JPWO2014065419A1 - 単環芳香族炭化水素の製造方法 - Google Patents

単環芳香族炭化水素の製造方法 Download PDF

Info

Publication number
JPWO2014065419A1
JPWO2014065419A1 JP2014543372A JP2014543372A JPWO2014065419A1 JP WO2014065419 A1 JPWO2014065419 A1 JP WO2014065419A1 JP 2014543372 A JP2014543372 A JP 2014543372A JP 2014543372 A JP2014543372 A JP 2014543372A JP WO2014065419 A1 JPWO2014065419 A1 JP WO2014065419A1
Authority
JP
Japan
Prior art keywords
monocyclic aromatic
catalyst
oil
cracking
reforming reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014543372A
Other languages
English (en)
Inventor
柳川 真一朗
真一朗 柳川
小林 正英
正英 小林
透容 吉原
透容 吉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
JXTG Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JXTG Nippon Oil and Energy Corp filed Critical JXTG Nippon Oil and Energy Corp
Publication of JPWO2014065419A1 publication Critical patent/JPWO2014065419A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • C10G11/05Crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/10Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils with stationary catalyst bed
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/095Catalytic reforming characterised by the catalyst used containing crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/002Apparatus for fixed bed hydrotreatment processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1096Aromatics or polyaromatics
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/30Aromatics

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

本発明の単環芳香族炭化水素の製造方法は、10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油と、炭素数1〜3の飽和炭化水素とを、固定床反応器に充填した結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6〜8の単環芳香族炭化水素を含む生成物を得る分解改質反応工程を有する。

Description

本発明は、単環芳香族炭化水素の製造方法に関し、特に炭素数6〜8の単環芳香族炭化水素の製造方法に関する。
本願は、2012年10月25日に日本に出願された特願2012−236134号に対して優先権を主張し、その内容をここに援用する。
流動接触分解(以下、「FCC」と称する。)装置で生成する分解軽油であるライトサイクル油(以下、「LCO」と称する。)等の多環芳香族分を含む油は、これまでは主に軽油や重油向けの燃料基材として用いられていた。近年、これら多環芳香族分を含む原料から、高オクタン価ガソリン基材や石油化学原料として利用できる、付加価値が高い炭素数6〜8の単環芳香族炭化水素(例えば、ベンゼン、トルエン、粗キシレン。以下、これらをまとめて「BTX」と称する。)を効率よく製造する技術が提案されている。
また、このような多環芳香族分を含む原料からBTXを製造する方法の応用として、エチレン製造装置より得られる熱分解重質油からBTXを製造する芳香族炭化水素の製造方法も提案されている(例えば、特許文献1参照)。
この特許文献1の芳香族炭化水素の製造方法は、従来では前記熱分解重質油(分解重質油)がコンビナート内でボイラー等の燃料等に使われることがほとんどであったのに対し、前記熱分解重質油を水素化処理した後、単環芳香族炭化水素製造用触媒に接触させ反応させることで、BTXを製造するようにしている。
特開2012−062356号公報
(社)石油学会編「石油化学プロセス」株式会社講談社刊、2001年8月10日発行、第21頁から第30頁
ところで、LCOからBTXを製造する技術においても、また、エチレン製造装置より得られる熱分解重質油からBTX留分を製造する技術においても、BTXの製造コストを引き下げるため、BTX留分をより効率よく製造することが望まれている。
また、BTXの製造コストを引き下げるためには、前記の技術を実施する装置についても、その建設コストや運転コストを低減することが望まれている。
本発明は前記事情に鑑みてなされたもので、その目的とするところは、BTXの製造コスト低減を可能にした単環芳香族炭化水素の製造方法を提供することにある。
本発明者は、前記目的を達成するため鋭意研究を重ねた結果、BTXを分解改質反応で製造する際に用いる分解改質反応装置として、従来では建設コストや運転コストが高い流動床反応器を用いていることが、BTXの製造コスト低減を阻む一因となっていることを究明した。すなわち、建設コストや運転コストが安い固定床反応器を用いれば、BTXの製造コスト低減が図れるものの、固定床反応器では触媒の劣化によってBTXの製造効率が低下するため、従来では流動床反応器を用いているのが実状であった。そこで、本発明者はこのような知見に基づきさらに研究を進めた結果、本発明を完成させた。
すなわち、本発明の単環芳香族炭化水素の製造方法は、10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油と、炭素数1〜3の飽和炭化水素とを、固定床反応器に充填した結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6〜8の単環芳香族炭化水素を含む生成物を得る分解改質反応工程を有する。
前記製造方法においては、前記炭素数1〜3の飽和炭化水素がメタンであることが好ましい。
前記製造方法においては、前記原料油は、エチレン製造装置から得られる熱分解重質油もしくは該熱分解重質油の部分水素化物である。
あるいは、前記製造方法においては、前記原料油は、分解軽油もしくは該分解軽油の部分水素化物である。
前記製造方法において、前記分解改質反応工程では、2基以上の固定床反応器を用い、これらを定期的に切り替えながら分解改質反応と前記単環芳香族炭化水素製造用触媒の再生とを繰り返す、ことが好ましい。
前記製造方法においては、前記分解改質反応工程で用いる単環芳香族炭化水素製造用触媒に含有される結晶性アルミノシリケートが、中細孔ゼオライト及び/又は大細孔ゼオライトを主成分としたものであることが好ましい。
また、前記製造方法においては、前記分解改質反応工程で用いる単環芳香族炭化水素製造用触媒が、リンを含むことが好ましい。
本発明の単環芳香族炭化水素の製造方法によれば、BTXの製造コスト低減を可能にすることができる。
本発明の一実施形態に係るエチレン製造装置の一例を説明するための図である。 図1に示したエチレン製造装置を用いる場合の本願分解改質プロセスを説明するための図である。
本発明で使用される原料油は、10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下の油である。10容量%留出温度が140℃未満の油では、目的とする単環芳香族炭化水素が分解してしまい、生産性が低下する。また、90容量%留出温度が390℃を超える油を用いた場合には、単環芳香族炭化水素の収率が低くなる上に、単環芳香族炭化水素製造用触媒上へのコーク堆積量が増大して、触媒活性の急激な低下を引き起こす傾向にある。原料油の10容量%留出温度は150℃以上であることが好ましく、原料油の90容量%留出温度は360℃以下であることが好ましい。なお、ここでいう10容量%留出温度、90容量%留出温度とは、JIS K2254「石油製品−蒸留試験方法」に準拠して測定される値を意味する。
10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油としては、例えば、エチレン製造装置から得られる熱分解重質油、エチレン製造装置から得られる熱分解重質油の水素化物、流動接触分解装置で生成する分解軽油(LCO)、LCOの水素化精製油、石炭液化油、重質油水素化分解精製油、直留灯油、直留軽油、コーカー灯油、コーカー軽油およびオイルサンド水素化分解精製油などが挙げられる。
エチレン製造装置から得られる熱分解重質油は、エチレン製造装置から得られるBTX留分よりも重質な留分であり、芳香族炭化水素を多く含有する。また、流動接触分解装置で生成する分解軽油(LCO)なども同様に芳香族炭化水素を多く含有する。芳香族炭化水素を多く含有する留分の中でも多環芳香族を多く含有する留分を用いる場合は、後の分解改質反応においてコーク生成の要因となるので、水素化処理を行う事が望ましい。なお、上記熱分解重質油やLCOに由来する留分であっても、単環芳香族炭化水素が多い留分においては、水素化処理は必ずしも必要ない。他の原料油においても、基本的には同じ考え方で原料油を選定し、過度に分解改質反応にてコークが生成される原料油は避けることが望ましい。
多環芳香族炭化水素は、反応性が低く本発明の分解改質反応では、単環芳香族炭化水素に転換されにくい物質ではある。しかし、一方で、多環芳香族炭化水素が水素化反応にて水素化されるとナフテノベンゼン類に転換され、次いで分解改質反応に供給されることで単環芳香族炭化水素に転換可能である。しかしながら、多環芳香族炭化水素の中でも3環以上の芳香族炭化水素は、水素化反応工程において多くの水素を消費し、かつ水素化反応物であっても分解改質反応における反応性が低いため、多く含むことは好ましくない。従って、原料油中の3環以上の芳香族炭化水素は25容量%以下であることが好ましく、15容量%以下であることがより好ましい。
なお、ここでいう多環芳香族分とは、JPI−5S−49「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法」に準拠して測定、あるいはFIDガスクロマトグラフ法または2次元ガスクロマトグラフ法にて分析される2環芳香族炭化水素含有量(2環芳香族分)および、3環以上の芳香族炭化水素含有量(3環以上の芳香族分)の合計値を意味する。以降、多環芳香族炭化水素、2環芳香族炭化水素、3環以上の芳香族炭化水素の含有量が容量%で示されている場合は、JPI−5S−49に準拠して測定されたものであり、質量%で示されている場合は、FIDガスクロマトグラフ法または2次元ガスクロマトグラフ法に基づいて測定されたものである。
(原料油の水素化処理)
原料油をあらかじめ水素化処理する場合は、以下のような指針で水素化反応を行う事が望ましい。水素化反応においては、水素化原料油を完全に水素化することなく、部分水素化を行うようにする。すなわち、主として原料油中の2環芳香族炭化水素を選択的に水素化し、芳香環を1つのみ水素化した1環芳香族炭化水素(ナフテノベンゼン類等)に転換する。ここで、1環芳香族炭化水素としては、例えばインダン、テトラリン、アルキルベンゼン等が挙げられる。
このように部分的に水素化処理を行えば、水素化反応工程での水素消費量を抑えると同時に、処理時の発熱量も抑制することができる。例えば、2環芳香族炭化水素の代表例であるナフタレンをデカリンに水素化する際には、ナフタレン1モル当たりの水素消費量は5モルとなるが、テトラリンに水素化する場合には水素消費量が2モルで実現可能となる。また、原料油中にインデン骨格が含まれる留分の場合は、インダン骨格にまで水素化を行えばよい。
なお、この水素化反応に用いられる水素は、本願の分解改質反応にて生成する水素を用いる事も可能である。
このような水素化処理は、公知の水素化反応器で行うことができる。この水素化反応において、反応器入口での水素分圧は、1〜9MPaであることが好ましい。下限としては1.2MPa以上がより好ましく、1.5MPa以上がさらに好ましい。また、上限としては7MPa以下がより好ましく、5MPa以下がさらに好ましい。水素分圧が1MPa未満の場合には、触媒上のコーク生成が激しくなり、触媒寿命が短くなる。一方、水素分圧が9MPaを超える場合には、2環芳香族炭化水素の2環ともが水素化されるような完全水素化が増大し、水素消費量が大幅に増大する上、単環芳香族炭化水素の収率が低下すること、水素化反応器や周辺機器の建設費が上昇することから、経済性が損なわれる懸念がある。
また、水素化反応のLHSV(Liquid Hourly Space Velocity;液空間速度)は、0.05〜10h−1であることが好ましい。下限としては0.1h−1以上がより好ましく、0.2h−1以上がさらに好ましい。また、上限としては5h−1以下がより好ましく、3h−1以下がさらに好ましい。LHSVが0.05h−1未満の場合には、反応器の建設費が過大となり経済性が損なわれる懸念がある。一方、LHSVが10h−1を超える場合には、原料油の水素化処理が十分に進行せず、目的とする水素化物が得られない可能性がある。
水素化反応における反応温度(水素化温度)は、150℃〜400℃であることが好ましい。下限としては170℃以上がより好ましく、190℃以上がさらに好ましい。また、上限としては380℃以下がより好ましく、370℃以下がさらに好ましい。反応温度が150℃を下回る場合には、原料油の水素化処理が十分に達成されない傾向にある。一方、反応温度が400℃を上回る場合には、副生成物であるガス分の発生が増加するため、水素化処理油の収率が低下することとなり、望ましくない。
水素化反応における水素/油比は、100〜2000NL/Lであることが好ましい。下限としては110NL/L以上がより好ましく、120NL/L以上がさらに好ましい。また、上限としては1800N/L以下がより好ましく、1500NL/L以下がさらに好ましい。水素/油比が100NL/L未満の場合には、リアクター出口での触媒上のコーク生成が進行し、触媒寿命が短くなる傾向にある。一方、水素/油比が2000NL/Lを超える場合には、リサイクルコンプレッサーの建設費が過大になり、経済性が損なわれる懸念がある。
水素化処理における反応形式については、特に限定されないものの、通常は固定床、移動床等の種々のプロセスから選ぶことができ、中でも固定床が、建設コストや運転コストが安価であるため好ましい。また、水素化反応装置は塔状であることが好ましい。
水素化処理に使用される水素化処理用触媒は、原料油中の2環芳香族炭化水素を選択的に水素化して芳香環を1つのみ水素化した単環芳香族炭化水素(ナフテノベンゼン類等)に転換することが可能な触媒であれば、限定されることはない。好ましい水素化処理用触媒は、周期表第6族金属から選ばれる少なくとも1種の金属、及び周期表第8〜10族金属から選ばれる少なくとも1種の金属を含有する。周期表第6族金属としてはモリブデン、タングステン、クロムが好ましく、モリブデン、タングステンが特に好ましい。周期表第8〜10族金属としては、鉄、コバルト、ニッケルが好ましく、コバルト、ニッケルがより好ましい。これらの金属はそれぞれ単独で用いてもよく、2種以上を組み合わせて用いてもよい。具体的な金属の組み合わせ例としては、モリブデン−コバルト、モリブデン−ニッケル、タングステン−ニッケル、モリブデン−コバルト−ニッケル、タングステン−コバルト−ニッケルなどが好ましく用いられる。なお、ここで周期表とは、国際純正・応用化学連合(IUPAC)により規定された長周期型の周期表をいう。
前記水素化処理用触媒は、前記金属がアルミニウム酸化物を含む無機担体に担持されたものであることが好ましい。前記アルミニウム酸化物を含む無機担体の好ましい例としては、アルミナ、アルミナ−シリカ、アルミナ−ボリア、アルミナ−チタニア、アルミナ−ジルコニア、アルミナ−マグネシア、アルミナ−シリカ−ジルコニア、アルミナ−シリカ−チタニア、あるいは各種ゼオライト、セビオライト、モンモリロナイト等の各種粘土鉱物などの多孔性無機化合物をアルミナに添加した担体などを挙げることができ、中でもアルミナが特に好ましい。なお、上記アルミナ−シリカ等の複数の金属酸化物からなる無機担体は、それら酸化物の単純な混合物であっても複合酸化物であってもよい。
前記水素化処理用触媒は、アルミニウム酸化物を含む無機担体に、該無機担体と前記金属との合計質量である全触媒質量を基準として、周期表第6族金属から選択される少なくとも1種の金属を10〜30質量%と、周期表第8〜10族金属から選択される少なくとも1種の金属を1〜7質量%と、を担持させて得られる触媒であることが好ましい。周期表第6族金属の担持量や周期表第8〜10族金属の担持量が、それぞれの下限未満である場合には、触媒が充分な水素化処理活性を発揮しない傾向にあり、一方、それぞれの上限を超える場合には、触媒コストが上昇する上に、担持金属の凝集等が起こり易くなり、触媒が充分な水素化処理活性を発揮しない傾向にある。
前記金属を前記無機担体に担持する際に用いられる前記金属種の前駆体については、特に限定されないものの、該金属の無機塩、有機金属化合物等が使用され、水溶性の無機塩が好ましく使用される。担持工程においては、これら金属前駆体の溶液、好ましくは水溶液を用いて担持を行う。担持操作としては、例えば、浸漬法、含浸法、共沈法等の公知の方法が好ましく採用される。
前記金属前駆体が担持された担体は、乾燥後、好ましくは酸素の存在下にて焼成され、金属種は一旦酸化物とされることが好ましい。さらに、原料油の水素化処理を行う前に、予備硫化と呼ばれる硫化処理により、前記金属種を硫化物とすることが好ましい。
予備硫化の条件としては、特に限定されないものの、石油留分または熱分解重質油(以下、予備硫化原料油という。)に硫黄化合物を添加し、これを温度200〜380℃、LHSVが1〜2h−1、圧力は水素化処理運転時と同一、処理時間48時間以上の条件にて、前記水素化処理用触媒に連続的に接触せしめることが好ましい。前記予備硫化原料油に添加する硫黄化合物としては、限定されないものの、ジメチルジスルフィド(DMDS)、サルファゾール、硫化水素等が好ましく、これらを予備硫化原料油に対して予備硫化原料油の質量基準で1質量%程度添加することが好ましい。
[分解改質反応]
分解改質反応では、単環芳香族炭化水素製造用触媒に供給された原料油(水素化処理油を含む)を接触させ、反応させて、炭素数6〜8の単環芳香族炭化水素を含む生成物を得るものである。
[単環芳香族炭化水素製造用触媒]
単環芳香族炭化水素製造用触媒は、結晶性アルミノシリケートを含むものである。触媒の結晶性アルミノシリケートの含有量は、必要とされる分解改質反応の反応性や選択性もしくは触媒の形状や強度に応じて決定すればよく、特に限定されないものの、10〜100質量%が好ましい。固定床反応器に用いるので結晶性アルミノシリケートのみからなる触媒であってよい。強度を高めるためにバインダーを添加するのであれば、結晶性アルミノシリケートの含有量は20〜95質量%が好ましく、25〜90質量%がより好ましい。しかし、結晶性アルミノシリケートの含有量が10%を下回ると、十分な触媒活性を得るための触媒量が過大となるため好ましくない。
[結晶性アルミノシリケート]
結晶性アルミノシリケートとしては、単環芳香族炭化水素の収率をより高くできることから、中細孔ゼオライト及び/又は大細孔ゼオライトを主成分としたものであることが好ましい。
中細孔ゼオライトは、10員環の骨格構造を有するゼオライトであり、中細孔ゼオライトとしては、例えば、AEL型、EUO型、FER型、HEU型、MEL型、MFI型、NES型、TON型、WEI型の結晶構造のゼオライトが挙げられる。これらの中でも、単環芳香族炭化水素の収率をより高くできることから、MFI型が好ましい。
大細孔ゼオライトは、12員環の骨格構造を有するゼオライトであり、大細孔ゼオライトとしては、例えば、AFI型、ATO型、BEA型、CON型、FAU型、GME型、LTL型、MOR型、MTW型、OFF型の結晶構造のゼオライトが挙げられる。これらの中でも、工業的に使用できる点では、BEA型、FAU型、MOR型が好ましく、単環芳香族炭化水素の収率をより高くできることから、BEA型が好ましい。
結晶性アルミノシリケートは、中細孔ゼオライトおよび大細孔ゼオライト以外に、10員環以下の骨格構造を有する小細孔ゼオライト、14員環以上の骨格構造を有する超大細孔ゼオライトを含有してもよい。
ここで、小細孔ゼオライトとしては、例えば、ANA型、CHA型、ERI型、GIS型、KFI型、LTA型、NAT型、PAU型、YUG型の結晶構造のゼオライトが挙げられる。
超大細孔ゼオライトとしては、例えば、CLO型、VPI型の結晶構造のゼオライトが挙げられる。
また、結晶性アルミノシリケートは、ケイ素とアルミニウムとのモル比率(Si/Al比)が100以下であり、50以下であることが好ましい。結晶性アルミノシリケートのSi/Al比が100を超えると、単環芳香族炭化水素の収率が低くなる。
また、単環芳香族炭化水素の十分な収率を得るためには、結晶性アルミノシリケートのSi/Al比は10以上であることが好ましい。
本発明に係る単環芳香族炭化水素製造用触媒としては、さらにガリウム及び/又は亜鉛を含んでもよい。ガリウム及び/又は亜鉛を含むことで、より効率的なBTX製造が期待できる。
ガリウムおよび/または亜鉛を含む結晶性アルミノシリケートとしては、結晶性アルミノシリケートの格子骨格内にガリウムが組み込まれたもの(結晶性アルミノガロシリケート)、結晶性アルミノシリケートの格子骨格内に亜鉛が組み込まれたもの(結晶性アルミノジンコシリケート)、結晶性アルミノシリケートにガリウムを担持したもの(Ga担持結晶性アルミノシリケート)、結晶性アルミノシリケートに亜鉛を担持したもの(Zn担持結晶性アルミノシリケート)、それらを少なくとも1種以上含んだものが挙げられる。
Ga担持結晶性アルミノシリケート及び/又はZn担持結晶性アルミノシリケートは、結晶性アルミノシリケートにガリウム及び/又は亜鉛をイオン交換法、含浸法等の公知の方法によって担持したものである。この際に用いるガリウム源および亜鉛源は、特に限定されないものの、硝酸ガリウム、塩化ガリウム等のガリウム塩、酸化ガリウム、硝酸亜鉛、塩化亜鉛等の亜鉛塩、酸化亜鉛等が挙げられる。
触媒におけるガリウム及び/又は亜鉛の含有量の上限は、触媒全量を100質量%とした場合、5質量%以下であることが好ましく、3質量%以下であることがより好ましく、2質量%以下であることがさらに好ましく、1質量%以下であることがさらに好ましい。ガリウム及び/又は亜鉛の含有量が5質量%を超えると、単環芳香族炭化水素の収率が低くなるため好ましくない。
また、ガリウム及び/又は亜鉛の含有量の下限は、触媒全量を100質量%とした場合、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。ガリウム及び/又は亜鉛の含有量が0.01質量%未満であると、単環芳香族炭化水素の収率が低くなることがあり好ましくない。
結晶性アルミノガロシリケート及び/又は結晶性アルミノジンコシリケートは、SiO、AlO及びGaO/ZnO構造が骨格中において四面体配位をとる構造のもので、水熱合成によるゲル結晶化、結晶性アルミノシリケートの格子骨格中にガリウム及び/又は亜鉛を挿入する方法、または結晶性ガロシリケート及び/又は結晶性ジンコシリケートの格子骨格中にアルミニウムを挿入する方法で得ることができる。
また、単環芳香族炭化水素製造用触媒は、リンを含有するものが好ましい。触媒におけるリンの含有量は、触媒全量を100質量%とした場合、0.1〜10.0質量%であることが好ましい。リンの含有量の下限は、経時的な単環芳香族炭化水素の収率低下を防止できるため、0.1質量%以上が好ましく、0.2質量%以上であることがより好ましい。一方、リンの含有量の上限は、単環芳香族炭化水素の収率を高くできることから、10.0質量%以下が好ましく、6.0質量%以下がより好ましく、3.0質量%以下がさらに好ましい。
単環芳香族炭化水素製造用触媒にリンを含有させる方法としては、特に限定されないものの、例えばイオン交換法、含浸法等により、結晶性アルミノシリケートまたは結晶性アルミノガロシリケート、結晶性アルミノジンコシリケートにリンを担持させる方法、ゼオライト合成時にリン化合物を含有させて結晶性アルミノシリケートの骨格内の一部をリンに置き換える方法、ゼオライト合成時にリンを含有した結晶促進剤を用いる方法、などが挙げられる。その際に用いるリン酸イオン含有水溶液としては、特に限定されないものの、リン酸、リン酸水素二アンモニウム、リン酸二水素アンモニウム及びその他の水溶性リン酸塩などを任意の濃度で水に溶解させて調製したものを、好ましく使用することができる。
このような単環芳香族炭化水素製造用触媒は、前記のようにリンを担持した結晶性アルミノガロシリケート/結晶性アルミノジンコシリケート、又は、ガリウム/亜鉛及びリンを担持した結晶性アルミノシリケートを焼成(焼成温度300〜900℃)することにより、形成することができる。
また、単環芳香族炭化水素製造用触媒は、分解改質反応装置の反応形式に応じて、粉末状、粒状、ペレット状等に形成される。本発明では、固定床の反応器が用いられるので、粒状またはペレット状に形成されたものが用いられる。
粒状またはペレット状の触媒を得る場合には、必要に応じて、バインダーとして触媒に不活性な酸化物を配合した後、各種成形機を用いて成形すればよい。このような固定床反応器で用いる触媒としては、バインダーとしてシリカ、アルミナなどの無機物質が好ましく用いられる。
単環芳香族炭化水素製造用触媒がバインダー等を含有する場合、前述のリン含有量の好ましい範囲を満たしさえすれば、バインダーとしてリンを含むものを用いても構わない。
また、単環芳香族炭化水素製造用触媒がバインダーを含有する場合、バインダーとガリウム及び/又は亜鉛担持結晶性アルミノシリケートとを混合した後、またはバインダーと結晶性アルミノガロシリケート及び/又は結晶性アルミノジンコシリケートとを混合した後に、リンを添加して触媒を製造してもよい。
[反応形式]
分解改質反応させる際の反応形式としては、前記したように本発明では固定床が用いられる。
固定床は、流動床や移動床に比べて装置コストが格段に安価である。すなわち、建設コストや運転コストが、流動床や移動床に比べて安価である。したがって、固定床の反応器1基で反応と再生を繰り返す事も可能であるが、反応再生を連続して行うために、2基以上の反応器を設置することもできる。
固定床の分解改質反応装置では、分解改質反応の進行に連れて、前記触媒表面にコークが付着し、触媒の活性が低下する。このように活性が低下すると、この分解改質反応工程における炭素数2〜4のオレフィンの収率が上昇する一方で、炭素数6〜8の単環芳香族炭化水素(BTX留分)の収率が低下し、かつ炭素数2〜4のオレフィン並びに炭素数6〜8の単環芳香族炭化水素の総量としては減少する。従って、触媒の再生処理が必要となる。
[反応温度]
原料油を触媒と接触、反応させる際の反応温度は、特に制限されないものの、350〜700℃が好ましく、400〜650℃がより好ましい。反応温度が350℃未満では、反応活性が十分でない。反応温度が700℃を超えると、エネルギー的に不利になると同時に、コーク生成が著しく増大し目的物の製造効率が低下する。
[反応圧力]
原料油を触媒と接触、反応させる際の反応圧力は、0.1MPaG〜2.0MPaGである。すなわち、原料油と単環芳香族炭化水素製造用触媒との接触を、0.1MPaG〜2.0MPaGの圧力下で行う。
本発明は、水素化分解による従来の方法とは反応思想が全く異なるため、水素化分解では優位とされる高圧条件を全く必要としない。むしろ、必要以上の高圧は、分解を促進し、目的としない軽質ガスを副生するため好ましくない。また、高圧条件を必要としないことは、反応装置設計上においても優位である。すなわち、反応圧力が0.1MPaG〜2.0MPaGであれば、水素移行反応を効率的に行うことが可能である。
[接触時間]
原料油と触媒との接触時間は、実質的に所望する反応が進行すれば特に制限されないものの、例えば、触媒上のガス通過時間で2〜150秒が好ましく、3〜100秒がより好ましく、5〜80秒がさらに好ましい。接触時間が2秒未満では、実質的な反応が困難である。接触時間が150秒を超えると、コーキング等による触媒への炭素質の蓄積が多くなる、または分解による軽質ガスの発生量が多くなり、さらには装置も巨大となり好ましくない。
[再生処理]
分解改質反応処理を所定時間行ったら、分解改質反応処理の運転は別の分解改質反応装置に切り替え、分解改質反応処理の運転を停止した分解改質反応装置については、活性が低下した単環芳香族炭化水素製造用触媒の再生を行うことができる。反応を連続して行うために、2基以上の反応器を設置してもよいし、単一反応器で反応再生を繰り返す事も可能である。
触媒の活性低下は、主に触媒表面へのコークの付着が原因であるため、再生処理としては、触媒表面からコークを除去する処理を行う。具体的には、分解改質反応装置に空気を流通させ、触媒表面に付着したコークを燃焼させる。分解改質反応装置は充分に高温に維持されているため、単に空気を流通させるだけで、触媒表面に付着したコークは容易に燃焼する。ただし、通常の空気を分解改質反応装置に供給し流通させると、急激な燃焼を生じるおそれがある。そこで、予め窒素を混入して酸素濃度を下げた空気を、分解改質反応装置に供給し流通させるのが好ましい。すなわち、再生処理に用いる空気としては、例えば酸素濃度を数%〜10%程度に下げたものを用いるのが好ましい。また、必ずしも反応温度と再生温度を同一にする必要はなく、適宜好ましい温度を設定する事ができる。
[希釈処理]
また、本発明では、分解改質反応装置での分解改質反応処理において、触媒表面へのコークの付着を抑制するため、炭素数1〜3の飽和炭化水素、例えばメタンを共存させた状態で、原料油を処理する。メタンは、ほとんど反応性がなく、したがって分解改質反応装置内にて前記触媒と接触しても、反応を起こすことがない。よって、原料油に由来する重質の炭化水素が触媒表面に付着し触媒反応が進むのを、メタンは触媒表面での前記炭化水素の濃度を下げる希釈剤として作用することにより、これを抑制(妨害)する。したがって、メタンは、原料油に由来する重質の炭化水素が触媒表面に付着してコークとなるのを、抑制するようになる。なお、本願において原料油と炭素数1〜3の飽和炭化水素を共存させるとは双方が混合され反応器に導入されればよく、その方法や装置構成に特に限定はない。希釈するという観点から、十分に混合されるのが好ましい。
分解改質反応装置に供する炭素数1〜3の飽和炭化水素は、特に限定されないが、例えば、エチレン製造装置からの熱分解重質油を原料とする場合は、同じエチレン装置からのメタンを、LCOを原料とする場合は、流動接触分解装置から得られるオフガスをそれぞれ用いるなど入手しやすいものを用いる事ができる。その場合、例えば図2に示すようにメタンガスを加熱炉26で所定温度に加熱してもよい。また、分解改質反応にて生成したメタンを回収して用いる事もできる。上述の通り、炭素数1〜3の飽和炭化水素としては、反応性の最も低いメタンが好ましいが、メタンに代えてエタンやプロパンを用いることもできる。ただし、メタンとあわせて他の炭素数2〜3の飽和炭化水素を用いてもよく、これらが主成分であれば、他の飽和炭化水素ガスなどが同伴することも妨げるものではない。
分解改質反応における炭素数1〜3の飽和炭化水素/油比は、20〜2000NL/Lであることが好ましい。下限としては30NL/L以上がより好ましく、50NL/L以上がさらに好ましい。また、上限としては1800NL/L以下がより好ましく、1500NL/L以下がさらに好ましい。炭素数1〜3の飽和炭化水素/油比が20NL/L未満の場合には、希釈効果が充分でなく、触媒表面へのコークの付着を充分に抑制できなくなる。一方、炭素数1〜3の飽和炭化水素/油比が2000NL/Lを超える場合には、分解改質反応装置が大型化することでその建設コストが高くなり、オレフィンやBTXの製造コスト低減を損なう一因となってしまう。
以下、エチレン製造装置からの熱分解重質油を原料油として用いる場合の一実施形態を例として、図面を参照して詳しく説明する。図1は、本発明の炭素数6〜8の単環芳香族炭化水素の製造方法を実施するのに用いられるエチレン製造装置の一例を説明するための図であり、図2は、図1に示したエチレン製造装置の分解改質プロセスを説明するための図である。
まず、本発明の製造方法に係るエチレン製造装置の一例の概略構成と、本発明の製造方法に係るプロセスについて、図1を参照して説明する。
なお、本発明に係るエチレン製造装置の実施形態のうち、図2に示す分解改質プロセス以外の部分は、分解工程と分離精製工程を備えた公知のエチレン製造装置であってよい。従って、本発明に係るエチレン製造装置の実施形態には、既存のエチレン製造装置に本発明の分解改質プロセス部を追加したものも含まれる。公知のエチレン製造装置の例としては、非特許文献1に記載の装置をあげることができる。
本実施形態に係るエチレン製造装置は、スチームクラッカーやスチームクラッキング装置などと呼ばれるもので、図1に示すように分解炉1と、該分解炉1で生成した分解生成物から水素、エチレン、プロピレン、C4留分、炭素数6〜8の単環芳香族炭化水素を含む留分(BTX留分:分解ガソリン)をそれぞれ分離回収する生成物回収装置2と、を備えたものである。
分解炉1は、ナフサ留分や灯油留分、軽油留分等の原料を熱分解し、水素、エチレン、プロピレン、C4留分、BTX留分を生成するとともに、BTX留分より重質の残渣油(ボトム油)として熱分解重質油を生成するものである。この熱分解重質油は、Heavy Aromatic Residue油(HAR油)と呼ばれることもある。この分解炉1の運転条件としては、特に限定されることなく、一般的な条件で運転することができる。例えば、原料を希釈水蒸気とともに、熱分解反応温度770〜850℃にて、滞留時間(反応時間)0.1〜0.5秒で運転する方法が挙げられる。熱分解温度が770℃を下回ると分解が進まず、目的生産物が得られないことから、熱分解反応温度の下限は、775℃以上がより好ましく、780℃以上がさらに好ましい。一方、熱分解温度が850℃を超えると、ガス生成量が急増するため、分解炉1の運転に支障が出るため、熱分解反応温度の上限は、845℃以下がより好ましく、840℃以下がさらに好ましい。スチーム/原料(質量比)は、0.2〜0.9が望ましく、より望ましくは0.25〜0.8、さらに望ましくは0.3〜0.7である。原料の滞留時間(反応時間)は、より望ましくは0.15〜0.45秒であり、さらに望ましくは0.2〜0.4秒である。
生成物回収装置2は、熱分解重質油分離工程3を備え、さらに水素、エチレン、プロピレン、C4留分、炭素数6〜8の単環芳香族炭化水素(BTX留分:分解ガソリン)を含む留分をそれぞれ分離回収する各回収部を備えている。
熱分解重質油分離工程3は、本蒸留にかける前に、前記分解炉1で得られた分解生成物を所定の沸点より低い成分と高い成分とに分離する蒸留塔である。この熱分解重質油分離工程3で分離された低沸点成分は、ガスとして取り出され、分解ガスコンプレッサー4にて加圧される。低沸点成分には、エチレン製造装置が目的とする生成物、すなわち水素、エチレン、プロピレンや、さらにC4留分、分解ガソリン(BTX留分)が主に含まれるように、前記の所定の沸点が設定される。
また、熱分解重質油分離工程3で分離された高沸点成分(ボトム留分)が、熱分解重質油となるが、これは必要に応じて、さらに分離してもよい。例えば、ガソリン留分、軽質熱分解重質油、重質熱分解重質油などを蒸留塔などにより分離回収することができる。
熱分解重質油分離工程3で分離され、分解ガスコンプレッサー4にて加圧されたガス(分解ガス)は、洗浄などの後、深冷分離工程5で水素と水素よりも高沸点の成分とに分離される。次いで、水素よりも重質な留分は、脱メタン塔6に供給され、メタンが分離回収される。このような構成のもとに、深冷分離工程5の下流側に水素回収部7及びメタン回収部8が形成される。なお、回収された水素、メタンは、いずれも後述する新規プロセスにおいて用いられる。
脱メタン塔6にて分離された高沸点の成分は、脱エタン塔9に供給される。そして、この脱エタン塔9にてエチレン及びエタンと、これらより高沸点の成分とに分離される。脱エタン塔9で分離されたエチレン及びエタンは、エチレン精留塔10によってエチレンとエタンとに分離され、それぞれ回収されるようになっている。このような構成のもとに、エチレン精留塔10の下流側にエタン回収部11及びエチレン回収部12が形成される。なお、回収されたエチレンは、エチレン製造装置で製造する主製品となる。また、回収されたエタンは、ナフサ留分や灯油留分、軽油留分等の原料とともに分解炉1に供給され、リサイクルすることもできる。
脱エタン塔9にて分離された高沸点の成分は、脱プロパン塔13に供給される。そして、この脱プロパン塔13にてプロピレン及びプロパンと、これらより高沸点の成分とに分離される。脱プロパン塔13で分離されたプロピレン及びプロパンは、プロピレン精留塔14によってプロピレンが精留分離され、回収されるようになっている。このような構成のもとに、プロピレン精留塔14の下流側にプロパン回収部15及びプロピレン回収部16が形成される。回収されたプロピレンも、エチレンとともに、エチレン製造装置で製造する主製品となる。
脱プロパン塔13にて分離された高沸点の成分は、脱ペンタン塔17に供給される。そして、この脱ペンタン塔17にて炭素数5以下の成分とこれらより高沸点の成分、すなわち炭素数6以上の成分とに分離される。脱ペンタン塔17で分離された炭素数5以下の成分は、脱ブタン塔18によって主に炭素数4の成分からなるC4留分と主に炭素数5の成分からなるC5留分とに分離され、それぞれ回収されるようになっている。なお、脱ブタン塔18によって分離された炭素数4の成分は、さらに抽出蒸留装置などに供給し、ブタジエン、ブタン、イソブタン、ブチレンにそれぞれ分離回収することもできる。このような構成のもとに、脱ブタン塔18の下流側にブチレン回収部(図示せず)が形成される。
脱ペンタン塔17にて分離された高沸点の成分、すなわち炭素数6以上の成分は、主に炭素数6〜8の単環芳香族炭化水素を含んでおり、したがって分解ガソリンとして回収されるようになっている。このような構成のもとに、脱ペンタン塔17の下流側に分解ガソリン回収部19が形成される。
また、分解ガソリン回収部19に回収された分解ガソリン(BTX留分)は、この分解ガソリンをベンゼン、トルエン、キシレンにそれぞれ分離し回収するBTX精製装置20に供給される。ここでそれぞれに分離し回収することもでき、化学品生産の観点からは設置する事が望ましい。
その際、分解ガソリンに含まれる炭素数9以上の成分(C9+)は、BTX精製装置20にてBTX留分から分離されて回収される。分離するための装置をBTX精製装置20に設けることも出来る。この炭素数9以上の成分は、熱分解重質油分離工程3で分離された熱分解重質油と同様に、後述するオレフィン並びにBTX製造用の原料油として用いることができる。
次に、図1及び図2を参照して、このエチレン製造装置を用いた炭化水素の製造方法、すなわち本発明に係る炭素数6〜8の単環芳香族炭化水素の製造方法について説明する。
本実施形態に係るエチレン製造装置は、図1に示すように熱分解重質油分離工程3にて分離され、回収された熱分解重質油(HAR油)、すなわちBTX留分よりも重質な主に炭素数9以上の炭化水素(芳香族炭化水素)を原料油として、分解改質プロセス21においてオレフィン並びにBTX留分の生成を行うものである。また、分解ガソリン回収部19からBTX留分を回収した残りの重質油も原料として用いる事ができる。
なお、熱分解重質油分離工程3の後段にて、熱分解重質油を複数の留分に分離した際の一部の留分や、これらの分離した留分から他の化学品または燃料を製造した際の残油等も、分解炉1から得られる残渣油(ボトム油)の一部であり、したがって本発明の熱分解重質油、すなわちエチレン製造装置より得られる熱分解重質油に含まれる。これらの分離した留分から化学品または燃料を製造する例としては、炭素数9から10程度の軽質熱分解重質油から石油樹脂を製造する例などが挙げられる。また、分解ガソリン回収部19からBTX留分を回収した重質油留分を複数の留分に分離した際の一部の留分や、これらの分離した留分から他の化学品または燃料を製造した際の残油等も同様に熱分解重質油に含まれる。
本実施形態では、前記の分解改質プロセス21を実施するために、図2に示す装置構成を有している。図2に示す装置構成は、炭素数2〜4のオレフィン並びに炭素数6〜8の単環芳香族炭化水素(BTX留分)の生成を行うためのもので、前記のエチレン製造装置より得られる熱分解重質油を原料油として、前記オレフィンやBTX留分を生成する。
(熱分解重質油の性状)
本発明における熱分解重質油の性状としては、特に規定されないものの、以下の性状を有することが好ましい。
蒸留試験により得られる性状は、分解温度や分解原料により大きく変動するが10容量%留出温度(T10)は、145℃以上230℃以下のものが好ましく使用される。90容量%留出温度(T90)並びに終点に関しては、用いる留分によりさらに大きく変化するため制限はないが、熱分解重質油分離工程3から直接得られる留分であれば、例えば90容量%留出温度(T90)は400℃以上600℃以下、終点(EP)は450℃以上800℃以下の範囲のものが好ましく使用される。
また、15℃における密度は1.03g/cm以上1.08g/cm以下、50℃における動粘度は20mm/s以上45mm/s以下、硫黄含有量(硫黄分)は200質量ppm以上700質量ppm以下、窒素含有量(窒素分)は20質量ppm以下、芳香族分は80容量%以上であることが好ましい。
ここで、蒸留試験とは、JIS K 2254に規定する「石油製品―蒸留試験方法」に準拠して測定されるものを、15℃における密度とは、JIS K 2249に規定する「原油及び石油製品−密度試験方法及び密度・質量・容量換算表(抜粋)」の「振動式密度試験方法」に準拠して測定されるものを、50℃における動粘度とは、JIS K 2283「原油及び石油製品−動粘度試験方法及び粘度指数算出方法」に準拠して得られる値を、硫黄含有量とは、JIS K 2541―1992に規定する「原油及び石油製品―硫黄分試験方法」の「放射線式励起法」に準拠して測定される硫黄含有量を、窒素含有量とは、JIS K 2609「原油及び石油製品−窒素分試験方法」に準拠して測定される窒素含有量を、芳香族分とは、石油学会法JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ」で測定される全芳香族分の含有量を、それぞれ意味する。
ただし、本実施形態では、前記熱分解重質油を直接原料油とするのでなく、図2に示す前留塔30にて熱分解重質油を予め所定のカット温度(90容量%留出温度が390℃)で蒸留分離し、軽質留分(軽質熱分解重質油)と重質留分(重質熱分解重質油)とに分離する。そして、以下に示すような軽質留分を原料油とする。重質留分については、別に貯留し、例えば燃料として用いる。
(原料油)
本実施形態に係る原料油は、前記したエチレン製造装置から得られる熱分解重質油で、かつ、蒸留性状の90容量%留出温度が390℃以下のものである。すなわち、前留塔30にて蒸留処理され、蒸留性状の90容量%留出温度が390℃以下に調整された軽質熱分解重質油が、原料油として用いられる。このように90容量%留出温度を390℃以下にすることで、原料油は炭素数が9〜12の芳香族炭化水素が主となり、後述する単環芳香族炭化水素製造用触媒との接触及び反応による分解改質反応工程において、BTX留分の収率を高めることができる。また、BTX留分の収率をより高めるためには、好ましくは10容量%留出温度(T10)が140℃以上220℃以下、90容量%留出温度(T90)が220℃以上390℃以下、より好ましくはT10が160℃以上200℃以下、T90が240℃以上350℃以下である。なお、分解改質プロセス21に供される際に原料油蒸留性状の10容量%留出温度(T10)が140℃以上かつ90容量%留出温度(T90)が390℃以下である場合は、必ずしも前留塔30にて蒸留処理する必要はない。
ここで、蒸留性状とは、JIS K 2254に規定する「石油製品―蒸留試験方法」に準拠して測定されるものである。
なお、本実施形態に係る原料油は、エチレン製造装置から得られる熱分解重質油を含むものであれば、他の基材を含むものであってもよい。
また、本実施形態に係る原料油としては、前留塔30にて蒸留処理されて得られた軽質熱分解重質油以外に、前述したように分解ガソリン回収部19にて分離回収された炭素数9以上の成分(芳香族炭化水素)も、用いられる。
また、その前の処理(前工程)で蒸留性状の10容量%留出温度(T10)が140℃以上かつ90容量%留出温度(T90)が390℃以下に調整されている留分は、必ずしも前留塔30にて蒸留処理をする必要がない。そのため、後述するように図2に示す熱分解重質油とは別に、前留塔30の後段側にて分解改質プロセス21を構成する装置である水素化反応装置31あるいは分解改質反応装置33に直接供給することも可能である。
このようにして得られた原料油の一部または全てを、水素化反応装置31によって部分水素化処理する。すなわち、原料油の一部または全てを水素化反応工程に供する。
本実施形態では、前記の軽質熱分解重質油のみ、すなわち原料油の一部のみを部分水素化処理する。熱分解重質油を複数の留分に分離した際の一部の留分あるいはこれらの分離した留分から他の化学品または燃料を製造した際の残油等のうち炭素数9の炭化水素を主とする成分や分解ガソリン回収部19にて分離回収された炭素数9以上の成分については、水素化処理を省略できる。ただし、これらの成分についても、水素化反応装置31によって部分水素化処理してもよいのはもちろんである。
(オレフィン並びにBTX留分の精製回収)
分解改質反応装置33から導出された分解改質反応生成物には、炭素数2〜4のオレフィンを含有するガス、BTX留分、C9以上の芳香族炭化水素が含まれる。そこで、分解改質反応装置33の後段に設けられた精製回収装置34により、この分解改質反応生成物を各成分に分離し、精製回収する。
精製回収装置34は、BTX留分回収塔35と、ガス分離塔36とを有している。
BTX留分回収塔35は、前記の分解改質反応生成物を蒸留し、炭素数8以下の軽質留分と炭素数9以上の重質留分とに分離する。ガス分離塔36は、BTX留分回収塔35で分離された炭素数8以下の軽質留分を蒸留し、ベンゼン、トルエン、粗キシレンを含むBTX留分と、これらより低沸点のガス留分とに分離する。なお、これらBTX留分回収塔35、ガス分離塔36では、後述するようにそれぞれで得られる留分を再処理するため、その蒸留精度を高める必要はなく、蒸留操作を比較的大まかに行うことができる。
(生成物回収工程)
前記したようにガス分離塔36では、その蒸留操作を比較的大まかに行っているため、ガス分離塔36で分離されたガス留分には、主に、水素、エチレン、プロピレン、ブチレン等のC4留分、BTXが含まれる。そこで、これらガス留分、すなわち前記分解改質反応工程で得られた生成物の一部となるガス留分を、図1に示した生成物回収装置2で再度処理する。すなわち、これらガス留分を、分解炉1で得られた分解生成物とともに、熱分解重質油分離工程3に供する。そして、主に分解ガスコンプレッサー4、脱メタン塔6等にて処理することで水素やメタンを分離回収し、さらに脱エタン塔9、エチレン精留塔10にて処理することでエチレンを回収する。また、脱プロパン塔13、プロピレン精留塔14にて処理することでプロピレンを回収し、脱ペンタン塔17、脱ブタン塔18等にて処理することでブチレンやブタジエンなどと、分解ガソリン(BTX留分)を回収する。
図2に示したガス分離塔36で分離されたベンゼン、トルエン、キシレンについては、図1に示すBTX精製装置20に供し、ベンゼン、トルエン、キシレンにそれぞれ精製及び精留して、製品として分離回収する。また、本実施形態ではBTXをまとめて回収しているが、後段の装置構成等によってはそれぞれ別々に回収しても良い。例えば、キシレンに関しては、BTX精製装置ではなく、直接パラキシレン製造装置などに供給しても良い。
(リサイクル工程)
また、BTX留分回収塔35で分離された炭素数9以上の重質留分(ボトム留分)については、リサイクル手段としてのリサイクル路37(リサイクル工程)によって水素化反応装置31に戻し、前留塔30から導出される軽質熱分解重質油とともに再度水素化反応工程に供する。すなわち、この重質留分(ボトム留分)は、水素化反応装置31を経て分解改質反応装置33に戻され、分解改質反応工程に供されるようになる。なお、リサイクル工程(リサイクル路37)では、例えば蒸留性状の90容量%留出温度(T90)が390℃を超えるような重質分については、水素化反応装置31(水素化反応工程)に供する前にカットバックし、重質熱分解重質油とともに貯留するのが好ましい。90容量%留出温度(T90)が390℃を超える留分がほとんど含まれない場合でも、反応性の低い留分が蓄積される場合などは、一定量を系外に排出することが好ましい。
以上、分解改質反応装置33から導出された分解改質反応生成物の精製回収および分解改質反応工程へのリサイクルについて説明したが、前記分解改質反応生成物を全てエチレン製造装置の生成物回収装置2に戻して回収処理することもでき、その場合精製回収装置34の設置は不要である。また、BTX留分回収塔35の塔底から得られる炭素数9以上の重質留分(ボトム留分)は水素化反応装置31にリサイクルし、塔頂から得られる炭素数8以下の留分はエチレン製造装置の生成物回収装置2に戻して一括して処理するようにしてもよい。
本実施形態の炭素数6〜8の単環芳香族炭化水素の製造方法によれば、原料油とメタンとを、分解改質反応装置33(固定床反応器)に充填した単環芳香族炭化水素製造用触媒に接触させ、反応させて、BTXを含む生成物を得るようにしたので、分解改質反応装置33内にてほとんど反応性がないメタンを原料油と共存させることによってメタンを希釈剤として作用させることにより、触媒表面にコークが付着するのを抑制し、触媒の劣化を抑制することができる。したがって、BTXの生産効率を高めることができるとともに、触媒の再生を行う頻度を少なくし、また再生時間を短くすることができるため、分解改質反応装置33の運転コストを低減することができる。よって、BTXの製造コストを低減することができる。また、分解改質反応装置33として、流動床反応器に比べて安価である固定床反応器を用いていることによっても、BTXの製造コストを低減することができる。
また、エチレン製造装置から得られる熱分解重質油の部分水素化物からなる原料油を、分解改質反応装置33によって分解改質反応させ、得られた生成物の一部をエチレン製造装置の生成物回収装置2で回収処理するようにしたので、分解改質反応装置33で副生する軽質オレフィンを、新たな装置を建設することなく既存の生成物回収装置2で容易に回収することができる。したがって、コストの上昇を抑えつつ、軽質オレフィンをより高い生産効率で製造することができる。また、分解改質反応装置33によってBTXも効率よく製造することができる。
また、分解改質反応装置33として2基以上の固定床反応器を用い、これらを定期的に切り替えながら分解改質反応とオレフィン及び単環芳香族炭化水素製造用触媒の再生とを繰り返すようにしているので、BTX留分を高い生産効率で製造することができる。また、流動床反応器に比べて格段に装置コストが安価な固定床反応器を用いているので、分解改質プロセス21に用いる装置構成のコストを充分に低く抑えることができる。さらに、BTX留分とあわせて生成する軽質のオレフィンについても、エチレン製造装置の既存の生成物回収装置2で容易に回収することができるため、BTX留分とともに軽質オレフィンも高い生産効率で製造することができる。
なお、本発明は前記実施形態に限定されることなく、本発明の主旨を逸脱しない範囲で種々の変更が可能である。
例えば、前記実施形態では、原料油として、エチレン製造装置から得られる熱分解重質油もしくは該熱分解重質油の部分水素化物を用いているが、本発明の原料油としては、10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下であれば、前記の熱分解重質油もしくは該熱分解重質油の部分水素化物以外の油を用いてもよい。具体的には、前記蒸留性状を満たした、FCC装置で生成する分解軽油(LCO)もしくは該分解軽油の部分水素化物を、本発明の原料油として用いてもよい。その場合にも、BTXの製造コストを低減することができる。また、複数の原料油の混合物であっても、それが10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下という蒸留性状を満たせば該混合物は本願原料油として用いることができる。その場合にも、BTX留分の製造コストを低減することができる。
また、前記実施形態では、分解改質反応装置33によって分解改質反応させ、得られた生成物の一部をエチレン製造装置の生成物回収装置2で回収処理するようにしたが、分解改質反応によって得られた生成物の全てを、エチレン製造装置の生成物回収装置2で回収処理するようにしてもよい。
さらに、前記実施形態では、分解改質反応装置33によって分解改質反応させ、得られた生成物の一部をエチレン製造装置の生成物回収装置2で回収処理するようにしたが、分解改質反応によって得られた生成物に対しては、エチレン製造装置の生成物回収装置2で回収処理することなく、エチレン製造装置とは異なる他のプラントの回収装置により、各成分に回収処理するようにしてもよい。他の装置としては例えばFCC装置をあげることができる。
以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[原料油の水素化処理油の製造方法]
(水素化処理用触媒の調製)
濃度5質量%のアルミン酸ナトリウム水溶液1kgに水ガラス3号を加え、70℃に保温した容器に入れた。また、濃度2.5質量%の硫酸アルミニウム水溶液1kgに硫酸チタン(IV)水溶液(TiO含有量として24質量%)を加えた溶液を、70℃に保温した別の容器において調製し、この溶液を、上述のアルミン酸ナトリウムを含む水溶液に15分間で滴下した。上記水ガラスおよび硫酸チタン水溶液の量は、所定のシリカ、チタニアの含有量となるように調整した。
混合溶液のpHが6.9〜7.5になる時点を終点とし、得られたスラリー状生成物をフィルターに通して濾取し、ケーキ状のスラリーを得た。このケーキ状スラリーを、還流冷却器を取り付けた容器に移し、蒸留水300mlと27%アンモニア水溶液3gとを加え、70℃で24時間加熱攪拌した。攪拌処理後のスラリーを混練装置に入れ、80℃以上に加熱し水分を除去ながら混練し、粘土状の混練物を得た。
得られた混練物を押出し成形機によって直径1.5mmシリンダーの形状に押出し、110℃で1時間乾燥した後、550℃で焼成し、成形担体を得た。得られた成形担体300gを取り、蒸留水150mlに三酸化モリブデン、硝酸コバルト(II)6水和物、リン酸(濃度85%)を加え、溶解するまでリンゴ酸を加えて調製した含浸溶液をスプレーしながら含浸した。
使用する三酸化モリブデン、硝酸コバルト(II)6水和物およびリン酸の量は、所定の担持量となるよう調整した。含浸溶液に含浸した試料を110℃で1時間乾燥した後、550℃で焼成し、触媒Aを得た。触媒Aは、担体基準で、SiOの含有量が1.9質量%、TiOの含有量が2.0質量%、触媒基準でMoOの担持量が22.9質量%、CoOの担持量が2.5質量%、P担持量が4.0質量%であった。
(原料油の調製)
図1に示すエチレン製造装置から得られる熱分解重質油を、蒸留操作により軽質分のみを分離し、熱分解重質油Aを調製した。また、FCC装置から得られる分解軽油Bを用意した。各原料油の性状を表1に示す。
Figure 2014065419
(原料油の水素化処理反応)
固定床連続流通式反応装置に上記触媒Aを充填し、まず触媒の予備硫化を行った。すなわち、15℃における密度851.6kg/m、蒸留試験における初留点231℃、終留点376℃、予備硫化原料油の質量を基準とした硫黄原子としての硫黄分1.18質量%、色相L1.5である直留系軽油相当の留分(予備硫化原料油)に、該留分の質量基準で1質量%のDMDSを添加し、これを48時間前記触媒Aに対して連続的に供給した。その後、表2に示す熱分解重質油A、並びに分解軽油Bをそれぞれ原料油として用い、反応温度300℃、LHSV=1.0h−1、水素油比500NL/L、圧力3MPaにて水素化処理を行った。得られた水素化熱分解重質油A−1、並びに水素化分解軽油B−1の性状を表2に示す。
Figure 2014065419
表1、2の蒸留性状は、JIS K 2254に規定する「石油製品―蒸留試験方法」にそれぞれ準拠して測定した。また、表1中の15℃のときの密度はJIS K 2254に規定する「石油製品―蒸留試験方法」に、30℃及び40℃のときの動粘度はJIS K 2283に規定する「原油及び石油製品―動粘度試験方法及び粘度指数算出方法」に、硫黄分はJIS K 2541に規定する「原油及び石油製品―硫黄分試験方法」に、それぞれ準拠して測定した。
また、表1、2の各組成は、シリカゲルクロマト分別により得た飽和分および芳香族分について、EIイオン化法による質量分析(装置:日本電子(株)製、JMS−700)を行い、ASTM D2425“Standard Test Method for Hydrocarbon Types in Middle Distillates by Mass Spectrometry”に準拠して炭化水素のタイプ分析により算出した。
[オレフィン並びに芳香族炭化水素の製造方法]
〔単環芳香族炭化水素製造用触媒調製例1〕
「リン含有プロトン型MFIゼオライトの調製」
硅酸ナトリウム(Jケイ酸ソーダ3号、SiO:28〜30質量%、Na:9〜10質量%、残部水、日本化学工業(株)製)の1706.1gおよび水の2227.5gからなる溶液(A)と、Al(SO・14〜18HO(試薬特級、和光純薬工業(株)製)の64.2g、テトラプロピルアンモニウムブロマイドの369.2g、HSO(97質量%)の152.1g、NaClの326.6gおよび水の2975.7
gからなる溶液(B)をそれぞれ調製した。
次いで、溶液(A)を室温で撹拌しながら、溶液(A)に溶液(B)を徐々に加えた。得られた混合物をミキサーで15分間激しく撹拌し、ゲルを解砕して乳状の均質微細な状態にした。
次いで、この混合物をステンレス製のオートクレーブに入れ、温度を165℃、時間を72時間、撹拌速度を100rpmとする条件で、自己圧力下に結晶化操作を行った。結晶化操作の終了後、生成物を濾過して固体生成物を回収し、約5リットルの脱イオン水を用いて洗浄と濾過を5回繰り返した。濾別して得られた固形物を120℃で乾燥し、さらに空気流通下、550℃で3時間焼成した。
得られた焼成物は、X線回析分析(機種名:Rigaku RINT−2500V)の結果、MFI構造を有するものであることが確認された。また、蛍光X線分析(機種名:Rigaku ZSX101e)による、SiO/Al比(モル比)は、65であった。また、この結果から計算された格子骨格中に含まれるアルミニウム元素は1.3質量%であった。
次いで、得られた焼成物の1g当り5mLの割合で、30質量%硝酸アンモニウム水溶液を加え、100℃で2時間加熱、撹拌した後、濾過、水洗した。この操作を4回繰り返した後、120℃で3時間乾燥して、アンモニウム型MFIゼオライトを得た。その後、780℃で3時間焼成を行い、プロトン型MFIゼオライトを得た。
次いで、得られたプロトン型MFIゼオライト30gに、2.0質量%のリン(プロトン型MFIゼオライト総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、リン含有プロトン型MFIゼオライトを得た。得られた触媒の初期活性における影響を排除するため、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理を実施した。
「リン含有プロトン型BEAゼオライトの調製」
59.1gのケイ酸(SiO2 :89質量%)に四エチルアンモニウムヒドロオキシド水溶液(40質量%)を202gに溶解することにより、第一の溶液を調製した。この第一の溶液を、0.74gのAl−ペレット及び2.69gの水酸化ナトリウムを17.7gの水に溶解して調製した第二の溶液に加えた。このようにして第一の溶液と第二の溶液の二つの溶液を混合して、組成(酸化物のモル比換算)が、2.4NaO−20.0(TEA)−Al−64.0SiO−612HOの反応混合物を得た。
この反応混合物を0.3Lオートクレーブに入れ、150℃で6日間加熱した。そして、得られた生成物を母液から分離し、蒸留水で洗った。
得られた生成物のX線回析分析(機種名:Rigaku RINT−2500V)の結果、XRDパターンよりBEA型ゼオライトであることを確認した。
その後、硝酸アンモニウム水溶液(30質量%)でイオン交換した後、BEA型ゼオライトを550℃で3時間焼成を行い、プロトン型BEAゼオライトを得た。
「リン含有プロトン型BEAゼオライトを含む触媒の調製」
次いで、プロトン型BEAゼオライト30gに、2.0質量%のリン(結晶性アルミノシリケート総質量を100質量%とした値)が担持されるようにリン酸水素二アンモニウム水溶液30gを含浸させ、120℃で乾燥した。その後、空気流通下、780℃で3時間焼成して、プロトン型BEAゼオライトとリンとを含有する触媒を得た。得られた触媒の初期活性における影響を排除するため、処理温度650℃、処理時間6時間、水蒸気100質量%の環境下で水熱処理を実施した。その後、水熱処理したリン担持プロトン型BEAゼオライト1部に対して、同じく水熱処理したリン含有プロトン型MFIゼオライト9部を混合する事により得られた水熱劣化処理触媒に39.2MPa(400kgf)の圧力をかけて打錠成型し、粗粉砕して20〜28メッシュのサイズに揃えて、粒状体の触媒Bを得た。
[実施例1〜4、比較例1〜2]
(オレフィン並びに芳香族炭化水素の製造)
触媒B(10ml)を反応器に充填した流通式反応装置を用い、反応温度を550℃、反応圧力を0.1MPaG、原料と触媒との接触時間を25秒とする条件のもとで、表3に示す各原料油並びに希釈材を所定の比率にて反応器内に導入し、触媒と接触、反応させた。用いた原料油と希釈剤との組み合わせにより、表3に示すように実施例1〜4、および比較例1〜2とした。
Figure 2014065419
この条件にて表3に記載の時間反応させて、炭素数2〜4のオレフィン並びに炭素数6〜8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を製造し、反応装置に直結されたFIDガスクロマトグラフにより生成物の組成分析を行って、触媒活性を評価した。評価結果を表3に示す。ここで、オレフィンとは炭素数2〜4のオレフィンを、BTXとは炭素数6〜8の芳香族化合物を、重質分とはBTXより重質の生成物を、オレフィン以外のガスおよびナフサとは前記オレフィン、BTX、重質分以外の生成物をいう。
表3に示す結果より、炭素数1〜3の飽和炭化水素を希釈材として原料と共存させた実施例1〜4は、共存させなかった比較例1〜2に対し、炭素数2〜4のオレフィン並びに炭素数6〜8の単環芳香族炭化水素(ベンゼン、トルエン、キシレン)を収率良く製造することができることがわかった。また、表4は実施例1と比較例1におけるコーク生成量を示し、希釈剤の導入によりコーク生成が抑制されていることがわかった。すなわち、希釈材が一定以上導入されていれば、コーク生成を抑制でき結果としてオレフィン並びにBTX収率は大きく変わらないが、希釈材がないとBTX収率が大きく低下した。
したがって、本発明の実施例1〜4では、軽質炭化水素を導入することにより、オレフィン並びにBTXを効率よく製造できることが確認された。
Figure 2014065419
本発明は、単環芳香族炭化水素の製造方法に関する。本発明によれば、BTXの製造コスト低減を可能にすることができる。
1…分解炉、31…水素化反応装置、33…分解改質反応装置(固定床反応器)

Claims (7)

  1. 10容量%留出温度が140℃以上かつ90容量%留出温度が390℃以下である原料油と、炭素数1〜3の飽和炭化水素とを、固定床反応器に充填した結晶性アルミノシリケートを含有する単環芳香族炭化水素製造用触媒に接触させ、反応させて、炭素数6〜8の単環芳香族炭化水素を含む生成物を得る分解改質反応工程を有する単環芳香族炭化水素の製造方法。
  2. 前記炭素数1〜3の飽和炭化水素がメタンである、請求項1記載の単環芳香族炭化水素の製造方法。
  3. 前記原料油が、エチレン製造装置から得られる熱分解重質油もしくは該熱分解重質油の部分水素化物である、請求項1〜2に記載の単環芳香族炭化水素の製造方法。
  4. 前記原料油が、分解軽油もしくは該分解軽油の部分水素化物である、請求項1〜2に記載の単環芳香族炭化水素の製造方法。
  5. 前記分解改質反応工程では、2基以上の固定床反応器を用い、これらを定期的に切り替えながら分解改質反応と前記単環芳香族炭化水素製造用触媒の再生とを繰り返す、請求項1〜4のいずれか一項に記載の単環芳香族炭化水素の製造方法。
  6. 前記分解改質反応工程で用いる単環芳香族炭化水素製造用触媒に含有される結晶性アルミノシリケートが、中細孔ゼオライト及び/又は大細孔ゼオライトを主成分としたものである、請求項1〜5のいずれか一項に記載の単環芳香族炭化水素の製造方法。
  7. 前記分解改質反応工程で用いる単環芳香族炭化水素製造用触媒がリンを含む、請求項1〜6のいずれか一項に記載の単環芳香族炭化水素の製造方法。
JP2014543372A 2012-10-25 2013-10-25 単環芳香族炭化水素の製造方法 Pending JPWO2014065419A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012236134 2012-10-25
JP2012236134 2012-10-25
PCT/JP2013/079040 WO2014065419A1 (ja) 2012-10-25 2013-10-25 単環芳香族炭化水素の製造方法

Publications (1)

Publication Number Publication Date
JPWO2014065419A1 true JPWO2014065419A1 (ja) 2016-09-08

Family

ID=50544790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014543372A Pending JPWO2014065419A1 (ja) 2012-10-25 2013-10-25 単環芳香族炭化水素の製造方法

Country Status (6)

Country Link
US (1) US9670420B2 (ja)
EP (1) EP2913381A4 (ja)
JP (1) JPWO2014065419A1 (ja)
KR (1) KR20150077424A (ja)
CN (1) CN104755594A (ja)
WO (1) WO2014065419A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10099972B2 (en) * 2013-12-06 2018-10-16 Exxonmobil Upstream Research Company Methods and systems for producing liquid hydrocarbons
JP6693826B2 (ja) * 2016-07-20 2020-05-13 Jxtgエネルギー株式会社 低級オレフィン及び炭素数6〜8の単環芳香族炭化水素の製造方法、低級オレフィン及び炭素数6〜8の単環芳香族炭化水素の製造装置
CN112742458A (zh) * 2019-10-30 2021-05-04 中国石油化工股份有限公司 加氢裂化催化剂及其制备方法
CN111437873A (zh) * 2020-04-08 2020-07-24 广西华大骄阳能源环保科技有限公司 一种利用天然气催化重质原油精炼的催化剂及其制备方法
CN114433111B (zh) * 2020-10-30 2023-08-25 宁波中金石化有限公司 一种重芳烃油加氢精制催化剂及重芳烃油加工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312905A (en) * 1976-07-22 1978-02-06 Taiseki Kunugi Deslufurization method of hydrocarbons
JPS59179589A (ja) * 1983-03-21 1984-10-12 シエブロン・リサ−チ・コンパニ− 炭化水素転化法
JPH03288548A (ja) * 1990-04-02 1991-12-18 Uop Inc 炭化水素脱水素触媒
JPH08157399A (ja) * 1994-10-03 1996-06-18 Sanyo Sekiyu Kagaku Kk 芳香族炭化水素の製造方法
WO2007032448A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation エチレン及びプロピレンの製造方法
WO2012036186A1 (ja) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
JP2012201797A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5002915A (en) * 1989-05-30 1991-03-26 Mobil Oil Corp. Process for catalyst regeneration with flue gas
US5877368A (en) 1994-10-03 1999-03-02 Sanyo Petrochemical Co., Ltd. Method for producing aromatic hydrocarbons
US5990032A (en) * 1997-09-30 1999-11-23 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
WO2008018522A1 (fr) * 2006-08-07 2008-02-14 Nippon Oil Corporation Procédé de production d'hydrocarbures aromatiques
CN102458657B (zh) * 2009-06-30 2015-07-22 吉坤日矿日石能源株式会社 单环芳香族烃制造用催化剂及单环芳香族烃的制造方法
KR101633534B1 (ko) 2009-07-29 2016-06-27 제이엑스 에네루기 가부시키가이샤 단환 방향족 탄화수소 제조용 촉매 및 단환 방향족 탄화수소의 제조 방법
JP5868012B2 (ja) * 2011-03-25 2016-02-24 Jx日鉱日石エネルギー株式会社 単環芳香族炭化水素の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5312905A (en) * 1976-07-22 1978-02-06 Taiseki Kunugi Deslufurization method of hydrocarbons
JPS59179589A (ja) * 1983-03-21 1984-10-12 シエブロン・リサ−チ・コンパニ− 炭化水素転化法
JPH03288548A (ja) * 1990-04-02 1991-12-18 Uop Inc 炭化水素脱水素触媒
JPH08157399A (ja) * 1994-10-03 1996-06-18 Sanyo Sekiyu Kagaku Kk 芳香族炭化水素の製造方法
WO2007032448A1 (ja) * 2005-09-16 2007-03-22 Asahi Kasei Chemicals Corporation エチレン及びプロピレンの製造方法
WO2012036186A1 (ja) * 2010-09-14 2012-03-22 Jx日鉱日石エネルギー株式会社 芳香族炭化水素の製造方法
JP2012201797A (ja) * 2011-03-25 2012-10-22 Jx Nippon Oil & Energy Corp 単環芳香族炭化水素の製造方法

Also Published As

Publication number Publication date
EP2913381A4 (en) 2016-06-22
KR20150077424A (ko) 2015-07-07
CN104755594A (zh) 2015-07-01
US20150259610A1 (en) 2015-09-17
WO2014065419A1 (ja) 2014-05-01
EP2913381A1 (en) 2015-09-02
US9670420B2 (en) 2017-06-06

Similar Documents

Publication Publication Date Title
JP6239584B2 (ja) 単環芳香族炭化水素の製造方法
KR101814850B1 (ko) 방향족 탄화수소의 제조 방법
JP5485088B2 (ja) 芳香族炭化水素の製造方法
JP6650391B2 (ja) アルミノシリケート触媒の製造方法、アルミノシリケート触媒、及び単環芳香族炭化水素の製造方法
WO2014065419A1 (ja) 単環芳香族炭化水素の製造方法
JP6082403B2 (ja) オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
JP6130852B2 (ja) オレフィン及び単環芳香族炭化水素の製造方法、並びにエチレン製造装置
JP6446434B2 (ja) 水素化油の製造方法及び単環芳香族炭化水素の製造方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170424

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170516