JPWO2014007287A1 - 発光素子材料および発光素子 - Google Patents

発光素子材料および発光素子 Download PDF

Info

Publication number
JPWO2014007287A1
JPWO2014007287A1 JP2013530438A JP2013530438A JPWO2014007287A1 JP WO2014007287 A1 JPWO2014007287 A1 JP WO2014007287A1 JP 2013530438 A JP2013530438 A JP 2013530438A JP 2013530438 A JP2013530438 A JP 2013530438A JP WO2014007287 A1 JPWO2014007287 A1 JP WO2014007287A1
Authority
JP
Japan
Prior art keywords
group
ring
light emitting
general formula
substituted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013530438A
Other languages
English (en)
Other versions
JP6318617B2 (ja
Inventor
泰宜 市橋
泰宜 市橋
田中 大作
大作 田中
池田 武史
武史 池田
新井 猛
猛 新井
池田 篤
篤 池田
富永 剛
剛 富永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2014007287A1 publication Critical patent/JPWO2014007287A1/ja
Application granted granted Critical
Publication of JP6318617B2 publication Critical patent/JP6318617B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains three hetero rings
    • C07D471/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/20Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the material in which the electroluminescent material is embedded
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • H10K50/165Electron transporting layers comprising dopants

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本発明の目的は発光効率、駆動電圧、耐久寿命の全てを改善した有機薄膜発光素子を提供することであり、本発明の発光素子材料はフルオランテン骨格を含む特定の化合物を有することを特徴とする。

Description

本発明は、電気エネルギーを光に変換できる発光素子およびそれに用いられる材料に関する。本発明は、表示素子、フラットパネルディスプレイ、バックライト、照明、インテリア、標識、看板、電子写真機および光信号発生器などの分野に利用可能である。
陰極から注入された電子と陽極から注入された正孔が両極に挟まれた有機蛍光体内で再結合する際に発光するという有機薄膜発光素子の研究が、近年活発に行われている。この発光素子は、薄型で、かつ、低駆動電圧下での高輝度発光と、蛍光材料を選ぶことにより多色発光が可能であることが特徴であり、注目を集めている。
この研究は、コダック社のC.W.Tangらによって有機薄膜素子が高輝度に発光することが示されて以来、多数の実用化検討がなされており、有機薄膜発光素子は、携帯電話のメインディスプレイなどに採用されるなど着実に実用化が進んでいる。しかし、まだ技術的な課題も多く、中でも素子の高効率化と長寿命化の両立は大きな課題のひとつである。
有機薄膜発光素子には、発光効率の向上、駆動電圧の低下、耐久性の向上を満たす必要がある。中でも、発光効率と耐久寿命の両立が大きな課題となっている。例えば、発光効率、並びに耐久寿命を向上させるために、フルオランテン骨格や含窒素複素環を有する材料が開発されている(例えば、特許文献1〜3参照)。
国際公開第2010/114264号 国際公開第2007/100010号 国際公開第2004/053019号
しかしながら、従来の技術では素子の駆動電圧を十分に下げることは困難であり、また駆動電圧を下げることができたとしても、素子の発光効率、耐久寿命が不十分であった。このように、高い発光効率、低駆動電圧、さらに耐久寿命も両立させる技術は未だ見出されていない。
本発明は、かかる従来技術の問題を解決し、発光効率、駆動電圧、耐久寿命の全てを改善した有機薄膜発光素子を提供することを目的とするものである。
本発明は、下記一般式(1)で表される化合物を有することを特徴とする発光素子材料である。
Figure 2014007287
式中、Zは下記一般式(2)で表され、Arは下記一般式(3)で表される。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。
Figure 2014007287
式中、環Aおよび環Bは、それぞれ、置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Aおよび環Bが置換されている場合の置換基、ならびにRは、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。Rは水素であってもよい。RおよびRはアリール基またはヘテロアリール基である。またRおよびRが縮合して環を形成していてもよい。但し、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。)
Figure 2014007287
式中、R101〜R110はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R101〜R110は隣接する置換基同士で環を形成していてもよい。但し、ベンゼン環は形成しない。また、R101〜R110のうちいずれか一つの位置でLと連結する。
本発明により、発光効率、駆動電圧、耐久寿命を両立した有機薄膜発光素子を提供することができる。
一般式(1)で表される化合物について詳細に説明する。
Figure 2014007287
式中、Zは下記一般式(2)で表され、Arは下記一般式(3)で表される。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。
Figure 2014007287
式中、環Aおよび環Bは、それぞれ、置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Aおよび環Bが置換されている場合の置換基、ならびにRは、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。Rは水素であってもよい。RおよびRはアリール基またはヘテロアリール基である。またRおよびRが縮合して環を形成していてもよい。但し、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。
Figure 2014007287
式中、R101〜R110はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R101〜R110は隣接する置換基同士で環を形成していてもよい。但し、ベンゼン環は形成しない。また、R101〜R110のうちいずれか一つの位置でLと連結する。
上記の全ての基において、水素は重水素であってもよい。また、アルキル基とは、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基などの飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。置換されている場合の追加の置換基には特に制限は無く、例えば、アルキル基、アリール基、ヘテロアリール基等を挙げることができ、この点は、以下の記載にも共通する。また、アルキル基の炭素数は特に限定されないが、入手の容易性やコストの点から、好ましくは1以上20以下、より好ましくは1以上8以下の範囲である。
シクロアルキル基とは、例えば、シクロプロピル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキル基部分の炭素数は特に限定されないが、好ましくは、3以上20以下の範囲である。
複素環基とは、例えば、ピラン環、ピペリジン環、環状アミドなどの炭素以外の原子を環内に有する脂肪族環を示し、これは置換基を有していても有していなくてもよい。複素環基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
アルケニル基とは、例えば、ビニル基、アリル基、ブタジエニル基などの二重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルケニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
シクロアルケニル基とは、例えば、シクロペンテニル基、シクロペンタジエニル基、シクロヘキセニル基などの二重結合を含む不飽和脂環式炭化水素基を示し、これは置換基を有していても有していなくてもよい。
アルキニル基とは、例えば、エチニル基などの三重結合を含む不飽和脂肪族炭化水素基を示し、これは置換基を有していても有していなくてもよい。アルキニル基の炭素数は特に限定されないが、好ましくは、2以上20以下の範囲である。
アルコキシ基とは、例えば、メトキシ基、エトキシ基、プロポキシ基などのエーテル結合を介して脂肪族炭化水素基が結合した官能基を示し、この脂肪族炭化水素基は置換基を有していても有していなくてもよい。アルコキシ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
アルキルチオ基とは、アルコキシ基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アルキルチオ基の炭化水素基は置換基を有していても有していなくてもよい。アルキルチオ基の炭素数は特に限定されないが、好ましくは、1以上20以下の範囲である。
アリールエーテル基とは、例えば、フェノキシ基など、エーテル結合を介した芳香族炭化水素基が結合した官能基を示し、芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
アリールチオエーテル基とは、アリールエーテル基のエーテル結合の酸素原子が硫黄原子に置換されたものである。アリールエーテル基における芳香族炭化水素基は置換基を有していても有していなくてもよい。アリールエーテル基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
アリール基とは、例えば、フェニル基、ナフチル基、ビフェニル基、フェナントリル基、ターフェニル基、ピレニル基、フルオランテニル基などの芳香族炭化水素基を示す。アリール基は、置換基を有していても有していなくてもよい。アリール基の炭素数は特に限定されないが、好ましくは、6以上40以下の範囲である。
ヘテロアリール基とは、フラニル基、チオフェニル基、ピリジル基、キノリニル基、イソキノリニル基、ピラジニル基、ピリミジル基、ナフチリジル基、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する環状芳香族基を示し、これは無置換でも置換されていてもかまわない。ヘテロアリール基の炭素数は特に限定されないが、好ましくは、2以上30以下の範囲である。
ハロゲンとは、フッ素、塩素、臭素およびヨウ素から選ばれる原子を示す。
カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基およびホスフィンオキサイド基は、置換基を有していても有していなくてもよい。ここで、置換基としては、例えばアルキル基、シクロアルキル基、アリール基、ヘテロアリール基などが挙げられ、これら置換基はさらに置換されてもよい。
アリーレン基とは、フェニル基、ナフチル基、ビフェニル基などの芳香族炭化水素基から導かれる2価もしくは3価の基を示し、これは置換基を有していても有していなくてもよい。一般式(1)のLがアリーレン基の場合、核炭素数は6以上30以下の範囲が好ましい。アリーレン基としては、具体的には、1,4−フェニレン基、1,3−フェニレン基、1,2−フェニレン基、4,4’−ビフェニリレン基、4,3’−ビフェニリレン基、3,3’−ビフェニリレン基、1,4−ナフチレン基、1,5−ナフチレン基、2,5−ナフチレン基、2,6−ナフチレン基、2,7−ナフチレン基などが挙げられる。より好ましくは1,4−フェニレン基、1,3−フェニレン基である。
ヘテロアリーレン基とは、ピリジル基、キノリニル基、ピリミジニル基、ピラジニル基、ナフチリジル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基などの炭素以外の原子を一個または複数個環内に有する芳香族基から導かれる2価もしくは3価の基を示し、これは置換基を有していても有していなくてもよい。ヘテロアリーレン基の炭素数は特に限定されないが、好ましくは、2〜30の範囲である。
縮合芳香族炭化水素環とは、例えば、ナフタレン環、アズレン環、アントラセン環、フェナントレン環、ピレン環、クリセン環、ナフタセン環、トリフェニレン環、アセナフテン環、コロネン環、フルオレン環、フルオランテン環、ナフタセン環、ペンタセン環、ペリレン環、ペンタフェン環、ピセン環、ピラントレン環、アンスラアントレン環等が挙げられる。更に、前記縮合芳香族炭化水素環は置換基を有していてもよい。
単環芳香族複素環とは、フラン環、チオフェン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、オキサジアゾール環、トリアゾール環、イミダゾール環、ピラゾール環、チアゾール環等が挙げられる。更に、前記単環芳香族複素環は置換基を有していてもよい。
縮合芳香族複素環とは、例えば、キノリン環、イソキノリン環、キノキサリン環、ベンゾイミダゾール環、インドール環、ベンゾイミダゾール環、ベンゾチアゾール環、ベンゾオキサゾール環、キノキサリン環、キナゾリン環、フタラジン環、カルバゾール環、カルボリン環、ジアザカルバゾール環(カルボリン環を構成する炭化水素環の炭素原子の一つが更に窒素原子で置換されている環を示す)等が挙げられる。更に、前記縮合芳香族複素環は置換基を有していてもよい。
上記一般式(1)で表される化合物において、Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。上記一般式(2)で表されるZは、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。 上記一般式(2)で表されるZは、環Aおよび環Bのうちいずれかの位置でLと連結する事が好ましい。
1、環Aおよび環Bのうちいずれかの位置でLと連結するとは次のようなことをいう。まず、R1の位置でLと連結するとは、Rが連結している窒素原子とLが直接結合することをいう。また、環Aおよび環Bのうちいずれかの位置でLと連結するとは、例えば環Aがベンゼン環であるとすると、そのベンゼン環を構成する炭素原子のいずれかとLが直接結合することをいう。
Lは特に限定されないが、単結合あるいは置換もしくは無置換のアリーレン基であると好ましい。Lが単結合あるいは置換もしくは無置換のアリーレン基であることで、共役が広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子の低電圧駆動が可能となり、発光効率を向上させることができる。
Lは特に限定されないが、置換もしくは無置換のアリーレン基であると好ましい。Lが置換もしくは無置換のアリーレン基であることで、共役がより広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子の低電圧駆動が可能となり、発光効率を向上させることができる。また、結晶性の低下やガラス転移温度を高くすることができ、膜の安定性が向上するため、発光素子に用いた場合に、寿命の向上が可能となる。
本発明の発光素子材料においてnは1もしくは2である。すなわち、一般式(1)で表される化合物は、Zで表される基を1個もしくは2個有しており、そのことで、結晶性が低下したりガラス転移温度が高くなったりするため膜の安定性が向上する。nは1であることが好ましい。nが1であることで、昇華性、蒸着安定性が向上する。
本発明の発光素子材料は、フルオランテン骨格を有する。フルオランテン骨格は、5π電子系の5員環構造を有する。5π電子系の5員環構造は、電子が1つ入る(還元される)と、6π電子系となり芳香族安定化が起こる(ヒュッケル則)。このため、5π電子系の5員環構造は高い電子親和性を示し、本発明のフルオランテン骨格も高い電子親和性を備える。一般的に有名な縮環芳香族骨格であるアントラセンやピレンは5π電子系の5員環構造をもたないため、還元による芳香族安定化に起因する電子親和性の増大はなく、これらの現象は5π電子系の5員環構造を有する骨格特有の性質である。このため本発明の発光素子材料を発光素子に用いた場合に、例えば電子輸送層に用いた場合には、電極からの良好な電子注入性を示し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。
また、フルオランテン骨格は、高い平面性を有し、分子同士がうまく重なるため、高い電荷輸送性を有する。このため本発明の発光素子材料を発光素子を構成するいずれかの層に用いた場合に、陰極から発生した電子や陽極から発生した正孔を効率よく輸送できるので、素子の駆動電圧を低下させることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。
また、フルオランテン骨格は電荷に対する安定性が高く、電子による還元や、正孔による酸化をスムーズに繰り返し行うことができる。本発明の発光素子材料を発光素子に用いた場合に、寿命の向上が可能となる。
上記一般式(2)で表されるZにおいて、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。ここで、電子受容性窒素とは、隣接原子との間に多重結合を形成している窒素原子を表す。窒素原子が高い電気陰性度を有することから、該多重結合は電子受容的な性質を有する。それゆえ、電子受容性窒素を有するZは、高い電子親和性をもつ。このため本発明の発光素子材料を発光層や電子輸送層に用いた場合には、電極からの良好な電子注入性を示し、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子の長寿命化にも寄与する。
Zで表される基において、環Aおよび環Bを構成する電子受容性窒素は1つであることが好ましい。Zで表される基において、環Aおよび環Bを構成する電子受容性窒素が1つであると、電子輸送層に用いた場合に、電極からの電子注入性と発光層への電子注入性を両立できるため、発光素子の駆動電圧を低くすることができる。この結果、発光素子の発光効率を向上させることができる。一方で、電子受容性窒素が2つ以上になると、発光素子において発光層への電子注入性が悪くなる場合があるため、駆動電圧は高くなり発光効率は低下してしまう場合がある。
また、Zで表される基は、電子供与性窒素を有している。ここで、電子供与性窒素とは、隣接原子との間の結合がすべて単結合である窒素原子を表す。Zで表される基においてはRが結合している窒素原子がこれに該当する。電子供与性窒素は正孔に対する安定性が高く、正孔による酸化をスムーズに繰り返し行うことができる。よって本発明の発光素子材料を正孔輸送層に用いた場合に、寿命の向上が可能となる。
また、本発明の発光素子材料が、Zの基を有することで昇華性、蒸着安定性及び結晶性の低下や高いガラス転移温度による膜の安定性が向上する。これにより、本発明の一般式(1)で表される化合物を発光素子に用いた場合に、寿命の向上が可能となる。
以上より、本発明の発光素子材料は、分子中にフルオランテン骨格とZで表される基とを有していることにより、高い電子注入輸送性、電気化学的安定性、良好な昇華性、良好な蒸着安定性、良好な膜質、高いガラス転移温度を併せ持つ。これらによって、本発明の発光素子材料を発光素子を構成するいずれかの層に用いた場合に、高発光効率、低駆動電圧および耐久寿命を両立した有機薄膜発光素子が可能となる。
一般式(1)で表される化合物は下記一般式(4)で表される化合物であることが好ましい。一般式(4)で表される化合物は、フルオランテン骨格の3位がZを含有する置換基で置換された化合物である。フルオランテン誘導体において、3位が芳香族性の置換基で置換されるとフルオランテン骨格の電子状態は大きく変化し、効率的に共役が拡張するため、電荷輸送性が向上する。この結果、発光素子をより低電圧で駆動させることができ、発光効率をより向上させることができる。さらに、共役が広がることで、電荷に対する安定性も向上する。この結果、本発明の一般式(4)で表される化合物を発光素子に用いた場合に、寿命のさらなる向上が可能となる。
Figure 2014007287
一般式(4)におけるR102〜R110はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R102〜R110は隣接する置換基同士で環を形成していてもよい。但し、ベンゼン環は形成しない。L、Zおよびnは前記一般式(1)と同様である。
一般式(4)におけるR102〜R110は上記の中でも水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることが好ましい。R102〜R110が水素、アルキル基、シクロアルキル基、アリール基、ヘテロアリール基およびハロゲンからなる群より選ばれることで、ガラス転移温度が高くなり薄膜安定性がより向上する。また、高温下でも分解しにくい置換基であるため、耐熱性がより向上する。さらに、アリール基やヘテロアリール基であると、共役が広がるため、電気化学的により安定になり、且つ、電荷輸送性が向上する。
nは1であることが好ましい。nが1であることで、昇華性、蒸着安定性がより向上する。
Zは下記一般式(5)〜(9)のいずれかで表される基であることが好ましい。Zが下記一般式(5)〜(9)のいずれかで表される基であると、高い電子移動度および高い電子受容性を発現し、発光素子の駆動電圧をより低くすることができる。この結果、発光素子の発光効率を向上させることができる。また、発光素子のさらなる長寿命化にも寄与する。
Figure 2014007287
式中、環Bは置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、一般式(5)の場合は、環Bは置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環であり、かつ、環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Bが置換されている場合の置換基、ならびにRは、前記一般式(2)と同様である。R16〜R31は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。ただし、一般式(5)の場合はR1、R16〜R19、環Bのうちいずれかの位置で、一般式(6)の場合はR1、R20〜R22、環Bのうちいずれかの位置で、一般式(7)の場合はR1、R23〜R25、環Bのうちいずれかの位置で、一般式(8)の場合はR1、R26〜R28、環Bのうちいずれかの位置で、一般式(9)の場合はR1、R29〜R31、環Bのうちいずれかの位置で、Lと連結する。
環Bは下記一般式(10)〜(13)のいずれかで表される構造であることが好ましい。環Bが下記一般式(10)〜(13)のいずれかで表される構造であると、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子のさらなる低電圧駆動が可能となり、発光効率をより向上させることができる。また、昇華性、蒸着安定性及び結晶性の低下や高いガラス転移温度による膜の安定性がより向上する。
Figure 2014007287
式中、B〜B22はC−R32、またはNを表す。但し、Zが一般式(5)で表される基の場合は、環Bに含まれるB(k=1〜22)の少なくとも1つは電子受容性窒素である。B〜B22が置換されている場合の置換基は前記一般式(2)と同様である。R32は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。
環Bは特に限定されないが、一般式(11)〜(13)のいずれかで表される構造であることがより好ましい。環Bが一般式(11)〜(13)のいずれかで表される構造であることで、共役がより広がり、高いキャリア移動度および高い電子受容性を発現する。その結果、発光素子のさらなる低電圧駆動が可能となり、発光効率をより向上させることができる。
前述の通り、Zが一般式(2)で表される場合はZは環Aおよび環Bのうちいずれかの位置で、そして、Zが一般式(5)で表される場合はZはR16〜R19、環Bのうちいずれかの位置で、Zが一般式(6)で表される場合はZはR20〜R22、環Bのうちいずれかの位置で、Zが一般式(7)で表される場合はZはR23〜R25、環Bのうちいずれかの位置で、Zが一般式(8)で表される場合はZはR26〜R28、環Bのうちいずれかの位置で、Zが一般式(9)で表される場合はZはR29〜R31、環Bのうちいずれかの位置で、Lと連結することが好ましい。このようにLと連結することで、フルオランテン骨格の電子親和力を適度に調整することができる。この結果、発光層への電子注入のしやすさがより向上するため、発光素子をより低電圧で駆動させられる。
Zで表される基としては、特に限定されるものではないが、具体的には以下のような一般式が挙げられる。ここでRは前記一般式(2)と同様である。
Figure 2014007287
Figure 2014007287
本発明の発光素子材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure 2014007287
Figure 2014007287
Figure 2014007287
Figure 2014007287
Figure 2014007287
Figure 2014007287
Figure 2014007287
Figure 2014007287
Figure 2014007287
本発明の発光素子材料の合成には、公知の方法を使用することができる。フルオランテン骨格へZを導入する方法としては、例えば、パラジウム触媒やニッケル触媒下で置換もしくは無置換のハロゲン化フルオランテン誘導体と置換もしくは無置換のZのカップリング反応を用いる方法が挙げられるが、これらに限定されるものではない。なお、Zをアリーレン基やヘテロアリーレン基を介してフルオランテン骨格へ導入する場合は、Zが置換したアリールボロン酸やヘテロアリールボロン酸を用いてもよい。また、上記の各種ボロン酸に代えて、ボロン酸エステルを用いてもよい。
本発明の発光素子材料は、発光素子のいずれかの層に使用される材料を表し、後述するように、正孔輸送層、発光層および電子輸送層から選ばれた層に使用される材料であるほか、陰極の保護膜に使用される材料も含む。本発明の発光素子材料を、発光素子のいずれかの層に使用することにより、高い発光効率が得られ、かつ低駆動電圧および高耐久性の発光素子が得られる。
次に、本発明の発光素子の実施の形態について詳細に説明する。本発明の発光素子は、陽極と陰極、およびそれら陽極と陰極との間に介在する有機層を有し、該有機層は少なくとも発光層と電子輸送層を含み、該発光層が電気エネルギーにより発光する。
有機層は、発光層/電子輸送層のみからなる構成の他に、1)正孔輸送層/発光層/電子輸送層および2)正孔輸送層/発光層/電子輸送層/電子注入層、3)正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層などの積層構成が挙げられる。また、上記各層は、それぞれ単一層、複数層のいずれでもよい。
本発明の発光素子材料は、上記の素子構成において、いずれの層に用いられてもよいが、高い電子注入輸送能、蛍光量子収率および薄膜安定性を有しているため、発光素子の発光層または電子輸送層に用いることが好ましい。特に、優れた電子注入輸送能を有していることから、電子輸送層に用いることがより好ましい。
本発明の発光素子において、陽極と陰極は素子の発光のために十分な電流を供給するための役割を有するものであり、光を取り出すために少なくとも一方は透明または半透明であることが好ましい。通常、基板上に形成される陽極を透明電極とする。
陽極に用いる材料は、正孔を有機層に効率よく注入できる材料、かつ光を取り出すために透明または半透明であれば、酸化錫、酸化インジウム、酸化錫インジウム(ITO)酸化亜鉛インジウム(IZO)などの導電性金属酸化物、あるいは、金、銀、クロムなどの金属、ヨウ化銅、硫化銅などの無機導電性物質、ポリチオフェン、ポリピロール、ポリアニリンなどの導電性ポリマーなど特に限定されるものでないが、ITOガラスやネサガラスを用いることが特に好ましい。これらの電極材料は、単独で用いてもよいが、複数の材料を積層または混合して用いてもよい。透明電極の抵抗は素子の発光に十分な電流が供給できればよいので限定されないが、素子の消費電力の観点からは低抵抗であることが好ましい。例えば300Ω/□以下のITO基板であれば素子電極として機能するが、現在では10Ω/□程度の基板の供給も可能になっていることから、20Ω/□以下の低抵抗の基板を使用することが特に好ましい。ITOの厚みは抵抗値に合わせて任意に選ぶ事ができるが、通常100〜300nmの間で用いられることが多い。
また、発光素子の機械的強度を保つために、発光素子を基板上に形成することが好ましい。基板は、ソーダガラスや無アルカリガラスなどのガラス基板が好適に用いられる。ガラス基板の厚みは、機械的強度を保つのに十分な厚みがあればよいので、0.5mm以上あれば十分である。ガラスの材質については、ガラスからの溶出イオンが少ない方がよいので無アルカリガラスの方が好ましい。または、SiOなどのバリアコートを施したソーダライムガラスも市販されているのでこれを使用することもできる。さらに、第一電極が安定に機能するのであれば、基板はガラスである必要はなく、例えば、プラスチック基板上に陽極を形成しても良い。ITO膜形成方法は、電子線ビーム法、スパッタリング法および化学反応法など特に制限を受けるものではない。
陰極に用いる材料は、電子を効率よく発光層に注入できる物質であれば特に限定されない。一般的には白金、金、銀、銅、鉄、錫、アルミニウム、インジウムなどの金属、またはこれらの金属とリチウム、ナトリウム、カリウム、カルシウム、マグネシウムなどの低仕事関数金属との合金や多層積層などが好ましい。中でも、主成分としてはアルミニウム、銀、マグネシウムが電気抵抗値や製膜しやすさ、膜の安定性、発光効率などの面から好ましい。特にマグネシウムと銀で構成されると、本発明における電子輸送層および電子注入層への電子注入が容易になり、低電圧駆動が可能になるため好ましい。
さらに、陰極保護のために白金、金、銀、銅、鉄、錫、アルミニウムおよびインジウムなどの金属、またはこれら金属を用いた合金、シリカ、チタニアおよび窒化ケイ素などの無機物、ポリビニルアルコール、ポリ塩化ビニル、炭化水素系高分子化合物などの有機高分子化合物を、保護膜層として陰極上に積層することが好ましい例として挙げられる。また、本発明の発光素子材料もこの保護膜層として利用できる。ただし、陰極側から光を取り出す素子構造(トップエミッション構造)の場合は、保護膜層は可視光領域で光透過性のある材料から選択される。これらの電極の作製法は、抵抗加熱、電子線ビーム、スパッタリング、イオンプレーティングおよびコーティングなど特に制限されない。
正孔輸送層は、正孔輸送材料の一種または二種以上を積層または混合する方法、もしくは、正孔輸送材料と高分子結着剤の混合物を用いる方法により形成される。また、正孔輸送材料は、電界を与えられた電極間において正極からの正孔を効率良く輸送することが必要で、正孔注入効率が高く、注入された正孔を効率良く輸送することが好ましい。そのためには適切なイオン化ポテンシャルを持ち、しかも正孔移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質であることが要求される。このような条件を満たす物質として、特に限定されるものではないが、例えば、4,4’−ビス(N−(3−メチルフェニル)−N−フェニルアミノ)ビフェニル(TPD)、4,4’−ビス(N−(1−ナフチル)−N−フェニルアミノ)ビフェニル(NPD)、4,4’−ビス(N,N−ビス(4−ビフェニリル)アミノ)ビフェニル(TBDB),ビス(N,N’−ジフェニル−4−アミノフェニル)−N,N−ジフェニル−4,4’−ジアミノ−1,1’−ビフェニル(TPD232)といったベンジジン誘導体、4,4’,4”−トリス(3−メチルフェニル(フェニル)アミノ)トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス(1−ナフチル(フェニル)アミノ)トリフェニルアミン(1−TNATA)などのスターバーストアリールアミンと呼ばれる材料群、カルバゾール骨格を有する材料、中でもカルバゾール多量体、具体的にはビス(N−アリルカルバゾール)またはビス(N−アルキルカルバゾール)などのカルバゾール2量体の誘導体、カルバゾール3量体の誘導体、カルバゾール4量体の誘導体、トリフェニレン化合物、ピラゾリン誘導体、スチルベン系化合物、ヒドラゾン系化合物、ベンゾフラン誘導体やチオフェン誘導体、オキサジアゾール誘導体、フタロシアニン誘導体、ポルフィリン誘導体などの複素環化合物、フラーレン誘導体、ポリマー系では前記単量体を側鎖に有するポリカーボネートやスチレン誘導体、ポリチオフェン、ポリアニリン、ポリフルオレン、ポリビニルカルバゾールおよびポリシランなどが好ましい。さらにp型Si、p型SiC等の無機化合物も使用できる。
本発明の発光素子材料も、正孔移動度が大きく、さらに電気化学的安定性に優れているため、正孔輸送材料として用いることができる。本発明の発光素子材料は、正孔注入材料として用いてもよいが、高い正孔移動度をもつことから、正孔輸送材料として好適に用いられる。
本発明の発光素子材料は電子注入輸送特性が優れているので、これを電子輸送層に用いた場合、電子が発光層で再結合せず、一部正孔輸送層までもれてしまう懸念がある。そのため正孔輸送層には電子ブロック性の優れた化合物を用いるのが好ましい。中でも、カルバゾール骨格を含有する化合物は電子ブロック性に優れ、発光素子の高効率化に寄与できるので好ましい。さらに上記カルバゾール骨格を含有する化合物が、カルバゾール2量体、カルバゾール3量体、またはカルバゾール4量体骨格を含有することが好ましい。これらは良好な電子ブロック性と、正孔注入輸送特性を併せ持っているためである。さらに、正孔輸送層にカルバゾール骨格を含有する化合物を用いた場合、組み合わせる発光層が後述するリン光発光材料を含んでいることがより好ましい。上記カルバゾール骨格を有する化合物は高い三重項励起子ブロック機能も有しており、リン光発光材料と組み合わせた場合に高発光効率化できるためである。また高い正孔移動度を有する点で優れているトリフェニレン骨格を含有する化合物を正孔輸送層に用いると、キャリアバランスが向上し、発光効率向上、耐久寿命向上といった効果が得られるので好ましい。トリフェニレン骨格を含有する化合物が2つ以上のジアリールアミノ基を有していると、さらに好ましい。上記カルバゾール骨格を含有する化合物、またはトリフェニレン骨格を含有する化合物はそれぞれ単独で正孔輸送層として用いてもよいし、互いに混合して用いてもよい。また本発明の効果を損なわない範囲で他の材料が混合されていてもよい。また正孔輸送層が複数層で構成されている場合は、いずれか1層にカルバゾール骨格を含有する化合物、あるいは、トリフェニレン骨格を含有する化合物が含まれていればよい。
陽極と正孔輸送層の間に正孔注入層を設けてもよい。正孔注入層を設けることで発光素子が低駆動電圧化し、耐久寿命も向上する。正孔注入層には通常正孔輸送層に用いる材料よりもイオン化ポテンシャルの小さい材料が好ましく用いられる。具体的には、上記TPD232のようなベンジジン誘導体、スターバーストアリールアミン材料群が挙げられる他、フタロシアニン誘導体等も用いることができる。また正孔注入層がアクセプター性化合物単独で構成されているか、またはアクセプター性化合物が別の正孔輸送材料にドープされて用いられていることも好ましい。アクセプター性化合物の例としては、塩化鉄(III)、塩化アルミニウム、塩化ガリウム、塩化インジウム、塩化アンチモンのような金属塩化物、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ルテニウムのような金属酸化物、トリス(4−ブロモフェニル)アミニウムヘキサクロロアンチモネート(TBPAH)のような電荷移動錯体が挙げられる。また分子内にニトロ基、シアノ基、ハロゲンまたはトリフルオロメチル基を有する有機化合物や、キノン系化合物、酸無水物系化合物、フラーレンなども好適に用いられる。これらの化合物の具体的な例としては、ヘキサシアノブタジエン、ヘキサシアノベンゼン、テトラシアノエチレン、テトラシアノキノジメタン(TCNQ)、テトラフルオロテトラシアノキノジメタン(F4−TCNQ)、2,3,6,7,10,11−ヘキサシアノ−1,4,5,8,9,12−ヘキサアザトリフェニレン(HAT−CN6)、p−フルオラニル、p−クロラニル、p−ブロマニル、p−ベンゾキノン、2,6−ジクロロベンゾキノン、2,5−ジクロロベンゾキノン、テトラメチルベンゾキノン、1,2,4,5−テトラシアノベンゼン、o−ジシアノベンゼン、p−ジシアノベンゼン、1,4−ジシアノテトラフルオロベンゼン、2,3−ジクロロ−5,6−ジシアノベンゾキノン、p−ジニトロベンゼン、m−ジニトロベンゼン、o−ジニトロベンゼン、p−シアノニトロベンゼン、m−シアノニトロベンゼン、o−シアノニトロベンゼン、1,4−ナフトキノン、2,3−ジクロロナフトキノン、1−ニトロナフタレン、2−ニトロナフタレン、1,3−ジニトロナフタレン、1,5−ジニトロナフタレン、9−シアノアントラセン、9−ニトロアントラセン、9,10−アントラキノン、1,3,6,8−テトラニトロカルバゾール、2,4,7−トリニトロ−9−フルオレノン、2,3,5,6−テトラシアノピリジン、マレイン酸無水物、フタル酸無水物、C60、およびC70などが挙げられる。
これらの中でも、金属酸化物やシアノ基含有化合物が取り扱いやすく、蒸着もしやすいことから、容易に上述した効果が得られるので好ましい。好ましい金属酸化物の例としては酸化モリブデン、酸化バナジウム、または酸化ルテニウムがあげられる。シアノ基含有化合物の中では、(a)分子内に、シアノ基の窒素原子以外に少なくとも1つの電子受容性窒素有する化合物、(b)分子内にハロゲンとシアノ基の両方を有している化合物、(c)分子内にカルボニル基とシアノ基の両方を有している化合物、または(d)分子内にハロゲンとシアノ基の両方を有し、さらにシアノ基の窒素原子以外に少なくとも1つの電子受容性窒素を有する化合物が強い電子アクセプターとなるためより好ましい。このような化合物として具体的には以下のような化合物があげられる。
Figure 2014007287
Figure 2014007287
正孔注入層がアクセプター性化合物単独で構成される場合、または正孔注入層にアクセプター性化合物がドープされている場合のいずれの場合も、正孔注入層は1層であってもよいし、複数の層が積層されていてもよい。またアクセプター化合物がドープされている場合に組み合わせて用いる正孔注入材料は、正孔輸送層への正孔注入障壁が緩和できるという観点から、正孔輸送層に用いる化合物と同一の化合物であることがより好ましい。
発光層は単一層、複数層のどちらでもよく、それぞれ発光材料(ホスト材料、ドーパント材料)により形成され、これはホスト材料とドーパント材料との混合物であっても、ホスト材料単独であっても、いずれでもよい。すなわち、本発明の発光素子では、各発光層において、ホスト材料もしくはドーパント材料のみが発光してもよいし、ホスト材料とドーパント材料がともに発光してもよい。電気エネルギーを効率よく利用し、高色純度の発光を得るという観点からは、発光層はホスト材料とドーパント材料の混合からなることが好ましい。また、ホスト材料とドーパント材料は、それぞれ一種類であっても、複数の組み合わせであっても、いずれでもよい。ドーパント材料はホスト材料の全体に含まれていても、部分的に含まれていても、いずれでもよい。ドーパント材料は積層されていても、分散されていても、いずれでもよい。ドーパント材料は発光色の制御ができる。ドーパント材料の量は、多すぎると濃度消光現象が起きるため、ホスト材料に対して20重量%以下で用いることが好ましく、さらに好ましくは10重量%以下である。ドーピング方法は、ホスト材料との共蒸着法によって形成することができるが、ホスト材料と予め混合してから同時に蒸着してもよい。
発光材料は、具体的には、以前から発光体として知られていたアントラセンやピレンなどの縮合環誘導体、トリス(8−キノリノラト)アルミニウムを始めとする金属キレート化オキシノイド化合物、ビススチリルアントラセン誘導体やジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、オキサジアゾール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、そして、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。
発光材料に含有されるホスト材料は、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、ナフタセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体、N,N’−ジナフチル−N,N’−ジフェニル−4,4’−ジフェニル−1,1’−ジアミンなどの芳香族アミン誘導体、トリス(8−キノリナート)アルミニウム(III)をはじめとする金属キレート化オキシノイド化合物、ジスチリルベンゼン誘導体などのビススチリル誘導体、テトラフェニルブタジエン誘導体、インデン誘導体、クマリン誘導体、オキサジアゾール誘導体、ピロロピリジン誘導体、ペリノン誘導体、シクロペンタジエン誘導体、ピロロピロール誘導体、チアジアゾロピリジン誘導体、ジベンゾフラン誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、トリアジン誘導体、ポリマー系では、ポリフェニレンビニレン誘導体、ポリパラフェニレン誘導体、ポリフルオレン誘導体、ポリビニルカルバゾール誘導体、ポリチオフェン誘導体などが使用できるが特に限定されるものではない。またドーパント材料には、特に限定されないが、ナフタレン、アントラセン、フェナンスレン、ピレン、クリセン、トリフェニレン、ペリレン、フルオランテン、フルオレン、インデンなどの縮合アリール環を有する化合物やその誘導体(例えば2−(ベンゾチアゾール−2−イル)−9,10−ジフェニルアントラセンや5,6,11,12−テトラフェニルナフタセンなど)、フラン、ピロール、チオフェン、シロール、9−シラフルオレン、9,9’−スピロビシラフルオレン、ベンゾチオフェン、ベンゾフラン、インドール、ジベンゾチオフェン、ジベンゾフラン、イミダゾピリジン、フェナントロリン、ピリジン、ピラジン、ナフチリジン、キノキサリン、ピロロピリジン、チオキサンテンなどのヘテロアリール環を有する化合物やその誘導体、ボラン誘導体、ジスチリルベンゼン誘導体、4,4’−ビス(2−(4−ジフェニルアミノフェニル)エテニル)ビフェニル、4,4’−ビス(N−(スチルベン−4−イル)−N−フェニルアミノ)スチルベンなどのアミノスチリル誘導体、芳香族アセチレン誘導体、テトラフェニルブタジエン誘導体、スチルベン誘導体、アルダジン誘導体、ピロメテン誘導体、ジケトピロロ[3,4−c]ピロール誘導体、2,3,5,6−1H,4H−テトラヒドロ−9−(2’−ベンゾチアゾリル)キノリジノ[9,9a,1−gh]クマリンなどのクマリン誘導体、イミダゾール、チアゾール、チアジアゾール、カルバゾール、オキサゾール、オキサジアゾール、トリアゾールなどのアゾール誘導体およびその金属錯体およびN,N’−ジフェニル−N,N’−ジ(3−メチルフェニル)−4,4’−ジフェニル−1,1’−ジアミンに代表される芳香族アミン誘導体などを用いることができる。
また発光層にリン光発光材料が含まれていてもよい。リン光発光材料とは、室温でもリン光発光を示す材料である。ドーパントしてリン光発光材料を用いる場合は基本的に室温でもリン光発光が得られる必要があるが、特に限定されるものではなく、イリジウム(Ir)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、白金(Pt)、オスミウム(Os)、及びレニウム(Re)からなる群から選択される少なくとも一つの金属を含む有機金属錯体化合物であることが好ましい。中でも室温でも高いリン光発光収率を有するという観点から、イリジウム、もしくは白金を有する有機金属錯体がより好ましい。リン光発光性のドーパントと組み合わせて用いられるホストとしては、インドール誘導体、カルバゾール誘導体、インドロカルバゾール誘導体、ピリジン、ピリミジン、トリアジン骨格を有する含窒素芳香族化合物誘導体、ポリアリールベンゼン誘導体、スピロフルオレン誘導体、トルキセン誘導体、トリフェニレン誘導体といった芳香族炭化水素化合物誘導体、ジベンゾフラン誘導体、ジベンゾチオフェン誘導体といったカルコゲン元素を含有する化合物、ベリリウムキノリノール錯体といった有機金属錯体などが好適に用いられるが、基本的に用いるドーパントよりも三重項エネルギーが大きく、電子、正孔がそれぞれの輸送層から円滑に注入され、また輸送するものであればこれらに限定されるものではない。また2種以上の三重項発光ドーパントが含有されていてもよいし、2種以上のホスト材料が含有されていてもよい。さらに1種以上の三重項発光ドーパントと1種以上の蛍光発光ドーパントが含有されていてもよい。
好ましいリン光発光性ホストまたはドーパントとしては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure 2014007287
Figure 2014007287
本発明の発光素子材料も、高い発光性能を有することから、発光材料として用いることができる。本発明の発光素子材料は、紫外〜青色領域(300〜500nm領域)に強い発光を示すことから、青色発光材料として好適に用いることができる。本発明の発光素子材料は、ホスト材料として用いてもよいが、高い蛍光量子収率をもつことから、ドーパント材料として好適に用いられる。
本発明において、電子輸送層とは、陰極から電子が注入され、さらに電子を輸送する層である。電子輸送層には、電子注入効率が高く、注入された電子を効率良く輸送することが望まれる。そのため電子輸送層は、電子親和力が大きく、しかも電子移動度が大きく、さらに安定性に優れ、トラップとなる不純物が製造時および使用時に発生しにくい物質で構成されることが好ましい。しかしながら、正孔と電子の輸送バランスを考えた場合に、電子輸送層が陽極からの正孔が再結合せずに陰極側へ流れるのを効率よく阻止できる役割を主に果たすならば、電子輸送能力がそれ程高くない材料で構成されていても、発光効率を向上させる効果は電子輸送能力が高い材料で構成されている場合と同等となる。したがって、本発明における電子輸送層には、正孔の移動を効率よく阻止できる正孔阻止層も同義のものとして含まれる。
電子輸送層に用いられる電子輸送材料としては、ナフタレン、アントラセンなどの縮合多環芳香族誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、トリス(8−キノリノラート)アルミニウム(III)などのキノリノール錯体、ベンゾキノリノール錯体、ヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体などの各種金属錯体が挙げられるが、駆動電圧を低減し、高効率発光が得られることから、炭素、水素、窒素、酸素、ケイ素、リンの中から選ばれる元素で構成され、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いることが好ましい。
電子受容性窒素を含む芳香族複素環は、高い電子親和性を有する。電子受容性窒素を有する電子輸送材料は、高い電子親和力を有する陰極からの電子を受け取りやすくし、より低電圧駆動が可能となる。また、発光層への電子の供給が多くなり、再結合確率が高くなるので発光効率が向上する。
電子受容性窒素を含むヘテロアリール環としては、例えば、ピリジン環、ピラジン環、ピリミジン環、キノリン環、キノキサリン環、ナフチリジン環、ピリミドピリミジン環、ベンゾキノリン環、フェナントロリン環、イミダゾール環、オキサゾール環、オキサジアゾール環、トリアゾール環、チアゾール環、チアジアゾール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンズイミダゾール環、フェナンスロイミダゾール環などが挙げられる。
これらのヘテロアリール環構造を有する化合物としては、例えば、ベンズイミダゾール誘導体、ベンズオキサゾール誘導体、ベンズチアゾール誘導体、オキサジアゾール誘導体、チアジアゾール誘導体、トリアゾール誘導体、ピラジン誘導体、フェナントロリン誘導体、キノキサリン誘導体、キノリン誘導体、ベンゾキノリン誘導体、ビピリジンやターピリジンなどのオリゴピリジン誘導体、キノキサリン誘導体およびナフチリジン誘導体などが好ましい化合物として挙げられる。中でも、トリス(N−フェニルベンズイミダゾール−2−イル)ベンゼンなどのイミダゾール誘導体、1,3−ビス[(4−tert−ブチルフェニル)1,3,4−オキサジアゾリル]フェニレンなどのオキサジアゾール誘導体、N−ナフチル−2,5−ジフェニル−1,3,4−トリアゾールなどのトリアゾール誘導体、バソクプロインや1,3−ビス(1,10−フェナントロリン−9−イル)ベンゼンなどのフェナントロリン誘導体、2,2’−ビス(ベンゾ[h]キノリン−2−イル)−9,9’−スピロビフルオレンなどのベンゾキノリン誘導体、2,5−ビス(6’−(2’,2”−ビピリジル))−1,1−ジメチル−3,4−ジフェニルシロールなどのビピリジン誘導体、1,3−ビス(4’−(2,2’:6’2”−ターピリジニル))ベンゼンなどのターピリジン誘導体、ビス(1−ナフチル)−4−(1,8−ナフチリジン−2−イル)フェニルホスフィンオキサイドなどのナフチリジン誘導体が、電子輸送能の観点から好ましく用いられる。また、これらの誘導体が、縮合多環芳香族骨格を有していると、ガラス転移温度が向上すると共に、電子移動度も大きくなり発光素子の低電圧化の効果が大きいのでより好ましい。さらに、素子耐久寿命が向上し、合成のし易さ、原料入手が容易であることを考慮すると、縮合多環芳香族骨格はアントラセン骨格、ピレン骨格またはフェナントロリン骨格であることが特に好ましい。上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。
好ましい電子輸送材料としては、特に限定されるものではないが、具体的には以下のような例が挙げられる。
Figure 2014007287
これら以外にも、国際公開第2004−63159号、国際公開第2003−60956号、Appl. Phys. Lett. 74, 865 (1999)、Org. Electron. 4, 113 (2003)、国際公開第2010−113743号、国際公開第2010−1817号等に開示された電子輸送材料も用いることができる。
また、本発明の発光素子材料も高い電子注入輸送能を有することから電子輸送材料として好適に用いられる。
本発明の発光素子材料が用いられる場合には、その各一種のみに限る必要はなく、本発明の複数のフルオランテン化合物を混合して用いたり、その他の電子輸送材料の一種類以上を本発明の効果を損なわない範囲で本発明のフルオランテン化合物と混合して用いてもよい。混合しうる電子輸送材料としては、特に限定されないが、ナフタレン、アントラセン、ピレンなどの縮合アリール環を有する化合物やその誘導体、4,4’−ビス(ジフェニルエテニル)ビフェニルに代表されるスチリル系芳香環誘導体、ペリレン誘導体、ペリノン誘導体、クマリン誘導体、ナフタルイミド誘導体、アントラキノンやジフェノキノンなどのキノン誘導体、リンオキサイド誘導体、カルバゾール誘導体およびインドール誘導体、トリス(8−キノリノラート)アルミニウム(III)などのキノリノール錯体やヒドロキシフェニルオキサゾール錯体などのヒドロキシアゾール錯体、アゾメチン錯体、トロポロン金属錯体およびフラボノール金属錯体が挙げられる。
上記電子輸送材料は単独でも用いられるが、上記電子輸送材料の2種以上を混合して用いたり、その他の電子輸送材料の一種以上を上記の電子輸送材料に混合して用いても構わない。また、ドナー性材料を含有してもよい。ここで、ドナー性材料とは電子注入障壁の改善により、陰極または電子注入層からの電子輸送層への電子注入を容易にし、さらに電子輸送層の電気伝導性を向上させる化合物である。
本発明におけるドナー性材料の好ましい例としては、アルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体などが挙げられる。アルカリ金属、アルカリ土類金属の好ましい種類としては、低仕事関数で電子輸送能向上の効果が大きいリチウム、ナトリウム、セシウムといったアルカリ金属や、マグネシウム、カルシウムといったアルカリ土類金属が挙げられる。
また、真空中での蒸着が容易で取り扱いに優れることから、金属単体よりも無機塩、あるいは有機物との錯体の状態であることが好ましい。さらに、大気中での取扱を容易にし、添加濃度の制御のし易さの点で、有機物との錯体の状態にあることがより好ましい。無機塩の例としては、LiO、Li2O等の酸化物、窒化物、LiF、NaF、KF等のフッ化物、Li2CO3、Na2CO3、K2CO3、Rb2CO3、Cs2CO3等の炭酸塩などが挙げられる。また、アルカリ金属またはアルカリ土類金属の好ましい例としては、原料が安価で合成が容易な点から、リチウムが挙げられる。また、有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。これらのドナー性材料を2種以上混合して用いてもよい。
好適なドーピング濃度は材料やドーピング領域の膜厚によっても異なるが、例えばドナー性材料がアルカリ金属、アルカリ土類金属といった無機材料の場合は、電子輸送材料とドナー性材料の蒸着速度比が10000:1〜2:1の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は100:1〜5:1がより好ましく、100:1〜10:1がさらに好ましい。またドナー性材料が金属と有機物との錯体である場合は、電子輸送材料とドナー性化合物の蒸着速度比が100:1〜1:100の範囲となるようにして共蒸着して電子輸送層としたものが好ましい。蒸着速度比は10:1〜1:10がより好ましく、7:3〜3:7がより好ましい。
また、上記のような本発明の発光素子材料にドナー性材料がドープされた電子輸送層は、複数の発光素子を連結するタンデム構造型素子における電荷発生層として用いられていてもよい。
電子輸送層にドナー性材料をドーピングして電子輸送能を向上させる方法は、薄膜層の膜厚が厚い場合に特に効果を発揮するものである。電子輸送層および発光層の合計膜厚が50nm以上の場合に特に好ましく用いられる。例えば、発光効率を向上させるために干渉効果を利用する方法があるが、これは発光層から直接放射される光と、陰極で反射された光の位相を整合させて光の取り出し効率を向上させるものである。この最適条件は光の発光波長に応じて変化するが、電子輸送層および発光層の合計膜厚が50nm以上となり、赤色などの長波長発光の場合には100nm近くの厚膜になる場合がある。
ドーピングする電子輸送層の膜厚は、電子輸送層の一部分または全部のどちらでも構わない。一部分にドーピングする場合、少なくとも電子輸送層/陰極界面にはドーピング領域を設けることが望ましく、陰極界面付近にドーピングするだけでも低電圧化の効果は得られる。一方、ドナー性材料が発光層に直接接していると発光効率を低下させる悪影響を及ぼす場合があり、その場合には発光層/電子輸送層界面にノンドープ領域を設けることが好ましい。
本発明において、陰極と電子輸送層の間に電子注入層を設けてもよい。一般的に電子注入層は陰極から電子輸送層への電子の注入を助ける目的で挿入されるが、挿入する場合は、電子受容性窒素を含むヘテロアリール環構造を有する化合物を用いてもよいし、上記のドナー性材料を含有する層を用いてもよい。本発明の発光素子材料が電子注入層に含まれていてもよい。また電子注入層に絶縁体や半導体の無機物を用いることもできる。これらの材料を用いることで発光素子の短絡を有効に防止して、かつ電子注入性を向上させることができるので好ましい。このような絶縁体としては、アルカリ金属カルコゲナイド、アルカリ土類金属カルコゲナイド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲナイド等で構成されていれば、電子注入性をさらに向上させることができる点でより好ましい。具体的に、好ましいアルカリ金属カルコゲナイドとしては、例えば、LiO、NaS及びNaSeが挙げられ、好ましいアルカリ土類金属カルコゲナイドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF、BaF、SrF、MgF及びBeF等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。さらに有機物と金属の錯体も好適に用いられる。電子注入層に有機物と金属の錯体を用いる場合は膜厚調整が容易であるのでより好ましい。このような有機金属錯体の例としては有機物との錯体における有機物の好ましい例としては、キノリノール、ベンゾキノリノール、ピリジルフェノール、フラボノール、ヒドロキシイミダゾピリジン、ヒドロキシベンズアゾール、ヒドロキシトリアゾールなどが挙げられる。中でも、アルカリ金属と有機物との錯体が好ましく、リチウムと有機物との錯体がより好ましく、リチウムキノリノールが特に好ましい。
発光素子を構成する上記各層の形成方法は、抵抗加熱蒸着、電子ビーム蒸着、スパッタリング、分子積層法、コーティング法など特に限定されないが、通常は、素子特性の点から抵抗加熱蒸着または電子ビーム蒸着が好ましい。
有機層の厚みは、発光物質の抵抗値にもよるので限定することはできないが、1〜1000nmであることが好ましい。発光層、電子輸送層、正孔輸送層の膜厚はそれぞれ、好ましくは1nm以上200nm以下であり、さらに好ましくは5nm以上100nm以下である。
本発明の発光素子は、電気エネルギーを光に変換できる機能を有する。ここで電気エネルギーとしては主に直流電流が使用されるが、パルス電流や交流電流を用いることも可能である。電流値および電圧値は特に制限はないが、素子の消費電力や寿命を考慮すると、できるだけ低いエネルギーで最大の輝度が得られるよう選ばれるべきである。
本発明の発光素子は、例えば、マトリクスおよび/またはセグメント方式で表示するディスプレイとして好適に用いられる。
マトリクス方式とは、表示のための画素が格子状やモザイク状など二次元的に配置され、画素の集合で文字や画像を表示する。画素の形状やサイズは用途によって決まる。例えば、パソコン、モニター、テレビの画像および文字表示には、通常一辺が300μm以下の四角形の画素が用いられ、また、表示パネルのような大型ディスプレイの場合は、一辺がmmオーダーの画素を用いることになる。モノクロ表示の場合は、同じ色の画素を配列すればよいが、カラー表示の場合には、赤、緑、青の画素を並べて表示させる。この場合、典型的にはデルタタイプとストライプタイプがある。そして、このマトリクスの駆動方法は、線順次駆動方法やアクティブマトリクスのどちらでもよい。線順次駆動はその構造が簡単であるが、動作特性を考慮した場合、アクティブマトリクスの方が優れる場合があるので、これも用途によって使い分けることが必要である。
本発明におけるセグメント方式とは、予め決められた情報を表示するようにパターンを形成し、このパターンの配置によって決められた領域を発光させる方式である。例えば、デジタル時計や温度計における時刻や温度表示、オーディオ機器や電磁調理器などの動作状態表示および自動車のパネル表示などが挙げられる。そして、前記マトリクス表示とセグメント表示は同じパネルの中に共存していてもよい。
本発明の発光素子は、各種機器等のバックライトとしても好ましく用いられる。バックライトは、主に自発光しない表示装置の視認性を向上させる目的に使用され、液晶表示装置、時計、オーディオ装置、自動車パネル、表示板および標識などに使用される。特に、液晶表示装置、中でも薄型化が検討されているパソコン用途のバックライトに本発明の発光素子は好ましく用いられ、従来のものより薄型で軽量なバックライトを提供できる。
以下、実施例をあげて本発明を説明するが、本発明はこれらの実施例によって限定されるものではない。
合成例1
化合物[1]の合成
ブロモフルオランテン26.0g、ビス(ピナコラート)ジボロン35.2g、酢酸カリウム27.2g、ジメチルホルムアミド462mLを混合し、窒素置換した。この混合溶液に[1,1’−ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド・ジクロロメタン錯体0.75gを加え、100℃に加熱した。1時間後、室温に冷却した後、酢酸エチル250mL、トルエン250mL、水250mLを加え分液した。水層を酢酸エチル200mL、トルエン200mLで抽出した後、先の有機層と合わせ、水500mLで3回洗浄した。有機層を硫酸マグネシウムで乾燥し、溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートし、真空乾燥することにより、中間体Aを16.4g得た。
次に、中間体A16.4g、クロロヨードベンゼン11.9g、ジメトキシエタン251mL、1.5M炭酸ナトリウム水溶液67mlを混合し、窒素置換した。この混合溶液にビス(トリフェニルホスフィン)パラジウムジクロリド352mgを加え、加熱還流した。3時間後、室温に冷却した後、水250mlを加え、析出物をろ過し、真空乾燥機で乾燥した。ろ過物をトルエンに溶解した後、活性炭とQuadraSil(登録商標)を加え、シリカパッドでろ過した。ろ液の溶媒を留去した後、メタノールを加え、析出した固体をろ過し、乾燥した。得られた固体を、酢酸ブチル100mLで再結晶し、ろ過した後、真空乾燥することにより、中間体Bの黄緑色固体を8.4g得た。
次に、5−アミノキノリン10.4g、2−ブロモヨードベンゼン21.6g、ナトリウム−t−ブトキシド9.3g、トルエン174mLを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム(0)0.80g、ビス(ジフェニルホスフィノ)フェロセン0.77gを加え、加熱還流した。3時間後、室温に冷却した後、セライトろ過し、ろ液の溶媒を留去した。シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートし、真空乾燥することにより、中間体Cを19.4g得た。
次に、中間体C19.4g、酢酸カリウム9.6g、ジメチルホルムアミド82mLを混合し、窒素置換した。この混合溶液に酢酸パラジウム0.29g、トリフェニルホスフィン0.85gを加え、加熱還流した。3時間後、室温に冷却した後、水300mLを加えた。水酸化カリウム水溶液を塩基性になるまで加え、析出物をろ過し、真空乾燥機で乾燥した。得られた固体を、酢酸ブチルで再結晶し、ろ過した後、真空乾燥することにより、中間体Dを11.0g(収率77%)得た。
次に、中間体B3.4g、中間体D2.5g、ナトリウム−t−ブトキシド1.4g、o−キシレン55mLを混合し、窒素置換した。この混合溶液にビス(ジベンジリデンアセトン)パラジウム(0)63mg、XPhos100mgを加え、加熱還流した。3時間後、室温に冷却した後、ろ過し、ろ過物を水で洗浄した。シリカゲルカラムクロマトグラフィーにより精製し、溶出液をエバポレートした。メタノールを加え、固体を析出させた
後、ろ過し、真空乾燥することにより、化合物[1]の黄緑色固体を3.8g得た。
得られた黄色固体のH−NMR分析結果は次の通りであり、上記で得られた黄緑色固体が化合物[1]であることが確認された。
化合物[1]: H−NMR (CDCl(d=ppm)) δ 7.21(t,1H),7.36−7.52(m,5H),7.68−7.84(m,4H),7.92−8.10(m,9H),8.27(d,1H),8.50(d,1H),8.90(d,1H)。
なお、化合物[1]は、油拡散ポンプを用いて1×10−3Paの圧力下、約300℃で昇華精製を行ってから発光素子材料として使用した。HPLC純度(測定波長254nmにおける面積%)は昇華精製前が99.9%、昇華精製後が99.9%であった。
Figure 2014007287
実施例1
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT−CN6を5nm、正孔輸送層として、HT−1を60nm蒸着した。次に、発光層として、ホスト材料H−1、ドーパント材料D−1をドープ濃度が5重量%になるようにして30nmの厚さに蒸着した。次に、電子輸送層として化合物[1]を20nmの厚さに蒸着して積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の1000cd/m時の特性は、駆動電圧4.5V、外部量子効率4.4%であった。また初期輝度を1000cd/mに設定し、定電流駆動させたところ輝度50%低下する輝度半減時間は1200時間であった。なおHAT−CN6、HT−1、H−1、D−1は以下に示す化合物である。
Figure 2014007287
実施例2〜9
電子輸送層に表1に記載した化合物を用いた以外は実施例1と同様にして発光素子を作成し、評価した。結果を表1に示す。なお、化合物[2]〜[9]は下記に示す化合物である。
Figure 2014007287
比較例1〜3
電子輸送層に表1に記載した化合物を用いた以外は実施例1と同様にして発光素子を作成し、評価した。結果を表1に示す。なお、E−1〜E−3は以下に示す化合物である。
Figure 2014007287
実施例10
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT−CN6を5nm、正孔輸送層として、HT−1を60nm蒸着した。次に、発光層として、ホスト材料H−1、ドーパント材料D−1をドープ濃度が5重量%になるようにして30nmの厚さに蒸着した。次に、第1電子輸送層として化合物[1]を10nmの厚さに蒸着して積層した。さらに第2電子輸送層として電子輸送材料に化合物[1]を、ドナー性材料としてセシウムを用い、化合物[1]とセシウムの蒸着速度比が20:1になるようにして10nmの厚さに積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子の1000cd/m時の特性は、駆動電圧4.3V、外部量子効率5.2%であった。また初期輝度を1000cd/mに設定し、定電流駆動させたところ輝度50%低下する輝度半減時間は1800時間であった。
実施例11〜18
電子輸送層に表2に記載した化合物を用いた以外は実施例10と同様にして発光素子を作成し、評価した。結果を表2に示す。
比較例4〜6
電子輸送層に表2に記載した化合物を用いた以外は実施例1と同様にして発光素子を作成し、評価した。結果を表2に示す。
実施例19
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT−CN6を5nm、正孔輸送層として、HT−1を60nm蒸着した。次に、発光層として、ホスト材料H−1、ドーパント材料D−1をドープ濃度が5重量%になるようにして30nmの厚さに蒸着した。さらに電子輸送層として電子輸送材料に化合物[1]を、ドナー性材料として2E−1を用い、化合物[1]と2E−1の蒸着速度比が1:1になるようにして20nmの厚さに積層した。この電子輸送層は表2では第2電子輸送層として示す。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。この発光素子の1000cd/m時の特性は、駆動電圧4.0V、外部量子効率5.7%であった。また初期輝度を1000cd/mに設定し、定電流駆動させたところ輝度50%低下する輝度半減時間は2100時間であった。
実施例20〜27
電子輸送層、ドナー性材料として表2に記載した化合物を用いた以外は実施例19と同様にして発光素子を作成し、評価した。結果を表2に示す。2E−1は下記に示す化合物である。
Figure 2014007287
比較例7〜9
電子輸送層、ドナー性化合物として表2に記載した化合物を用いた以外は実施例11と同様にして発光素子を作成し、評価した。結果を表2に示す。
実施例28
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT−CN6を5nm、正孔輸送層として、HT−1を60nm蒸着した。この正孔輸送層は表3では第1正孔輸送層として示す。次に、発光層として、ホスト材料H−2、ドーパント材料D−2をドープ濃度が10重量%になるようにして30nmの厚さに蒸着した。次に、電子輸送層として化合物[4]を20nmの厚さに蒸着して積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の4000cd/m時の特性は、駆動電圧4.3V、外部量子効率11.9%であった。また初期輝度を4000cd/mに設定し、定電流駆動させたところ輝度半減時間は1100時間であった。なおH−2、D−2は以下に示す化合物である。
Figure 2014007287
実施例29
ITO透明導電膜を165nm堆積させたガラス基板(ジオマテック(株)製、11Ω/□、スパッタ品)を38×46mmに切断し、エッチングを行った。得られた基板を “セミコクリーン56”(商品名、フルウチ化学(株)製)で15分間超音波洗浄してから、超純水で洗浄した。この基板を素子を作製する直前に1時間UV−オゾン処理し、真空蒸着装置内に設置して、装置内の真空度が5×10−4Pa以下になるまで排気した。抵抗加熱法によって、まず正孔注入層として、HAT−CN6を5nm、第1正孔輸送層として、HT−1を50nm蒸着した。さらに第2正孔輸送層としてHT−2を10nm蒸着した。次に、発光層として、ホスト材料H−2、ドーパント材料D−2をドープ濃度が10重量%になるようにして30nmの厚さに蒸着した。次に、電子輸送層として化合物[4]を20nmの厚さに蒸着して積層した。次に、フッ化リチウムを0.5nm蒸着した後、アルミニウムを1000nm蒸着して陰極とし、5×5mm角の素子を作製した。ここで言う膜厚は、水晶発振式膜厚モニター表示値である。この発光素子の4000cd/m時の特性は、駆動電圧4.3V、外部量子効率15.1%であった。また初期輝度を4000cd/mに設定し、定電流駆動させたところ輝度半減時間は1800時間であった。なお、HT−2は以下に示す化合物である。
Figure 2014007287
実施例30、31
第2正孔輸送層として表3に記載した化合物を用いた以外は、実施例29と同様にして発光素子を作成し、評価した。結果を表3に示す。なおHT−3、HT−4は以下に示す化合物である。
Figure 2014007287
実施例32
電子輸送層として化合物[5]を用いた以外は実施例28と同様に発光素子を作成し、評価した。結果を表3に示す。
実施例33〜34
第2正孔輸送層として表3記載の化合物を用い、電子輸送層として化合物[5]を用いた以外は、実施例29と同様にして素子を作成し、評価した。結果を表3に示す。
比較例10、14
電子輸送層として表3記載の化合物を用いた以外は実施例28と同様に発光素子を作成し、評価した。結果を表3に示す。
比較例11〜13、15〜17
第2正孔輸送層および電子輸送層として表3記載の化合物を用いた以外は、実施例29と同様にして素子を作成し、評価した。結果を表3に示す。
Figure 2014007287
Figure 2014007287
Figure 2014007287

Claims (13)

  1. 下記一般式(1)で表される化合物を有することを特徴とする発光素子材料。
    Figure 2014007287
    (式中、Zは下記一般式(2)で表され、Arは下記一般式(3)で表される。Lは単結合、置換もしくは無置換のアリーレン基、または置換もしくは無置換のヘテロアリーレン基である。nは1もしくは2である。nが2のとき2つのZは同じでも異なっていてもよい。)
    Figure 2014007287
    (式中、環Aおよび環Bは、それぞれ、置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、環Aおよび環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Aおよび環Bが置換されている場合の置換基、ならびにRは、それぞれ、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。Rは水素であってもよい。RおよびRはアリール基またはヘテロアリール基である。またRおよびRが縮合して環を形成していてもよい。但し、R1、環Aおよび環Bのうちいずれかの位置でLと連結する。nが2のとき、2個のZがLと連結する位置はそれぞれ同じでも異なっていてもよい。)
    Figure 2014007287
    (式中、R101〜R110はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R101〜R110は隣接する置換基同士で環を形成していてもよい。但し、ベンゼン環は形成しない。また、R101〜R110のうちいずれか一つの位置でLと連結する。)
  2. 前記一般式(1)で表される化合物が下記一般式(4)で表される化合物である請求項1に記載の発光素子材料。
    Figure 2014007287
    (式中、R102〜R110はそれぞれ同じでも異なっていてもよく、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基およびカルバモイル基からなる群より選ばれる。R102〜R110は隣接する置換基同士で環を形成していてもよい。但し、ベンゼン環は形成しない。L、Zおよびnは前記一般式(1)と同様である。)
  3. nが1である請求項1または2に記載の発光素子材料。
  4. Zが下記一般式(5)〜(9)のいずれかで表される基である請求項1〜3のいずれかに記載の発光素子材料。
    Figure 2014007287
    (式中、環Bは置換もしくは無置換のベンゼン環、置換もしくは無置換の縮合芳香族炭化水素環、置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環を表す。但し、一般式(5)の場合は、環Bは置換もしくは無置換の単環芳香族複素環、または置換もしくは無置換の縮合芳香族複素環であり、かつ、環Bを構成する少なくとも1つの原子は電子受容性窒素である。環Bが置換されている場合の置換基ならびにRは、前記一般式(2)と同様である。R16〜R31は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。ただし、一般式(5)の場合はR1、R16〜R19、環Bのうちいずれかの位置で、一般式(6)の場合はR1、R20〜R22、環Bのうちいずれかの位置で、一般式(7)の場合はR1、R23〜R25、環Bのうちいずれかの位置で、一般式(8)の場合はR1、R26〜R28、環Bのうちいずれかの位置で、一般式(9)の場合はR1、R29〜R31、環Bのうちいずれかの位置で、Lと連結する。nが2のとき2つのZは同じでも異なっていてもよい。)
  5. 環Bが下記一般式(10)〜(13)のいずれかで表される構造である請求項4記載の発光素子材料。
    Figure 2014007287
    (式中、B〜B22はC−R32、またはNを表す。但し、Zが一般式(5)で表される基の場合は、環Bに含まれるB(k=1〜22)の少なくとも1つは電子受容性窒素である。B〜B22が置換されている場合の置換基は前記一般式(2)と同様である。R32は、それぞれ、水素、アルキル基、シクロアルキル基、複素環基、アルケニル基、シクロアルケニル基、アルキニル基、アルコキシ基、アルキルチオ基、アリールエーテル基、アリールチオエーテル基、アリール基、ヘテロアリール基、ハロゲン、カルボニル基、カルボキシル基、オキシカルボニル基、カルバモイル基および−P(=O)Rからなる群より選ばれる。)
  6. Zが一般式(2)で表される場合は環Aおよび環Bのうちいずれかの位置で、Zが一般式(5)で表される場合はZはR16〜R19、環Bのうちいずれかの位置で、Zが一般式(6)で表される場合はZはR20〜R22、環Bのうちいずれかの位置で、Zが一般式(7)で表される場合はZはR23〜R25、環Bのうちいずれかの位置で、Zが一般式(8)で表される場合はZはR26〜R28、環Bのうちいずれかの位置で、Zが一般式(9)で表される場合はZはR29〜R31、環Bのうちいずれかの位置で、Lと連結する請求項1〜4のいずれかに記載の発光素子材料。
  7. 陽極と陰極の間に有機層が存在し、電気エネルギーにより発光する発光素子であって、前記有機層に請求項1〜6のいずれか記載の発光素子材料を含有することを特徴とする発光素子。
  8. 前記有機層が電子輸送層を含み、前記請求項1〜6のいずれか記載の発光素子材料が前記電子輸送層に含まれる請求項7記載の発光素子。
  9. 前記電子輸送層がさらにドナー性化合物を含む請求項8記載の発光素子。
  10. 前記ドナー性化合物がアルカリ金属、アルカリ金属を含有する無機塩、アルカリ金属と有機物との錯体、アルカリ土類金属、アルカリ土類金属を含有する無機塩またはアルカリ土類金属と有機物との錯体であることを特徴とする請求項9記載の発光素子。
  11. 前記ドナー性化合物がアルカリ金属と有機物との錯体またはアルカリ土類金属と有機物との錯体である請求項10記載の発光素子。
  12. 陽極と陰極の間にさらに正孔輸送層を含み、前記正孔輸送層がカルバゾール骨格を有する材料を含有する請求項7〜11のいずれか記載の発光素子。
  13. 前記カルバゾール骨格を有する材料がカルバゾール多量体である請求項12記載の発光素子。
JP2013530438A 2012-07-05 2013-07-03 発光素子材料および発光素子 Active JP6318617B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012151040 2012-07-05
JP2012151040 2012-07-05
PCT/JP2013/068242 WO2014007287A1 (ja) 2012-07-05 2013-07-03 発光素子材料および発光素子

Publications (2)

Publication Number Publication Date
JPWO2014007287A1 true JPWO2014007287A1 (ja) 2016-06-02
JP6318617B2 JP6318617B2 (ja) 2018-05-09

Family

ID=49882039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013530438A Active JP6318617B2 (ja) 2012-07-05 2013-07-03 発光素子材料および発光素子

Country Status (6)

Country Link
EP (1) EP2871686B1 (ja)
JP (1) JP6318617B2 (ja)
KR (1) KR101946891B1 (ja)
CN (1) CN104428916B (ja)
TW (1) TWI579285B (ja)
WO (1) WO2014007287A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104703969B (zh) * 2012-11-21 2017-09-05 株式会社Lg化学 荧蒽化合物及包含其的有机电子器件
JP5827772B2 (ja) 2013-06-04 2015-12-02 出光興産株式会社 含窒素複素環誘導体、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2015182547A1 (ja) * 2014-05-28 2015-12-03 東レ株式会社 フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
WO2016163372A1 (ja) * 2015-04-08 2016-10-13 出光興産株式会社 化合物、これを用いた有機エレクトロルミネッセンス素子用材料、及びこれを用いた有機エレクトロルミネッセンス素子並びに電子機器
EP4084108A1 (en) * 2015-08-18 2022-11-02 Novaled GmbH Metal amides for use as hil for an organic light-emitting diode (oled)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238584A (ja) * 2002-02-08 2003-08-27 Yamanouchi Pharmaceut Co Ltd 新規エンジイン化合物
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2012030145A1 (en) * 2010-08-31 2012-03-08 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
WO2012108288A1 (ja) * 2011-02-07 2012-08-16 株式会社豊田中央研究所 蓄熱装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691543B1 (ko) 2002-01-18 2007-03-09 주식회사 엘지화학 새로운 전자 수송용 물질 및 이를 이용한 유기 발광 소자
KR101035780B1 (ko) 2002-12-12 2011-05-20 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 그를 이용한 유기 전기발광 소자
US7867629B2 (en) 2003-01-10 2011-01-11 Idemitsu Kosan Co., Ltd. Nitrogenous heterocyclic derivative and organic electroluminescent element employing the same
JP4925569B2 (ja) * 2004-07-08 2012-04-25 ローム株式会社 有機エレクトロルミネッセント素子
US9214636B2 (en) 2006-02-28 2015-12-15 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
JP5299288B2 (ja) 2008-07-01 2013-09-25 東レ株式会社 発光素子
WO2010113743A1 (ja) 2009-03-30 2010-10-07 東レ株式会社 発光素子材料および発光素子
KR101603070B1 (ko) 2009-03-31 2016-03-14 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계발광 소자
KR101450959B1 (ko) * 2010-01-15 2014-10-15 이데미쓰 고산 가부시키가이샤 질소 함유 복소환 유도체 및 그것을 포함하여 이루어지는 유기 전계 발광 소자
KR20120020816A (ko) * 2010-08-31 2012-03-08 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
WO2012108388A1 (ja) * 2011-02-07 2012-08-16 出光興産株式会社 ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003238584A (ja) * 2002-02-08 2003-08-27 Yamanouchi Pharmaceut Co Ltd 新規エンジイン化合物
WO2011132684A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011132683A1 (ja) * 2010-04-20 2011-10-27 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2012030145A1 (en) * 2010-08-31 2012-03-08 Rohm And Haas Electronic Materials Korea Ltd. Novel compounds for organic electronic material and organic electroluminescent device using the same
JP2013542176A (ja) * 2010-08-31 2013-11-21 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド 有機電子材料のための新規化合物、およびこれを使用する有機電界発光素子
WO2012108288A1 (ja) * 2011-02-07 2012-08-16 株式会社豊田中央研究所 蓄熱装置

Also Published As

Publication number Publication date
EP2871686B1 (en) 2019-08-21
KR101946891B1 (ko) 2019-02-12
EP2871686A4 (en) 2016-03-16
EP2871686A1 (en) 2015-05-13
CN104428916B (zh) 2016-10-26
WO2014007287A1 (ja) 2014-01-09
CN104428916A (zh) 2015-03-18
TW201406762A (zh) 2014-02-16
TWI579285B (zh) 2017-04-21
JP6318617B2 (ja) 2018-05-09
KR20150035706A (ko) 2015-04-07

Similar Documents

Publication Publication Date Title
JP6769303B2 (ja) フェナントロリン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
JP6183214B2 (ja) フルオランテン誘導体、それを含有する発光素子材料および発光素子
JP6627507B2 (ja) フルオランテン誘導体、それを含有する電子デバイス、発光素子および光電変換素子
JP6051864B2 (ja) 発光素子材料および発光素子
JPWO2013133224A1 (ja) 発光素子
JP6183211B2 (ja) 発光素子材料および発光素子
JP6269060B2 (ja) 発光素子材料および発光素子
WO2016009823A1 (ja) モノアミン誘導体、それを用いた発光素子材料および発光素子
WO2014057873A1 (ja) ホスフィンオキサイド誘導体およびそれを有する発光素子
JP6318617B2 (ja) 発光素子材料および発光素子
WO2016152855A1 (ja) 化合物、ならびにそれを含有する電子デバイス、発光素子、光電変換素子およびイメージセンサ
JP2014138006A (ja) 発光素子材料および発光素子
JP5640460B2 (ja) 発光素子および発光素子材料
JP2016160208A (ja) 化合物、それを含有する発光素子、光電変換素子およびイメージセンサ
WO2014024750A1 (ja) 発光素子材料および発光素子
JP2014175590A (ja) 有機電界発光素子
JP2017084859A (ja) 発光素子、それを含む表示装置および照明装置
WO2018180709A1 (ja) 化合物、それを含有する電子デバイス、有機薄膜発光素子、表示装置および照明装置
JPWO2014007022A1 (ja) 発光素子材料および発光素子

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R151 Written notification of patent or utility model registration

Ref document number: 6318617

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151