位Aは、前記アミド基含有ポリマーの主鎖を構成する主鎖構成炭素原子と、第二級アミド基または第三級アミド基と、を含み、
    前記第二級アミド基または第三級アミド基を構成するカルボニル炭素原子は、前記主鎖構成炭素原子に直接結合している、シリコンウエハのリンス用組成物。
JP2015521346A 2013-06-07 2014-05-02 シリコンウエハ研磨用組成物 Active JP6037416B2 (ja)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013120328 2013-06-07
JP2013120328 2013-06-07
JP2014010836 2014-01-23
JP2014010836 2014-01-23
PCT/JP2014/062176 WO2014196299A1 (ja) 2013-06-07 2014-05-02 シリコンウエハ研磨用組成物

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016135649A Division JP6360108B2 (ja) 2013-06-07 2016-07-08 シリコンウエハ研磨用組成物

Publications (2)

Publication Number Publication Date
JP6037416B2 JP6037416B2 (ja) 2016-12-07
JPWO2014196299A1 true JPWO2014196299A1 (ja) 2017-02-23

Family

ID=52007952

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2015521346A Active JP6037416B2 (ja) 2013-06-07 2014-05-02 シリコンウエハ研磨用組成物
JP2016135649A Active JP6360108B2 (ja) 2013-06-07 2016-07-08 シリコンウエハ研磨用組成物

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016135649A Active JP6360108B2 (ja) 2013-06-07 2016-07-08 シリコンウエハ研磨用組成物

Country Status (8)

Country Link
US (2) US20160122591A1 (ja)
EP (1) EP3007213B1 (ja)
JP (2) JP6037416B2 (ja)
KR (1) KR102239045B1 (ja)
CN (1) CN105264647B (ja)
SG (1) SG11201508398TA (ja)
TW (1) TWI650410B (ja)
WO (1) WO2014196299A1 (ja)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6403324B2 (ja) * 2014-12-25 2018-10-10 花王株式会社 シリコンウェーハ用研磨液組成物
JP6366139B2 (ja) * 2014-12-25 2018-08-01 花王株式会社 シリコンウェーハ用研磨液組成物の製造方法
US10748778B2 (en) 2015-02-12 2020-08-18 Fujimi Incorporated Method for polishing silicon wafer and surface treatment composition
US20180030313A1 (en) * 2015-02-12 2018-02-01 Fujimi Incorporated Method for polishing silicon wafer and surface treatment composition
JP6654696B2 (ja) * 2015-07-10 2020-02-26 フエロ コーポレーション 有機ポリマー系眼用基材を研磨するためのスラリー組成物及び方法、並びに眼用レンズ
JP6801964B2 (ja) * 2016-01-19 2020-12-16 株式会社フジミインコーポレーテッド 研磨用組成物及びシリコン基板の研磨方法
JP6892434B2 (ja) * 2016-02-29 2021-06-23 株式会社フジミインコーポレーテッド 研磨用組成物およびこれを用いた研磨方法
US11326049B2 (en) * 2016-09-21 2022-05-10 Fujimi Incorporated Composition for surface treatment
CN110462797B (zh) * 2017-03-31 2023-09-22 福吉米株式会社 研磨用组合物
JP6916039B2 (ja) * 2017-06-05 2021-08-11 Atシリカ株式会社 研磨用組成物
WO2019087818A1 (ja) 2017-11-06 2019-05-09 株式会社フジミインコーポレーテッド 研磨用組成物およびその製造方法
JP7353051B2 (ja) * 2019-03-26 2023-09-29 株式会社フジミインコーポレーテッド シリコンウェーハ研磨用組成物
JP7356248B2 (ja) 2019-03-28 2023-10-04 株式会社フジミインコーポレーテッド リンス用組成物およびリンス方法
CN110922897B (zh) * 2019-11-18 2024-03-08 宁波日晟新材料有限公司 一种用于硅化合物的低雾值无损伤抛光液及其制备方法
JP2021100085A (ja) * 2019-12-24 2021-07-01 ニッタ・デュポン株式会社 研磨用組成物
WO2021182276A1 (ja) * 2020-03-13 2021-09-16 株式会社フジミインコーポレーテッド 研磨用組成物
TWI819655B (zh) * 2021-06-14 2023-10-21 美商恩特葛瑞斯股份有限公司 硬質基板研磨

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100447551B1 (ko) * 1999-01-18 2004-09-08 가부시끼가이샤 도시바 복합 입자 및 그의 제조 방법, 수계 분산체, 화학 기계연마용 수계 분산체 조성물 및 반도체 장치의 제조 방법
KR20010046395A (ko) * 1999-11-12 2001-06-15 안복현 연마용 조성물
CN100377310C (zh) * 2003-01-31 2008-03-26 日立化成工业株式会社 Cmp研磨剂以及研磨方法
WO2006112519A1 (ja) * 2005-04-14 2006-10-26 Showa Denko K.K. 研磨組成物
KR101029929B1 (ko) * 2005-11-11 2011-04-18 히다치 가세고교 가부시끼가이샤 산화규소용 연마제, 첨가액 및 연마 방법
WO2008013226A1 (fr) * 2006-07-28 2008-01-31 Showa Denko K.K. Composition de polissage
JP2008091524A (ja) * 2006-09-29 2008-04-17 Fujifilm Corp 金属用研磨液
JP2008181955A (ja) * 2007-01-23 2008-08-07 Fujifilm Corp 金属用研磨液及びそれを用いた研磨方法
JP2009123880A (ja) * 2007-11-14 2009-06-04 Showa Denko Kk 研磨組成物
CN102084465A (zh) * 2008-02-01 2011-06-01 福吉米株式会社 研磨用组合物以及使用其的研磨方法
US20110081780A1 (en) * 2008-02-18 2011-04-07 Jsr Corporation Aqueous dispersion for chemical mechanical polishing and chemical mechanical polishing method
JP5207002B2 (ja) * 2008-02-27 2013-06-12 Jsr株式会社 化学機械研磨用水系分散体およびそれを用いた化学機械研磨方法、化学機械研磨用水系分散体の再生方法
CN104178088B (zh) * 2008-04-23 2016-08-17 日立化成株式会社 研磨剂及使用该研磨剂的基板研磨方法
JP5413456B2 (ja) * 2009-04-20 2014-02-12 日立化成株式会社 半導体基板用研磨液及び半導体基板の研磨方法
JP2012533649A (ja) * 2009-07-15 2012-12-27 ラム リサーチ コーポレーション 高度な基板洗浄剤及び洗浄用システム
JP5878020B2 (ja) * 2009-11-11 2016-03-08 株式会社クラレ 化学的機械的研磨用スラリー並びにそれを用いる基板の研磨方法
JP4772156B1 (ja) 2010-07-05 2011-09-14 花王株式会社 シリコンウエハ用研磨液組成物
KR101907229B1 (ko) * 2011-02-03 2018-10-11 니타 하스 인코포레이티드 연마용 조성물 및 그것을 이용한 연마 방법
CN108831830B (zh) * 2012-02-21 2024-05-17 株式会社力森诺科 研磨剂、研磨剂组和基体的研磨方法
JP5822356B2 (ja) * 2012-04-17 2015-11-24 花王株式会社 シリコンウェーハ用研磨液組成物

Also Published As

Publication number Publication date
WO2014196299A1 (ja) 2014-12-11
SG11201508398TA (en) 2015-11-27
EP3007213A1 (en) 2016-04-13
TW201510197A (zh) 2015-03-16
TWI650410B (zh) 2019-02-11
KR102239045B1 (ko) 2021-04-12
US20160122591A1 (en) 2016-05-05
KR20160013896A (ko) 2016-02-05
US20170253767A1 (en) 2017-09-07
EP3007213B1 (en) 2020-03-18
JP6360108B2 (ja) 2018-07-18
JP6037416B2 (ja) 2016-12-07
CN105264647B (zh) 2018-01-09
JP2016201557A (ja) 2016-12-01
EP3007213A4 (en) 2017-02-22
CN105264647A (zh) 2016-01-20
US10745588B2 (en) 2020-08-18

Similar Documents

Publication Publication Date Title
JP6360108B2 (ja) シリコンウエハ研磨用組成物
JP6387032B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨物製造方法
JP5890583B2 (ja) 研磨用組成物および研磨物製造方法
JP5900913B2 (ja) 研磨用組成物、研磨用組成物製造方法および研磨用組成物調製用キット
JP6185432B2 (ja) シリコンウェーハ研磨用組成物
JP6279593B2 (ja) 研磨用組成物、研磨用組成物の製造方法およびシリコンウェーハ製造方法
JP6255287B2 (ja) 研磨方法およびそれに用いられる研磨用組成物
JP2015067773A (ja) 研磨用組成物およびその製造方法
JP5859055B2 (ja) シリコンウェーハ研磨用組成物
JP6246638B2 (ja) 研磨方法およびそれに用いられる研磨用組成物
JP6348927B2 (ja) シリコンウェーハ研磨用組成物
JP5859054B2 (ja) シリコンウェーハ研磨用組成物
JP6295052B2 (ja) 研磨用組成物、研磨用組成物の製造方法およびシリコンウエハ製造方法

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161006

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161026

R150 Certificate of patent or registration of utility model

Ref document number: 6037416

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250