JPWO2014132766A1 - モータ制御装置及びモータ制御方法 - Google Patents

モータ制御装置及びモータ制御方法 Download PDF

Info

Publication number
JPWO2014132766A1
JPWO2014132766A1 JP2015502835A JP2015502835A JPWO2014132766A1 JP WO2014132766 A1 JPWO2014132766 A1 JP WO2014132766A1 JP 2015502835 A JP2015502835 A JP 2015502835A JP 2015502835 A JP2015502835 A JP 2015502835A JP WO2014132766 A1 JPWO2014132766 A1 JP WO2014132766A1
Authority
JP
Japan
Prior art keywords
command value
current
value
compensation
torque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015502835A
Other languages
English (en)
Other versions
JP5862832B2 (ja
Inventor
雄史 勝又
雄史 勝又
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2015502835A priority Critical patent/JP5862832B2/ja
Application granted granted Critical
Publication of JP5862832B2 publication Critical patent/JP5862832B2/ja
Publication of JPWO2014132766A1 publication Critical patent/JPWO2014132766A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/141Flux estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/02Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
    • B60L15/025Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2072Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for drive off
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/06Limiting the traction current under mechanical overload conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/28Arrangements for controlling current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/12Induction machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

外部から入力されるトルク指令値及びモータの回転速度に基づき基本電流指令値を演算する電流指令値演算手段と、基本電流指令値を増幅させることで、モータ3のロータ磁束応答の遅れを補償する第1補償手段と、補償後電流指令値を第1電流制限値で制限する第1電流指令値制限手段と、第1補償手段により演算された電流増幅指令値と、第1電流指令値制限手段により演算された第1制限後電流指令値に基づき、電流増幅指令値の補償値を演算する第2補償手段と、電流増幅指令値と補償値とを加算することで、補償後電流指令値を演算する加算手段と、第1制限後電流指令値に基づき、モータ3を制御するモータ制御手段とを備え、第2補償手段は、電流増幅指令値のうち、第1電流制限値により制限を受けた分の指令値を補償値として演算する。

Description

本発明は、モータ制御装置及びモータ制御方法に関するものである。
本出願は、2013年2月26日に出願された日本国特許出願の特願2013―35637号に基づく優先権を主張するものであり、文献の参照による組み込みが認められる指定国については、上記の出願に記載された内容を参照により本出願に組み込み、本出願の記載の一部とする。
目標磁束を発生するための励磁電流指令値を演算する励磁電流指令値演算部と、励磁電流指令値の正負の上限値を制限する励磁電流リミッタ部を備えた誘導モータ制御装置において、励磁電流指令値演算部は、2次磁束の応答性を変化させるために励磁電流の値を大きく変化させるよう励磁電流指令値を演算し、励磁電流リミッタ部はインバータのドライブ回路を保護するために過度に大きな電流を流れないよう上記の上限値を設定するものが開示されている(特許文献1)。
特開平8−163900号公報
しかしながら、上記のモータ制御装置では、磁束の応答性を高めるために、過渡的に大きな励磁電流を流すことで、当該励磁電流が上限値である定常の最大許容電流で制限された場合には、制限された分の励磁電流は流れないため、ロータ磁束が不足しトルクの応答性が悪くなるという問題があった。
本発明が解決しようとする課題は、トルクの応答性を改善したモータ制御装置又はモータ制御方法を提供することである。
本発明は、トルク指令値に基づく基本電流指令値を増幅させることで、モータのロータ磁束応答の遅れを補償し、補償後電流指令値を第1電流制限値で制限し、電流増幅指令値と第1制限後電流指令値に基づき、電流増幅指令値の補償値を演算し、電流増幅指令値と補償値とを加算することで、補償後電流指令値を演算し、電流増幅指令値のうち、第1電流制限値により制限を受けた分の指令値を補償値として演算することによって上記課題を解決する。
本発明は、ロータ磁束応答の遅れを補償するための電流増幅指令値に対して電流制限値で制限された場合には、制限を受けた分の電流指令値を補償値として電流増幅指令値に加算することで、電流増幅指令値が電流制限値で制限されない値となった後に補償値により当該電流増幅指令値が補償されるため、トルクの応答性を改善することができる。
本発明の実施形態に係る電動車両システムのブロック図である。 図1のモータトルク制御部で参照されるマップを説明するためのグラフであって、アクセル開度毎に設定された、モータ回転数とトルク指令値の相関性を示すグラフである。 図1の電流制御部のブロック図である。 図3の電流指令値演算器のブロック図である。 図4の励磁電流補償制御部のブロック図である。 図4のトルク電流補償制御部のブロック図である。 図1のモータコントローラの制御手順を示すフローチャートである。 図7のステップS4の制御手順を示すフローチャートである。 図8のステップS45の制御手順を示すフローチャートである。 比較例に係るモータ制御装置で制御されたモータのトルク応答を示すグラフである。 本発明に係るモータ制御装置で制御されたモータのトルク応答を示すグラフである。 本発明の他の実施形態に係るモータ制御装置の励磁電流補償制御部のブロック図である。 本発明の他の実施形態に係るモータ制御装置のトルク電流補償制御部のブロック図である。 本発明の他の実施形態に係るモータ制御装置の励磁電流補償制御部のブロック図である。 本発明の他の実施形態に係るモータ制御装置のトルク電流補償制御部のブロック図である。
以下、本発明の実施形態を図面に基づいて説明する。
《第1実施形態》
図1は、本発明の実施形態に係るモータ制御装置を搭載した電動車両システムの構成を示すブロック図である。以下、本例のモータ制御装置を電気自動車に適用した例を挙げて説明するが、本例のモータ制御装置は、例えばハイブリッド自動車(HEV)等の電気自動車以外の車両にも適用可能である。
図1に示すように、本例のモータ制御装置を含む車両は、バッテリ1、インバータ2、モータ3、減速機4、ドライブシャフト(駆動軸)5、駆動輪6、7、電圧センサ8、電流センサ9、回転センサ10、及びモータコントローラ20を備えている。
バッテリ1は、車両の動力源であって、複数の二次電池を直列又は並列に接続することで構成されている。インバータ2は、IGBTやMOSFET等の複数スイッチング素子を各相毎に2個接続した電力変換回路を有している。インバータ2は、モータコントローラ20からの駆動信号により、当該スイッチング素子のオン、オフを切り替えることで、バッテリ1から出力される直流電力を交流電力に変換しモータ3に出力し、モータ3に対して所望の電流を流しモータ3を駆動させる。またインバータ2は、モータ3の回生により出力された交流電力を逆変換して、バッテリ1に出力する。
モータ3は、車両の駆動源であって、減速機4及びドライブシャフト5を介して駆動輪6、7に駆動力を伝達するための誘導モータである。モータ3は、車両の走行時に、駆動輪6、7に連れ回されて回転し、回生の駆動力を発生することで、車両の運動エネルギーを電気エネルギーとして回収する。これにより、バッテリ1は、モータ3の力行により放電され、モータ3の回生により充電される。
電圧センサ8は、バッテリ1の電圧を検出するセンサであり、バッテリ1とインバータ2の間に接続されている。電圧センサ8の検出電圧は、モータコントローラ20に出力される。電流センサ9はモータ3の電流を検出するためのセンサであり、インバータ2とモータ3との間に接続されている。電流センサ9の検出電流は、モータコントローラ20に出力される。回転センサ10は、モータ3の回転数を検出するためのセンサであり、レゾルバ等で構成されている。回転センサ10の検出値はモータコントローラ20に出力される。
モータコントローラ20は、車両の車速(V)、アクセル開度(APO)、モータ3の回転子位相(θre)、モータの電流、バッテリ1の電圧等に基づき、インバータ2を動作するためのPWM信号を生成し、インバータ2を動作させるドライブ回路(図示しない)に出力する。そして、当該ドライブ回路が、PWM制御信号に基づき、インバータ2のスイッチング素子の駆動信号を制して、インバータ2に出力する。これにより、モータコントローラ20は、インバータ2を動作させることで、モータ3を駆動させている。
モータコントローラ20は、モータ3を制御するコントローラである。また、モータコントローラ20は、モータトルク制御部21、制振制御部22及び電流制御部23を有している。
モータトルク制御部21は、モータコントローラ20に入力される車両変数を示す車両情報の信号に基づき、ユーザの操作による要求トルク又はシステム上の要求トルクを、モータ3から出力させるためにトルク指令値(Tm1 )を算出し、制振制御部22に出力する。
モータトルク制御部21には、図2の関係を示すトルクマップが予め記憶されている。図2は、アクセル開度毎に設定された、モータ回転数と基本目標トルク指令値の相関性を示すグラフである。トルクマップは、アクセル開度毎で、モータ3の回転数に対するトルク指令値の関係により予め設定されている。トルクマップは、アクセル開度及びモータ回転数に対して、モータ3から効率よくトルクを出力させるためのトルク指令値で設定されている。
モータ回転数は、回転センサ10の検出値に基づき算出される。アクセル開度は、図示しないアクセル開度センサにより検出される。そして、モータトルク制御部21は、トルクマップを参照し、入力されたアクセル開度(APO)及びモータ回転数に対応する基本目標トルク指令値(Tm1 )を演算し、制振制御部22に出力する。シフトレバーが、パーキングの位置及びニュートラルの位置に設定された場合に、基本目標トルク指令値(Tm1 )はゼロになる。
なお、基本目標トルク指令値(Tm1 )は、アクセル開度及びモータ回転数のみに限らず、例えば車速等を加えて演算してもよい。車速V[km/h]は、メータやブレーキコントローラ等の他のコントローラより通信にて取得するか、回転子機械角速度(ωrm)にタイヤ動半径(R)を掛け、ファイナルギヤのギヤ比で割ることにより車両速度v[m/s]を求め、[m/s]から[km/h]への単位変換係数(3600/1000)を乗ずることで求めればよい。
制振制御部22は、基本モータトルク指令値Tm1 及びモータ回転数Nを入力として、駆動軸トルクの応答を犠牲にすることなく、ドライブシャフト5(駆動軸)ねじり振動等により生じる駆動力伝達系の振動を抑制する制振制御後トルク指令値Tm2 を演算する。制振制御部22の詳細な制御は、例えば、日本国特許出願公開公報(特開2001−45613号公報及び特開2003−9559号公報)を参照されたい。そして、制振制御部22は、基本目標トルク指令値(Tm1 )に基づき演算した、抑制する制振制御後トルク指令値Tm2 を電流制御部23に出力する。なお、制振制御部22は、必ずしも必要ない。
図1に戻り、電流制御部23は、トルク指令値(Tm2 )に基づき、モータ3に流れる電流を制御する制御部である。以下、図3を用いて、電流制御部23の構成について説明する。図3は、電流制御部23及びバッテリ1等のブロック図である。
電流制御部23は、電流指令値演算器30、減算器41、電流FB制御器42、座標変換器43、PWM変換器44、AD変換器45、座標変換器46、パルスカウンタ47、角速度演算器48、すべり角速度演算器49、電源位相演算器50及びモータ回転数演算器51を有している。
電流指令値演算器30には、制振制御部22から入力される制振制御後トルク指令値(Tm2 )と、モータ回転数演算器51から入力されるモータ3の回転数(N)、及び、電圧センサ8の検出電圧(Vdc)が入力され、γδ軸電流指令値(Iγ 、Iδ )を演算し出力する。ここで、γδ軸は、回転座標系の成分を示している。
減算器41は、γδ軸電流指令値(Iγ 、Iδ )とγδ軸電流(Iγ 、Iδ )との偏差を算出し、電流FB制御器42に出力する。電流FB制御器42は、γ軸電流(Iγ)及びδ軸電流(Iδ)を、γ軸電流指令値(Iγ)及びδ軸電流指令値(Iδ )にそれぞれ一致させるようフィードバック制御する制御器である。電流FB制御器42は、γδ軸電流指令値(Iγ 、Iδ )に対してγδ軸電流(Iγ、Iδ)を、定常的な偏差なく所定の応答性で追随させるよう制御演算を行い、γδ軸の電圧指令値(vγ 、vδ )を、座標変換器43に出力する。なお、γ軸の電流はモータ3の励磁電流を、σ軸の電流はモータ3のトルク電流を表す。また、減算器41及び電流FB制御器42の制御に非干渉制御を加えてもよい。
座標変換器43は、γδ軸電圧指令値(vγ 、vδ )及び電源位相演算器50で演算される電源位相(θ)を入力として、γδ軸電圧指令値(vγ 、vδ )を固定座標系のu、v、w軸の電圧指令値(v 、v 、v )に変換し、PWM変換器44に出力する。
PWM変換器44は、入力される電圧指令値(V 、V 、V )に基づき、インバータ2のスイッチング素子のスイッチング信号(D uu、D ul、D vu、D vl、D wu、D wl)を生成し、インバータ2に出力する。
A/D変換器45は、電流センサ9の検出値である相電流(I、I)をサンプリングし、サンプリングされた相電流(Ius、Ivs)を座標変換器46に出力する。三相の電流値の合計がゼロになることから、w相の電流は、電流センサ9により検出されず、代わりに、座標変換器46は、入力された相電流(Ius、Ivs)に基づき、w相の相電流(Iws)を算出する。なお、w相の相電流について、w相に電流センサ9を設け、当該電流センサ9により検出してもよい。
座標変換器46は、3相2相変換を行う変換器であり、電源位相(θ)を用いて、固定座標系の相電流(Ius、Ivs、Iws)を回転座標系のγδ軸電流(Iγs、Iδs)に変換し、減算器41に出力する。これにより、電流センサ9により検出される電流値がフィードバックされる。
パルスカウンタ47は、回転センサ10から出力されるパルスをカウントすることで、モータ3の回転子の位置情報である回転子位相(θre)(電気角)を得て、角速度演算器48に出力する。
角速度演算器48は、回転子位相(θre)を微分演算することで、回転子角速度(ωre)(電気角)を演算し、電源位相演算器50に出力する。また、角速度演算器48は、演算した回転子角速度(ωre)をモータ3の極対数pで割り、モータの機械的な角速度である回転子機械角速度(ωrm)[rad/s]を演算し、モータ回転数演算器51に出力する。
すべり角速度演算器49は、励磁電流指令値(Iγ *)に対して、ロータ磁束応答遅れを考慮したロータ磁束推定値(φest)を、以下の式(1)により演算する。
Figure 2014132766
ただし、Mは相互インダクタンスを、τφはロータ磁束の応答時定数である。なお、τφはLr/Rrで表され、Lrはロータの自己インダクタンスを、Rrはロータ抵抗を示す。
また、すべり角速度演算器49は、式(2)で表されるように、トルク電流指令値(Iδ )と式(1)から求めたロータ磁束推定値(φest)との比に、モータの特性で決まる定数を除算することで、すべり角速度(ωse)を演算する。
Figure 2014132766
なお、これらM、τφ、M・Rr/Lr等の値は、ロータ温度や電流値、トルク指令値に対して予め計算または実験により算出した値をテーブルに格納して使用してもよい。
そして、すべり角速度演算器49は、上記により演算したすべり角速度(ωse)を電源位相演算器50に出力する。このように、すべり角速度(ωse)を設定することで、出力トルクはトルク電流とロータ磁束の積で扱えるようになる。
電源位相演算器50は、以下の式(3)で示されるように、回転子角速度(ωre)(電気角)に、すべり角速度(ωse)を加算しつつ、積分することで、電源位相(θ)を演算し、座標変換器43、46に出力する。
Figure 2014132766
モータ回転数演算器51は、回転子機械角速度(ωrm)に、[rad/s]から[rpm]への単位変換するための係数(60/2π)を乗算することで、モータ回転数(Nm)を演算し、電流指令値演算器30に出力する。
次に、図4を用いて、電流指令値演算器30の構成について説明する。図4は、電流指令値演算器30の構成を示すブロック図である。
電流指令値演算器30は、基本電流指令値演算部31、磁束応答補償部32、励磁電流指令値変化量演算部33、補償判定部34、及び補償制御部35を有している。
基本電流指令値演算部31には、制振制御後トルク指令値(Tm2 )、バッテリ1の電圧(Vdc)及びモータ回転数(N)に対する基本γδ軸電流指令値(Iγ0 、Iδ0 )の関係を示すマップが予め記録されている。基本γδ軸電流指令値(Iγ0 、Iδ0 )は、制振制御後トルク指令値(Tm2 )、バッテリ1の電圧(Vdc)及びモータ回転数(N)に対して、インバータ2及びモータ3の総合効率を最適化させる電流指令値であり、実験又は計算で予め設定されている値である。そして、基本電流指令値演算部31は、当該マップを参照して、制振制御後トルク指令値(Tm2 )、バッテリ1の電圧(Vdc)及びモータ回転数(N)に対応する基本γδ軸電流指令値(Iγ0 、Iδ0 )を演算し、磁束応答補償部32及び励磁電流指令値変化量演算部33に出力する。
磁束応答補償部32は、ロータ磁束遅れを補償するために、遅れ分の位相を進ませることで、基本電流指令値を増幅するよう、磁束補償γ軸電流指令値(Iγ1 )又は磁束補償σ軸電流指令値(Iσ1 )の少なくとも何れか一方の電流指令値を演算する。
一般に、ロータ磁束の応答は、トルク電流の応答に比べて一桁以上、遅い。そして、モータ3の出力は、ロータ磁束とステータのトルク電流との積と比例する。そのため、ロータ磁束の応答遅れによって、トルク応答が遅れてしまう。磁束応答補償部32は、このようなトルク応答の遅れを補償するよう、電流指令値を補償している。これにより、モータ3には、基本電流指令値が増加することで、過渡的に大きな励磁電流を流すことができるため、ロータ磁束応答を改善しつつ、トルク応答を改善することができる。
磁束応答補償部32は、以下の式(4)で示されるように、基本γ軸電流指令値(Iγ0 )に、ステータ電流の応答時定数(τ)及びロータ磁束の応答時定数(τφ)を含む係数を乗ずることで、磁束補償γ軸電流指令値(Iγ1 )を演算し、補償制御部35に出力する。
Figure 2014132766
ステータ電流の応答時定数(τ)とロータ磁束の応答時定数(τφ)との間には、τ<τφの関係が成立する。そのため、磁束応答補償部32は、式(4)を用いて、磁束補償γ軸電流指令値(Iγ1 )を演算することで、位相進み補償器として機能する。
また、磁束応答補償部32は、トルク電流の応答を改善する際には、基本δ軸電流指令値(Iδ0 )に、ステータ電流の応答時定数(τ)及びロータ磁束の応答時定数(τφ)を含む関数を乗ずることで、磁束補償δ軸電流指令値(Iδ1 )を演算し、補償制御部35に出力する。磁束補償δ軸電流指令値(Iδ1 )の演算式は、以下の式(5)で表される。
Figure 2014132766
励磁電流指令値変化量演算部33は、以下の式(6)で示される近似式を用いて、入力される基本γ軸電流指令値(Iγ0 )から、基本γ軸電流指令値の変化量(dIγ0 )を演算し、補償判定部34に出力する。
Figure 2014132766
ただし、τは、基本γ軸電流指令値(Iγ0 )の変化を、どのぐらいの長さの時間で近似的に演算するかを示す設定値であって、設計または実験により予め設定されている。
なお、変化量(dIγ0 )は、前回の演算時の基本γ軸電流指令値(Iγ0 )と、今回の演算時の基本γ軸電流指令値(Iγ0 )との差分をとってもよい。モータコントローラ20に含まれる、電流指令値演算器30等の演算部は、所定の制御周期で、指令値等を演算している。前回の演算値の指令値は、今回の演算値の指令値に対して、所定の制御周期分だけ前のタイミングで演算された指令値を示す。
補償判定部34は、基本γ軸電流指令値の変化量(dIγ0 )と判定閾値(I)とを比較し、その比較結果に基づいて、励磁電流の追加補償を行うか、トルク電流の追加補償を行うかを判定する。
本例は、磁束応答補償部32で、励磁電流又はトルク電流を補償しつつ、補償制御部35で追加補償を行っている。そして、補償制御部35は、励磁電流指令値の変化量に応じて、トルク高応答化のための補償を、励磁電流に行うか、トルク電流に行うか、選択的に行っている。そこで、補償判定部34は、補償制御部35における補償対象を選択するために、変化量(dIγ0 )と判定閾値(I)との比較を行い、その比較結果を補償制御部35に出力する。
判定閾値(I)は、励磁電流に追加補償を行うか、トルク電流に追加補償するかを判定するための閾値であって、設計または実験により予め設定されている閾値である。
基本γ軸電流指令値の変化量(dIγ0 )が判定閾値(I)より大きい場合には、補償判定部34は、励磁電流が変化しており、励磁電流の応答速度を高めるために、励磁電流の追加補償を許可する旨の信号を、補償制御部35に送信する。
一方、基本γ軸電流指令値の変化量(dIγ0 )が判定閾値(I)以下である場合には、補償判定部34は、励磁電流の変化量は小さく、励磁電流の応答速度を高める必要はないため、トルク電流の追加補償を許可する旨の信号を、補償制御部35に送信する。
補償制御部35は、トルクの応答速度を高めるために、補償判定部34の判定結果に基づき、励磁電流の追加補償及びトルク電流の追加補償を選択的に行う制御部であって、励磁電流補償制御部100及びトルク電流補償制御部200を備えている。
補償判定部34で励磁電流の追加補償が許可された場合には、補償制御部35は、励磁電流補償制御部100の制御により、トルクの応答速度を高める制御を行う。励磁電流補償制御部100は、磁束応答補償部32で補償された磁束補償γ軸電流指令値(Iγ1 )、基本δ軸電流指令値(Iδ0 )、及び制振制御後トルク指令値(Tm2 )に基づき、γδ軸電流指令値(Iγ 、Iδ )を演算し、減算器41及びすべり角速度演算器49に出力する。
補償判定部34でトルク電流の追加補償が許可された場合には、補償制御部35は、トルク電流補償制御部200の制御により、トルクの応答速度を高める制御を行う。トルク電流補償制御部200は、磁束応答補償部32で補償された磁束補償δ軸電流指令値(Iδ1 )、基本γ軸電流指令値(Iγ0 )、及び制振制御後トルク指令値(Tm2 )に基づき、γδ軸電流指令値(Iγ 、Iδ )を演算し、減算器41及びすべり角速度演算器49に出力する。
次に、図5を用いて、励磁電流補償制御部100の詳細な構成を説明する。図5は、磁束応答補償部32及び励磁電流補償制御部100の構成を示すブロック図である。
励磁電流補償制御部100は、トルク電流制限部101、ロータ磁束推定部102、出力トルク推定部103、理想応答トルク演算部104、トルク偏差演算部105、積分リセット判定部106、励磁電流指令値偏差演算部107、追加補償値演算部108、加算器109、トルク電流推定部110、励磁電流制限値演算部111、及び励磁電流制限部112を有している。
トルク電流制限部101は、入力される基本δ軸電流指令値(Iδ0 )に、電流制限値(±Imax_δ)で制限をかけることで、δ軸電流指令値(Iδ)を演算する。電流制限値(±Imax_δ)は上限値及び下限値で規定され、設計または実験により予め設定されている閾値である。
トルク電流制限部101は、基本δ軸電流指令値(Iδ0 )が上限の電流制限値(+Imax_δ)より高い場合には、電流制限値(+Imax_δ)をδ軸電流指令値(Iδ)として演算する。トルク電流制限部101は、基本δ軸電流指令値(Iδ0 )が下限の電流制限値(−Imax_δ)より低い場合には、電流制限値(−Imax_δ)をδ軸電流指令値(Iδ )として演算する。また、トルク電流制限部101は、基本δ軸電流指令値(Iδ0 )が下限の電流制限値(−Imax_δ)より高く、かつ、上限の電流制限値(+Imax_δ)より低い場合には、制限値による制限はなく、基本δ軸電流指令値(Iδ0 )をδ軸電流指令値(Iδ )として演算する。
トルク電流制限部101は、演算したδ軸電流指令値(Iδ)を、出力トルク推定部103、トルク電流推定部110、及び減算器41等に出力する。
ロータ磁束推定部102は、式(7)で示されるように、励磁電流制限部112で演算されたγ軸電流指令値(Iγ )の前回値(Iγ_Z )に、相互インダクタンスM及びロータ磁束の応答時定数(τφ)を含む関数を乗ずることで、ロータ磁束推定値(φest_z)を演算し、出力トルク推定部103に出力する。
Figure 2014132766
ロータ磁束の応答時定数(τφ)は、Lr/Rrで表され、Lrはロータの自己インダクタンスを示し、Rrはロータ抵抗を示す。Lr、Rrは計算又は実験により予め設定される値である。
出力トルク推定部103は、数(8)で示されるように、ロータ磁束推定値(φest_z)、δ軸電流指令値(Iδ)、及びトルク定数(KTe)を乗ずることで、出力トルク推定値(Tm_est)を演算し、トルク偏差演算部105に出力する。
Figure 2014132766
ただし、トルク定数(KTe)は、p・M/Lrで表され、pは極対数を示し、Mは相互インダクタンスを示し、Lrはロータの自己インダクタンスを示す。p、M、及びLrは計算又は実験により予め設定される値である。
理想応答トルク演算部104は、式(9)で示されるように、制振制御後トルク指令値(Tm2 )に、時定数(τ)を含む関数を乗ずることで、トルク理想応答値(Tm_ref)を演算し、トルク偏差演算部105に出力する。
Figure 2014132766
ただし、時定数(τ)は、モータトルクの理想応答を決める時定数である。
出力トルクは、式(8)を参照し、ロータ磁束と電流応答値との積で表されるため非線形な値であるが、本例では、式(9)に示すように、一次遅れの応答に近似させた値で、理想応答における出力トルク(Tm_ref)を演算している。
トルク偏差演算部105は、式(10)で示されるように、出力トルク推定部(Tm_est)とトルク理想応答値(Tm_ref)との差分を演算することで、モータトルク偏差(ΔT)を演算し、積分リセット判定部106に出力する。
Figure 2014132766
積分リセット判定部106は、モータトルク偏差(ΔT)に応じて、追加補償値演算部108の補償値をリセットするか否かを判定し、その判定結果を示すフラグ(flg_IRST)を、追加補償値演算部108に出力する。判定及びフラグの条件は、以下のように示される。
Figure 2014132766
なお、リセット判定閾値(dTm0)は、出力トルクのオーバーシュートを抑制するように、予め設定された閾値であって、設計または実験より設定される値である。なお、出力トルクのオーバーシュートについては、後述する。
モータトルク偏差(ΔT)がリセット判定閾値(dTm0)以上である場合には、補償値をリセットしないように、積分リセット判定部106は、フラグ(flg_IRST)を「0」に設定する。モータトルク偏差(ΔT)がリセット判定閾値(dTm0)未満である場合には、補償値をリセットするように、積分リセット判定部106は、フラグ(flg_IRST)を「1」に設定する。
励磁電流指令値偏差演算部107は、式(11)で示されるように、磁束補償γ軸電流指令値(Iγ1 )とγ軸電流指令値の前回値(Iγ_Z )との差分をとることで、γ軸電流指令値偏差(ΔIγ )を演算し、追加補償値演算部108に出力する。
Figure 2014132766
追加補償値演算部108は、フラグ(flg_IRST)の状態に応じて、式(12)及び式(13)で示されるように、γ軸電流指令値偏差(ΔIγ )を積分し、所定のゲインを乗ずることで、補償値(Iγ_FB)を演算し、加算器109に出力する。
Figure 2014132766
Figure 2014132766
ただし、1/Tは、積分値に対して所定の応答で補償値を放出するように設定された積分ゲインであり、設計または実験により予め設定されている値である。
加算器109は、式(14)で示されるように、磁束補償γ軸電流指令値(Iγ1 )と補償値(Iγ_FB)とを加算することで、電流制限補正前のγ軸電流指令値(Iγ2 )を演算し、励磁電流制限部112に出力する。
Figure 2014132766
このとき、加算器109に入力される指令値のうち、磁束応答補償部32で補償された指令値は、磁束補償γ軸電流指令値(Iγ1 )である。上述したとおり、図5に示す制御構成での補償制御は、補償判定部34の判定結果により、励磁電流の応答速度を高める制御である。そのため、加算器109には、磁束応答補償部32の補償後の指令値のうち、励磁電流指令値が入力される。一方、トルク電流側の指令値には、応答速度を速めるための補償は施されず、励磁電流の制限値の設定に用いられる。
トルク電流推定部110は、式(15)で示されるように、δ軸電流指令値(Iδ )に、ステータ電流の応答時定数(τ)を含む関数を乗ずることで、δ軸電流推定値(Iδ_est )を演算し、励磁電流制限値演算部111に出力する。
Figure 2014132766
励磁電流制限値演算部111は、式(16)で示されるように、最大電流制限値(Imax)及びδ軸電流推定値(Iδ_est )に基づき、γ軸電流制限値(Iγlim)を演算し、励磁電流制限部112に出力する。
Figure 2014132766
ただし、最大電流制限値(Imax)は、モータ3の定格電流を示す電流値であって、設計段階で予め決まっている値である。
励磁電流制限部112は、入力されるγ軸電流指令値(Iγ2 )に、γ軸電流制限値(±Iγlim)で制限をかけることで、γ軸電流指令値(Iγ )を演算し、ロータ磁束推定部102及び減算器41等の演算器に出力する。
励磁電流制限部112は、γ軸電流指令値(Iγ2 )が上限のγ軸電流制限値(Iγlim)より高い場合には、上限のγ軸電流制限値(+Iγlim)をγ軸電流指令値(Iγ )として演算する。トルク電流制限部101は、γ軸電流指令値(Iγ2 )が下限のγ軸電流制限値(−Iγlim)より低い場合には、電流制限値(−Imax_δ)をγ軸電流指令値(Iγ )として演算する。また、トルク電流制限部101は、γ軸電流指令値(Iγ2 )が下限の電流制限値(−Iγlim)より高く、かつ、上限の電流制限値(+Iγlim)より低い場合には、制限値による制限はなく、γ軸電流指令値(Iγ2 )をγ軸電流指令値(Iγ )としてとして演算する。
次に、図6を用いて、トルク電流補償制御部200の詳細な構成を説明する。図6は、磁束応答補償部32及びトルク電流補償制御部100の構成を示すブロック図である。
トルク電流補償制御部200は、励磁電流制限部201、ロータ磁束推定部202、出力トルク推定部203、理想応答トルク演算部204、トルク偏差演算部205、積分リセット判定部206、トルク電流指令値偏差演算部207、追加補償値演算部208、加算器209、励磁電流推定部210、トルク電流制限値演算部211、及びトルク電流制限部212を有している。
励磁電流制限部201は、入力される基本γ軸電流指令値(Iγ0 )に、電流制限値(±Imax_γ)で制限をかけることで、γ軸電流指令値(Iγ0)を演算する。電流制限値(±Imax_γ)は上限値及び下限値で規定され、設計または実験により予め設定されている閾値である。
励磁電流制限部201は、演算したγ軸電流指令値(Iγ0)を、出力トルク推定部203、励磁電流推定部210、及び減算器41等に出力する。
ロータ磁束推定部202は、ロータ磁束推定部102と同様に、γ軸電流指令値(Iγ )に基づき、ロータ磁束推定値(φest_z)を演算し、出力トルク推定部203に出力する。
出力トルク推定部203は、出力トルク推定部103と同様に、ロータ磁束推定値(φest_z)及びδ軸電流指令値(Iδ)に基づき出力トルク推定値(Tm_est)を演算し、トルク偏差演算部205に出力する。
理想応答トルク演算部204は、理想応答トルク演算部104と同様に、制振制御後トルク指令値(Tm2 )に基づきトルク理想応答値(Tm_ref)を演算し、トルク偏差演算部205に出力する。
トルク偏差演算部205は、トルク偏差演算部105と同様に、出力トルク推定部(Tm_est)及びトルク理想応答値(Tm_ref)に基づき、モータトルク偏差(ΔT)を演算し、積分リセット判定部206に出力する。
積分リセット判定部206は、積分リセット判定部106と同様に、モータトルク偏差(ΔT)に応じて、追加補償値演算部208の補償値をリセットするか否かを判定し、その判定結果を示すフラグ(flg_IRST)を、追加補償演算部値208に出力する。
トルク電流指令値偏差演算部207は、式(17)で示されるように、磁束補償δ軸電流指令値(Iδ1 )とδ軸電流指令値の前回値(Iδ_Z )との差分をとることで、δ軸電流指令値偏差(ΔIδ )を演算し、追加補償値演算部208に出力する。
Figure 2014132766
追加補償値演算部208は、フラグ(flg_IRST)の状態に応じて、式(18)及び式(19)で示されるように、δ軸電流指令値偏差(ΔIδ )を積分し、所定のゲインを乗ずることで、補償値(Iδ_FB)を演算し、加算器209に出力する。
Figure 2014132766
Figure 2014132766
ただし、1/Tは、積分値に対して所定の応答で補償値を放出するように設定された積分ゲインであり、設計または実験により予め設定されている値である。
加算器209は、式(20)で示されるように、磁束補償δ軸電流指令値(Iδ1 )と補償値(Iδ_FB)とを加算することで、電流制限補正前のδ軸電流指令値(Iδ2 )を演算し、トルク電流制限部212に出力する。
Figure 2014132766
このとき、加算器209に入力される指令値のうち、磁束応答補償部32で補償された指令値は、磁束補償δ軸電流指令値である。上述したとおり、図6に示す制御構成での補償制御は、補償判定部34の判定結果により、トルク電流の応答速度を高める制御である。そのため、加算器209には、磁束応答補償部32の補償後の指令値のうち、トルク電流指令値が入力される。一方、励磁電流側の指令値には、応答速度を速めるための補償は施されず、トルク電流の制限値の設定に用いられる。
励磁電流推定部210は、式(21)で示されるように、基本γ軸電流指令値(Iγ0 )に、ステータ電流の応答時定数(τ)を含む関数を乗ずることで、γ軸電流推定値(Iγ_est )を演算し、トルク電流制限値演算部211に出力する。
Figure 2014132766
時定数(τ)の設定は、式(15)と同様である。なお、本制御処理は、γ軸電流指令値が一定である場合には、省略してもよい。
トルク電流制限値演算部211は、式(22)で示されるように、最大電流制限値(Imax)及びγ軸電流推定値(Iγ_est )に基づき、δ軸電流制限値(Iδlim)を演算し、トルク電流制限部212に出力する。
Figure 2014132766
トルク電流制限部212は、入力されるδ軸電流指令値(Iδ2 )に、δ軸電流制限値(±Iδlim)で制限をかけることで、δ軸電流指令値(Iδ )を演算し、ロータ磁束推定部202及び減算器41等の演算器に出力する。
次に、補償制御部35の制御のうち、励磁電流補償制御部100の制御について、図5を用いて説明する。
補償判定部34により、基本γ軸電流指令値の変化量(dIγ0 )が判定閾値(I)より大きく、励磁電流の変化が大きいと判定された場合には、磁束応答補償部32は、励磁電流の応答速度を速めるために、励磁電流指令値の位相を進ませるように、励磁電流指令値を増幅させることで、励磁電流指令値を補償する。
仮に(本例とは異なり)、増幅された励磁電流指令値に対して、励磁電流を最大電流制限値まで流した場合には、進み補償により過渡的に大きな励磁電流を流すことになる。しかしながら、モータへの過電流に対する保護の観点から、モータには最大電流制限値を超える電流を流すことはできない。励磁電流を最大電流制限値まで流した場合には、全ての電流が励磁電流に流れてしまい、トルク電流を流すことができなくなってしまう。その結果として、トルクを発生することできず、かえってトルク応答が遅れてしまう。
そのため、本例において、励磁電流補償制御部100は、基本δ軸電流指令値(Iδ0 )に基づき、トルク電流を推定し(δ軸電流推定値(Iδ_est )に相当)、推定されたトルク電流値に基づき、γ軸電流制限値(Iγlim)を演算している。本制御は、図5の制御ブロックのうち、トルク電流推定部110及び励磁電流制限値演算部111の制御に相当する。
これにより、本例は、トルク電流がゼロにならないよう、増幅された励磁電流指令値に制限を加えることができるため、出力トルクがゼロになる無駄時間の発生を防ぐことができる。
磁束応答補償部32で増幅されたγ軸電流指令値(Iγ2 )は、励磁電流制限部112で制限を受ける。増幅されたγ軸電流指令値(Iγ2 )のうち、γ軸電流制限値(Iγlim)で制限を受けた分の指令値は、励磁電流の補償に用いられていない。その一方で、γ軸電流制限値(Iγlim)を超える励磁電流指令値で、モータ3を制御することは、上記の通り、トルク電流がゼロになるおそれがある。
そのため、励磁電流補償制御部100は、増幅されたγ軸電流指令値(Iγ2 )のうち、γ軸電流制限値(Iγlim)で制限を受けた分の指令値に基づき補償値を演算し、フィードバックをかけて、γ軸電流指令値(Iγ1 )に加算している。また、励磁電流補償制御部100は、制限を受けた分の指令値、すなわちγ軸電流指令値(Iγ1 )とγ軸電流制限値(Iγlim)との差分を、積分することで加算する補償値を演算している。
増幅されたγ軸電流指令値(Iγ1 )がγ軸電流制限値(Iγlim)を超える状態が継続したとしても、γ軸電流制限値(Iγlim)を超えた分の指令値は、積分により蓄積される。そして、γ軸電流指令値(Iγ1 )がγ軸電流制限値(Iγlim)より低くなると、蓄積されている補償値が、γ軸電流制限値(Iγlim)より低いγ軸電流指令値(Iγ1 )に加わる。本制御は、図5の制御ブロックのうち、励磁電流指令値偏差演算部107、追加補償値演算部108、加算器109、及び励磁電流制限部112の制御に相当する。
これにより、γ軸電流指令値(Iγ1 )がγ軸電流制限値(Iγlim)より低くなった後(すなわち、γ軸電流指令値(Iγ1 )に対する電流制限の解除後)に、電流制限により補償できなかった励磁電流の指令値分の電流を流すことができる。そして、γ軸電流指令値(Iγ1 )に対する制限解除後に励磁電流が保持され、大きな励磁電流を維持することができる。その結果として、トルク応答を高めることができる。
また、励磁電流補償制御部100は、出力トルク推定値(Tm_est)とトルク理想応答値(Tm_ref)と差を演算することで、モータ3の出力トルクとトルク指令値との差を演算し、当該差に基づいて、補償値をリセットするタイミングを設定している。なお、出力トルク推定値(Tm_est)が出力トルクに相当し、トルク理想応答値(Tm_ref)がトルク指令値に相当する。本制御は、図5の制御ブロックのうち、ロータ磁束推定部102、出力トルク推定部103、理想応答トルク演算部104、トルク偏差演算部105、及び積分リセット判定部106に相当する。
ここで、本例とは異なり、積分リセット判定部106の上記条件うち、|ΔT| < dTm0の条件を満たす場合に、補償値のリセットを行わない場合について説明する。
トルク理想応答値(Tm_ref)に対して、出力トルク推定値(Tm_est)が小さく、モータトルク偏差(ΔT)がリセット判定閾値(dTm0)未満となっている場合に、追加補償値演算部108による補償値をリセットせずに、追加補償を継続すると、モータ3はトルク理想応答値(Tm_ref)に近いトルクを出力しているにもかかわらず、励磁電流は追加補償により上がり続けることになる。このとき、高トルクを定常的に出力していると、追加補償によって、出力トルクが目標トルクを超えてしまい、さらに、出力トルクのオーバーシュートが発生するおそれがある。
そのため、本例において、励磁電流補償制御部100は、このようなオーバーシュートを防ぐために、リセット判定閾値(dTm0)を設定し、モータトルク偏差(ΔT)がリセット判定閾値未満である場合には、補償値をリセットするよう制御している。
これにより、本例は、トルク指令値と出力トルクとの差が小さくなってから、補償値をゼロに収束させているため、追加補償した励磁電流の指令値を、磁束応答補償部32で補償された指令値まで下げることができる。その結果として、実トルクのオーバーシュートを起こすことなく、実トルクをトルク指令値に一致させることができる。
次に、補償制御部35の制御のうち、トルク電流補償制御部200の制御について、図6を用いて説明する。トルク電流補償制御部200のトルク電流の制御は、励磁電流補償制御部100の励磁電流の制御と同様であり、トルク電流補償制御部200の励磁電流の制御は、励磁電流補償制御部100のトルク電流の制御と同様である。
トルク電流補償制御部200は、基本γ軸電流指令値(Iγ0 )に基づき、トルク電流を推定し(γ軸電流推定値(Iγ_est )に相当)、推定されたトルク電流値に基づき、δ軸電流制限値(Iδlim)を演算している。本制御は、図6の制御ブロックのうち、励磁電流推定部210及び励磁電流制限値演算部211の制御に相当する。
また、トルク電流補償制御部200は、増幅されたδ軸電流指令値(Iδ2 )のうち、δ軸電流制限値(Iδlim)で制限を受けた分の指令値に基づき補償値を演算し、フィードバックをかけて、δ軸電流指令値(Iδ1 )に加算している。また、トルク電流補償制御部200は、制限を受けた分の指令値、すなわちδ軸電流指令値(Iδ1 )とδ軸電流制限値(Iδlim)との差分を、積分することで補償値を演算している。本制御は、図6の制御ブロックのうち、トルク電流指令値偏差演算部207、追加補償値演算部208、加算器209、及びトルク電流制限部212の制御に相当する。
また、トルク電流補償制御部200は、出力トルク推定値(Tm_est)とトルク理想応答値(Tm_ref)と差を演算することで、モータ3の出力トルクとトルク指令値との差を演算し、当該差に基づいて、補償値をリセットするタイミングを設定している。本制御は、図6の制御ブロックのうち、ロータ磁束推定部202、出力トルク推定部203、理想応答トルク演算部204、トルク偏差演算部205、及び積分リセット判定部206に相当する。
次に、図7を用いて、モータコントローラ20の制御手順について説明する。図7は、モータコントローラ20の制御手順を示すフローチャートである。なお、図7の制御フローは、所定の周期で繰り返し実行される。
ステップS1にて、モータコントローラ20、入力処理として、車速、アクセル開度等を取得する。ステップS2にて、モータトルク制御部21は、入力されたアクセル開度等に基づき、トルク指令値(Tm1 )を演算する。ステップS3にて、制振制御部22は、トルク指令値(Tm1 )等に基づき制振制御を行うことで、制振制御後トルク指令値(Tm2 )を演算する。
ステップS4にて、電流制御部23に含まれる電流指令値演算器30は、制振制御後トルク指令値(Tm2 )等に基づき、γδ軸電流指令値(Iγ 、Iδ )を演算する。なお、ステップS4の詳細な制御手順は後述する。
そして、ステップS5にて、電流制御部23に含まれる減算器41等により、γδ軸電流指令値(Iγ 、Iδ )をモータ3から出力させるよう、駆動信号(スイッチング信号)を生成し、インバータ2に出力することで、インバータ2を制御する。
次に、図8を用いて、ステップS4の制御手順を説明する。図8は、ステップS4の制御手順を示すフローチャートである。
ステップS3の制御の後、ステップS41にて、基本電流指令値演算部31は、制振制御後トルク指令値(Tm2 )等に基づき、基本γδ軸電流指令値(Iγ0 、Iδ0 )を演算する。ステップS42にて、磁束応答補償部32は、基本γ軸電流指令値(Iγ0 、Iδ0 )を増幅させることで、駆動モータ3のロータ磁束応答の遅れを補償し、磁束補償γσ軸電流指令値(Iγ1 、Iσ1 )を演算する。
ステップS43にて、励磁電流指令値変化量演算部33は、磁束補償γ軸電流指令値(Iγ1 )に基づき、γ軸電流指令値の変化量(dIγ0 )を演算する。ステップS44にて、補償判定部34は、γ軸電流指令値の変化量(dIγ0 )と判定閾値(I)とを比較する。
γ軸電流指令値の変化量(dIγ0 )が判定閾値(I)より大きい場合には、補償制御部35は、励磁電流補償制御部100により、励磁電流を追加補償するよう制御する(ステップS45)。一方、γ軸電流指令値の変化量(dIγ0 )が判定閾値(I)以下である場合には、補償制御部35は、トルク電流補償制御部100により、トルク電流を追加補償するよう制御する(ステップS46)。そして、ステップS45、ステップS46の追加補償制御を終えると、ステップS4の制御フローを終えて、ステップS5に移る。
次に、図9を用いて、ステップS45の制御手順を説明する。図9は、ステップS45の制御手順を示すフローチャートである。
ステップS45の制御では、まずステップS451にて、トルク電流制限部101は、基本δ軸電流指令値(Iδ0 )に、電流制限値(±Imax_δ)で制限をかけることで、δ軸電流指令値(Iδ)を演算する。
トルク電流推定部110はδ軸電流指令値(Iδ)に基づき、δ軸電流推定値(Iδ_est )を推定する。また、励磁電流制限値演算部111は、δ軸電流推定値(Iδ_est )に基づきγ軸電流制限値(Iγlim)を演算する(ステップS452)。
ステップS453にて、理想応答トルク演算部104は、制振制御後トルク指令値(Tm2 )に基づき、トルク理想応答値(Tm_ref)を演算する。
ロータ磁束推定部102は、γ軸電流指令値(Iγ )の前回値(Iγ_Z )に基づき、ロータ磁束推定値(φest_z)を演算する。また、出力トルク推定部103は、ロータ磁束推定値(φest_z)に基づき、出力トルク推定値(Tm_est)を演算する(ステップS454)。
ステップS455にて、トルク偏差演算部105は、トルク理想応答値(Tm_ref)と出力トルク推定値(Tm_est)との差分を演算することで、モータトルク偏差(ΔT)を演算する。ステップS456にて、積分リセット判定部106は、モータトルク偏差(ΔT)とリセット判定閾値(dTm0)とを比較する。
モータトルク偏差(ΔT)がリセット判定閾値(dTm0)以上である場合には、積分リセット判定部106は、フラグ(flg_IRST)を「0(リセット禁止)」に設定する(ステップS457)。モータトルク偏差(ΔT)がリセット判定閾値(dTm0)未満である場合には、積分リセット判定部106は、フラグ(flg_IRST)を「1(リセット実施)」に設定する(ステップS458)。
ステップS459にて、励磁電流指令値偏差演算部107は、磁束補償γ軸電流指令値(Iγ1 )とγ軸電流指令値の前回値(Iγ_Z )との差分を演算することで、γ軸電流指令値偏差(ΔIγ )を演算する。ステップS460にて、追加補償値演算部108は、γ軸電流指令値偏差(ΔIγ )を積分することで積分値を演算する。ステップS461にて、追加補償値演算部108は、当該積分値に所定のゲインを乗ずることで、補償値(Iγ_FB)を演算する。
ステップS462にて、追加補償値演算部108は、フラグ(flg_IRST)が「1」であるか否かを判定する。フラグ(flg_IRST)が「1」である場合には、ステップS463にて、追加補償値演算部108は、補償値(Iγ_FB)をゼロにすることで、補償値(Iγ_FB)をリセットする。一方、フラグ(flg_IRST)が「1」である場合には、補償値(Iγ_FB)はリセットされず、ステップS464に移る。
ステップS464にて、加算器109は、磁束補償γ軸電流指令値(Iγ1 )と補償値(Iγ_FB)とを加算することで、電流制限補正前のγ軸電流指令値(Iγ2 )を演算する。
ステップS465にて、励磁電流制限部112は、電流制限補正前のγ軸電流指令値(Iγ2 )をγ軸電流制限値(Iγlim)で制限をかけるために、γ軸電流指令値(Iγ2 )とγ軸電流制限値(Iγlim)との大小関係を比較する。
γ軸電流指令値(Iγ2 )が、負側の制限値(−Iγlim)と正側の制限値(+Iγlim)との間の範囲内であれば、励磁電流制限部112は、指令値に制限をかけずに、γ軸電流指令値(Iγ2 )を、γ軸電流指令値(Iγ )として出力する(ステップS466)。一方、γ軸電流指令値(Iγ2 )が、負側の制限値(−Iγlim)と正側の制限値(+Iγlim)との間の範囲外であれば、励磁電流制限部112は、指令値に制限をかけて、γ軸電流制限値(−Iγlim又はIγlim)を、γ軸電流指令値(Iγ )として出力する(ステップS466)。そして、ステップS466、ステップS467の制御を終えると、ステップS4の制御フローを終えて、ステップS5に移る。
ステップS467の後、次の演算周期の制御フローのステップS459にて、γ軸電流指令値の前回値(Iγ_Z )は、γ軸電流制限値(Iγlim)となる。そして、磁束補償γ軸電流指令値(Iγ1 )と、当該γ軸電流制限値(Iγlim)との差分が、γ軸電流制限値(Iγlim)で制限を受けた分の励磁電流の指令値となる。さらに、この差分を、ステップS460の制御で積分することで、励磁電流の補償に反映できなかった分の指令値を蓄積することができる。
また、ステップS467の後、次の演算周期の制御フローで、磁束補償γ軸電流指令値(Iγ1 )がγ軸電流制限値(Iγlim)より小さい場合には、次の演算周期の制御フローのステップS464にて、補償値を、γ軸電流制限値(Iγlim)より小さい励磁電流の指令値(Iγ1 )に加算することとなる。これにより、γ軸電流制限値(Iγlim)により制限を受けた分の励磁電流の指令値を、γ軸電流制限値(Iγlim)により制限を受けなくなった後の指令値に対して加算することができる。
なお、ステップS46の制御フローは、図9に示すステップS451〜S467の制御において、励磁電流に係る制御とトルク電流制御とを入れ替えたものと、実質的に同様であるため、説明を省略する。
次に、本発明に係るモータ制御装置の効果について、図10及び図11を用いて説明する。図10は比較例の特性、図11は本発明の特性を示す。図10、11の(a)は励磁電流(γ軸電流)の時間特性を、(b)はトルク電流(δ軸電流)の時間特性を、(c)はロータ磁束の時間特性を、(d)トルクの時間特性を示すグラフである。また、図10、図11において、実トルク、実γ軸電流、及び実δ軸電流は、実際のモータ3の出力トルク、実際にモータ3に流れる電流を示している。
比較例では、磁束応答補償部32と同様に、γ軸電流指令値を増幅させることで、ロータ磁束応答を改善するための位相補償を行っている。そして、この位相補償により補償された励磁電流指令値に対して、最大電流制限値による制限をかけている。
以下、図10、11を比較しつつ、発進加速等において停車状態からトルク指令値をステップ的に増加させた場合を例にとり、トルク応答性能について説明する。
時刻tにて、停車状態からの発進加速として、ステップ的にトルク指令値が立ち上がり、基本γδ軸電流指令値もステップ的に立ち上がる。磁束応答補償部32による、ロータ磁束応答を改善するための位相補償により、磁束補償γ軸電流指令値は過渡的に大きな値を示す。
比較例は、最大電流制限値を電流振幅の上限値とした上で、δ軸電流に比べて、γ軸電流に対して電流を配分するように、励磁電流を増幅させている。そのため、比較例では、最大電流制限値までの電流は、γ軸電流指令値のみで使い切ってしまい、δ軸電流に使用できる電流値はゼロのまま推移し、トルクを発生させることができない無駄時間が発生してしまう(図10のΔtに相当)。また、γ軸電流が定格電流制限値(最大電流制限値に相当)で制限されてしまうので、ロータ磁束応答を改善するための所望の電流が流れず、所望のロータ磁束応答を実現することができない。
そして、時刻tからtの間の時刻で、磁束補償γ軸電流指令値が、下がり、最大電流制限値の値を下回ったところで、δ軸電流を流すことができるようになり、トルクが立ち上がり始める。
時刻tの時点で、ロータ磁束は、定常値の7〜8割程度で立ち上るが、磁束補償γ軸電流指令値は、ほぼ基本γ軸電流指令値に収束する。時刻t以降、γ軸電流は一定値で維持することになり、ロータの特性で決まる時定数の遅れをもって、ロータ磁束が立ち上がっていく。その結果として、応答速度の遅い、緩慢なトルク応答となってしまい、最終的な実トルクのトルク指令値へ収束するまでの時間は、時刻t〜tまでかかってしまう。
本発明では、時刻tにて、ステップ的にトルク指令値が立ち上がり、基本γδ軸電流指令値もステップ的に立ち上がる。δ軸電流について、本発明は、δ軸電流指令値に最大電流制限値(電流制限値(±Imax_δ)に相当)で制限をかけつつ、δ軸電流を流している。そのため、比較例で無駄時間を生じていた期間に、本発明はδ軸電流指令値がゼロにならず、δ軸電流を早く立ち上げることができている。その結果として、トルクも無駄時間なく時刻tから立ち上がっている。
またγ軸電流について、磁束応答補償部32による、ロータ磁束応答を改善するための位相補償により、磁束補償γ軸電流指令値は過渡的に大きな値に立ち上がっている。そして、磁束補償γ軸電流指令値に加わる制限値は、最大電流制限値を電流振幅とするように、最大電流制限値からδ軸電流指令値を差し引いた分で、γ軸電流制限値(電流制限値(±Iγlim)に相当)が決まっている。そのため、δ軸電流指令値の立ち上がりに応じて、γ軸電流指令値が制限されてしまい落ち込む。
これにより、時刻t直後のトルク応答は無駄時間を発生することなく、比較例に対して速くなっているが、時刻tからtまでの間において、実トルクの立ち上がり量が一時的には比較例よりも小さくなる時刻が存在する。しかしながら、時刻t時点では、実トルクの大きさは、ほぼ同等程度となっている。
さらに、時刻tからtの間において、磁束補償γ軸電流指令値が励磁電流の電流制限値を越える間、磁束補償γ軸電流指令値と電流制限値との差分を積分して蓄積しておくことで、指令値を補償し、追加補償γ軸電流指令値(励磁電流制限部112に入力されるγ軸電流指令値(Iγ2 )に相当)を徐々に大きく増やしていくことになる。そして、磁束補償γ軸電流指令値が減少し、γ軸電流制限値を下回った場合、蓄積していた積分値により追加補償γ軸電流指令値は、磁束補償γ軸電流指令値よりも大きな値を保持することができる。そして、電流制限解除後に、電流制限で効果を発揮することができなかった磁束補償γ軸電流指令値分の電流を、電流制限解除のタイミングで施すことができるようになる。
これにより、時刻t以降、比較例では急激にトルク応答が悪くなり指令値までの収束時間が長くかかってしまうところ、本発明では継続的にトルクを増やすことができ、時刻tに達する前に目標とする指令値まで達することができている。
さらに、本発明は、時刻tに至る手前で、出力トルクがトルク指令値にほぼ一致することで、出力トルクの変化量が小さくなったことを検知し、補償値の積分値を0に収束させて、追加補償γ軸電流指令値を磁束補償γ軸電流指令値まで下げている。そのため、本発明は、実トルクのオーバーシュートを起こすことなく、実トルクをトルク指令値に一致させることができている。
上記のように、本例は、基本γδ軸電流指令値(Iγ0 、Iδ0 )を増幅させることでモータ3のロータ磁束応答の遅れを補償することで磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )を演算し、γδ軸電流指令値(Iγ2 、Iδ2 )をγδ軸電流制限値(Iγlim、Iδlim)で制限し、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )及びγδ軸電流制限値(Iγlim、Iδlim)で制限されたγδ軸電流指令値(Iγ 、Iδ )に基づき、補償値(Iγ_FB、Iδ_FB)を演算し、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )と補償値(Iγ_FB、Iδ_FB)とを加算することで、γδ軸電流指令値(Iγ2 、Iδ2 )を演算し、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )のうちγδ軸電流制限値(Iγlim、Iδlim)で制限を受けた分の指令値を補償値(Iγ_FB、Iδ_FB)として演算する。これにより、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )の一部が制限値により制限された場合に、電流制限により出力できなかった磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )の一部を、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )が制限値より小さくなったときに加算することで、追加して補償することができるため、トルクの応答性を高めることができる。
また、本例は、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )とγδ軸電流制限値(Iγlim、Iδlim)との差分を積分することで、補償値(Iγ_FB、Iδ_FB)を演算する。これにより、電流制限により出力できなかった磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )の一部が蓄積されるため、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )が制限値より小さくなった後に、蓄積した積分値を補償値として出力することができる。また、電流制限が解除された後も、励磁電流を高い状態で維持させることができるため、トルク指令値の急な変化に対して、実トルクを指令値まで早く収束させることができる。
また、本例は、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )とγδ軸電流制限値(Iγlim、Iδlim)との差分を積分した積分値に、所定値のゲイン(1/T)を乗ずることで、補償値(Iγ_FB、Iδ_FB)を演算する。これにより、蓄積した積分値を所望の応答で出力することができる。
また、本例は、電流制限解除後のγδ軸電流指令値(Iγ2 、Iδ2 )が、過渡的に高くならないように、上記のゲイン(1/T)を調整して、補償値(Iγ_FB、Iδ_FB)を抑えている。すなわち、本例では、電流制限が解除された後、積分値に蓄積された値を放出し、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )に加算することになる。そして、ロータ磁束の時定数により、実際のロータ磁束は、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )で想定するよりも遅れて立ち上がる。電流制限が解除されるまでの間に、ロータ磁束は幾分、立ち上がっており、ロータ磁束が立ち上がった状態で、積分値である補償値を、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )に加えることになる。そのため、ゲイン調整をせずに、積分値をそのまま放出し、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )に加算した場合には、過渡的に必要以上にロータ磁束を立ち上げることになってしまい、出力トルクのオーバーシュートとなるおそれがある。そこで、本例では、積分値に対してゲイン調整を行い、出力トルクのオーバーシュートを防止し、定常値は指令値通りで過渡応答のみ応答性を向上させるよう制御している。
また本例は、制振制御後トルク指令値(Tm2 )と出力トルクとの差に基づいて、補償値(Iγ_FB、Iδ_FB)をリセットする。これにより、ロータ磁束およびトルクの過渡的なオーバーシュートを回避することができる。
また、本例は、磁束応答補償部32により補償されていない方の基本γδ軸電流指令値(Iγ0 、Iδ0 )に基づき、補償されていない方の電流値を推定し、推定された電流値(Iγ_est 、Iδ_est )に基づき、γδ軸電流制限値(Iγlim、Iδlim)を演算する。これにより、補償されていない方の電流指令値がゼロにならないように、追加補償する電流指令値の制限値を設定しているため、例えば、上記の比較例のような無駄時間の発生を防ぐことができる。
また、本例は、磁束応答補償部32により補償されていない方の電流指令値と、最大電流制限値(Imax)に基づき、γδ軸電流制限値(Iγlim、Iδlim)を演算する。ただし、電流指令値、最大電流制限値(Imax)、及び(Iγlim、Iδlim)の間には、式(16)又は式(22)を満たす。なお、式(16)又は式(22)は、γδ軸電流推定値(Iγ_est 、Iδ_est )を含む式になっているが、当該推定値の代わりに、基本γδ軸電流指令値(Iγ0 、Iδ0 )としてもよい。
これにより、高応答化処理の補償をしていない方の電流指令値を確実に流すことができ、γδ軸の一方の軸の電流を全く流せないことによるトルク応答の無駄時間を解消し、確実にトルクを出力することができる。
また、本例は、基本γδ軸電流指令値(Iγ0 、Iδ0 )を増幅させることでモータ3のロータ磁束応答の遅れを補償して磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )を演算し(第1の補償)、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )をさらに補償してγδ軸電流指令値(Iγ2 、Iδ2 )を演算し(第2の補償)、γδ軸電流指令値(Iγ2 、Iδ2 )をγδ軸電流制限値(Iγlim、Iδlim)で制限し、γδ軸電流制限値(Iγlim、Iδlim)で制限する際には、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )の大きさに応じて、γδ軸電流制限値(Iγlim、Iδlim)で制限し、第2の補償では、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )がγδ軸電流制限値(Iγlim、Iδlim)より小さくなった後に、γδ軸電流制限値(Iγlim、Iδlim)で制限を受けた分の指令値を、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )に加える。これにより、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )の一部が制限値により制限された場合に、電流制限により出力できなかった磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )の一部を、磁束補償γδ軸電流指令値(Iγ1 、Iδ1 )が制限値より小さくなったときに加えることで、追加して補償することができるため、トルクの応答性を高めることができる。
なお、本例において、すべり角速度演算器49は、すべり角速度ωseの計算する際に、電流指令値Iγ 、Iδ を使用する代わりに、電流計測値の前回値Iγ_z、Iδ_zを用いて計算をしてもよい。
なお、本例において、理想応答トルク演算部104は、トルク理想応答値(Tm_ref)を演算する際の指令値として、前回の演算タイミングで演算した制振制御後トルク指令値(Tm2 )を用いてもよい。上記のとおり、ロータ磁束推定部102は、前回の演算タイミングで取得したγ軸電流指令値(Iγ_Z )を用いて、ロータ磁束推定値(φest_z)を演算している。そのため、理想応答トルク演算部104においても、前回の演算タイミングで演算した制振制御後トルク指令値(Tm2 )を用いて、トルク理想応答値(Tm_ref)を演算することで、位相を合わせることができる。
なお、追加補償値演算部108は、積分リセット判定部106で設定されたフラグが「0」から「1」に変化し、補償値をリセットする場合には、フラグが「0」から「1」に変化してから、所定の時間の経過に伴って、補償値がゼロになるように、収束させてもよい。
なお、トルク電流推定部110は、制御演算による遅れを鑑みて、基本δ軸電流指令値(Iδ0 )の代わりに、前回値の基本δ軸電流指令値(Iδ0_Z )を用いてもよい。または、トルク電流推定部110は、実際にセンサで検出したトルク電流の検出値を用いてもよい。
上記の基本電流指令値演算部31が本発明の「電流指令値演算手段」に相当し、磁束応答補償部32が本発明の「第1補償手段」に、励磁電流制限部112又はトルク電流制限部212が本発明の「第1電流指令値制限手段」に、励磁電流指令値偏差演算部107、トルク電流指令値偏差演算部207、及び追加補償値演算部108、208が本発明の「第2補償手段」に、加算器109、209が「加算手段」に、励磁電流制限値演算部111及びトルク電流制限値演算部211が本発明の「第1電流制限値演算手段」に相当する。
《第2実施形態》
図12は発明の他の実施形態に係るモータ制御装置の励磁電流補償制御部100のブロック図を示し、図13はモータ制御装置のトルク電流補償制御部200のブロック図である。本例では上述した第1実施形態に対して、励磁電流補償制御部100の一部の構成、及び、トルク電流補償制御部200の一部の構成が異なる。これ以外の構成は上述した第1実施形態と同じであるため、その記載を適宜、援用する。
図12に示すように、励磁電流補償制御部100は、トルク電流制限部101、積分リセット判定部106、励磁電流指令値偏差演算部107、追加補償値演算部108、加算器109、トルク電流推定部110、励磁電流制限値演算部111、励磁電流制限部112、及び励磁電流偏差演算部113を有している。
励磁電流偏差演算部113は、式(23)で示されるように、基本γ軸電流指令値(Iγ0 )と磁束補償γ軸電流指令値(Iγ1 )との差分を演算することで、励磁電流指令値の偏差(ΔIγ10 )を演算し、積分リセット判定部106に出力する。
Figure 2014132766
積分リセット判定部106は、励磁電流指令値の偏差(ΔIγ10 )に応じて、追加補償値演算部108の補償値をリセットするか否かを判定し、その判定結果を示すフラグ(flg_IRST)を、追加補償演算部値108に出力する。判定及びフラグの条件は、以下のように示される。
Figure 2014132766
なお、リセット判定閾値(dIγ10 )は、出力トルクのオーバーシュートを抑制するように、予め設定された閾値であって、設計または実験より設定される値である。
追加補償値演算部108は、基本γ軸電流指令値(Iγ0 )と磁束補償γ軸電流指令値(Iγ1)との差に基づいて、補償値(Iγ_FB)をリセットしている。基本γ軸電流指令値(Iγ0 )と磁束補正γ軸電流指令値(Iγ1)との差は、磁束応答補償部32のロータ磁束応答の補償により、指令値を増幅させた分に相当する。
そのため、磁束応答補償部32で増幅させた分の指令値がリセット判定閾値以上になっている期間で、追加補償値演算部108及び加算部109は、励磁電流の追加補償を行っている。そして、磁束応答補償部32で増幅させた分の指令値がリセット判定閾値より低くなると、追加補償値演算部108により補償値がリセットされることで、励磁電流の追加補償が終了する。
図13に示すように、トルク電流補償制御部200は、励磁電流制限部201、積分リセット判定部206、トルク電流指令値偏差演算部207、追加補償値演算部208、加算器209、励磁電流推定部210、トルク電流制限値演算部211、トルク電流制限部212、及びトルク電流偏差演算部213を有している。
トルク電流偏差演算部213は、式(24)で示されるように、基本δ軸電流指令値(Iδ0 )と磁束補償δ軸電流指令値(Iδ1 )との差分を演算することで、トルク電流指令値の偏差(ΔIδ10 )を演算し、積分リセット判定部106に出力する。
Figure 2014132766
積分リセット判定部206は、トルク電流指令値の偏差(ΔIδ10 )に応じて、追加補償値演算部208の補償値をリセットするか否かを判定し、その判定結果を示すフラグ(flg_IRST)を、追加補償演算部208に出力する。判定及びフラグの条件は、以下のように示される。
Figure 2014132766
なお、リセット判定閾値(dIδ10 )は、出力トルクのオーバーシュートを抑制するように、予め設定された閾値であって、設計または実験より設定される値である。
上記のように、本例は、基本γδ軸電流指令値(Iγ0 、Iδ0 )と磁束補正γδ軸電流指令値(Iγ1 、Iδ1 )との差に基づいて、補償値(Iγ_FB、Iδ_FB)をリセットする。これにより、磁束応答補償部32による電流指令値の増加分が所定値(リセット判定閾値(dIγ10 、dIδ10 ))より高い期間では追加補償を行い、当該電流指令値の増加分が当該所定値より低い期間では追加補償を行わないよう、制御することができる。その結果として、トルク応答性を高めつつ、出力トルクのオーバーシュートを抑制することができる。
《第3実施形態》
図14は発明の他の実施形態に係るモータ制御装置の励磁電流補償制御部100のブロック図を示し、図15はモータ制御装置のトルク電流補償制御部200のブロック図である。本例では上述した第1実施形態に対して、励磁電流補償制御部100の一部の構成、及び、トルク電流補償制御部200の一部の構成が異なる。これ以外の構成は上述した第1実施形態と同じであり、第1実施形態及び第2実施形態の記載を適宜、援用する。
図14に示すように、励磁電流補償制御部100は、トルク電流制限部101、ロータ磁束推定部102、励磁電流指令値偏差演算部107、追加補償値演算部108、加算器109、トルク電流推定部110、励磁電流制限値演算部111、励磁電流制限部112、トルク電流制限値演算部114、及びトルク電流制限部115を有している。
トルク電流制限値演算部114は、式(25)で示されるように、制振制御後トルク指令値(Tm2 )を、トルク定数(KTe)とロータ磁束推定値(φest)とを乗算した値で、除算することでδ軸電流制限値(Iδlim)を演算し、トルク電流制限部115に出力する。
Figure 2014132766
トルク電流制限部115は、トルク電流制限部101で演算されたトルク電流指令値を、正負のδ軸電流制限値(±Iδlim)で制限することで、δ軸電流指令値(Iδ)を演算する。
トルク電流補償制御部200は、磁束応答補償部32で補償されていないδ軸電流指令値に基づきγ軸電流指令値用の制限値を演算し、磁束応答補償部32で補償されたγ軸電流指令値に対して、追加補償を行い、γ軸電流の制限値による制限を加えている。さらに、γ軸電流の制限値による制限を受けたγ軸電流指令値に基づいて、δ軸電流指令値用の制限値を演算し、δ軸電流指令値に対して制限を加えている。これにより、磁束応答補償部32による補償、及び、励磁電流補償制御部100による補償により、電流指令値がどのような値になっても、出力トルクをトルク指令値の理想応答に近づけることができる。
図15に示すように、トルク電流補償制御部200は、励磁電流制限部201、ロータ磁束推定部202、出力トルク推定部203、理想応答トルク演算部204、トルク偏差演算部205、積分リセット判定部206、トルク電流指令値偏差演算部207、追加補償値演算部208、加算器209、励磁電流推定部210、トルク電流制限値演算部211、トルク電流制限部212、励磁電流制限値演算部214、制限値補正部215、及び励磁電流制限部216を有している。
励磁電流制限値演算部214は、式(26)で示されるように、制振制御後トルク指令値(Tm2 )を、モータトルク定数(K)とδ軸電流指令値(Iδ )とを乗算した値で、除算することでγ軸電流制限値(Iγlim )を演算し、制限値補正部215に出力する。
Figure 2014132766
ただし、モータトルク定数(K)は、M・KTeで表される。そして、上記のとおり、トルク定数(KTe)はp・M/Lrで表されるため、モータトルク定数(K)は、K=p・M/Lrで表される。モータトルク定数(K)は予め計算又は実験により予め設定される値である。
制限値補正部215は、式(27)で示されるように、γ軸電流制限値(Iγlim )に、時定数(τ)及び時定数(τφ)を含む関数を乗ずることで、γ軸電流制限値(Iγlim )を補正し、γ軸電流制限値(Iγlim)を演算する。
Figure 2014132766
なお、制限値補正部215による補正処理は、ロータ磁束応答とトルク応答に対して、近似的に補償した処理になる。
励磁電流制限部216は、励磁電流制限部201で演算された励磁電流指令値を、正負のγ軸電流制限値(±Iγlim)で制限することで、γ軸電流指令値(Iγ)を演算する。
上記のように、本例は、磁束応答補償部32により補償された指令値に基づき、式(25)又は式(26)を用いて制限値を演算し、磁束応答補償部32により補償されていない方の電流指令値を当該制限値で制限する。これにより、磁束応答補償部32による補償、及び、励磁電流補償制御部100又はトルク電流補償制御部200による補償により、電流指令値がどのような値になっても、出力トルクをトルク指令値の理想応答に近づけることができる。
上記のトルク電流制限値演算部114は本発明の「第2電流制限値演算手段」に相当し、トルク電流制限部115は本発明の「第2電流指令値制限手段」に相当する。
20…モータコントローラ
21…モータトルク制御部
22…制振制御部
23…電流制御部
30…電流指令値演算器
31…基本電流指令値演算部
32…磁束応答補償部
33…励磁電流指令値変化量演算部
34…補償判定部
35…補償制御部
100…励磁電流補償制御部
101…トルク電流制限部
102、202…ロータ磁束推定部
103、203…出力トルク推定部
104、204…理想応答トルク演算部
105、205…トルク偏差演算部
106、206…積分リセット判定部
107…励磁電流指令値偏差演算部
108、208追加補償値演算部
109、209…加算器
110…トルク電流推定部
111、214…励磁電流制限値演算部
112、201、216…励磁電流制限部
113…励磁電流偏差演算部
114、211…トルク電流制限値演算部
115、212…トルク電流制限部
207…トルク電流指令値偏差演算部
210…励磁電流推定部
216…制限値補正部

Claims (9)

  1. 外部から入力されるトルク指令値及びモータの回転速度に基づき基本電流指令値を演算する電流指令値演算手段と、
    前記基本電流指令値を増幅させることで、前記モータのロータ磁束応答の遅れを補償する第1補償手段と、
    補償後電流指令値を第1電流制限値で制限する第1電流指令値制限手段と、
    前記第1補償手段により演算された電流増幅指令値と、前記第1電流指令値制限手段により演算された第1制限後電流指令値に基づき、前記電流増幅指令値の補償値を演算する第2補償手段と、
    前記電流増幅指令値と前記補償値とを加算することで、前記補償後電流指令値を演算する加算手段と、
    前記第1制限後電流指令値に基づき、前記モータを制御するモータ制御手段とを備え、
    前記第2補償手段は、
    前記電流増幅指令値のうち、前記第1電流制限値により制限を受けた分の指令値を前記補償値として演算する
    ことを特徴とするモータ制御装置。
  2. 請求項1記載のモータ制御装置において、
    前記第2補償手段は、
    前記電流増幅指令値と前記第1電流制限値との差分を積分することで、前記補償値を演算する
    ことを特徴とするモータ制御装置。
  3. 請求項1又は2記載のモータ制御装置において、
    前記第2補償手段は、
    前記電流増幅指令値と前記第1電流制限値との差分を積分した積分値に所定値のゲインを乗ずることで、前記補償値を演算する
    ことを特徴とするモータ制御装置。
  4. 請求項1〜3のいずれか一項に記載のモータ制御装置において、
    前記第2補償手段は、
    前記モータの出力トルクと前記トルク指令値との差に基づいて、前記補償値をリセットする
    ことを特徴とするモータ制御装置。
  5. 請求項1〜3のいずれか一項に記載のモータ制御装置において、
    前記第2補償手段は、
    前記基本電流指令値と前記電流増幅指令値との差に基づいて、前記補償値をリセットする
    ことを特徴とするモータ制御装置。
  6. 請求項1〜5のいずれか一項に記載のモータ制御装置において、
    前記第1制限後電流指令値及び前記トルク指令値に基づき第2電流制限値を演算する第2電流制限値演算手段と、
    電流指令値を前記第2電流制限値で制限する第2電流指令値制限手段とをさらに備え、
    前記第1補償手段は、
    前記モータの電流指令値に含まれる励磁電流指令値又はトルク電流指令値の何れか一方の電流指令値の前記基本電流指令値を補償することで、前記電流増幅指令値を演算し、
    前記第2電流制限値演算手段は、
    前記第1制限後電流指令値に基づき前記モータのロータ磁束推定値を演算し、
    前記トルク指令値を、前記モータの定数により定まるゲインと前記ロータ磁束推定値とを乗算した値で、除算することで、前記第2電流制限値を演算し、
    前記第2電流指令値制限手段は、
    前記励磁電流指令値又は前記トルク電流指令値のうち、前記第1補償手段で補償されていない方の前記基本電流指令値を、前記第2電流制限値で制限することで、第2制限後電流指令値を演算し、
    前記モータ制御手段は、前記第2制限後電流指令値に基づき、前記モータを制御する
    ことを特徴とするモータ制御装置。
  7. 請求項1〜6のいずれか一項に記載のモータ制御装置において、
    前記第1電流制限値を演算する第1電流制限値演算手段をさらに備え、
    前記第1補償手段は、
    前記モータの電流指令値に含まれる励磁電流指令値又はトルク電流指令値の何れか一方の電流指令値の前記基本電流指令値を補償することで、前記電流増幅指令値を演算し、
    前記第1電流制限値演算手段は、
    前記励磁電流指令値又は前記トルク電流指令値のうち、前記第1補償手段で補償されていない方の前記基本電流指令値に基づき、前記第1補償手段で補償されていない方の電流値を推定し、推定された電流値に基づき前記第1電流制限値を演算する
    ことを特徴とするモータ制御装置。
  8. 請求項1〜6のいずれか一項に記載のモータ制御装置において、
    前記第1電流制限値を演算する第1電流制限値演算手段をさらに備え、
    前記第1補償手段は、
    前記モータの電流指令値に含まれる励磁電流指令値又はトルク電流指令値の何れか一方の電流指令値の前記基本電流指令値を補償することで、前記電流増幅指令値を演算し、
    前記第1電流制限値演算手段は、
    前記励磁電流指令値又は前記トルク電流指令値のうち、前記第1補償手段で補償されていない方の電流指令値と、前記モータの定格電流を示す最大電流制限値に基づき前記第1電流制限値を演算する
    ことを特徴とするモータ制御装置。
    ただし、
    Figure 2014132766
    limは前記第1電流制限値を示し、
    maxは前記最大電流制限値を示し、
    は前記第1補償手段で補償されていない方の電流指令値を示す。
  9. 外部から入力されるトルク指令値及びモータの回転速度に基づき基本電流指令値を演算し、
    前記基本電流指令値を増幅させることで、前記モータのロータ磁束応答の遅れを補償して電流増幅指令値を演算し、
    前記電流増幅指令値をさらに補償して補償後電流増幅指令値を演算し、
    前記電流増幅指令値の大きさに応じた電流制限値で、前記補償後電流増幅指令値を制限し、
    前記電流制限値で制限された後の指令値に基づき、前記モータを制御し、
    前記電流増幅指令値が前記電流制限値で制限された場合には、前記電流増幅指令値が前記電流制限値より小さくなった後に、前記電流制限値により制限を受けた分の指令値を前記電流増幅指令値に加える
    ことを特徴とするモータの制御方法。
JP2015502835A 2013-02-26 2014-02-06 モータ制御装置及びモータ制御方法 Active JP5862832B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015502835A JP5862832B2 (ja) 2013-02-26 2014-02-06 モータ制御装置及びモータ制御方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013035637 2013-02-26
JP2013035637 2013-02-26
PCT/JP2014/052737 WO2014132766A1 (ja) 2013-02-26 2014-02-06 モータ制御装置及びモータ制御方法
JP2015502835A JP5862832B2 (ja) 2013-02-26 2014-02-06 モータ制御装置及びモータ制御方法

Publications (2)

Publication Number Publication Date
JP5862832B2 JP5862832B2 (ja) 2016-02-16
JPWO2014132766A1 true JPWO2014132766A1 (ja) 2017-02-02

Family

ID=51428040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015502835A Active JP5862832B2 (ja) 2013-02-26 2014-02-06 モータ制御装置及びモータ制御方法

Country Status (5)

Country Link
US (1) US9431946B2 (ja)
EP (1) EP2963807B1 (ja)
JP (1) JP5862832B2 (ja)
CN (1) CN104956587B (ja)
WO (1) WO2014132766A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201501135D0 (en) * 2015-01-23 2015-03-11 Rolls Royce Plc Method and system for damping torsional oscillations
DE102015222773A1 (de) * 2015-11-18 2017-05-18 Robert Bosch Gmbh Verfahren zum Erkennen eines Fehlers in einer Generatoreinheit
CN107117075A (zh) * 2015-11-30 2017-09-01 赵世龙 永磁电机驱动方法
JP2018007532A (ja) * 2016-07-08 2018-01-11 株式会社リコー モータ制御装置、モータ駆動装置、モータ駆動システム、画像形成装置、及び搬送装置
KR101988088B1 (ko) * 2016-10-31 2019-06-12 현대자동차주식회사 모터 구동 제어 방법, 시스템 및 이를 적용한 연료전지 시스템의 압축기 구동 제어 방법
JP2019017232A (ja) * 2017-07-11 2019-01-31 日立オートモティブシステムズ株式会社 電動機の制御装置及び電動ブレーキ装置
KR102370944B1 (ko) * 2017-12-12 2022-03-07 현대자동차주식회사 하이브리드 전기차량의 모터속도 발산 방지 방법
EP3522362B1 (en) * 2018-02-01 2023-12-20 Siemens Gamesa Renewable Energy A/S Controlling a multi winding set permanent magnet electrical machine
US11014550B2 (en) 2019-02-07 2021-05-25 Fca Us Llc Disturbance mitigation techniques for hybrid power-split transmissions
JP6965303B2 (ja) * 2019-04-03 2021-11-10 三菱電機株式会社 交流回転電機の制御装置
CN113346822B (zh) * 2020-03-02 2022-07-12 广东威灵电机制造有限公司 电机控制方法、电机控制装置、电机系统和存储介质
CN114633635B (zh) * 2022-03-22 2023-08-22 苏州汇川联合动力系统股份有限公司 电机控制方法、装置、系统及存储介质

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3531250B2 (ja) 1994-11-24 2004-05-24 日本精工株式会社 電動パワーステアリング装置の制御装置
JPH08163900A (ja) 1994-12-05 1996-06-21 Nissan Motor Co Ltd 誘導モータ制御装置
JP3679246B2 (ja) * 1998-04-24 2005-08-03 潔 大石 交流電動機の速度制御装置
JP2001045613A (ja) 1999-07-29 2001-02-16 Nissan Motor Co Ltd 電気自動車のモータ制御装置
JP2003009559A (ja) 2001-06-25 2003-01-10 Sumitomo Heavy Ind Ltd 三相誘導電動機及びこれを使用した駆動装置
DE10228824A1 (de) * 2002-06-27 2004-05-19 Siemens Ag Verfahren und Vorrichtung zur Ermittlung eines Durchgehens eines drehzahlgeregelten, permanenterregten Synchronmotors
US7629764B2 (en) * 2006-02-03 2009-12-08 Bae Systems Land & Armaments L.P. Nonlinear motor control techniques
JP4800839B2 (ja) * 2006-05-23 2011-10-26 株式会社デンソー 車両用界磁巻線型回転電機の励磁電流制御装置
US7282886B1 (en) 2006-08-04 2007-10-16 Gm Global Technology Operations, Inc. Method and system for controlling permanent magnet motor drive systems
US7642737B2 (en) 2007-03-13 2010-01-05 Gm Global Technology Operations, Inc. Anti-windup control for a current regulator of a pulse width modulation inverter
JP4577336B2 (ja) 2007-08-09 2010-11-10 日産自動車株式会社 電動車両における電動機の制御装置
JP2009220665A (ja) * 2008-03-14 2009-10-01 Nissan Motor Co Ltd 車両用駆動制御装置
JP5143217B2 (ja) * 2010-12-03 2013-02-13 三菱電機株式会社 制御装置
KR101562419B1 (ko) 2011-07-05 2015-10-22 엘에스산전 주식회사 매입형 영구자석 동기 전동기의 구동장치
JP5357232B2 (ja) * 2011-10-11 2013-12-04 三菱電機株式会社 同期機制御装置

Also Published As

Publication number Publication date
EP2963807B1 (en) 2018-10-31
CN104956587B (zh) 2016-11-16
JP5862832B2 (ja) 2016-02-16
EP2963807A1 (en) 2016-01-06
US20150365032A1 (en) 2015-12-17
CN104956587A (zh) 2015-09-30
EP2963807A4 (en) 2016-04-13
WO2014132766A1 (ja) 2014-09-04
US9431946B2 (en) 2016-08-30

Similar Documents

Publication Publication Date Title
JP5862832B2 (ja) モータ制御装置及びモータ制御方法
EP2939866B1 (en) Motor control device and motor control method
JP4706324B2 (ja) モータ駆動システムの制御装置
JP6647822B2 (ja) トルク制御装置及び方法、並びにモーター制御器
EP2681570B1 (en) Dc bus voltage control
JP2007159368A (ja) モータ駆動システムの制御装置
JP5055836B2 (ja) 同期モーター用磁極位置センサーの位相ズレ検出装置および検出方法
JP5884746B2 (ja) 交流電動機の制御装置
JP5880518B2 (ja) 電動車両
US20200321903A1 (en) Control device for an ac rotating electric machine
JP5900656B2 (ja) モータ制御装置およびモータ制御方法
JP6089775B2 (ja) モータ制御装置
WO2015001849A1 (ja) 電動車両の制動制御装置
JP6169924B2 (ja) 誘導電動機式電気車及びその制御方法
JP7142719B2 (ja) モータ制御装置
JP2008067565A (ja) 電動モータの制御方法、モータ制御装置及びこれを用いた電動パワーステアリング装置
JP5407553B2 (ja) モータ制御装置
JP5523639B2 (ja) 電気車制御装置
JP2013059205A (ja) モータ制御装置
JP5610002B2 (ja) 電動機の制御装置
JP6680104B2 (ja) モータの制御装置、及び、制御方法
WO2023175760A1 (ja) 交流回転機の制御装置および電動パワーステアリング装置
JP2008172876A (ja) モータの駆動装置
JP2019198177A (ja) モータ制御方法、及び、モータ制御装置

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151214

R151 Written notification of patent or utility model registration

Ref document number: 5862832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151