JPWO2013183557A1 - 近赤外線カットフィルタ - Google Patents

近赤外線カットフィルタ Download PDF

Info

Publication number
JPWO2013183557A1
JPWO2013183557A1 JP2014519965A JP2014519965A JPWO2013183557A1 JP WO2013183557 A1 JPWO2013183557 A1 JP WO2013183557A1 JP 2014519965 A JP2014519965 A JP 2014519965A JP 2014519965 A JP2014519965 A JP 2014519965A JP WO2013183557 A1 JPWO2013183557 A1 JP WO2013183557A1
Authority
JP
Japan
Prior art keywords
refractive index
film
optical multilayer
wavelength
index film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014519965A
Other languages
English (en)
Other versions
JP6119747B2 (ja
Inventor
満幸 舘村
満幸 舘村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2014519965A priority Critical patent/JP6119747B2/ja
Publication of JPWO2013183557A1 publication Critical patent/JPWO2013183557A1/ja
Application granted granted Critical
Publication of JP6119747B2 publication Critical patent/JP6119747B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/28Interference filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Optical Filters (AREA)

Abstract

本発明に係る近赤外線カットフィルタは、高屈折率膜、中屈折率膜及び低屈折率膜の繰り返し積層構造を有し、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、750〜1100nmの波長範囲において平均透過率が10%以下の領域の幅が100〜280nmである阻止帯とを有する。

Description

本発明は、近赤外線カットフィルタに関し、特に、透明基板上に形成された光学多層膜を有する近赤外線カットフィルタに関する。
デジタルカメラやデジタルビデオ等には、Charge Coupled Device(CCD)イメージセンサやComplementary Metal Oxide Semiconductor(CMOS)イメージセンサ等(以下、固体撮像素子と称する)が使用される。しかしながら、これら固体撮像素子の分光特性は、人間の視感度特性に比べて赤外光に強い感度を有する。そこで、デジタルカメラやデジタルビデオ等では、近赤外線カットフィルタによる分光補正を行っている。
近赤外線カットフィルタとしては、例えば、Cu2+イオンを着色成分として含有するフツリン酸系ガラス等の近赤外線吸収タイプの色ガラスフィルタが使用されてきた。しかしながら、色ガラスフィルタ単体では、近赤外域及び紫外域の光を十分にカットすることができないことから、現在では、近赤外線をカットできる特性を有する光学多層膜が併用されている。
光学多層膜には、固体撮像素子が必要とする400〜700nmにおける透過帯において、透過率が落ち込む現象(リップル)が生じないことが求められる。光学多層膜において、リップルを抑制する技術が従来から提案されている(例えば、特許文献1〜2参照)。
特許第4672101号公報 特開2008−139693号公報
しかしながら、光学多層膜には、特定角度で入射する光のリップルを抑制できたとしても、光の入射角度が変化するとリップルが発生することがある。特許文献1〜2に記載の技術は、特定角度で入射する光のリップルの抑制には対応できるものの、光の入射角度が変化することに起因して発生するリップルに対しては全く考慮されていない。
このような状況において、近年では、デジタルカメラやデジタルビデオ等がさらに小型化、薄型化しており、デジタルカメラやデジタルビデオ等のレンズの広角化が進んでいる。このため、固体撮像素子へ光がより傾斜した状態で入射するようになっている。例えば、従来では、固体撮像素子への光の入射角度が30°以下であったものが、近年では、30°を超える入射角への対応を強く求められるようになってきている。
上述したリップルは、光の入射角度が傾斜するに従い、透過率の落ち込み量も大きくなる。特許文献1〜2に開示される提案では、入射角度変化に伴うリップルの抑制について考慮がなされていないことから、固体撮像素子への光の入射角度が30°以下であれば、リップルが極端に大きくなることはないが、30°を超えるような入射角度になると無視できないほどのリップルが発生するおそれがある。本発明は、上記課題に鑑みてなされたものであり、リップルが抑制された近赤外線カットフィルタを提供することを目的とする。
本発明に係る近赤外線カットフィルタは、透明基板と、前記透明基板の少なくとも一方の主面に設けられた光学多層膜とを備える近赤外線カットフィルタであって、前記光学多層膜は、波長500nmにおける屈折率が2.0以上である高屈折率膜と、波長500nmにおける屈折率が1.6以上で前記高屈折率膜の屈折率未満である中屈折率膜と、波長500nmにおける屈折率が1.6未満である低屈折率膜とを備え、前記高屈折率膜をH、前記中屈折率膜をM、前記低屈折率膜をLとしたとき、(LMHML)^n(nは1以上の自然数)の繰り返しで表される繰り返し積層構造を有し、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、750〜1100nmの波長範囲において平均透過率が10%以下の領域の幅が100〜280nmである阻止帯とを有し、前記光学多層膜の前記高屈折率膜のQWOT(Quater-wave Optical Thickness)をT、前記中屈折率膜のQWOTをT、前記低屈折率膜のQWOTをTとした場合、前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上の場合、前記光学多層膜は、垂直入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内であり、前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合、前記光学多層膜は、垂直入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内となるように、前記高屈折率膜、前記中屈折率膜及び前記低屈折率膜を積層したことを特徴とする。
本発明によれば、透明基板の少なくとも一方の主面に設けられた光学多層膜とを備える近赤外線カットフィルタであって、前記光学多層膜は、波長500nmにおける屈折率が2.0以上である高屈折率膜と、波長500nmにおける屈折率が1.6以上で前記高屈折率膜の屈折率未満である中屈折率膜と、波長500nmにおける屈折率が1.6未満である低屈折率膜とを備え、前記高屈折率膜をH、前記中屈折率膜をM、前記低屈折率膜をLとしたとき、(LMHML)^n(nは1以上の自然数)の繰り返しで表される繰り返し積層構造を有し、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、750〜1100nmの波長範囲において平均透過率が10%以下の領域の幅が100〜280nmである阻止帯とを有し、前記光学多層膜の前記高屈折率膜のQWOTをT、前記中屈折率膜のQWOTをT、前記低屈折率膜のQWOTをTとした場合、前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上の場合、前記光学多層膜は、垂直入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内であり、前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合、前記光学多層膜は、垂直入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内となるように、前記高屈折率膜、前記中屈折率膜及び前記低屈折率膜を積層しているので、リップルが抑制された近赤外線カットフィルタを提供することができる。
第1の実施形態に係る近赤外線カットフィルタの断面図である。 第1の実施形態に係る光学多層膜の断面図である。 第1の実施形態に係る光学多層膜の第1のSWPF部の断面図である。 撮像装置一部構成図である。 表1に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表1に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表2に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表2に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表3に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表3に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表4に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表4に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表5に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表5に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表6に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表6に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表7に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果である。 表7に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果である。 表8、表9に示す光学多層膜を備えたガラス基板(NF50T)の0°及び45°入射条件における分光特性のシミュレーション結果である。 表8に示す光学多層膜(IRCF)を備えた白板ガラス基板の0°及び45°入射条件における分光特性のシミュレーション結果である。 表9に示す光学多層膜のうち、UVカット備えた白板ガラス基板の0°及び45°入射条件における分光特性のシミュレーション結果である。 表9に示す光学多層膜のうち、SWPF1を備えた白板ガラス基板の0°及び45°入射条件における分光特性のシミュレーション結果である。 2T/(T+2T)の値が100%の場合におけるSWPF1を備えた白板ガラス基板の分光特性のシミュレーション結果である。 2T/(T+2T)の値が0%の場合におけるSWPF1を備えた白板ガラス基板の分光特性のシミュレーション結果である。 表9に示す光学多層膜のうち、SWPF2を備えた白板ガラス基板の0°及び45°入射条件における分光特性のシミュレーション結果である。 2T/(T+2T)の値が100%の場合におけるSWPF2を備えた白板ガラス基板の分光特性のシミュレーション結果である。 2T/(T+2T)の値が0%の場合におけるSWPF2を備えた白板ガラス基板の分光特性のシミュレーション結果である。 表9に示す光学多層膜を備えた白板ガラス基板の0°及び45°入射条件における分光特性のシミュレーション結果である。
(第1の実施形態)
図1は、第1の実施形態に係る近赤外線カットフィルタ10(以下、IRCF10)の断面図である。図2は、IRCF10が備える光学多層膜12の断面図である。図3は、光学多層膜12の第1のSWPF部12Bの断面図である。以下、図1〜図3を参照してIRCF10の構成について説明する。
図1に示すようにIRCF10は、透明基板11と、透明基板11の少なくとも一方の主面に設けられた光学多層膜12とを備える。なお、光学多層膜12は、透明基板11の一方の主面に設けるようにしてもよいし、透明基板11のそれぞれの主面に分割して設けるようにしてもよい。
(透明基板11)
透明基板11の材料は、少なくとも可視波長域の光を透過できるものであれば特に限定されない。透明基板11の材料として、例えば、ガラス、水晶、ニオブ酸リチウム、サファイヤ等の結晶、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)等のポリエステル樹脂、ポリエチレン、ポリプロピレン、エチレン酢酸ビニル共重合体等のポリオレフィン樹脂、ノルボルネン樹脂、ポリアクリレート、ポリメチルメタクリレート等のアクリル樹脂、ウレタン樹脂、塩化ビニル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリビニルブチラール樹脂、ポリビニルアルコール樹脂等が挙げられる。
透明基板11としては、特に、近赤外波長域の光を吸収するものが好ましい。近赤外波長域の光を吸収する透明基板11を用いることで、人間の視感度特性に近い画質を得ることができるためである。なお、近赤外波長域の光を吸収する透明基板11としては、例えば、フツリン酸塩系ガラスやリン酸塩系ガラスにCu2+(イオン)が添加された吸収型ガラスが挙げられる。また、樹脂材料中に近赤外線を吸収する吸収剤を添加したものを使用してもよい。吸収剤としては、例えば、染料、顔料、金属錯体系化合物が挙げられ、具体的には、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物が挙げられる。
(光学多層膜22の構造)
図2は、光学多層膜12の断面図である。図2に示すように、光学多層膜12は、紫外光(UV)をカットするUVカット部12A、第1のSWPF部12B及び第2のSWPF部12Cを備える。第1のSWPF部12B及び第2のSWPF部12Cは、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、前記透過帯の近赤外側に、750〜1100nmの波長範囲において平均透過率が10%以下の領域の幅が100〜280nmである阻止帯とを形成する。その他、分光特性を調整する層を光学多層膜12の構造に追加してもよい。
(UVカット部12A)
UVカット部12Aは、400nm未満の波長範囲の紫外線を所定の波長幅と透過率でカットするものであれば、どのような膜構成のものであってもよい。例えば波長500nmにおける屈折率が2.0以上の高屈折率膜Hと、波長500nmにおける屈折率が1.6未満の低屈折率膜Lとが積層された構造を有する。
(SWPF部12B)
図3は、第1のSWPF(Short Wide Pass Filter)部12Bの断面図である。SWPF部12Bは、波長500nmにおける屈折率が2.0以上の高屈折率膜をH、波長500nmにおける屈折率が1.6以上で前記高屈折率膜Hの屈折率未満である中屈折率膜をM、波長500nmにおける屈折率が1.6未満の低屈折率膜をLとしたときに、以下の(1)式で表される構造を有する。
(LMHML)^n(nは、1以上の自然数)・・・(1)
SWPF部12Bの高屈折率膜HのQWOTをT、中屈折率膜MのQWOTをT、低屈折率膜LのQWOTをTとしたとき、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上場合、0°入射(垂直入射)条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内となるよう前記各膜を積層する。
また、SWPF部12の高屈折率膜HのQWOTをT、中屈折率膜MのQWOTをT、低屈折率膜LのQWOTをTとしたときに、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内となるよう前記各膜を積層する。
上述の各膜のQWOTの比を決める際、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値をしきい値として規定した。これは、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上の場合は、中屈折率膜のQWOTの増減が上記比率に与える影響が高屈折率膜の傾向と同様であるためである。また、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合は、中屈折率膜のQWOTの増減が上記比率に与える影響が低屈折率膜の傾向と同様であるためである。
SWPF部12の各膜のQWOTを上記のように設定する理由を以下に述べる。光学多層膜の入射角度に依存する可視域の局所的な透過率減少(いわゆるリップル)の発生は、nd×cosθによる光学的膜厚の減少が、屈折率が異なる膜どうしで相違することによるものと考えられる。光学多層膜の分光特性は、スネルの法則(n1×cosθ1=n2×cosθ2)により、入射角度は屈折率が大きい膜の方が小さく、屈折率の小さい膜では入射角度が大きくなることが分かる。
従って、入射角度が大きくなるに従い、例えば高屈折率膜Hと低屈折率膜Lとで考えると、両者の光学的膜厚のバランスは高屈折率膜の光学的膜厚が過多、低屈折率膜の光学的膜厚が過小に働く。そして、SWPFは各屈折率の膜厚変化に対してリップルが発生し易い傾向がある。しかしながら、各屈折率の光学的膜厚の比率が変化した場合であっても、リップルが発生しない比率範囲が必ず存在するので、これを用いてリップルの抑制を行うことが出来る。
具体的には、(LMHML)の繰り返し積層構造をもつSWPFにおいて、各屈折率膜のQWOTを増減させ、SWPFの0°入射条件の分光特性で400〜700nmの波長範囲内にリップルの発生を調べる。各屈折率膜のQWOTを増減させると、リップルが発生し始める範囲が把握できる。
そして、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上の場合、透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内となるよう各屈折率膜のQWOTを決定する。
また、中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合、透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内となるよう各屈折率膜のQWOTを決定する。
なお、透過率が局所的に5%以上低下する箇所が存在しない、とは、400〜700nmの波長範囲において、上記各屈折率膜のQWOTを増減させた際の透過率の変化量を規定するものである。具体的には、上記各屈折率膜のQWOTの調整により透過率が変動するため、その変動量が局所的に5%以上低下する箇所が存在しない範囲内における、上記QWOTの比率を確認し、最大値及び最小値を設定するものである。
上記において、100%の値を選ぶと、0°から入射角度を大きくして(傾けて)いった時、最も大きな角度までリップルが発生しない設計となる。70%未満の値を選ぶと、0°から入射角度を大きくして(傾けて)いった時、100%の値を選んだ場合よりも小さい角度でリップルが発生する。光学多層膜の透過帯(400nm〜700nm)における、0°〜45°入射条件でのリップルの発生および製造上の余裕も考慮に入れ、100%〜70%の範囲となるよう各屈折率膜のQWOTを決定する。なお、上述した各屈折率膜のQWOTを決定するプロセスは、複数の膜構成の光学多層膜を実際に作製してもよいし、膜構造から光学多層膜の分光特性をシミュレーションできるソフトウエアを活用してもよい。
(SWPF部12C)
SWPF部12Cは、SWPF部12Bと同じ構造を有するため重複する説明を省略する。
高屈折率膜Hとしては、波長500nmにおいて、屈折率が2.0以上となる材料からなるものであれば特に限定されない。このような高屈折率の材料としては、例えば、酸化チタン(TiO)、酸化ニオブ(Nb)、またはこれらの複合酸化物からなるものが好適に挙げられる。また、屈折率が2.0以上であれば、添加物を含有していても構わない。なお、屈折率が高いほうが、斜入射時の波長シフト量抑制、阻止帯の拡張等に有利である。
中屈折率膜Mとしては、波長500nmにおいて、屈折率が1.6以上で前記高屈折率膜Hの屈折率未満である材料からなるものであれば特に限定されない。このような中屈折率の材料としては、例えば、酸化タンタル(Ta)、酸化アルミニウム(Al)、酸化イットリウム(Y)、酸化ジルコニウム(ZrO)と酸化アルミニウム(Al)との混合物が好適に挙げられる。なお、上記材料は、添加物を含有していても構わない。
低屈折率膜Lとしては、波長500nmにおいて、低屈折率が1.6未満となる材料からなるものであれば特に限定されない。このような低屈折率の材料としては、例えば、酸化珪素(SiO)が好適に挙げられる。また、屈折率が1.6未満であれば、添加物を含有していても構わない。
各屈折率膜の組合せの好適な例として、以下が挙げられる。
組合せ1・・・高屈折率膜:酸化チタン(波長500nmにおける屈折率:2.47)、中屈折率膜:酸化タンタル(波長500nmにおける屈折率:2.19)、低屈折率膜:酸化珪素(波長500nmにおける屈折率:1.48)
なお、この組合せにおける2T/(T+2T)は、0.870〜0.845が好ましい範囲である。
組合せ2・・・高屈折率膜:酸化チタン(波長500nmにおける屈折率:2.47)、中屈折率膜:酸化アルミニウム(波長500nmにおける屈折率:1.64)、低屈折率膜:酸化珪素(波長500nmにおける屈折率:1.48)
なお、この組合せにおける(2T+2T)/Tは、1.215〜1.186が好ましい範囲である。
組合せ3・・・高屈折率膜:酸化ニオブ(波長500nmにおける屈折率:2.38)、中屈折率膜:酸化アルミニウム(波長500nmにおける屈折率:1.64)、低屈折率膜:酸化珪素(波長500nmにおける屈折率:1.48)
なお、この組合せにおける(2T+2T)/Tは、1.229〜1.186が好ましい範囲である。
光学多層膜12を構成する高屈折率膜H、中屈折率膜M、低屈折率膜Lは、スパッタリング法、真空蒸着法、イオンビーム法、イオンプレーティング法、CVD法により形成することができるが、特に、スパッタリング法、真空蒸着法により形成することが好ましい。透過帯は、CCD、CMOS等の固体撮像素子の受光に利用される波長帯域であり、その膜厚精度が重要となる。スパッタリング法、真空蒸着法は、薄膜を形成する際の膜厚制御に優れる。このため、光学多層膜12を構成する高屈折率膜H、中屈折率膜M、低屈折率膜Lの膜厚の精度を高めることができ、その結果、リップルを抑制することができる。
なお、付着力強化層、最表面層(空気側)での帯電防止層など、光学多層膜12を構成する以外の膜が、光学多層膜12に含まれていてもよい。
(光学多層膜12の分光特性)
次に、光学多層膜12の分光特性について説明する。
光学多層膜12は、0°入射条件において、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、該透過帯の近赤外側に阻止帯を有する。阻止帯は、750〜1100nmの波長範囲において平均透過率が10%以下の領域の幅が100〜280nmとなっている。
また、光学多層膜12の透過帯の紫外側の半値波長と近赤外側の半値波長との差は200nm以上となっている。さらに、0°入射条件と30°入射条件とにおける光学多層膜12の透過帯の半値波長の差は、紫外側で10nm未満、近赤外側で22nm未満となっている。
なお、光学多層膜12は、0°入射条件での分光特性において、さらに以下の要件を満たすことが好ましい。具体的には、光学多層膜12の透過帯の紫外側の半値波長と近赤外側の半値波長との差は350nm以下が好ましく、300nm以下が更に好ましい。また、紫外側の半値波長は390〜430nmの範囲にあることが好ましく、近赤外側の半値波長は640〜720nmの範囲にあることが好ましい。さらに、紫外側の阻止帯の幅は30nm以上、近赤外側の阻止帯の幅は200nm以上であることが好ましい。
ここで、光学多層膜12の透過帯の範囲(平均透過率を求めるための範囲)は、透過帯から紫外側の阻止帯に向かって透過率の低下が開始するときの波長(紫外側の基点)から、透過帯から近赤外側の阻止帯に向かって透過率の低下が開始するときの波長(近赤外側の基点)までとする。
また、光学多層膜12の阻止帯の範囲(平均透過率や幅を求めるための範囲)は、光学多層膜12の紫外側の阻止帯については、紫外側の阻止帯から透過帯に向かって透過率の上昇が開始するときの波長(透過帯側の基点)から、その紫外側に向かって透過率が最初に40%に達するときの上昇が開始するときの波長(紫外側の基点)までとする。
さらに、光学多層膜12の近赤外側の阻止帯については、近赤外側の阻止帯から透過帯に向かって透過率の上昇が開始するときの波長(透過帯側の基点)から、その近赤外側に向かって透過率が最初に40%に達するときの上昇が開始するときの波長(近赤外側の基点)までとする。
(近赤外線カットフィルタ(IRCF)10の分光特性)
IRCF10は、0°〜45°入射条件における分光特性において、透過帯(400〜700nmの波長範囲内)の透過率が局所的に20%以上低下する箇所がないことが好ましい。IRCF10の分光特性は、主には光学多層膜12の分光特性に依存するため、光学多層膜12のみで上記特性を備えることが好ましいが、光学多層膜12以外に反射防止膜等を透明基板の他方の面に設けることで上記特性を備えるようにしてもよい。IRCF10は、0°〜45°入射条件における分光特性において、透過帯(400〜700nmの波長範囲内)の透過率が局所的に低下する量は、15%以下がより好ましく、12%以下がさらに好ましい。
なお、本発明において、透過率が局所的に低下する量は、リップルによる局所的な透過率損失量を意味する。具体的には、短波長から長波長側への透過率変動において、透過帯の平坦部もしくはそれに類する連続的な透過率変動部(例えば吸収ガラスなどでは透過帯はなだらかな山形状を描いている)から、リップルによって形成される極小値に向かう最初の変曲点の透過率を(A)、リップルによる透過率の極小値を(B)、リップルの極小値から上記透過帯平坦部に透過率が上昇し、この上昇の終端であり、透過帯平坦部に戻った最初の変曲点の透過率を(C)とした時(A)−(B)、(C)−(B)の絶対値のうち、大きいものをいう。
(その他の実施形態)
以上のように、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。
例えば、光学多層膜は、2つの同一の膜構成によるSWPFを備えてもよいし、1つのSWPFおよび他の膜構成(上記繰り返し積層構造以外)によるSWPFにて構成されてもよい。具体的には、(LMHML)の繰り返し積層構造を備えるSWPFと(HL)の繰り返し積層構造を備えるSWPFとからなる光学多層膜であってもよい。また、(LMHML)の繰り返し数は、所望の分光特性に応じて任意に設定されるものである。また、(LMHML)の中屈折率膜を高屈折率膜と低屈折率膜とに振り分ける(等価膜構成)を用いて、実質的に同一の膜構成となるようにしてもよい。
(撮像装置100)
図1〜図3を参照して説明したIRCF10は、例えば、デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ等の撮像装置や自動露出計等における視感度補正フィルタとして用いられる。デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラ等の撮像装置においては、例えば、撮像レンズと固体撮像素子との間に配置される。自動露出計においては、例えば受光素子の前面に配置される。
撮像装置では、固体撮像素子の前面から離れた位置にIRCF10を配置してもよいし、固体撮像素子、または固体撮像素子のパッケージに直接貼着してもよいし、固体撮像素子を保護するカバーをIRCF10としてもよい。また、モアレや偽色を抑制するための水晶やニオブ酸リチウム等の結晶を使用したローパスフィルタに直接貼着してもよい。
次に、具体例を示す。図4は、撮像装置100の一部構成図である。
撮像装置100は、例えば、デジタルスチルカメラ、デジタルビデオカメラ、監視カメラ、車載用カメラ、ウェブカメラである。撮像装置100は、固体撮像素子110、カバーガラス120、レンズ群130、絞り140、筐体150を備える。固体撮像素子110、カバーガラス120、レンズ群130及び絞り140は、光軸xに沿って配置されている。
固体撮像素子110は、例えば、Charge Coupled Device(CCD)イメージセンサやComplementary Metal Oxide Semiconductor(CMOS)イメージセンサである。固体撮像素子110は、入力される光を電気信号に変換して、図示しない画像信号処理回路へ出力する。
カバーガラス120は、固体撮像素子110の撮像面側(レンズ群130側)に配置され、外部環境から固体撮像素子110を保護する。
レンズ群130は、固体撮像素子110の撮像面側に配置される。レンズ群130は、複数のレンズL1〜L4で構成され、入射する光を固体撮像素子110の撮像面へと導光する。
絞り140は、レンズ群130のレンズL3とレンズL4との間に配置される。絞り140は、通過する光の量を調整可能に構成されている。
筐体150は、固体撮像素子110、カバーガラス120、レンズ群130及び絞り140を収容する。
撮像装置100では、被写体側より入射した光は、レンズL1、レンズL2、第3のレンズL3、絞り140、レンズL4、及びカバーガラス120を通って固体撮像素子110に入射する。この入射した光が固体撮像素子110にて電気信号に変換され、画像信号として出力される。
IRCF10は、例えば、カバーガラス120、レンズ群130、すなわちレンズL1、レンズL2、レンズL3、もしくはレンズL4として用いられる。言い換えれば、IRCF10の光学多層膜12は、従来の撮像装置のカバーガラスやレンズ群を透明基板11とし、この透明基板11の表面に設けられる。また、透明基板11の表面に光学多層膜12を設けたIRCF10(図4には図示しない)を前述のカバーガラスやレンズ群とは別部材として設けてもよい。
撮像装置100のカバーガラス120やレンズ群130にIRCF10を適用することで、入射角度依存性(リップルの発生)を抑制しつつ、可視域の透過帯ならびに紫外域および近赤外域の阻止帯を拡張でき、その特性を向上することができる。
次に実施例を参照して具体的に説明する。
実施例に係る近赤外線カットフィルタ(IRCF)は、透明基板(白板ガラス、B270、板厚0.3mm、ショット社製)と、透明基板の一方の面に設けられた光学多層膜とを備える。これらのIRCFについて、光学多層膜の0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない条件を、光学薄膜シミュレーションソフト(TFCalc、Software Spectra社製)を用いて検証した。また、本願では波長500nmにおける各膜の屈折率を代表値として使用しているが、シミュレーション上は屈折率の波長依存性を考慮してシミュレーションを行った。
屈折率には、分散などと呼ばれる波長依存性がある。例えば、300〜1300nmの波長範囲において、本出願が対象とする膜物質などでは、波長が短いほど屈折率が大きく、波長が長くなると屈折率は小さくなる傾向がある。これら波長−屈折率の関係は線形関係ではなく、一般的にはHartmann、Sellmeierなどの近似式を用いて表されることが多い。また、膜物質の屈折率(分散)は、各種成膜条件によって変わる。そのため、蒸着法、イオンアシスト蒸着法、スパッタ法などで実際に成膜を行い、得られた各膜の屈折率の分散データを以下のシミュレーションにて用いた。
(実施例1)
光学多層膜は、酸化チタン(高屈折率膜)、酸化タンタル(中屈折率膜)、酸化珪素(低屈折率膜)からなる、(LMHML)の9層の繰り返し積層である。また、この光学多層膜は、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、前記透過帯の近赤外側に、780〜1000nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の100%(最大値)、0%(最小値)、70%における膜構成を以下の表1に示す。2T/(T+2T)の100%(最大値)は、0.867であり、0%(最小値)は0.816であり、70%は0.852であった。
Figure 2013183557
図5は、表1に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図6は、表1に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内の場合、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も9.9%と低いことがわかる。また、2T/(T+2T)が0%の場合、45°入射条件における分光特性では透過帯の局所的な低下が22.2%となり、リップルを十分に抑制できないことがわかる。
(実施例2)
光学多層膜は、実施例1と同様の繰り返し積層構造を備え、前記透過帯の近赤外側に、920〜1170nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有することのみ相違する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の100%(最大値)、0%(最小値)、70%における膜構成を以下の表2に示す。2T/(T+2T)の100%(最大値)は、0.865あり、0%(最小値)は0.807であり、70%は0.847であった。
Figure 2013183557
図7は、表2に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図7は、表2に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内の場合、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も12.4%と低いことがわかる。また、2T/(T+2T)が0%の場合、45°入射条件における分光特性では透過帯の局所的な低下が24.6%となり、リップルを十分に抑制できないことがわかる。
(実施例3)
光学多層膜は、酸化チタン(高屈折率膜)、酸化アルミニウム(中屈折率膜)、酸化珪素(低屈折率膜)からなる、(LMHML)の9層の繰り返し積層である。また、この光学多層膜は、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、前記透過帯の近赤外側に、770〜1020nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%における膜構成を以下の表3に示す。(2T+2T)/Tの100%(最大値)は、1.218であり、0%(最小値)は1.153であり、70%は1.197であった。
Figure 2013183557
図9は、表3に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図10は、表3に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内の場合、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も18.8%と低いことがわかる。また、(2T+2T)/Tが0%の場合、45°入射条件における分光特性では透過帯の局所的な低下が38.4%となり、リップルを十分に抑制できないことがわかる。
(実施例4)
光学多層膜は、実施例1と同様の繰り返し積層構造を備え、前記透過帯の近赤外側に、960〜1260nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有することのみ相違する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%における膜構成を以下の表4に示す。(2T+2T)/Tの100%(最大値)は、で1.187あり、0%(最小値)は1.120であり、70%は1.167であった。
Figure 2013183557
図11は、表4に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図12は、表4に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内の場合、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も13.5%と低いことがわかる。また、(2T+2T)/Tが0%の場合、45°入射条件における分光特性では透過帯の局所的な低下が29.7%となり、リップルを十分に抑制できないことがわかる。
(実施例5)
光学多層膜は、酸化ニオブ(高屈折率膜)、酸化アルミニウム(中屈折率膜)、酸化珪素(低屈折率膜)からなる、(LMHML)の9層の繰り返し積層である。また、この光学多層膜は、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、前記透過帯の近赤外側に、774〜1010nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tを100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%における膜構成を以下の表5に示す。(2T+2T)/Tの100%(最大値)は、1.234であり、0%(最小値)は1.165であり、70%は1.212であった。
Figure 2013183557
図13は、表5に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図14は、表5に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内の場合、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も14.9%と低いことがわかる。また、(2T+2T)/Tが0%の場合、45°入射条件における分光特性では透過帯の局所的な低下が31.4%となり、リップルを十分に抑制できないことがわかる。
(実施例6)
光学多層膜は、実施例1と同様の繰り返し積層構造を備え、前記透過帯の近赤外側に、983〜1284nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有することのみ相違する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの100%(最大値)、0%(最小値)、70%における膜構成を以下の表6に示す。前記(2T+2T)/Tの100%(最大値)は、1.216であり、0%(最小値)は1.132であり、70%は1.191であった。
Figure 2013183557
図15は、表6に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図16は、表6に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内の場合、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も10.7%と低いことがわかる。また、(2T+2T)/Tが0%の場合、45°入射条件における分光特性では透過帯の局所的な低下が26.2%となり、リップルを十分に抑制できないことがわかる。
(比較例)
次いで、比較例として次に述べる光学多層膜について検証した。光学多層膜は、酸化チタン(高屈折率膜)、酸化珪素(低屈折率膜)からなる、(HL)の10層の繰り返し積層である。また、この光学多層膜は、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、900〜1200nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有する。この光学多層膜について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しないT/Tの100%(最大値)、0%(最小値)、70%の膜構成をシミュレーションにより調べた。光学多層膜の透過率が局所的に5%以上低下する箇所が存在しないTの100%(最大値)、0%(最小値)、70%における膜構成を以下の表6に示す。T/Tの100%(最大値)は、0.997であり、0%(最小値)は0.960であり、70%は0.986であった。この光学多層膜の膜構成を以下の表7に示す。
Figure 2013183557
図17は、表7に示す光学多層膜の0°入射条件における分光特性のシミュレーション結果を示す図である。また、図18は、表7に示す光学多層膜の45°入射条件における分光特性のシミュレーション結果を示す図である。以上から、光学多層膜が、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しないT/Tの最大値を100%、最小値を0%と設定した場合、T/Tが100%であったとしても45°入射条件では透過帯の透過率の局所的な低下量が31.2%となり、リップルを十分に抑制することができない。また、T/Tが100%未満の場合は、T/Tが100%の場合と比較して45°入射条件では透過帯の透過率の局所的な低下量が大きくなる傾向があるため、当然これら範囲においてもリップルを十分に抑制することができない。
よって、表7に示す光学多層膜の膜構成では、光の入射角度が45°となった際の透過帯のリップルの抑制は困難であることがわかる。
(実施例7)
次に、本発明の光学多層膜をガラス基板上に形成し、分光特性をシミュレーションした。なお、ガラス基板には、近赤外線カットガラス(NF50T、旭硝子社製:厚み0.3mm)を使用した。
初めに、ガラス基板上に形成した光学多層膜の膜構成について説明する。この実施例7では、ガラス基板の両面(フロント側及びリア側)に光学多層膜を形成している。
フロント側に形成した光学多層膜の膜構成を以下の表8に示す。フロント側に形成した光学多層膜は、本発明のIRCFとは異なる、本出願人が出願した国際出願(PCT/JP2012/074087)に記載の発明に包含されるIRCFを用いた。なお、各層の膜厚は、物理膜厚(nm)である。
Figure 2013183557
次に、リア側に形成した光学多層膜の膜構成を以下の表9に示す。各層の膜厚は、物理膜厚(nm)である。なお、リア側に形成した光学多層膜のうち第1層から第18層は、UVカットフィルタ(UVカット部12Aに相当)であり、第18層から第86層までは、本発明の光学多層膜(第1,第2のSWPF部12B,12Cに相当)になる。以下、それぞれの光学多層膜を、UVカット(UVカット部12Aに相当)、SWPF1(第1のSWPF部12Bに相当)、SWPF2(第2のSWPF部12Cに相当)と称する。
なお、第18層の物理膜厚140.23nmのうち、90nmがUVカット用の膜であり、残りの50.23nmがSWPF1用の膜である。また、第54層の物理膜厚159.64nmのうち、75nmがSWPF1用の膜であり、残りの84.64nmがSWPF2用の膜である。
Figure 2013183557
図19は、表8、表9に示す光学多層膜を備えたガラス基板(NF50T)の0°(実線)及び45°(鎖線)入射条件における分光特性のシミュレーション結果を示す図である。
図19に示すように、本発明の光学多層膜を実際の製品に適用した場合でも、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、前記透過帯の近赤外側に、780〜1000nmの波長範囲において平均透過率が10%以下の領域の阻止帯とを有することがわかった。また、0°及び45°入射条件における分光特性において、透過帯(400〜700nmの波長範囲内)の透過率が局所的に低下する量が、12%以下であることがわかった。
次に、表8に示すIRCFのみを備えた白板ガラス基板(B270、板厚0.3mm、ショット社製、以下同様)の0°(実線)及び45°(鎖線)入射条件における分光特性のシミュレーション結果を図20に示す。このフロント側のIRCFは、図20からもわかるように、入射角度依存性が抑制されており、可視域の光の斜入射時のリップルが非常に小さい。しかしながら、近赤外領域をカットする阻止帯の幅が狭い。
次に、リア側に形成したUVカットのみを備えた白板ガラス基板の分光特性のシミュレーション結果を図21に示す。図21に示すように、UVカットだけの光学特性をシミュレーションしたが、0°(実線)及び45°(破線)入射条件における分光特性において、透過帯(400〜700nmの波長範囲内)の透過率が局所的に低下する量が、12%以下であることがわかった。
次に、SWPF1について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の100%(最大値)、0%(最小値)の膜構成をシミュレーションにより調べた。SWPF1の膜構成及びシミュレーションで算出した100%、0%における膜構成を以下の表10に示す。
ここで、2T/(T+2T)の100%(最大値)は、0.761であり、0%(最小値)は0.702であった。また、SWPF1の2T/(T+2T)の値は、0.753であった。よって、SWPF1の2T/(T+2T)の値は、87.1%であり。100%〜70%の範囲内となっている。
Figure 2013183557
図22は、SWPF1のみを備えた白板ガラス基板の0°(実線)及び45°(破線)入射条件における分光特性のシミュレーション結果を示す図である。図22からは、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も低いことがわかる。
なお、参考のため、100%及び0%における膜構成を備えた白板ガラス基板のシミュレーション結果を、それぞれ図23(100%)及び図24(0%)に示す。図23(100%)では、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制できているが、図24(0%)では、45°入射条件において、400nm近辺にリップルが発生しているのがわかる。
次に、SWPF2について、0°入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の100%(最大値)、0%(最小値)の膜構成をシミュレーションにより調べた。SWPF2の膜構成及びシミュレーションで算出した100%、0%における膜構成を以下の表11に示す。
ここで、2T/(T+2T)の100%(最大値)は、0.784であり、0%(最小値)は0.732であった。また、SWPF2の2T/(T+2T)の値は、0.778であった。よって、SWPF2の2T/(T+2T)の値は、87.9%であり。100%〜70%の範囲内となっている。
Figure 2013183557
図25は、SWPF2のみを備えた白板ガラス基板の0°(実線)及び45°(破線)入射条件における分光特性のシミュレーション結果を示す図である。図25からは、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も低いことがわかる。
なお、参考のため、100%及び0%における光学多層膜を備えた白板ガラス基板のシミュレーション結果を、それぞれ図26(100%)及び図27(0%)に示す。図26(100%)では、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制できているが、図27(0%)では、45°入射条件において、500nm近辺にリップルが発生しているのがわかる。
図28は、リア側に形成した全ての光学多層膜(UVカット、SWPF1、SWPF2)を備えた白板ガラス基板の0°(実線)及び45°(破線)入射条件における分光特性のシミュレーション結果を示す図である。図28からは、45°入射条件であっても400〜700nmの波長範囲における透過帯のリップルを抑制でき、透過率の局所的な低下も低いことがわかる。また、近赤外域の波長範囲において、確実に光をカットできることがわかる。
以上のことから、本発明の近赤外線カットフィルタは、リップルを非常に効率よく抑制できることがわかる。
本発明の近赤外線カットフィルタは、光の入射角度に依存する透過帯のリップルを抑制することができる。このため、デジタルカメラやデジタルビデオ等の固体撮像素子(例えば、CCDイメージセンサやCMOSイメージセンサ等)の分光補正に好適に使用できる。
10:近赤外線カットフィルタ、11:透明基板、12:光学多層膜、100:撮像装置、110:固体撮像素子、120:カバーガラス、130:レンズ群、150:筐体、L1〜L4:レンズ。

Claims (10)

  1. 透明基板と、前記透明基板の少なくとも一方の主面に設けられた光学多層膜とを備える近赤外線カットフィルタであって、
    前記光学多層膜は、
    波長500nmにおける屈折率が2.0以上である高屈折率膜と、波長500nmにおける屈折率が1.6以上で前記高屈折率膜の屈折率未満である中屈折率膜と、波長500nmにおける屈折率が1.6未満である低屈折率膜とを備え、前記高屈折率膜をH、前記中屈折率膜をM、前記低屈折率膜をLとしたとき、(LMHML)^n(nは1以上の自然数)の繰り返しで表される繰り返し積層構造を有し、
    400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、750〜1100nmの波長範囲において平均透過率が10%以下の領域の幅が100〜280nmである阻止帯とを有し、
    前記光学多層膜の前記高屈折率膜のQWOT(Quater-wave Optical Thickness)をT、前記中屈折率膜のQWOTをT、前記低屈折率膜のQWOTをTとした場合、
    前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値以上の場合、
    前記光学多層膜は、垂直入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない2T/(T+2T)の最大値を100%、最小値を0%と設定した場合、2T/(T+2T)が100%〜70%の範囲内であり、
    前記中屈折率膜の屈折率が前記高屈折率膜の屈折率と前記低屈折率膜の屈折率との中間値未満の場合、
    前記光学多層膜は、垂直入射条件での分光特性で400〜700nmの波長範囲内に透過率が局所的に5%以上低下する箇所が存在しない(2T+2T)/Tの最大値を100%、最小値を0%と設定した場合、(2T+2T)/Tが100%〜70%の範囲内となるように、前記高屈折率膜、前記中屈折率膜及び前記低屈折率膜を積層したことを特徴とする近赤外線カットフィルタ。
  2. 前記光学多層膜は、前記高屈折率膜がTiO、前記中屈折率膜がTa、前記低屈折率膜がSiOからなり、2T/(T+2T)が0.852〜0.867の範囲内であることを特徴とする請求項1に記載の近赤外線カットフィルタ。
  3. 前記光学多層膜は、前記高屈折率膜がTiO、前記中屈折率膜がAl、前記低屈折率膜がSiOからなり、(2T+2T)/Tが1.167〜1.218の範囲内であることを特徴とする請求項1に記載の近赤外線カットフィルタ。
  4. 前記光学多層膜は、前記高屈折率膜がNb、前記中屈折率膜がAl、前記低屈折率膜がSiOからなり、(2T+2T)/Tが1.191〜1.234の範囲内であることを特徴とする請求項1に記載の近赤外線カットフィルタ。
  5. 前記透過帯は、0°〜45°入射条件の分光特性において、透過率が局所的に20%低下する箇所が存在しないことを特徴とする請求項1ないし4のいずれか1項に記載の近赤外線カットフィルタ。
  6. 少なくとも2種以上の前記光学多層膜から構成されることを特徴とする請求項1ないし5のいずれか1項に記載の近赤外線カットフィルタ。
  7. 前記透明基板は、近赤外波長域に吸収を有する光学特性を備えることを特徴とする請求項1ないし6のいずれか1項に記載の近赤外線カットフィルタ。
  8. 前記透明基板は、Cu2+イオンを着色成分として含有するフツリン酸塩系ガラスもしくはリン酸塩系ガラスであることを特徴とする請求項7に記載の近赤外線カットフィルタ。
  9. 前記透明基板は、近赤外線を吸収する色素を含有した樹脂材であることを特徴とする請求項7に記載の近赤外線カットフィルタ。
  10. 前記光学多層膜と同一面もしくは前記透明基板の他方の主面に設けられ、
    波長500nmにおける屈折率が2.0以上の屈折率が異なる2種以上の膜と波長500nmにおける屈折率が1.6未満である膜とからな近赤外線カット膜を備え、
    前記近赤外線カット膜は、400〜700nmの波長範囲に平均透過率が85%以上となる透過帯と、前記透過帯の紫外側および近赤外側のそれぞれに平均透過率が5%以下となる阻止帯とを有し、
    前記透過帯の紫外側の半値波長と近赤外側の半値波長との差が200nm以上であり、垂直入射条件と30°入射条件における前記透過帯の半値波長の差が紫外側の半値波長で10nm未満、近赤外側の半値波長で22nm未満である請求項1ないし9のいずれか1項に記載の近赤外線カットフィルタ。
JP2014519965A 2012-06-04 2013-05-31 近赤外線カットフィルタ Active JP6119747B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014519965A JP6119747B2 (ja) 2012-06-04 2013-05-31 近赤外線カットフィルタ

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012126855 2012-06-04
JP2012126855 2012-06-04
JP2014519965A JP6119747B2 (ja) 2012-06-04 2013-05-31 近赤外線カットフィルタ
PCT/JP2013/065184 WO2013183557A1 (ja) 2012-06-04 2013-05-31 近赤外線カットフィルタ

Publications (2)

Publication Number Publication Date
JPWO2013183557A1 true JPWO2013183557A1 (ja) 2016-01-28
JP6119747B2 JP6119747B2 (ja) 2017-04-26

Family

ID=49711949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014519965A Active JP6119747B2 (ja) 2012-06-04 2013-05-31 近赤外線カットフィルタ

Country Status (4)

Country Link
US (1) US9726797B2 (ja)
JP (1) JP6119747B2 (ja)
CN (1) CN104204873B (ja)
WO (1) WO2013183557A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183557A1 (ja) 2012-06-04 2013-12-12 旭硝子株式会社 近赤外線カットフィルタ
WO2014084167A1 (ja) * 2012-11-30 2014-06-05 旭硝子株式会社 近赤外線カットフィルタ
JP5617063B1 (ja) 2012-12-28 2014-10-29 旭硝子株式会社 近赤外線カットフィルタ
JP5884953B2 (ja) * 2013-10-17 2016-03-15 Jsr株式会社 光学フィルター、固体撮像装置およびカメラモジュール
WO2016114362A1 (ja) * 2015-01-14 2016-07-21 旭硝子株式会社 近赤外線カットフィルタおよび固体撮像装置
CN106104319B (zh) * 2015-02-18 2018-12-07 Agc株式会社 光学滤波器和摄像装置
CN111665583B (zh) * 2015-05-12 2022-03-15 Agc株式会社 近红外线吸收色素和吸收层
CN109477921B (zh) * 2016-07-28 2021-06-18 京瓷株式会社 光学滤波器及光学元件用封装件
WO2018123705A1 (ja) * 2016-12-26 2018-07-05 旭硝子株式会社 紫外線透過フィルタ
KR101931731B1 (ko) 2017-09-28 2018-12-24 주식회사 엘엠에스 광학 물품 및 이를 포함하는 광학 필터
CN107592445A (zh) * 2017-11-13 2018-01-16 戴承萍 光学滤波器模块及光学滤波器系统
CN111954833B (zh) * 2018-03-30 2022-07-12 Agc株式会社 光学滤波器
TWI705269B (zh) * 2019-03-27 2020-09-21 群光電子股份有限公司 影像擷取裝置、濾光膜及濾光膜的製作方法
CN110221373B (zh) * 2019-05-17 2024-07-09 杭州科汀光学技术有限公司 一种消偏振的立方棱镜截止滤光片
JP7305439B2 (ja) * 2019-06-07 2023-07-10 キヤノン株式会社 光学素子、およびそれを有する光学系、撮像装置
JP7353099B2 (ja) * 2019-08-19 2023-09-29 キヤノン電子株式会社 光源角度測定装置及び人工衛星
JP7350301B2 (ja) * 2019-09-24 2023-09-26 東海光学株式会社 フィルタ並びに眼鏡レンズ、カメラフィルタ、窓板及びサンバイザ
WO2023282184A1 (ja) * 2021-07-07 2023-01-12 Agc株式会社 光学フィルタ
WO2023248040A1 (en) * 2022-06-20 2023-12-28 3M Innovative Properties Company Multilayer optical films for lidar systems
TWI800421B (zh) * 2022-06-30 2023-04-21 吳鳳學校財團法人吳鳳科技大學 可擴充帶寬的組合式帶通濾光片組

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085833A (ja) * 1994-06-21 1996-01-12 Toshiba Lighting & Technol Corp 光干渉体、管球およびハロゲン電球ならびに照明装置
JPH11202127A (ja) * 1998-01-14 1999-07-30 Canon Inc ダイクロイックミラー
JP2000100391A (ja) * 1998-09-21 2000-04-07 Stanley Electric Co Ltd 赤外線反射被膜付き光学物品及び電球
JP2000147248A (ja) * 1998-11-16 2000-05-26 Canon Inc 多層膜ローパスフィルタおよびこれを用いた光学部品
JP2006511838A (ja) * 2002-12-19 2006-04-06 テールズ ユーケー ピーエルシー 光学フィルタ
JP2008139693A (ja) * 2006-12-04 2008-06-19 Pentax Corp 赤外カットフィルタ
WO2013042738A1 (ja) * 2011-09-21 2013-03-28 旭硝子株式会社 近赤外線カットフィルター

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3423147A (en) * 1963-10-14 1969-01-21 Optical Coating Laboratory Inc Multilayer filter with wide transmittance band
JP4672101B2 (ja) 2000-02-14 2011-04-20 株式会社トプコン 赤外フィルター
WO2013015303A1 (ja) 2011-07-28 2013-01-31 旭硝子株式会社 光学部材
WO2013183557A1 (ja) 2012-06-04 2013-12-12 旭硝子株式会社 近赤外線カットフィルタ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085833A (ja) * 1994-06-21 1996-01-12 Toshiba Lighting & Technol Corp 光干渉体、管球およびハロゲン電球ならびに照明装置
JPH11202127A (ja) * 1998-01-14 1999-07-30 Canon Inc ダイクロイックミラー
JP2000100391A (ja) * 1998-09-21 2000-04-07 Stanley Electric Co Ltd 赤外線反射被膜付き光学物品及び電球
JP2000147248A (ja) * 1998-11-16 2000-05-26 Canon Inc 多層膜ローパスフィルタおよびこれを用いた光学部品
JP2006511838A (ja) * 2002-12-19 2006-04-06 テールズ ユーケー ピーエルシー 光学フィルタ
JP2008139693A (ja) * 2006-12-04 2008-06-19 Pentax Corp 赤外カットフィルタ
WO2013042738A1 (ja) * 2011-09-21 2013-03-28 旭硝子株式会社 近赤外線カットフィルター

Also Published As

Publication number Publication date
US9726797B2 (en) 2017-08-08
CN104204873A (zh) 2014-12-10
US20150085354A1 (en) 2015-03-26
CN104204873B (zh) 2016-08-24
JP6119747B2 (ja) 2017-04-26
WO2013183557A1 (ja) 2013-12-12

Similar Documents

Publication Publication Date Title
JP6119747B2 (ja) 近赤外線カットフィルタ
JP6206410B2 (ja) 近赤外線カットフィルタ
JP6241419B2 (ja) 近赤外線カットフィルタ
KR102061477B1 (ko) 근적외선 커트 필터
JP6003895B2 (ja) 近赤外線カットフィルター
KR101815823B1 (ko) 광학 필터 및 촬상 장치
US20140139912A1 (en) Optical member
JP5973747B2 (ja) 近赤外線カットフィルター
US20150116832A1 (en) Optical component
CN109975905B (zh) 近红外线截止滤波器
JP6136661B2 (ja) 近赤外線カットフィルタ
JP2015227963A (ja) 光学フィルタ及びその製造方法
JP7326738B2 (ja) 近赤外線カットフィルタ
JP6467895B2 (ja) 光学フィルタ
CN112051633B (zh) 光学元件、光学系统和图像拾取装置
JP2013200519A (ja) 光学フィルタおよび撮像デバイス

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250